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Analysis for bifurcation phenomena of nonlinear vibrations
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0. Introduction

Combining some analytical methods and some numerical methods, we are able to
analyse rigorously some (symmetry-breaking) bifurcation phenomena of periodic so-
lutions of semilinear (hyperbolic and parabolic) partial differential equations (PDEs)
describing some dissipative forced vibration systems. We adopt some methods in [O],
where Oishi treats the Duffing equation. The outline of analysis is the following: In
order to apply a bifurcation theorem ([WS$], [K1]), we use some numerical method and
find an approximate solution (= bifurcation point) with high accuracy of the extended
system. Then, we show the unique existence of a real solution in a neighborhood of
the approximate solution by using the convergence theorem of the Newton’s method
([K1], [O]). The most difficult part in the analysis for concrete problems is to check the
conditions of the convergence theorem of the Newton’s method. More concretely, we

have the following two difficult points:
(I) to construct an highly accurate approximate solution of bifurcation point

(IT) to estimate the operator norm of the inverse of a linearized operator at bifurcation
point

In this article we mainly intend to explain how to treat (I) and (II). For (I) we
propose some methods by using the least square methods (see Section 2). For (II) we
present some ‘methods in which we approximate linearlized operators by some operators
with simpler structure (see Section 3). In view of the form, the author calls the latter
operators ‘diagonal operators’. When we treat PDEs, the highly accurate approximate
solution we need have in general very long terms. A lot of difficulties arise from such
long length of approximate solutions. Even for one-dimensional vibration problem ap-
proximate solution we treat by the use of the spectral methods have more than one
hundred terms. It seems that for higher-dimensional problems we need approximate

solution with much more terms.
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1. Our main example

Let f(A\ u) == Uy — C?Ugy + pus +u® — X sinz cost. Here, ¢, p > 0 are constants and
A > 0 is a parameter. We consider the bifurcation phenomena of periodic solutions for

the following semilinear wave equation:

{f()\,u) =0 in (0,7)xRT,
u(0,t) =u(m,t) =0 for t>0.

This has some deep relations to the ordinalry differential equation called the Duffing
equation. By some numerical si_mulationé we can observe rich bifurcation phenomena
(such as the existence of turning points, symmetry-breaking bifurcations, chaos) for our
problem (P) and the Duffing equation. It is difficult to analyse mathematically such
phenomena only by the use of pure analytical methods, except for some problems with
very restricted artificial forcing terms ([M], [Ko]). Oishi explains in [O] that we can
analyse rigorously some bifurcation phenomena of the Duffing equations with natural
forcing terms. | |

The equation in our problem (P) has some symmetry. Let S be the transformation
defined by

S u(z,t) — —u(z,t+ ).

Then we have f(A, Su) = Sf(A,u). The symmetric periodic solution (resp. the asym-
metric periodic solution) is a solution satisfying Su = u (resp. Su = u).

Let ¢ = 1, p = 0.1. Let us move the value of A gradually larger from 0. Then
we can observe that a branch of asymmetric 27-periodic solutions bifurcates from a
branch of symmetric 2r-periodic solutions at a certain value A = Ay € (2.7,2.8) by

some numerical simulations. We can prove this and the following holds:

Proposition 1.1. ([K2]) There exists a symmetric branch {(\,ux)}x of 2m-periodic
soluitons of (P) which has a symmetry-breaking pitchfork bifurcation point (Ao, uo)
such that

Ao — Aof* + [luo — Uo; HY(D)[|? < (0.014).

