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1 R-boundedness and operator-valued
multiplier theorems

Definition 1.1 Let (X, || - ||) be @ real or complez Banach space. A collection T of
- bounded linear operators in X is suid to be R-bounded (Randomized bounded) if there
exists a constant M > 0 such that

Y I el < Y 1Y aal? oA

ee{-1,1}¥ k=1 ee{-1,1}¥ k=1
holds for all {Ty }, C T, all {zp}i., € X and all N =1,2,.... A constant M > 0 such
that (1.1) holds is called an R-bound for T and the sinallest one is denoted by Ro(T). (If

the collection T is not R-bounded we set Ry(T) = o).

The first explicit definition of R-boundedness can be found in [2], although this notion
was already used by J. Bourgain in [3]. For a systematic treatment of this notion see [4],

[15].
Remarks

1. The notion of R-boundedness can be trivially extended to a family of operatoré

acting from a Banach space X into a Banach space Y.

2. By taking N = 1 in (1.1) one finds that a R-bounded collection of operators is

uniformly bounded.

3. A finite collection of bounded operators is R-bounded.



110

4. By using the generalized parallelogram law

N N

1 ‘
d "zl = o > | > el (1.2)
k=1

5€{4111}N k=1

one shows that in a Hilbert space, the notion of R-boundedness and uniform bound-

cdness are equivalent.

<

N
. The RHS of (1.2) can be rewritten as || E}Ekzklliz(ﬂ;x), where {£,}%° ,, denotes a
sequence of independent identically distributed symmetric {—1,1}-valued random
variables defined on some probability space (€2, F, P). Accordingly condition (1.1)

can be rewritten as

N N
I ZEkazk”Lg(Q;X) < M]| kaﬂikHLz(sz;_\') - (1.3)

n—1 k=1

In view of Kahane’s inequality we can replace Lo(£2; X) by Ly(€5 X), 1 < p < o0,

adjusting the constant M appropriately.

It appears that the notion of R-boundedness is useful in the context of multiplier theorems

associated with unconditional Schauder decompositions.

Definition 1.2 A sequence D = {Dg}°, of bounded linear projections in X is called a

Schauder decomposition of X, if

DDy =0 whenever k#1 » (1.4)
T = ZDka: forall xeX . (1.5)
k=1

The decomnpositior is called unconditional if the series in (1.5) is unconditionally conver-

gent for allw € X.
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We recall that if D is an unconditional Schauder decomposition of X, then there exists a

constant ¢p > 0 such that

n n n
IS Dzl < 1Y exDisllagainy < enll Y Daall (1.6)
k=1 k=1 k=1
holds for all z € X and all n > 1.

Let D = {D}}, be a Schauder decomposition of X and let L = {L;}§>; be a sequence
of bounded linear operators such that L; leaves R(Dy), the range of Dy, invariant, for

each k > 1, i.c.
Lka = .DkL,rch, k 2 1 . (17)

Let Xp be the lincar subspace of X generated by the subspaces {R(Dy)}52,, ie.

00 k .
Xp=|JRO D) . (1.8)
k1 1=t
We observe that X is dense in X and that Xp is invariant under Dy, £ > 1. We .Sti]]
denote the restriction of D, to Xp by P and define
Tra == Z LyDyx , (finite sum) (1.9)

k=1

for all # € Xp. The operator T;, maps Xp into itself and commutes with Dj:
T, Dy =D,Ty, , k>1 . (1.10)
In case the decomposition D is unconditianal, we obtain from (1.6), (1.9) and (1.10):

Tl < 1D exLlaDillLaosxy < el Tzl (1.11)
k=1
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for all # € Xp. Since Xp is dense in X and X is complete, the operator T; extends to
a bounded linear operator on X iff 77, is bounded on X;. In view of (1.11) we have the

following characterization.

Theorem 1.1 (4], [15]). Let D = {D;}3%,, be an unconditional Schauder decomposition
of the Banach space X and let L = {L;}32,, be a sequence of bounded linear operators of
X suiz’sﬁng (1.7).

Let X be the dense linear subspace of X defined by (1.8} und let Ty be the linear operator
on X, defined by (1.9).

