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$0$ . Introduction

Combininng some analytical methods and some numerical methods, we are able to
analyse rigorously some (symmetry-breaking) bifurcation phenomena of periodic so-
lutions of semilinear (hyperbolic and parabolic) partial differential equations (PDEs)

describing some dissipative forced vibration systems. We adopt some methods in [O],

where Oishi treats the Duffing equation. The outline of analysis is the following: In

order to apply a $\mathrm{b}\mathrm{i}\mathrm{r}_{\mathrm{l}\mathrm{l}\mathrm{r}\mathrm{C}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ theorem ([WS], [K1]), we $\mathrm{l}\mathrm{L}\mathrm{s}\mathrm{e}$ some $\mathrm{n}\iota \mathrm{l}\mathrm{m}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{l}$ method and
find an approximate solution ( $=\mathrm{b}\mathrm{i}\mathrm{f}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ point) with high accuracy of the extended
system. Then, we show the unique existence of a real solution in a neighborhood of
the approximate solution by using the convergence theorem of the Newton’s method
$([\mathrm{K}1], [\mathrm{O}])$ . The most difficult part in the analysis for concrete problems is to check the
conditions of the convergence theorem of the Newton’s method. More concretely, we
have the following two difficult points:

(I) to construct an highly accurate approximate solution of bifurcation point

(II) to estimate the operator norm of the inverse of a linearized operator at bifnrcation
point

In this article we mainly intend to explain how to treat (I) and (II). For (I) we
propose some methods by using the least square methods (see Section 2). For (II) we
present some methods in which we approximate linearlized operators by some operators

with simpler structure (see Section 3). In view of the form, the author calls the latter

operators ‘ diagonal operators’. When we treat PDEs, the highly accurate approximate

solution we need have in general very long terms. A lot of difficulties arise $\mathrm{h}\mathrm{o}\mathrm{m}$ such
long length of approximate solutions. Even for one-dimensional vibration problem ap-
proximate solution we treat by the use of the spectral methods have more than one
hundred terms. It seems that for higher-dimensional problems we need approximate

solution with much more terms.
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1. Our main example

Let $f(\lambda, u):=u_{tt}-C^{2}u_{xx}+\mu u_{t}+u^{3}-\lambda\sin x\cos t$. Here, $c,$ $\mu>0$ are constants and
$\lambda>0$ is a parameter. We consider the bifurcation phenomena of periodic solutions for
the following semihinear wave equation:

(P) $\{$

$f(\lambda,u)=0$ in $(0, \pi)\cross \mathrm{R}^{+}$ ,

$u(\mathrm{O}, t)=u(\pi, t)=0$ for $t\geq 0$ .

This has some deep relations to the ordinalry differential equation called the Duffing
equation. By some numerical si.mula.tions we can observe rich bifurcation phenomena
(such as the existence of turning points, symmetry-breaking bifurcations, chaos) for our
problem (P) and the Duffing equation. It is difficult to analyse mathematically such
phenomena only by the use of pure analytical methods, except for some problems with
very restricted artificial forcing terms ([M], [Ko]). Oishi explains in [O] that we can
analyse rigorously some bifurcation phenomena of the Duffing equations with natural
forcing terms.

The equation in our problem (P) has some symmetry. Let $S$ be the transformation
defined by

$S:u(x, t)\mapsto-u(x, t+\pi)$ .

Then we have $f(\lambda, Su)=Sf(\lambda, u)$ . The symmetric periodic solution (resp. the asym-
metric periodic solution) is a solution $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}6\Gamma \mathrm{i}\mathrm{n}\mathrm{g}Su=u$ (resp. $Su=u$).

Let $c=1,$ $\mu=0.1$ . Let us move the value of $\lambda$ gradually larger from $0$ . Then
we can observe that a branch of asymmetric $2\pi$-periodic solutions bifurcates from a
branch of symmetric $2\pi$-periodic solutions at a certain value $\lambda=\lambda_{0}\in(2.7,2.8)$ by
some numerical simulations. We can prove this and the following holds:

Proposition 1.1. $([\mathrm{K}2])$ There exists a symmetric branch $\{(\lambda, u_{\lambda})\}_{\lambda}$ of $2\pi$-periodic
soluitons of $(P)$ which has a symmetry-breaking pitchfork biffircation point $(\lambda_{0}, u_{0})$

$\mathrm{s}uch$ tha$t$

$|\lambda_{0}-\Lambda_{0}|^{2}+||u_{0}-U0;H^{1}(D)||2\leq(0.014)^{2}$ .