Here, D := (0, 7) x (0,27), Ao := 2.767 and
Up :=1.675064 cos t sinz + - - - + 6.878066 x 10~ sin 21¢ sin 21z has the form of a finite
Fourier expansion consisting of 160 terms. We omit here the complete form of Uy.
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In order to prove this result, we use a bifurcation theorem [K1, Theorem 3.1] which
is a generalized version of [WS, Thorem 3.1]. We define a closed linear subspace X in
HY(D):

X :={ Z Amn€ ™ sinn ; Z (m? + n?)|@mn|? < oo}

meEZ mEZ
nE2N-1 nE2N-1

and define the symmetric subspace X and the anti-symmetric subspace X,:

X, :={ Z Amn€ ™ sinng ; Z (m? + 1?)|@mn|? < o0},

me2Z—1 me2Z—1
nE€2N—1 neE2ZN-1

X, =A{ Z Amne™ sinnz ; Z (m2 + nz)(amn[2 < 00}

me2Z me2Z
ne€2N-1 n€2N—1

72
Then, we have X = X, ® X,. Let ¥ := X~ "), We define ¥, and Y, similaly to the
definition of X, and X,. Let Ly be a principal part of f, i.e.

— 2 '
LO = Ut — C Ugy + HUg.

The operator Lo : X — Y is an unbounded operator with L' € £(Y, X). The un-
boundedness of the operator is the special feature commonly in the analysis for PDEs
with time variable. For this reason we formulate in [K1] generalize versions of some
bifurcation theorems, which is applicable to non-Fréchet differentiable maps.

In view of bifurcation theorem [K1, Theorem 3.1], we should show that (Ao, uo) is

a simple singular point of f(A,u) and that an extended system:

I6—1
F(\u,¢) = f\u) =0

Duf(A\ u)p

has an isolated solution (Ao, uo, @), where [ € X* is a functional to normalize ¢ and
F:RxX;xX,— RxY,xY,. Weshould construct an approximate solution of

(Ao, uo, o) and apply the convergence theorem of Newton’s method [K1, Theorem 1.1].

2. Construction of approximate solution with high accuracy
In this section we will explain how to construct a highly accurate approximate
solutions of partial differential equations. One of advantage of our method below is

that we can construct a more highly accurete approximate solution by adding some
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new high frequency terms provided we notice the accuracy of our approximate solution
is not sufficient.

As an example we treat (P) in Section 1. We fix A and set L(u) := f(A,u) for
simplicity. We will construct an approximate 27- periodic solution with high accuracy.
We set the inner product:.

27 T
(%m:/ a/¢wmﬂman
0 0
We assume that we already obtain an approximate solution:

u’ = E al; e** sin Iz

(k,eA

by some methods (such as the finite difference methods or finite element methods).
Here, i = +/—1 and ‘
A={(k,))e NxN; |k[,l <M}

First let u; be an ’optimized’ function of up by the least-squares methods:

(2.0) ul = Z ax €%t sinlz.

(kD)EA
Here, we determine unknown number ay; such that ( L(u'), L(u')) takes the minimum.
Namely, we determine ax; by applying the Newton method with the initial value: ax; =

al; to the simultaneous equations

(2.1) oo (L), L)) =0, (kD) € A

In order to obtain an approximate solution with higher accuracy we set

(2.2) w?=ul+ Z o €7t sin [
(k,))EB—A

with B:={(k,)e NxN; |k, <N}, M <N

and we determine unknown number ay; such that ( L{u?), L(u?) ) takes the minimum.
Namely, We make a simultaneous equations for ay; similar to (2.1) and determine ax; by
applying the Newton method with the initial value: o4 = 0. After the determination
of ay; we optimize the part of ! in the right-hand side of (2.2). If necessary, we repeat

the similar procedure to obtain an approximate solution with higher accuracy.
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3. To estimate the norm of inverse operator
First, we prepare two lemmas:

Lemma 3.1. Let X andY be Banach spaces. Let L : X — Y be a (maybe unbounded)
linear operator. Assume that there exists P € L(Y, X) such that

LP e L(Y, X),
{HLP—IH <1

Then we have L~ € L(Y, X) with estimates:

2t - py < UL
1 | P
[L77] < m

Lemma 3.2. Let X andY be Banach spaces. Let L : X — Y be a (maybe unbounded)
linear operator. Assume that there exists a linear operator A : X — Y such that

A7t e L(Y, X),
LA™Y e L(Y, Y),
L-AeL(X,Y) with |L—A||A"Y <1

Then we have L= € L(Y, X) with estimates:

i L= AJJAYE
127 = AT < T A
. 1471
W< s =gy

Let X and Y be Banach spaces with X < Y being dense. Let L : X — Y be
a (maybe unbounded) linear operator. In this section we will show how to estimate

|L~{|. We will approximate L by the following operator A:

