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Abstract

In this paper, we present a decision procedure for certain linear-trigonometric problems for the
reals and integers formalized in a suitable first-order language. The inputs are restricted to formulas,
where all but one of the quantified variables occur linearly and at most one occurs both linearly and
in a specific trigonometric function. Moreover we allow in addition the integer-part operation in
formulas. Besides ordinary quantifiers, we allow also counting quantifiers. Furthermore we also
determine the qualitative structure of the connected components of the satisfaction set of the mixed
linear-trigonometric variable. We also consider the decision of these problems in subfields of the
real algebraic numbers.

1 Introduction
Decision and quantifier elimination methods for the real numbers as ordered field have a

large variety of applications in mathematics, computer science, and industrial engineering (see

$e.g$ . $[3,25])$ . In particular, many engineering and industrial applications can be reduced to the
QE problems containing trigonometric functions (see [9, 6]).

Unfortunately, the general first-order theory of the real numbers with sine or cosine and
the constant $\pi$ is undecidable: this is because the zeros of sine function are exactly the integer
multiples of $\pi$ . As a consequence one can code Hilbert’s tenth problem in existential formulas
$\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{o}]\mathrm{v}\mathrm{i}\mathrm{n}\mathrm{g}+,$ $-,$

$\cdot$ , the sine function and the constants $0,1,$ $\pi$ (compare [13]). In fact as remarked
already in [19] even the first-order theory of the real numbers with sine (without the constant
$\pi)$ is undecidable, since one can code the first-order theory of rational numbers in this theory
by representing rational numbers as quotients of arbitrary zeros of the sine function. In the
special case, where the quantified variables of the given formula split into purely polynomial
ones and purely trigonometric ones the decision problem and the quantifier elimination problem
can be reduced to the theory of real numbers as ordered field. It suffices to replace for a purely
trigonometric variable $x$ the terms $\sin(x)$ and $\cos(x)$ by new variables $u,$ $v$ , respectively, with the
additional relation $u^{2}+v^{2}=1$ (compare [7, 4, 5]). The introduction of two new variables in place
of one trigonometric variables creates, however, serious problems in practical computational
complexity. A more efficient alternative was proposed, by Pau et al.; it adapts Collins’ CAD
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method [2] to the trigonometric case [12]. And trigonometric problems of special types have
been studied by D. Richardson by a variety of approaches [14, 15, 16, 17].

Here we consider the decision problem for a fragment of the full first-order theory of the
reals as ordered field with one specific trigonometric function. In contrast to the special case,
where quantified variables are separated into polynomial and trigonometric variables, we allow
one mixed quantified variable $x$ occurring both in the trigonometric function and in linear poly-
nomials. All other quantified variables $x_{i}$ may occur only linearly. Parameters may occur in
arbitrary degree. We assume moreover that the mixed variable $x$ is quantified last (i.e. outer-
most) in the given formula. Closed formulas of this restricted type are called normal. We present
an decision procedure for normal formulas. The procedure has certain parallels in its approach
to the decision procedure for linear-exponential problems announced in [26]. In fact by a simple
coding trick we could also allow a whole block of quantifiers with respect to mixed variables in
place of a single mixed variable.

Both extend also to the mixed real-integer case, $i.e$ , to formulas, where terms may involve
the integer-part operation and hence implicitly quantifiers over the integers. Our results may be
viewed as a first step towards decidable classes of problems with mixed algebraic-trigonometric
real and integer variables that are motivated by the study of control theory of hybrid systems [8].

The proofs involve real and mixed real-integer linear quantifier elimination [21, 23, 10, 27],
elementary analysis, the idea of checking the real satisfiability of formulas by finitely many
symbolic test points, and Lindemann’s theorem from transcendental number theory in order to
decide relations between constant terms. In contrast to the purely linear case considered in
$[10, 27]$ the test points considered here have no straightforward mathematical representation. We
invent a symbolic notation for them, and show, how to sort these points in their natural order, and
how to evaluate the sign of other terms at these symbolically represented points in an indirect
manner.