Here, $D:=(0, \pi)\cross(0,2\pi),$ $\Lambda_{0}:=2.767$ and
$U0:=1.675064\cos t\sin X+\cdots+6.878066\mathrm{X}\mathrm{l}\mathrm{o}-6\sin 21t\sin 21_{X}$ has the form of a finite
Fourier expansion consisting of 160 terms. We omit here the complete form of $U_{0}$ .
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In order to prove this result, we use a bifurcation theorem [Kl, Theorem 3.1] which
is a generalized version of [$\mathrm{W}\mathrm{S}$ , Thorem 3.1]. We define a closed linear subspace $X$ in
$H^{1}(D)$ :

$X:=$ {
$\in m_{2\mathrm{N}}$

$\sum_{n-1}a_{mn}e\mathrm{S}\in \mathrm{z}imt$
in

$nx;n \in 2\mathrm{N}-m\in^{\mathrm{z}}\sum_{1}(m^{2}+n^{2})|a_{mn}|2<\infty$
}

and define the symmetric subspace $X_{s}$ and the anti-symmetric subspace $X_{a}$ :

$X_{s}$ $:=$
$\{ \sum_{\mathrm{z}_{-},n\in 2\mathrm{N}-m\in 21}a_{mn}e\mathrm{s}\mathrm{i}1imt\mathrm{n}nX ; m\in 2\sum_{n\in 2\mathrm{N}-1}(m^{2}+n^{2})|amn|^{2}<\infty \mathrm{Z}-1\}$

,

$X_{a}$ $:=$
$\{ \sum_{\mathrm{N}n\in 2-1}a_{mn}e\mathrm{s}\mathrm{i}m\in 2\mathrm{Z}imt\mathrm{n}nX ; n\in 2\mathrm{N}-1\sum_{m\in 2\mathrm{z}}(m+2n^{2})|a_{mn}|2<\infty\}$

.

Then, we have $X=X_{s}\oplus X_{a}$ . Let $\mathrm{Y}:=\overline{X}^{L^{2}(D)}$ We define $\mathrm{Y}_{s}$ and $\mathrm{Y}_{a}$ similaly to the
definition of $X_{s}$ and $X_{a}$ . Let $L_{0}$ be a principal part of $f$ , i.e.

$L_{0:=u_{tt}-c^{2}}uxx+\mu ut$ .

The operator $L_{0}$ : $Xarrow \mathrm{Y}$ is an unbounded operator with $L_{0}^{-1}\in \mathcal{L}(Y, X)$ . The un-
boundedness of the operator is the special feature commonly in the analysis for PDEs
with time variable. For this reason we formulate in [K1] generalize versions of some
bifurcation theorems, which is applicable to non-Fr\’echet differentiable maps.

In view of bifurcation theorem [Kl, Theorem 3.1], we should show that $(\lambda_{0,u}0)$ is
a simple singular point of $f(\lambda,u)$ and that an extended system:

$F(\lambda, u, \phi)$ $:==0$
has an isolated solution $(\lambda_{0}, u_{0}, \phi 0)$ , where $l\in X^{*}$ is a functional to normalize $\phi 0$ and
$F$ : $\mathrm{R}\cross X_{S}\cross X_{a}arrow \mathrm{R}\mathrm{x}\mathrm{Y}_{S}\cross \mathrm{Y}_{a}$ . We should construct an approximate solution of
$(\lambda_{0}, u0, \phi_{0})$ and apply the convergence theorem of Newton’s method [Kl, Theorem 1.1].

2. Construction of approximate solution with high accuracy
In this section we will explain how to construct a highly $\mathrm{a}\mathrm{c}c$urate approximate

solutions of partial differential equations. One of advantage of our method below is
that we can construct a more highly accurete approximate solution by adding some
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new high frequency terms provided we notice the accuracy of our approximate solution

is not sufficient.
As an example we treat (P) in Section 1. We fix $\lambda$ and set $L(u):=f(\lambda,u)$ for

simplicity. We will construct an approximate $2\pi-$ periodic solution with high accuracy.
We set the inner product:

$(g, h):= \int_{0}^{2\pi}dt\int_{0}^{\pi}dxg(X,t)\overline{h(X,t)}$ .

We assume that we already obtain an approximate solution:

$u^{0}= \sum_{k(,l)\in A}a_{k}^{0}\iota^{e\mathrm{s}\mathrm{i}\iota_{x}}ikt\mathrm{n}$

by some methods (such as the finite difference methods or finite element methods).

Here, $i=\sqrt{-1}$ and
$A:=\{(k, l)\in \mathrm{N}\cross \mathrm{N};|k|, l\leq M\}$ .

First let $u_{1}$ be an ’optimmized’ function of $u_{0}$ by the least-squares methods:

(2.0)
$u^{1}= \sum_{(k,l)\in A}akle^{ikt}\sin\iota x$

.

Here, we determine unknown number $a_{kl}$ such that $(L(u^{1}), L(u^{1}))$ takes the minimum.

