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1 Introduction

Let Poly, (C) be the the polynomials from the Riemann sphere, C, to itself, with degree
n, and M, called moduli space, the quotient space of Poly, (C) under the action of the affine
transformation group,(C).

We parametrize M,, by using multipliers of fixed points, and define a natural map ¥ from
M,, to C*~1. A new coordinate system is called multiplier cooridinates. Exhibiting the moduli
space of a higher degree under this system deserves particular attention. For example, in study of
geometry and topology of Poly, (C) from a viewpoint of complex dynamical systems, we make
use of this system in order to express singular part, and dynamical loci as algebraic curves or
surfaces([NF99], [NF0O0] ). ‘

The subject of this paper is surjectivity-problem of the map ¥ from M,, to C"*~1: a problem
of characterization of exceptinal part, &, (= C*~ ! \ M,,) .

The initiator of the use of multiplier cooridinates is J. Milnor ([Mil93]), to the case of the
quadratic rational maps. ’

2 Polynomials of degree n

2.1 Polynomial maps and conjugacy

Let C be the Riemann sphere, and Poly,, (C) be the space of all polynomial maps of degree
n from C to itself:

p(z) = anz™ + 12" Y+ +ajz+ag (an # 0).
The group A(C) of all affine transformations acts on Poly,, (C) by conjugation:
gopog ! €Poly, (C) for geAC), pe Poly,(C).
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Two maps py,p2 € Poly, (C) are holomorphically conjugate if and only if there exists g €
2A(C) withgop; 0 g~ = pa.

Under this conjugacy of the action of 2(C), any map in Poly,, (C) is conjugate to a “monic”
and “centered” map, i.e.,

We remark that this p is determined up to the action of the group G(n — 1) of (n — 1)-st roots of
unity, where each ) € G(n — 1) acts on p € Poly,, (C) by the transformation p(z) — p(nz)/n.

Every polynomial map from C to itself is conjugate under an affine change of variable to
a monic centered one, and this is uniquely determined up to conjugacy under the action of the
group G(n — 1) of (n — 1)-st roots of unity.

For example,in the case of n = 3, the following two monic and centered polynomials belong
to the same conjugacy class:

z3—|—az++c, 22 +az—c.

In the case of n = 4 the following three monic and centered polynomials belong to the same
conjugacy class:

28+ a2z +bz+c

2% + awz? + bz + cw?

22 +aw?2? + bz + cw

where w is a third root of unity.

2.2 Moduli space of polynomial maps

The quotient space of Poly,, (C) under the action A(C) will be denoted by My, and called
the moduli space of holomorphic conjugacy classes (p) of polynomial maps p of degree n.
Let P; (n) be the affine space of all monic centered polynomials of degree n

—2 -3
p(z) = 2"+ 22"+ cn_32""" -+ co,

with coefficients-coordinate (co, 1, ,Cn—2)-

Then we have an (n — 1)-to-one canonical projection ® from Py (n) onto M.

Hence the affine space P (n) is regarded as an (n — 1)-sheeted covering space of Ml,. Thus
we can use P; (n) as a coordinate space for the moduli space M,,, though it remains the ambiguity
up to the group G (n — 1). This coordinate space has the advantages of being easy to be treated.

However, it would be also worthwhile to introduce another coordinate system having any
merit different from P;(n)’s. .

In fact, Milnor successfully introduced coordinates in the moduli space of the space of all
quadratic rational maps using the elementary symmetric functions of the multipliers at the fixed
points of a map ([Mil93]). To the case of Poly, (C), we try to explore an analogy.

2.3 Multiplier coordinates

Now we intend to explore another coordinate space for M,. For each p(z) € Poly,,(C), let
21, -+, Zn, Zn41(= 00) be the fixed points of p and p; the multipliers of z; ; p; = p'(z) (1 <
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i < n), and p,41 = 0. Consider the elementary symmetric functions of the n multipliers,

On,1 =1+ -+ fy,
-1
On2 = fiifi2 + =+ fn_1fin = Y g Mi Z?m‘ Hj»

Onn = H1l2 - lj'n.a

Onn+l = 0.

Note that these are well defined on the moduli space M,,, since p;’s are invariant by affine
conjugacy.