We also solve the decision problem for normal formulas, where quantifiers range over an
arbitrary subfield $F$ of the field of real algebraic numbers. In contrast to purely linear problems,
mixed linear-trigonometric problems may have different truth values over the reals and over $F$.
Besides ordinary quantifiers, we may also allow counting quantifiers.

In contrast to the general decision procedure for the first order theory of the reals as ex-
ponential field that relies on Schanuel’s conjecture [11], we require no open conjecture from
transcendence theory. Instead we use only Lindemann’s theorem and the transcendency of $\pi$ in
order to decide relations between constants.

The classical theorem of Lindemann (see [18], page 70) asserts that the values of the complex
exponential function for non-zero complex algebraic arguments are transcendental. As a conse-
quence a corresponding assertion holds for real trigonometric functions as well. This is seen as
follows: Call a real or complex function $f(z)$ is strongly transcendental (with exceptional point
$p)$ if for all real or complex numbers $(z\neq p)$ it is not the case that both $z$ and $f(z)$ are alge-
braic. Then by Lindemann’s theorem $e^{z}$ is strongly transcendental with exceptional point $0$ . As
an immediate consequence we see that the real logarithm $\ln(x)$ is strongly transcendental with
exceptional point 1.

Next we claim that the real sinus and cosinus functions are strongly transcendental with ex-
ceptional point $0$ . Indeed $e^{ix}=\cos(x)+i\sin(x)$ and $\cos^{2}(x)+\sin^{2}(X)=1$ . So if $\cos(x)$

is algebraic, then by the second equation $\sin(x)$ is algebraic; since $i$ is algebraic, this implies
that $i\sin(x)$ , and hence $e^{ix}$ is algebraic. By Lindemann’s theorem this implies that $ix$ , and
hence $x$ is transcendental, or that $x=0$ . As a consequence the inverse functions $\arccos(x)$ and
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$\arcsin(X)$ are also strongly transcendental with exceptional point 1 and $0$ , respectively. In order
to see that the real tangent function is strongly transcendental with exceptional point $0$ , we use
the well-known formula for the arcustangent: $\arctan(x)=-\frac{i}{2}\ln(\frac{1+ix}{1-ix})$ . It shows that for alge-
braic $x\neq 0\arctan(X)$ is transcendental. As a consequence $\arctan(x)$ and $tan(X)$ are strongly
transcendental with exceptional point $0$ . In a similar way one sees that the real arcuscotangent
function and hence the real cotangent function are strongly transcendental without exceptional
point.

2 The formal framework
Let $F$ be an arbitrary subfield $F$ of the field of real algebraic numbers. We consider the

following fragment $L$ of a first-order language for the real numbers. Let $x$ be a distinguished
variable. Linear terms are expressions of the form $s:=cx+ \sum_{i=1}^{n}C_{i}X_{i}+c_{0}$ with $c;c_{i}\in F$. The
trigonometric term is an expressions of the form $t:=trig(ax+b)$ , where trig denotes a real
trigonometric function sine, cosine or tangent, and $a(\neq 0),$ $b$ are fixed elements of $F$ . Atomic
formulas are equations or inequalities of the form $s=0,$ $s=t,$ $s<t,$ $t<s$ , where $s$ is a
linear term and $t$ is an trigonometric term. Arbitrary formulas are obtained from atomic formulas
as usual in first order logic, $i.e$. by iterated application of the propositional operations $\mathrm{A},$ $,$ $\neg$

and quantifiers $\exists x,$ $\exists x_{i},$ $\forall X,$ $\forall x_{i}$ with respect to the variable $x$ or to some $x_{i}$ . Every formula can
be rewritten equivalently in prenex normal form. If all occurrences of $x$ in a formula $\varphi$ are
quantified, then $\varphi$ is a closed formula. In the natural interpretation of formulas over the real
numbers, every closed formula is either true or false. We call a closed formula $\varphi$ normal if it is
prenex and either does not contain the variable $x$ or the quantifier $\exists x$ or $\forall x$ binding $x$ is outermost
in the prefix of $\varphi$ . Our goal is a decision procedure for normal formulas in $L$ i.e. an algorithm
that takes normal formulas in $L$ as inputs and Output the truth value of the input formula over
the reals. This goal is analogous to that in [22] for almost linear integer problems.

