Parametrization by fixed-points multipliers of the polynomials with degree n

城西大学理学部 西沢 清子(Kiyoko NISHIZAWA)*

Keywords and phrases: complex dynamical systems – topological conjugate – fixed points – multipliers coordinates – moduli space of the polynomials – algebraic curves – the group of automorphisms – holomorphic index formula.

1 Introduction

Let $\operatorname{Poly}_n(\mathbb{C})$ be the polynomials from the Riemann sphere, $\widehat{\mathbb{C}}$, to itself, with degree n, and \mathbb{M}_n , called moduli space, the quotient space of $\operatorname{Poly}_n(\mathbb{C})$ under the action of the affine transformation group, $\mathfrak{A}(\mathbb{C})$.

We parametrize \mathbb{M}_n by using multipliers of fixed points, and define a natural map Ψ from \mathbb{M}_n to \mathbb{C}^{n-1} . A new coordinate system is called multiplier coordinates. Exhibiting the moduli space of a higher degree under this system deserves particular attention. For example, in study of geometry and topology of $\operatorname{Poly}_n(\mathbb{C})$ from a viewpoint of complex dynamical systems, we make use of this system in order to express singular part, and dynamical loci as algebraic curves or $\operatorname{surfaces}([NF99], [NF00])$.

The subject of this paper is surjectivity-problem of the map Ψ from \mathbb{M}_n to \mathbb{C}^{n-1} : a problem of characterization of exceptinal part, $\mathcal{E}_n (= \mathbb{C}^{n-1} \setminus \mathbb{M}_n)$.

The initiator of the use of multiplier cooridinates is J. Milnor ([Mil93]), to the case of the quadratic rational maps.

2 Polynomials of degree n

2.1 Polynomial maps and conjugacy

Let $\widehat{\mathbb{C}}$ be the Riemann sphere, and $\operatorname{Poly}_n(\mathbb{C})$ be the space of all polynomial maps of degree n from $\widehat{\mathbb{C}}$ to itself:

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 \quad (a_n \neq 0).$$

The group $\mathfrak{A}(\mathbb{C})$ of all affine transformations acts on $\operatorname{Poly}_n(\mathbb{C})$ by conjugation:

$$g\circ p\circ g^{-1}\in \operatorname{Poly}_n(\mathbb{C})\quad \text{for}\quad g\in \mathfrak{A}(\mathbb{C}),\; p\in \operatorname{Poly}_n(\mathbb{C}).$$

^{*}kiyoko@math.josai.ac.jp

Two maps $p_1, p_2 \in \operatorname{Poly}_n(\mathbb{C})$ are **holomorphically conjugate** if and only if there exists $g \in \mathfrak{A}(\mathbb{C})$ with $g \circ p_1 \circ g^{-1} = p_2$.

Under this conjugacy of the action of $\mathfrak{A}(\mathbb{C})$, any map in $\operatorname{Poly}_n(\mathbb{C})$ is conjugate to a "monic" and "centered" map, i.e.,

$$p(z) = z^{n} + c_{n-2}z^{n-2} + c_{n-3}z^{n-3} + \cdots + c_{0}.$$

We remark that this p is determined up to the action of the group G(n-1) of (n-1)-st roots of unity, where each $\eta \in G(n-1)$ acts on $p \in \operatorname{Poly}_n(\mathbb{C})$ by the transformation $p(z) \mapsto p(\eta z)/\eta$.

Every polynomial map from $\widehat{\mathbb{C}}$ to itself is conjugate under an affine change of variable to a monic centered one, and this is uniquely determined up to conjugacy under the action of the group G(n-1) of (n-1)-st roots of unity.

For example, in the case of n=3, the following two monic and centered polynomials belong to the same conjugacy class:

$$z^3 + az + +c$$
, $z^3 + az - c$.

In the case of n=4 the following three monic and centered polynomials belong to the same conjugacy class:

$$z^{4} + az^{2} + bz + c$$

$$z^{4} + a\omega z^{2} + bz + c\omega^{2}$$

$$z^{4} + a\omega^{2}z^{2} + bz + c\omega$$

where ω is a third root of unity.

2.2 Moduli space of polynomial maps

The quotient space of $\operatorname{Poly}_n(\mathbb{C})$ under the action $\mathfrak{A}(\mathbb{C})$ will be denoted by \mathbb{M}_n , and called the **moduli space** of holomorphic conjugacy classes $\langle p \rangle$ of polynomial maps p of degree n.

Let $\mathcal{P}_1(n)$ be the affine space of all monic centered polynomials of degree n

$$p(z) = z^n + c_{n-2}z^{n-2} + c_{n-3}z^{n-3} \cdots + c_0,$$

with coefficients-coordinate $(c_0, c_1, \dots, c_{n-2})$.

Then we have an (n-1)-to-one canonical projection Φ from $\mathcal{P}_1(n)$ onto \mathbb{M}_n .