Namely, we determine $a_{kl}$ by applying the Newton method with the initial value: $a_{kl}=$

$a_{kl}^{0}$ to the simnultaneous equations

(2.1) $\frac{\partial}{\partial a_{k\mathrm{J}}}(L(u^{1}), L(u^{1}))=0$, $(k, l)\in A$ .

In order to obtain an approximate solution with higher accuracy we set

(2.2)
$u^{2}=u^{1}+(k, \iota)\sum_{\in B-A}\alpha k\iota$

e $\mathrm{s}$

ikt
$\mathrm{i}\mathrm{n}lX$

with $B:=\{(k, l)\in \mathrm{N}\mathrm{x}\mathrm{N} ; |k|, l\leq N\},$ $M<N$

and we determine unknown number $\alpha_{kl}$ such that $(L(u^{2}), L(u^{2}))$ takes the minimum.

Namely, We make a simultaneous equations for $\alpha_{kl}$ similar to (2.1) and determin$\mathrm{e}\alpha_{kl}$ by

applying the Newton method with the initial value: $\alpha_{kl}=0$. After the determination

of $\alpha_{kl}$ we optinnnizze the $\mathrm{p}\mathrm{a}\iota${ of $u^{1}$ in the right-hand side of (2.2). If necessary, we repeat

the similar procedure to obtain an approximate solution with higher accuracy.
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3. To estimate the norm of inverse operator

First, we prepare two lemmas:

Lemma 3.1. Let $X$ and $\mathrm{Y}$ be Banach spaces. Let $L:Xarrow \mathrm{Y}$ be a (maybe $unb_{oU}\mathrm{p}ded$)
linear operator. Assume that there exists $P\in \mathcal{L}(\mathrm{Y}, X)$ such that

$\{$

$LP\in \mathcal{L}(\mathrm{Y}, x)$ ,

$||LP-I||<1$ .

Then we have $L^{-1}\in \mathcal{L}(\mathrm{Y}, X)$ with estimates:

$||L^{-1}-P|| \leq\frac{||P||||LP-I||}{1-||LP-I||}$ ,

$||L^{-1}|| \leq\frac{||P||}{1-||LP-I||}$ .

Lemma 3.2. Let $X$ and $\mathrm{Y}$ be Banach spaces. Let $L:Xarrow \mathrm{Y}$ be a (maybe unboun$ded$)
linear operator. Assum$\mathrm{e}$ that there exists a linear operator $A:Xarrow \mathrm{Y}$ such that

$\{^{A^{-1}}L-1LA^{-}A\in \mathcal{L}(\in \mathcal{L}\in \mathcal{L}(\mathrm{Y}(’ \mathrm{Y},Y)X,\mathrm{Y})X),$,

with $||L-A||||A^{-1}||<1$ .

Then we have $L^{-1}\in \mathcal{L}(\mathrm{Y}, X)$ witb estimates:

$||L^{-1}-A^{-1}|| \leq\frac{||L-A||||A^{-}1||^{2}}{1-||L-A||||A-1||}$ ,

$||L^{-1}|| \leq\frac{||A^{-1}||}{1-||L-A||||A-1||}$ .

Let $X$ and $Y$ be Banach spaces with $X=\succ \mathrm{Y}$ being dense. Let $L$ : $Xarrow \mathrm{Y}$ be
a (maybe unbounded) linear operator. In this section we will show how to estimate
$||L^{-1}||$ . We will approximate $L$ by the following operator $A$ :

(3.1) $A\simeq$ ,

where $A_{N}$ is a finite $N\cross N$ matrix and $S$ is an infinite diagonal matrix. The relation
(3.1) means that there exists a complete orthorgonal base $\{\phi_{k}\}_{k=1}^{\infty}$ of $\mathrm{Y}$ such that
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$\{\phi_{k}\}_{k1}^{\infty}=\subset X$ and $A_{N}X_{N}\subset X_{N}$ with $X_{N}:=[\phi_{1}, \cdots, \phi_{N}]$ (which means the linear
subspace generated by $\phi_{1},$ $,$ $,$

$.,$ $\phi_{N}$ ) and $\phi_{k}(k\geq N+1)$ is an eigenvector of $S:X_{r}arrow\overline{X_{r}}Y$

with $X_{r}:=[\phi_{N+1}, \phi_{N+}2, \cdots]$ . We set

(3.2) $P:=A^{-1}=$ ,

Let

$x=\in X$ with $x_{N}\in X_{N}$ and $x_{r}\in X_{r}$ .