In fact we could allow in normal formulas a whole block of quantifiers referring to mixed
variables, say $y_{1},$ $\ldots$ , $y_{m}$ in place of a single mixed variable $x$ . Then trigonometric terms would
be of the form trig $(a_{0}+a_{1}y_{1}+.. . a_{m}y_{m})$ for fixed real constants $a_{0},$ . . ${ }$ , $a_{m}$ . Such a formula
$\exists y_{1}\ldots\exists ymQ1x_{1}\ldots Qnxn(\psi)$ with arbitrary quantifiers $Q_{i}$ can be equivalently replaced by the
following normal formula

$\exists x\exists y_{1}\ldots\exists y_{m}Q_{1}X1\cdots Qn^{X}n$ ( $x=a_{0}+a_{1}y_{1}+\ldots a_{m}y_{m}$ A $\psi’$ ),

where $\psi’$ results from $\psi$ by replacing each occurence of trig $(a0+a_{1}y_{1}+\ldots a_{m}y_{m})$ by trig $(x)$ .
In fact we will consider also formulas in an extended sense, where we admit besides the

“ordinary” quantifiers $\exists,$ $\forall$ also the “counting quantifiers” $\exists\leq n,$ $\exists^{n},$ $\exists\geq n,$ $\exists\leq\infty,$ $\exists^{\infty}$ interpreted as
“there exist at most $n$ , exactly $n$ , at least $n$ , only finitely many, infinitely many”, respectively for
$n\in \mathrm{N}$ . Formulas, closed formulas, normal formulas in this extended sense will be referred to as
formulas, closed formulas, normal formulas with counting quantifiers. Notice that the first three
types of counting quantifiers are definable using ordinary quantifiers, while the last two are not
definable in this way.

Let $\varphi:=Qx(\psi(x))$ be a normal formula ($Q$ a quantifier $\exists$ or $\forall$). Let $\psi_{1}$ result from $\psi$

by replacing the trigonometric term trig $(ax+b)$ by a new variable $z$ . Then $\psi_{1}$ is a linear
formula in the sense of $[21, 10]$ . So by linear real quantifier elimination, $\psi_{1}$ is equivalent to a
quantifier-free linear formula $\psi_{2}$ with $x$ and $z$ as the only linear variables. Let $\psi_{3}$ result from
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$\psi_{2}$ by backsubstitution of the trigonometric term $t=trig(ax+b)$ for $z$ . Then $\varphi’:=Qx(\psi_{3})$

is a normal formula with only one quantifier that is equivalent to $\varphi$ . Notice that rational linear
combinations of trigonometric terms can be rewritten as a rational multiple of a trigonometric
term. So by dividing by rational constants the atomic formulas of $\varphi’$ can assumed to be normal.

For normal formulas with counting quantifiers one can argue similarly, using linear elimi-
nation by test points. So for example a counting quantifier $\exists^{\infty}x_{i}(\sigma(X_{i}))$ can be eliminated by
restricting the disjunction over test terms used for the elimination of the quantifier $\exists x_{i}(\sigma(X_{i}))$ to
test terms of the form $s\pm\epsilon$ , where $s$ is a linear term.