Ay O
(3.1) A ( ! S) |
where Ay is a finite N x N matrix and S is an infinite diagonal matrix. The relation

(3.1) means that there exists a complete orthorgonal base {¢x}22; of Y such that
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{6}, C X and AyXny C Xy with Xy = [¢1, -+, ¢n] (which means the linear
subspace generated by ¢1, - - -, &on ) and ¢ (kK > N-+1) is an eigenvector of S : X, — _X':Y
with XT = [¢N+1;¢N+27 .- ] We set

' o (AR 0
(32) P“-A *‘( 0 S-—l )

Let
xz(wN)eX with zy € Xy and z, € X,.

Then, we have |
-1 i A;,l 0 xN\ [ ZN
(LA Nx=1L ( 0 §-1 z, .,
= (LAY — D2y + (LS™ = Dz,
It follows that
(LA™Y = Dz|| < |LAR = Il lzn ]l + 1 LS = 1| [l |
< (ILAN = IIP + |[LS™ = If*) /|
Therefore, we obtain that
ILA™ = I|| < (LAY = II? + [ILS™H — I|)Y/?

The following condition is sufficient to apply our Lemma 3.1:
ILAR" — 1] <1/2,
{ ILS™ — 1|l < 1/2.
We remark that our method is actually applicable to problems with higher nonlinearity

(3.3)

than our main problem (P). Therefore, we consider, as an example, the following simple
problem:

02 0 . o0
L:= e +p(:1:)5-z-c- +q(x) with p,qe€ L*=(0,n).

We set
X :=H;(0,7) or H?’nH}O,7), and Y :=L%0,n).

We will show how to construct an operator A which approximates L . Let P(x) (resp.
Q(z)) be a finite Fourier Sine expansion (resp. a finite Fourier Cosine expansion) in
(0, ) approximating p(z) (resp. g(x)). We set

L:= By ol P(x)-(;%— + Q(x).

Assumption: L sufficiently approximates L, i.e. ||L — L]| is sufficiently small.
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We remark that this assumption holds in general for applications including the analysis
for our problem (P). In view of Lemma 3.2 we can reduce the estimate of ||L 71| to that
of ||L7||. Therefore, we assume below without loss of generality that p(z) (resp. q(x))
has the form of a finite Fourier Sine expansion (a finite Fourier Cosine expansion). We
define S := —9?/0xz? and ¢,, := sinnz for n € N. Then, we have

(LS — I)sinnz = p( ) —~ cosnz + %(L—)smnx
We will later determine the value of N. We set

(o o]
Z a, sinnzx € X,.

n=N+1

Then we have

IS~ = Dl <) 3 2 g(e) Y IR

n=N+1 n=N-+1
. @, CcosSnT 2. a,sinnz
<oloell 3 B g | Y SRR
n—-N+1 n-—N+1
HpHoo HQIloo
< Ap, COSNL|| + —————= a,, sinnx
S Z el 13, e
leloo llglloo
=( Z an Sinnzl|
N + 1 (N +1)2 i
”p”oo llglloo
(N+ 1 (N+ 1)2)H$’"H
It follows that
(3'4) ”LS-—l __IH S ”p”OO + ”qnoo

N+1 (N+1)2

We choose the value of N such that the right-hand side of (3.4) is smaller than 1/2.
This condition satisfies the second inequality in (3.3). Let N = Ny be the smallest
natural number satisfying such condition. We determine the value of N (> Np) such
that

AnXy C Xn.
Here, Ay is the operator defined by
Lsinnz for n < Ny,

An sinnzx ;= ‘ 5 .
Ssinnx = —n“sinnx for n > N;.
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Since the operator LAI'\,1 —I: XyN —Y is expressed by a finite matrix, we can compute
the operator norm || LAx" — I|| by the use of computers. We determine N so large that
the first inequality of (3.3) holds.
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