二次元外部ラプラス問題の FEM-CSM 近似解の誤差評価

An error estimate of an FEM-CSM combined method for planar exterior Laplace problems

USHIJIMA, Teruo 牛島 照夫

電気通信大学 電気通信学部 情報工学科

Department of Computer Science Faculty of Electro-Communications The University of Electro-Communications Chofu-shi, Tokyo 182-8585, Japan

講演者の提案してきた外部ラプラス問題の FEM-CSM 結合解法の誤差評価に関しては、これまでいくつかの機会に結果を述べた (Reference 2、Reference 3など)。吟味不足で、そこに述べた定理は正確では無かった。この報告でこの誤りを正したい。この報告の詳細は、Reference 4 に述べてある。

1. Introduction

Fix a simply connected bounded domain \mathcal{O} in the plane. Assume that the boundary \mathcal{C} of \mathcal{O} is sufficiently smooth. The exterior domain of \mathcal{C} is denoted by Ω . Let D_a be the interior of the disc with radius a having the origin as its center. Fix a function $f \in L^2(\Omega)$ whose support, supp(f), is bounded. Choose a so large that the open disc D_a may contain the union $\mathcal{O} \cup \text{supp}(f)$ in its interior. The following Poisson equation (E) is employed as a model problem.

(E)
$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } C, \\
\sup_{|\mathbf{r}| > a} |u| < \infty.
\end{cases}$$

The intersection of the domain Ω and the disc D_a is said to be the interior domain, denoted by Ω_i : $\Omega_i = \Omega \cap D_a$. Consider the Dirichlet inner product a(u, v) for $u, v \in H^1(\Omega_i)$:

$$a(u,v) = \int_{\Omega_i} \operatorname{grad} u \operatorname{grad} v \, d\Omega.$$

Let Γ_a be the boundary of the disc D_a . Since the trace $\gamma_a v$ on Γ_a is an element of $H^{1/2}(\Gamma_a)$ for any $v \in H^1(\Omega_i)$, the boundary bilinear form of Steklov type b(u, v) is well defined for $u, v \in H^1(\Omega_i)$. The precise definition of b(u, v) will be given in Section 3. Define a continuous symmetric bilinear form t(u, v) for $u, v \in H^1(\Omega_i)$ through

$$t(u,v) = a(u,v) + b(u,v).$$

Let F(v) be a continuous linear functional on $H^1(\Omega_i)$ defined through the following formula for $v \in H^1(\Omega_i)$:

$$F(v) = \int_{\Omega_i} f v \ d\Omega.$$

A function space V is defined as follows:

$$V = \{ v \in H^1(\Omega_i) : v = 0 \text{ on } \mathcal{C} \}.$$

Using these notations, the following weak formulation problem (Π) is defined.

(\Pi)
$$\begin{cases} t(u,v) = F(v), & v \in V, \\ u \in V. \end{cases}$$

We admit the equivalence between the equation (E) and the problem (Π) .

2. A CSM approximate problem for Laplace equation in the exterior region of a disc

Let D_a be the interior of the disc with radius a having the origin as its center, and let Γ_a be the boundary of D_a . Let $\Omega_e = (D_a \cup \Gamma_a)^C$, which is said to be the exterior domain. We use the notation $\mathbf{r} = \mathbf{r}(\theta)$ for the point in the plane corresponding to the complex number $re^{i\theta}$ with $r = |\mathbf{r}|$ where $|\mathbf{r}|$ is the Euclidean norm of $\mathbf{r} \in \mathbf{R}^2$. Similarly we use $\mathbf{a} = \mathbf{a}(\theta)$, and $\vec{\rho} = \vec{\rho}(\theta)$, corresponding to $ae^{i\theta}$ with $a = |\mathbf{a}|$, and $\rho e^{i\theta}$ with $\rho = |\vec{\rho}|$, respectively.