So the problem of deciding the truth value of normal formulas is reduced to normal input
formulas of the form $Qx(\psi)$ , where $\psi$ is quantifier-free. Moreover by passing to the negation
-if necessary-we may assume that $Q$ is an existential quantifier. So it suffices to decide such
univariate normal formulas with a single existential quantifier $\exists x$ over the reals. In fact we will
do more: In case the truth value of $\exists x(\psi)$ is ‘true’, we will provide a sample point $r\in \mathbb{R}$ for $x$ .
In fact if $M$ is the set of reals satisfying $\psi(x)$ , then we will determine the number of connected
components of $M$ and their types as a non-empty intervals $[b, c],$ $(b, c),$ $[b, c)$ or $(b, c]$ .

As a consequence we can also in an obvious way decide a univariate normal formula $Qx(\psi)$

with quantifier-free $\psi$ , where $Q$ is a counting quantifier.

3 Geometric properties of trigonometric functions and straight
lines

In order to study the solutions of equations and inequalities between straight lines and trigono-
metric functions, we now consider functions of the type $f(x)=trig(x)-(cx+d)$ , and focus on
the case of trig $(x)=\cos(x)$ or trig $(x)=\sin(x)$ . In the following, we only deal with the case
of $\cos(x)$ because the case of $\sin(x)$ is very analogous to that of $\cos(x)$ . Let the basic intervals
for be $\mathcal{I}_{n}:=(-\frac{\pi}{2}+n\pi, -\frac{\pi}{2}+(n+1)\pi)$ for $n\in$ N. For any straight line $y=cx+d$ the
equation $\cos(x)=cx+d$ has at most two solutions in the interval $\mathcal{I}_{n}$ . We denote these solutions
(if they exist) by $\xi_{n,1}$ and $\xi_{n,2}$ .

Definition 1 Consider the equation $\cos(x)=cx+d$ with real numbers $c,$ $d$ and assume that
$c>0$ . Then let $x_{+1}= \frac{1-d}{c},$ $x_{0}=- \frac{d}{c}$ and $x_{-1}= \frac{-1-d}{c}$ . Then we call the region $[x_{-1}, x_{+}1]$

from $x_{-1}$ to $x_{+1}$ the domain of the line $cx+d$, in particular, we call the region $[x_{01}, x_{+}]$ from
$x_{0}$ to $x_{+1}$ the positive domain and the region $[x_{-1}, x_{0}]$ from $x_{-1}$ to $x_{0}$ the negative domain of
the line. For $c<0$ the definitions are analogous.

Lemma 2 Consider the equation $\cos(x)=cx+d$ with real numbers $c,$ $d$. Then the following
hold:

1. If $c=0and|d|<1$ , then the equation has infinitely many solutions.
$If1>d\geq 0$ then the solutions are $\xi_{n,1},\xi_{n,2},$ $where- \frac{\pi}{2}+n\pi\leq\xi_{n,1}<\xi_{n,2}\leq-\frac{\pi}{2}+(n+1)\pi$

for all even integer $n$ . Moreover $\cos(x)\geq cx+d$ for $\xi_{n,1}\leq x\leq\xi_{n,2}$ , otherwise $\cos(x)<$

$cx+d$ in $\mathcal{I}_{n}$ .

If $0>d>-1$ then the solutions are $\xi_{n,1},\xi_{n,2}$ where $- \frac{\pi}{2}+n\pi\leq\xi_{n,1}<\xi_{n,2}\leq-\frac{\pi}{2}+$

$(n+1)\pi$ for all odd integer $n$ . Moreover $\cos(x)\leq cx+d$ for $\xi_{n,1}\leq x\leq\xi_{n,2}$ , otherwise
$\cos(x)>cx+d$ in $\mathcal{I}_{n}$ .
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2. If $c=0and|d|=1$ , then the equation has infinitely many solutions $n\pi$ where $n$ is even for
$d=1$ and oddfor $d=-1$ . Moreover $\cos(x)\geq cx+d$ for $d=-1,$ $\cos(x)\leq cx+d$ for
$d=1$ .