2.3.1 The holomorphic index fixed point formula

For an isolated fixed point f(z¢) = zo, x¢ # oo we define the holomorphic index of f at

Zo to be the residue
1 1
=— ¢ ———d
!S> o) 271 % z— f(2) “

For the point at infinity, we define the residue of f at 0o to be equal to the residue of g o f o ¢ at
origin, where ¢(z) = % The Fatou index theorem (see [Mil90]) is as follows:

For any rational map f : C — C with f(z) not identically equal to z, we have the relation
Yo iy=e s 2) = 1. This theorem can be applied to these ;s ; S ﬁ; + 5 =1,
provided p; # 1(1 < ¢ < n). Arranging this equation for the form of elementary symmetric
functions, we have

Yo + Y10n,1 + Y2002+ -+ Yp-10pn-1 =0

’Yk:(—l)kn( n;1 )/( : ) = (-1 (n—k).

Note that p; = 1 (1 < ¢ < n) is allowable here. Then we have the following Linear Relation : e
For the cubic case (n = 3),we have 3 — 2031 + 032 =0
e For the quartic case (n = 4 ), we have 4 — 3041 + 2042 — 043 =0

And 1n general the following linear relation holds:

where

Theorem 1  Among oy, ;’s, there is a linear relation

n—1

Y (=1)*(n—k)on, =0, )

k=0
where we put o, o = 1.

In view of Theorem 1, we have the natural map ¥ from M, to C*~! corresponding to

\Il(< P >) - (Un,laan,Zy Tt 7Un,n—2a0n,n)'

We remark that ¥(M,,) ¢ C*~ L.
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2.3.2 Characterization of exceptional set

To investigate whether this map ¥ is surjective or not is our main subject: a problem of
characterization of the part of C*~1 \ ¥(M,,).
We call this set exceptional set and denote it by

En = Cm 1\ T(M,,).

Our main subject is as follows:
For a given (s1, 82, -+ ,Sn_2,5,) € C*™1, we set s,_1 a solution of

Yo (=1)*(n — k)sg =0, so=1.
Then for the point (s, --- , s,) € C"~1, we set a polynomial
m(z) = 2" + $12" L4 592" 24 5p_12 + Sp
Then w denote the roots of this polynomial by

K1y 2, 5 bp—1, Un-

Can we obtain a polynomial p(z) € P;(n) whose multiplier-coordinate (oy,--- ,0,,) is
corresponding to (s1,- - ,5,) ? '
Namely can we find a polynomial satisfying that for fixed points z;

p(z) =2z, (i=1,---,n) with p; =p'(z).

The case n = 3 is nicely solved: W is surjective. ( [NF96], [FN97]. This fact is mentioned in
[Mil193] without any details.) '
We also solved this problem for the case n = 4 ( [NF96], [FN97}):

Theorem 2 U : My — C3 is not surjective:

Ey=C*\ U(My)
52
:(4,5,—4——254—4) s#4

As for the cases of general n, we expect analogous results.
Recently, we have a following result:

Theorem 3 (M.FUJIMURA)
Let Q = {pi}i=1,... n be the set of all roots of a polynomial m(z). If 1 satisfies one of the
following cases (A),(B) and(C), then there exists a polynomial p(z) € P1(n) such that

p(zl) = Zi, (Z = 17 U an) with Hi = p/(zz)
(A):

1. Any element of Q is not equal 1 :p; # 1,
2.3, =0, bi=1—p,
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3. for any proper subset w of roots, ) .., bi # 0,
(B):

1. Let ' = {pi}i=1,....m 1 < m < n — 2 be a subset of Q) whose elements are not equal 1
i #F L
2. for any subset w of ', Y~ . o # 0,

1. Any element of Q is equal 1 :p; = 1.

2.3.3 Examples

We shall show some examples for ous inverse problem. By these examples show that the
Fujimura’s theorem only gives a sufficient condition for surjectivity.
eForaset {y,2 — p,A\,2 — A}, p# A, p# 1 acorresponding polynomial exits in P;(4) .
e Foraset {y,2 — p, 1,2 — pu} p # 1, no corresponding polynomial exits Py (4).
e Foraset {u, u, u, A\, A}, p#1, 5—2p— 3\ =0 acorresponding polynomial exits P; (5).
e Foraset {u, u, p,2 — p, ?’“T“}, 1 # 1, no corresponding polynomial exits Py (5).
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