Then, we have

$(LA^{-1}-I)X=L-$
$=(LA_{N}^{-1}-I)X_{N}+(LS^{-1}-I)X_{r}$

It follows that

$||(LA^{-}1-I)_{X}||\leq||LA^{-1}-NI||||x_{N}||+||Ls^{-1}-I||||x_{r}||$

$\leq(||LA^{-1}-NI||^{2}+||Ls^{-1}-I||^{2})1/2||x||$

Therefore, we obtain that

$||LA^{-1}-I||\leq(||LA^{-1}-NI||^{2}+||Ls^{-1}-I||^{2})^{1/2}$

The following condition is sufficient to apply our Lemma 3.1:

(3.3) $\{$

$||LA^{-1}-NI||\leq 1/2$ ,

$||Ls^{-1}-I||\leq 1/2$ .

We remark that our method is actually applicable to problems with higher nonlinearity
than our main problem (P). Therefore, we consider, as an example, the following simple

problem:
$L:=- \frac{\partial^{2}}{\partial x^{2}}+p(x)\frac{\partial}{\partial x}+q(x)$ with $p,$ $q\in L^{\infty}(\mathrm{o}, \pi)$ .

We set
$X:=H_{0}^{1}(0, \pi)$ or $H^{2}\cap H_{0}^{1}(\mathrm{o}, \pi)$ , and $\mathrm{Y}:=L^{2}(\mathrm{o}, \pi)$ .

We will show how to construct an operator $A$ which approximates $L$ . Let $P(x)$ (resp.
$Q(x))$ be a finite Fourier Sine expansion (resp. a finite Fourier Cosine expansion) in
$(0, \pi)$ approximating $p(x)$ (resp. $q(x)$ ). We set

$\tilde{L}:=-\frac{\partial^{2}}{\partial x^{2}}+P(X)\frac{\partial}{\partial x}+Q(x)$ .

Assumption: $\tilde{L}$ sufficiently approximates $L$ , i.e. $||L-\tilde{L}||$ is sufficiently small.
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We remark that this assumption holds in general for applications including the analysis
for our problem (P). In view of Lemma 3.2 we can reduce the estimate of $||L^{-1}||$ to that
of $||\tilde{L}^{-1}||$ . Therefore, we assume below without loss of generality that $p(x)$ (resp. $q(x)$ )
has the form of a finite Fourier Sine expansion (a finite Fourier Cosine expansion). We
define $S:=-\partial^{2}/\partial x^{2}$ and $\phi_{n}:=\sin nx$ for $n\in$ N. Then, we have

$(LS^{-1}-I) \sin nX=\frac{p(x)}{n}\cos nx+\frac{q(x)}{n^{2}}\sin nx$ .

We will later determin$\mathrm{e}$ the value of $N$ . We set

$x_{r}:=n \sum_{=N+1}^{\infty}$ an $\sin nx\in x_{r}$ .

Then we have

$||(Ls^{-1}-I)x_{r}|| \leq||p(X)\sum_{n=N+1}\frac{a_{n}\cos nx}{n}||\infty+||q(x)\sum_{=nN+1}\frac{a_{n}\sin nx}{n^{2}}||\infty$

$\leq||p||_{\infty}||\sum_{n=N+1}\frac{a_{n}\cos nx}{n}\infty||+||q||\infty||\sum_{n=N+1}^{\infty}\frac{a_{n}\sin nx}{n^{2}}||$

$\leq\frac{||p||_{\infty}}{N+1}||\sum_{Nn=+1}^{\infty}$ an $\cos nx||+\frac{||q||_{\infty}}{(N+1)^{2}}||\sum_{1n=N+}a_{n}\sin nx||\infty$

$=( \frac{||p||_{\infty}}{N+1}+\frac{||q||_{\infty}}{(N+1)^{2}})||\sum_{n=N+1}^{\infty}$an $\sin nx||$

$=( \frac{||p||_{\infty}}{N+1}+\frac{||q||_{\infty}}{(N+1)^{2}})||X_{r}||$

It follows that

(3.4) $||Ls^{-1}-I|| \leq\frac{||p||_{\infty}}{N+1}+\frac{||q||_{\infty}}{(N+1)^{2}}$ .

We choose the value of $N$ such that the right-hand side of (3.4) is smaller than 1/2.

This condition satisfies the second inequality in (3.3). Let $N=N_{0}$ be the smallest
natural number $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\Psi$ing such condition. We determine the value of $N(\geq N_{0})$ such
that

$A_{N}X_{N}\subset X_{N}$ .

Here, $A_{N}$ is the operator defined by

$A_{N}\sin nX:=\{$

$L\sin nx$ for $n\leq N_{1}$ ,
$S\sin nx=-n^{2}\sin nx$ for $n>N_{1}$ .
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Since the operator $LA_{N}^{-1}-I$ : $X_{N}arrow \mathrm{Y}$ is expressed by a finite matrix, we can compute

the operator norm $||LA^{-1}-NI||$ by the use of computers. We determine $N_{1}$ so large that
the ffist inequality of (3.3) holds.
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