Let $f(\mathbf{a}(\theta))$ be a continuous function on the circle Γ_a . The function $f(\mathbf{a}(\theta))$ is a 2π periodic function of θ . Denote the problem to find a harmonic function $u = u(\mathbf{r})$ coinciding with f on Γ_a , which is bounded in Ω_e , by (\mathbf{E}_f) .

$$\left\{egin{array}{lll} -\Delta u &=& 0 & ext{in } \Omega, \ u &=& f & ext{on } \Gamma_a, \ \sup_{\Omega_e} |u| &<& \infty. \end{array}
ight.$$

Fix a positive integer N. Set

$$\theta_1 = \frac{2\pi}{N}.$$

For any $j \in \mathbb{Z}$, denote $j\theta_1$ by θ_j . Fix a positive number ρ so as to satisfy $0 < \rho < a$. For the fixed positive integer N, set the points $\vec{\rho_j}$, $\mathbf{a_j}$, $0 \le j \le N-1$, as follows:

$$\mathbf{a}_j = \mathbf{a}(\theta_j), \quad \vec{\rho}_j = \vec{\rho}(\theta_j) \text{ with } 0 < \rho < a.$$

The points $\vec{\rho}_j$, and \mathbf{a}_j , are said to be the charge, and the collocation, points, respectively. The arrangement of the set of points of charge points and collocation points introduced as above is called **the equi-distant equally** phased arrangement of charge points and collocation points.

Now we define a CSM approximate problem $(E_f^{(N)})$ for the continuous problem (E_f) as follows:

$$\left\{egin{array}{lll} u^{(N)}(\mathbf{r}) &=& \sum\limits_{j=0}^{N-1} q_j G_j(\mathbf{r}) + q_N, \ u^{(N)}(\mathbf{a}_j) &=& f(\mathbf{a}_j), & 0 \leq j \leq N-1, \ \sum\limits_{j=0}^{N-1} q_j &=& 0, \end{array}
ight.$$

where

$$G_j(\mathbf{r}) = E(\mathbf{r} - \vec{\rho}_j) - E(\mathbf{r}), \quad E(\mathbf{r}) = -\frac{1}{2\pi} \log r.$$

Let

$$N(\gamma) = rac{\log 2}{-\log \gamma} \quad ext{with} \quad \gamma = rac{
ho}{a}.$$

Theorem B (Cf. Katsurada-Okamoto[1].) Fix a positive number b, 0 < b < a. Let $u(\mathbf{r})$ be harmonic in a domain containing the exterior domain of the disc with radius b having the origin as its center. Suppose that $N \geq N(\gamma)$. Let $u^{(N)}(\mathbf{r})$ be the solution of the problem $(\mathbf{E}_{\mathbf{f}}^{(N)})$ with the data $f(\mathbf{a}(\theta)) = u(\mathbf{a}(\theta))$. Then there exist constants B > 0 and $\beta \in (0,1)$,

dependent on parameters a, b and ρ , independent of u (with the property above) and N, such that the following two estimates are valid:

$$egin{aligned} \max_{\mathbf{r} \in \overline{\Omega}_e} \left| u(\mathbf{r}) - u^{(N)}(\mathbf{r})
ight| & \leq B \cdot eta^N \cdot \max_{|\mathbf{r}| = b} \left| u(\mathbf{r})
ight|, \ & \max_{\mathbf{r} \in \overline{\Omega}_e} \left| \operatorname{grad} u(\mathbf{r}) - \operatorname{grad} u^{(N)}(\mathbf{r})
ight|_{\mathbf{R}^2} & \leq B \cdot eta^N \cdot \max_{|\mathbf{r}| = b} \left| u(\mathbf{r})
ight|. \end{aligned}$$

3. Boundary bilinear form of Steklov type for exterior Laplace problems and its CSM-approximation form

Let $f(\theta)$ be a complex valued continuous 2π -periodic function of θ . For $n \in \mathbb{Z}$, a continuous Fourier coefficient f_n of the function $f(\theta)$ is defined through

$$f_n = rac{1}{2\pi} \int\limits_0^{2\pi} f(heta) e^{-in heta} d heta.$$

For functions $u(\mathbf{a}(\theta))$ and $v(\mathbf{a}(\theta))$ of $H^{1/2}(\Gamma_a)$, let us introduce the boundary bilinear form of Steklov type for exterior Laplace problem through the following formula (1):

(1)
$$b(u,v) = 2\pi \sum_{n=-\infty}^{\infty} |n| f_n \overline{g_n},$$

where f_n , and g_n , are continuous Fourier coefficients of $u(\mathbf{a}(\theta))$, and $v(\mathbf{a}(\theta))$, respectively.