Then the operator Ty, is bounded iff there exists a constant M > 0 such that

T n
| ZEkkak”Lz(Q;X) < M| nga:k“L';(Sl;_K) (1.12)
k=1 k=1

holds, for all z,, € R(Dy), k> 1 and all n > 1.

If this condition id fulfilled then the norm of Ty, satisfies
ITell < chM . (1.13)

In particular if the collection L is R-bounded with constant Ry(L), then (1.12) holds with

Proof: If (1.12) holds and 2 = 3 Dz for some n > 1 we have [Toa| <
) ) k=1

’ 7 7 n
c:ullkzlkakaib‘||Lz(sz;x) < eoM|| 3 epDiallryox) £ M| Y2 Diz|| = & M)|z||, where
= k=1 _ k—1

we have used (1.11) and (1.6).



Conversely if T, is bounded, we have for all z; € R(Dy), £ =1,...,n and all n > 1,

1) exLiziellLaixy =

k=1

mn
1) exLiDiallyi0:x) < enl|Trzl|

k=1

n
< cp||Tell llell = enlTell 1) Dacl

k=1

T
GITLl 1Y erDislluyy =
k=1

n
AITU D Ny
k=1

7
where z = 5 D;x, and with the use of (1.6), (1.11).
k=1

2 Operator-valued Marcinkiewicz and Mikhlin
multiplier theorems

113

Let (X, || -|]) be a complex Banach space and let LP(0,1; X), 1 < p < oo denote the usual

complex Banach space equipped with the norm

1
lully = ( / lu(h)|Pde)
N

Let N=0,1,2,... and let

N

Fru = Z er @ w(k), where ue I7(0,1;X) ,
k=—N

ex(®) = ™ tel0,1], keZ ,

1
a(k) = / e 2ty (dt, kel |

0

(er R AK)E) = ex(®(k), te]0,1]
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As is well-known, the Banach-valued version of Fejer’s theorem holds, that is, the sequence
of Cesaro means of the sequence {Fyu}%_, converges to u in L?(0,1; X) for every u €

L?(0,1; X) and every 1 < p < .
It follows in particular that the vector space of trigonometric polynomials

T(X) := span{ex}

ke
is dense in I7(0,1; X), p > 1. It is also known that the sequence {Fyu}%., converges to
w in I2(0,1; X) for every u € LP(0,1; X) iff the Riesz projection P defined on T'(X) by
Py = Zek & (k)
k>0

is bounded in the L7(0,1; X) norm.

This is the cagse when 1 < p < oc and X = C [11] or more generally iff X has the UMD

property.

Under these conditions the sequence of bounded projections {E }$%,, in Z2(0, 1; X) defined
by By = Fy and Ey .= F, — F,_;, k > 1 is a Schauder decomposition of the space
L?(0,1; X). When X = C, this decomposition is unconditional iff p = 2. In remarkable
papers Paley and Littlewood [10], [11] showed that the dyadic blocking of {Ex}52, defined
by Dy := Fox — Fox-1, k= 1,2,..., Dy := Fy, is unconditional. This property has been
extended to the case X is UMD by Bourgain [3]. A detailed proof of this fact can be found
in Venni [12]. A careful analysis of this proof shows that the notion of R-boundedness

(which is not mentioned explicitly) plays an important role. This has been the starting
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point of [4].

In view of Theorem 1.1 a sequence {L; }$°, of bounded linear operators in L*(0, 1; X), 1 <
P < oo satisfying (1.7) and (1.12) induces a bounded linear operator Ty, satisfying (1.13).
In particular condition (1.7) is satisfied when the operators {1, }32, are diagonal operators

of the form:

1
Lou = Zeg@ﬂﬂﬁ(l) ,

I=—1
Teu = Z e @ Mu(l) , k=1,2,... ,
' ok—l|l|<2k

where { M}z is a family of bounded operators in L?(0,1; X). In a recent work Arendt
and Bu [1] found an interesting sufficient condition on the sequence {M;};cx for the family

{Lx}3, to be R-bounded, namely

R = R({NII}]FZ and {l(MH-l — 11.’[1),! € Z}) <0 (21)
This leads to the following

Theorem 2.1 (Arendt-Bu)

Letwe I7(0,1; X), 1 <p<oc, X UMD space.