Hence the affine space $\mathcal{P}_1(n)$ is regarded as an (n-1)-sheeted covering space of \mathbb{M}_n . Thus we can use $\mathcal{P}_1(n)$ as a coordinate space for the moduli space \mathbb{M}_n , though it remains the ambiguity up to the group G(n-1). This coordinate space has the advantages of being easy to be treated.

However, it would be also worthwhile to introduce another coordinate system having any merit different from $\mathcal{P}_1(n)$'s.

In fact, Milnor successfully introduced coordinates in the moduli space of the space of all quadratic rational maps using the elementary symmetric functions of the multipliers at the fixed points of a map ([Mil93]). To the case of $\operatorname{Poly}_n(\mathbb{C})$, we try to explore an analogy.

2.3 Multiplier coordinates

Now we intend to explore another coordinate space for \mathbb{M}_n . For each $p(z) \in \operatorname{Poly}_n(\mathbb{C})$, let $z_1, \dots, z_n, z_{n+1} (=\infty)$ be the fixed points of p and μ_i the multipliers of z_i ; $\mu_i = p'(z_i)$ $(1 \le i)$

 $i \leq n$), and $\mu_{n+1} = 0$. Consider the elementary symmetric functions of the n multipliers,

$$\sigma_{n,1} = \mu_1 + \dots + \mu_n,$$

$$\sigma_{n,2} = \mu_1 \mu_2 + \dots + \mu_{n-1} \mu_n = \sum_{i=1}^{n-1} \mu_i \sum_{j>i}^n \mu_j,$$

$$\dots$$

$$\sigma_{n,n} = \mu_1 \mu_2 \cdots \mu_n,$$

$$\sigma_{n,n+1} = 0.$$

Note that these are well defined on the moduli space M_n , since μ_i 's are invariant by affine conjugacy.

2.3.1 The holomorphic index fixed point formula

For an isolated fixed point $f(x_0) = x_0$, $x_0 \neq \infty$ we define the holomorphic index of f at x_0 to be the residue

$$\iota(f, x_0) = \frac{1}{2\pi i} \oint \frac{1}{z - f(z)} dz$$

For the point at infinity, we define the residue of f at ∞ to be equal to the residue of $\phi \circ f \circ \phi$ at origin, where $\phi(z) = \frac{1}{z}$. The Fatou index theorem (see [Mil90]) is as follows:

For any rational map $f: \mathbf{C} \to \mathbf{C}$ with f(z) not identically equal to z, we have the relation $\sum_{f(z)=z} \iota(f, z) = 1$. This theorem can be applied to these μ_i 's; $\sum_{i=1}^n \frac{1}{1-\mu_i} + \frac{1}{1-0} = 1$, provided $\mu_i \neq 1 (1 < i < n)$. Arranging this equation for the form of elementary symmetric functions, we have

$$\gamma_0 + \gamma_1 \sigma_{n,1} + \gamma_2 \sigma_{n,2} + \dots + \gamma_{n-1} \sigma_{n,n-1} = 0$$

where

$$\gamma_k = (-1)^k n \binom{n-1}{k} / \binom{n}{k} = (-1)^k (n-k).$$

Note that $\mu_i = 1$ $(1 \le i \le n)$ is allowable here. Then we have the following Linear Relation : \bullet For the cubic case (n = 3), we have $3 - 2\sigma_{3,1} + \sigma_{3,2} = 0$

• For the quartic case (n=4), we have $4-3\sigma_{4,1}+2\sigma_{4,2}-\sigma_{4,3}=0$ And in general the following linear relation holds:

Theorem 1 Among $\sigma_{n,i}$'s, there is a linear relation

$$\sum_{k=0}^{n-1} (-1)^k (n-k)\sigma_{n,k} = 0, \tag{1}$$

where we put $\sigma_{n,0} = 1$.

In view of Theorem 1, we have the natural map Ψ from \mathbb{M}_n to \mathbb{C}^{n-1} corresponding to

$$\Psi() = (\sigma_{n,1}, \sigma_{n,2}, \cdots, \sigma_{n,n-2}, \sigma_{n,n}).$$

We remark that $\Psi(\mathbb{M}_n) \subset \mathbb{C}^{n-1}$.

2.3.2 Characterization of exceptional set

To investigate whether this map Ψ is surjective or not is our main subject: a problem of characterization of the part of $\mathbb{C}^{n-1} \setminus \Psi(\mathbb{M}_n)$.

We call this set exceptional set and denote it by

$$\mathcal{E}_n = \mathbb{C}^{n-1} \setminus \Psi(\mathbb{M}_n).$$

Our main subject is as follows:

For a given $(s_1, s_2, \dots, s_{n-2}, s_n) \in \mathbb{C}^{n-1}$, we set s_{n-1} a solution of

$$\sum_{k=0}^{n-1} (-1)^k (n-k) s_k = 0, \ s_0 = 1.$$

Then for the point $(s_1, \dots, s_n) \in \mathbb{C}^{n-1}$, we set a polynomial

$$m(z) = z^{n} + s_{1}z^{n-1} + s_{2}z^{n-2} + \dots + s_{n-1}z + s_{n}$$

Then w denote the roots of this polynomial by

$$\mu_1, \mu_2, \cdots, \mu_{n-1}, \mu_n$$
.