The CSM approximate form for b(u, v), which is denoted by $b^{(N)}(u, v)$, is represented through the following formula (2):

(2)
$$b^{(N)}(u,v) = -\frac{2\pi a}{N} \sum_{j=0}^{N-1} \frac{\partial u^{(N)}(\mathbf{a}_j)}{\partial r} v^{(N)}(\mathbf{a}_j),$$

where $u^{(N)}(\mathbf{r})$, and $v^{(N)}(\mathbf{r})$, are CSM-approximate solutions of the problem $(\mathbf{E}_{\mathbf{f}}^{(N)})$ with $f = u(\mathbf{a}(\theta))$, and $f = v(\mathbf{a}(\theta))$, respectively.

4. An FEM-CSM combined method for exterior Laplace problems

We say that the function $v(\mathbf{a}(\theta))$ is an equi-distant piecewise linear continuous 2π -periodic function with N nodal points if it is expressed in the

following form:

$$v(\mathbf{a}(\theta)) = \frac{\theta_{j+1} - \theta}{\theta_1} v(\mathbf{a}(\theta_j)) + \frac{\theta - \theta_j}{\theta_1} v(\mathbf{a}(\theta_{j+1})),$$

$$\theta_j \le \theta \le \theta_{j+1}, \quad 0 \le j \le N - 1.$$

And we use the notation, $a(v) = a(v, v)^{1/2}$, for $v \in V$.

A family of finite dimensional subspaces of V, $\{V_N : N = N_0, N_0 + 1, \cdots\}$ is supposed to have the following properties:

$$(V_N - 1) V_N \subset C(\overline{\Omega_i}).$$

$$\begin{cases} For \ any \ v \in V_N, \ v(\mathbf{a}(\theta)) \ is \ an \ equi-distant \\ piecewise \ linear \ continuous \ 2\pi-periodic \\ function \ with \ N \ nodal \ points. \end{cases}$$

For $u, v \in H^1(\Omega_i) \cap C(\overline{\Omega_i})$, we define bilinear forms $t^{(N)}(u, v)$ as follows.

$$t^{(N)}(u, v) = a(u, v) + b^{(N)}(u, v).$$

Now our approximate problem $(\Pi^{(N)})$ is stated as follows.

$$(\Pi^{(N)}).$$

$$\left\{ egin{array}{l} t^{(N)}(u_N,v)=F(v), & v\in V_N, \\ u_N\in V_N. \end{array} \right.$$

Theorem 1 Let u be the solution of the problem (Π) , and let u_N be the solution of the problem $(\Pi^{(N)})$. Suppose that supp(f) is contained in a disc D_b with the radius b(< a) having the origin as its center. Let the function $D(\xi)$ of $\xi \in (0,1)$ be defined through

$$D(\xi) = \frac{4\xi}{(1-\xi)^3}.$$

Let $N \geq N(\gamma)$. Then there is a constant C such that

$$||u-u_N||_{H^1(\Omega_i)} \leq C \left\{ Beta^N + rac{1+D(rac{b}{a})}{N}
ight\} ||f||_{L^2(\Omega_i)},$$

where the constants B and $\beta \in (0,1)$ are described in Theorem B for the set of parameters $\{a,b,\rho\}$. In the above, the constant C is independent of the inhomogeneous data f and N.

The proof of Theorem 1 is written in [4].

This work is partly supported by Grant-in-Aid for Scientific Research (B) No.10554003 of Japan Society for the Promotion of Science.

References

- [1] Katsurada, M. and Okamoto, H., A mathematical study of the charge simulation method I, J. Fac. Sci. Univ. Tokyo, Sect. IA, Math, Vol. 35, pp. 507-518 (1988).
- [2] Ushijima, T., An FEM-CSM combined method for 2D exterior Laplace problems, in Japanese, Abstract of Applied Mathematics Branch in Fall Joint Meeting of Mathematical Society of Japan, pp.126-129 (1998.10.3).
- [3] Ushijima, T., Continuous and discrete Fourier coefficients of equi-distant piecewise linear continuous periodic functions Application to mathematical analysis of an FEM-CSM combined method for 2D exterior Laplace problems RIMS KOKYUROKU 1145, pp.238-246, (2000.4).
- [4] Ushijima, T., An FEM-CSM combined method for planar exterior Laplace problems, submitted.