Let {i(k) bren be the sequence of Fourier-coefficients of u and let k{Ml}leZ be u sequence
of bounded linear operutors in X. Then if the condition (2.1) holds, then the sequence
{My@(k)}ren is the sequence of Fourier coefficients of a (unique) function v € LP (0,1; X)

and there exists u constant ¢ > 0 depending only onp € (1,00) and X such that

H‘UHM(U,l;r) < chy ”u”LP(O,l;X) . (2.2)



116

Remark

Theorem 2.1 is a simplified version of a more involved Marcinkiewicz type theorem due to
Strkalj and Weis [13], which is a discrete version of the following operator-valued Mikhlin

type theorem due to Weis [14].

Theorem 2.2 (Weis '99)
Let 1 < p < oo and X be a UMD space.
Let M e CY(R\{0}; £(X)). Then M is the synbol of a bounded operutor in LP(R; X) if

the collections {M(p); p € R\{0}} and {pM'(p); p € R\{0}} are R-bounded in L£(X).

Comments

This remarkable theorem is the first operator-valued multiplier theorem in IP(R; X), 1 <
P < o0 where X is not isomorphic to a Hilbert space. Another proof can be found in
[5]. It should be mentioned that the content of [4] has been made available to Professor

L. Weis in December ’98.

3 Converse theorems, R-sectoriality and L,-Maximal
Regularity

In this section we shall present some results showing that the R-boundedness of the
“multipliers” is a necessary condition and that this notion naturally leads to the notion

of R-sectoriality.
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Theorem 3.1 {Weis '99) [14]
Let (X, |||]) be a complez Bunach space (not necessarily UMD) and let M € CHR\{0}; L(X)).
If M is the symbol of a bounded operator in IP(R;X), 1 < p < oo then the family

{M(p); p € R\{0}} is R-bounded.
Remarks
1. Another proof of this result can be found in [5].

2. An analogue of this result in the discrete case has been established by Arendt and
Bu [1], namely if {M;}icz is a "multiplier” in LP(0,1; X) then the family {Mi}iez is

R-bounded in £{X).
An application of Theorem 3.1 leads to the following L,-maximal regularity theorem.

Theorem 3.2 Let (X, || - ||) be a complex Banach space und let A: D(A) C X — X be
u sectorial operator with spectral ongle wy < 7/2, and let 1 < p < 0.

If there exists u constant M > 0 such that
6’| Logrxy + || Axl| o xy < MJu' + Aul| po;x) (3.1)
for every v € WWP(R; X) N LP(R; D(A)), then the family
{plin+ A7 peR\{0}} | (3.2)

s R-bounded.
Conversely if 1 < p < oo and X is UMD, then condition (3.1) is also sufficient for (3.2)

to hold.
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Comments

1.

(%)

The characterization of Lp—maxirhal regularity for abstract differential equations in

a UMD space has been obtained independently by Kalton and Weis (see [14]).

. The characterization in the case X = L4(Q; i), 1 < g < oo has been presented in a

seminar in Delft, December 98 by Professor L. Weis in terms of a squarc-function

estimate:

There exists a constant C' > 0 such that for all f ¢ LI(L?)

I [ 1R, Ayl < i [ 1ora s
R £

This notion is in this special case equivalent to condition (3.2).

. It is natural to call a sectorial operator A, R-sectorial if in the definition of secto-

riality, the notion of uniform boundedness is replaced by R-boundedness. See [5],
[14] for definitions and cxamples of R-sectorial operators and [8] for examples of

sectorial operators which are not R-sectorial in 79(([0,1]), 1 < ¢ < o0, ¢ # 2.

As is shown in [1] Theorem 2.1 and its partial converse are strong enough to char-

acterize Ly-maximal regularity in UMD spaces.

Concluding remarks

It appears that the notion of R-boundedness is an appropriate notion for operator-

valued multiplier theorems. Applications of this notion has been made by B. de Pagter,
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F. Sukochev and H. Witvliet to Schur type multipliers [6]. We recall that in Theorem 1.1,
the R-boundedness of the family {L;}32, is in general only a sufficient condition for the
boundedness of the operator 7. Examples where the family {L,}32, in Theorem 1.1 is

not R-bounded and the operator T, is bounded can be found in [15].
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