Can we obtain a polynomial $p(z) \in \mathcal{P}_1(n)$ whose multiplier-coordinate $(\sigma_1, \cdots, \sigma_n)$ is corresponding to (s_1, \cdots, s_n) ?

Namely can we find a polynomial satisfying that for fixed points z_i

$$p(z_i) = z_i, \ (i = 1, \dots, n) \text{ with } \mu_i = p'(z_i).$$

The case n=3 is nicely solved: Ψ is surjective. ([NF96], [FN97]. This fact is mentioned in [Mil93] without any details.)

We also solved this problem for the case n=4 ([NF96], [FN97]):

Theorem 2 $\Psi: \mathbb{M}_4 \longrightarrow \mathbb{C}^3$ is not surjective:

$$\mathcal{E}_4 = \mathbb{C}^3 \setminus \Psi(\mathbb{M}_4)$$

= $(4, s, \frac{s^2}{4} - 2s + 4) \ s \neq 4$

As for the cases of general n, we expect analogous results.

Recently, we have a following result:

Theorem 3 (M.FUJIMURA)

Let $\Omega = \{\mu_i\}_{i=1,\dots,n}$ be the set of all roots of a polynomial m(z). If Ω satisfies one of the following cases (A),(B) and(C), then there exists a polynomial $p(z) \in \mathcal{P}_1(n)$ such that

$$p(z_i) = z_i, \ (i = 1, \cdots, n) \text{ with } \ \mu_i = p'(z_i).$$

(A):

1. Any element of Ω is not equal $1: \mu_i \neq 1$,

2.
$$\sum_{i=1}^{\infty} \frac{1}{b_i} = 0$$
, $b_i = 1 - \mu_i$,

- 3. for any proper subset ω of roots, $\sum_{s \in \omega} \frac{1}{b_s} \neq 0$,
- 1. Let $\Omega' = \{\mu_i\}_{i=1,\dots,m}$ $1 \leq m \leq n-2$ be a subset of Ω whose elements are not equal 1 $: \mu_i \neq 1$,
- 2. for any subset ω of Ω' , $\sum_{s \in \omega} \frac{1}{b_s} \neq 0$, (C):
- 1. Any element of Ω is equal $1: \mu_i = 1$.

2.3.3 Examples

We shall show some examples for ous inverse problem. By these examples show that the Fujimura's theorem only gives a sufficient condition for surjectivity.

- For a set $\{\mu, 2-\mu, \lambda, 2-\lambda\}$, $\mu \neq \lambda$, $\mu \neq 1$ a corresponding polynomial exits in $\mathcal{P}_1(4)$.
- For a set $\{\mu, 2-\mu, \mu, 2-\mu\}$ $\mu \neq 1$, no corresponding polynomial exits $\mathcal{P}_1(4)$.
- For a set $\{\mu, \mu, \mu, \lambda, \lambda\}$, $\mu \neq 1$, $5 2\mu 3\lambda = 0$ a corresponding polynomial exits $\mathcal{P}_1(5)$. For a set $\{\mu, \mu, \mu, 2 \mu, \frac{3-\mu}{2}\}$, $\mu \neq 1$, no corresponding polynomial exits $\mathcal{P}_1(5)$.

References

- M. Fujimura and K. Nishizawa. Moduli spaces and symmetry loci of polynomial [FN97] maps. In W. Küchlin, editor, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 342–348. ACM, 1997.
- J. Milnor. Dynamics in one complex variables: Introductory lectures. Preprint # [Mil90] 1990/5, SUNY Stony Brook, 1990.
- J. Milnor. Remarks on iterated cubic maps. Experimental Mathematics, 1:5–24, [Mil92] 1992.
- J. Milnor. Geometry and Dynamics of Quadratic Rational Maps. Experimental [Mil93] Mathematics, 2(1):37-83, 1993.
- J. Milnor. On Rational Maps with Two Critical Points. Preprint ims97-10, SUNY [Mil97] Stony Brook, 1997.
- K. Nishizawa and M. Fujimura. Moduli spaces of maps with two critical points. [NF96] Special Issue No.1, Science Bulletin of Josai Univ., pages 99–113, 1997.
- K. Nishizawa and M. Fujimura. Bifurctions and Hyperbolic Components. In [NF99] W. Takahashi et al., editors, Proceedings of the 1998 International Conference on Nonlinear Analysis and Convex Analysis, pages 289–296. World Scientific, 1999.
- K. Nishizawa and M. Fujimura. Chaotic bifurcations along Algebraic Curves. In [NF00] S. Elaydi et al., editors, Proceedings of the 4-th International Conference on Difference Equations: Communications in Diffence Equations, pages 273-282. Gordon and Breach Sci. Pub., 2000.