3. If $c=0$ and $|d|>1$ , then the equation has no solution. Moreover $\cos(x)>cx+d$ for
$d<-1,$ $\cos(X)<cx+d$ for $d<1$ .

4. $If|c|\geq 1$ then the equation has exactly one solution $\xi$ . When $c\geq 1$ then $\cos(x)\geq cx+d$

for $x\leq\xi,$ $\cos(X)<cx+d$ for $x>\xi$ . And when $c\leq-1$ then $\cos(x)\geq cx+d$ for $x\geq\xi$ ,

$\cos(x)<cx+d$ for $x<\xi$ .

5. If $0<c<1$ then the following cases occur in the positive domain where $m,$ $n$ are integers
$s.t$. $m<n.\cdot$

(i) $If- \frac{\pi}{2}+2m\pi<x_{0}<-\frac{\pi}{2}+(2m+1)\pi and-\frac{\pi}{2}+2n\pi<x_{+1}<2n\pi$ then the equation
has the solutions $\xi_{2m,1}<\xi_{2m+2,1}<\xi_{2m+,2}<\cdots<\xi_{2n-2,1}<\xi_{2n-2},2$ .
Moreover $\cos(x)\geq cx+d$ for $x_{0}\leq x\leq\xi_{2m,1},$ $\cos(x)<cx+d$ for $\xi_{2m,1}<x<$

$\xi_{2m+2,1},$ $\cos(x)\geq cx+d$ for $\xi_{2m+2,1}\leq x\leq\xi_{2m+2,2},$ $\cdots,$ $\cos(x)\geq cx+d$ for
$\xi_{2n-2},1\leq x\leq\xi_{2n-2,2},$ $\cos(x)<cx+d$ for $\xi_{2n-2,2}\leq x_{+1}$ .

(ii) $If- \frac{\pi}{2}+2m\pi<x_{0}<-\frac{\pi}{2}+(2m+1)\pi$ and $2n \pi<x_{+1}<-\frac{\pi}{2}+(2n+1)\pi$ then the
equation has the solutions $\xi_{2m,1}<\xi_{2m+2,1}<\xi_{2m+2,2}<\cdots<\xi_{2n-2},1<\xi_{2n-2},2<$

$\xi_{2n,1}<\xi_{2n,2}$ .
Moreover $\cos(x)\geq cx+d$ for $x_{0}\leq x\leq\xi_{2m,1},$ $\cos(x)<cx+d$ for $\xi_{2m,1}<x<$

$\xi 2m+2,1,$ $\cos(x)\geq cx+d$ for $\xi_{2m+2,1}\leq x\leq\xi_{2m+2,2},$ $\cdots,$ $\cos(x)\geq cx+d$ for
$\xi_{2n-2,1}\leq x\leq\xi_{2n-2,2},$ $\cos(x)<cx+d$for $\xi_{2n-2,2}<x<\xi_{2n,1},$ $\cos(X)\geq cx+d$ for
$\xi_{2n,1}\leq x\leq\xi_{2n,2},$ $\cos(X)<cx+d$ for $\xi_{2n,2}<x\leq x_{+1}$ .

(iii) $If- \frac{\pi}{2}+(2m+1)\pi<x_{0}<-\frac{\pi}{2}+(2m+2)\pi and-\frac{\pi}{2}+2n\pi<x_{+1}<2n\pi$ then the
equation has the solutions $\xi_{2m+2,1}<\xi_{2m+2,2}<\cdots<\xi_{2n-2,1}<\xi_{2n-2,2}$ .
Moreover $\cos(x)<cx+d$ for $x_{0}<x<\xi_{2m+2,1},$ $\cos(x)\geq cx+d$ for $\xi_{2m+2,1}\leq$

$x\leq\xi_{2m+2,2},$ $\cdots,$ $\cos(x)\geq cx+d$ for $\xi_{2n-2,1}\leq x\leq\xi_{2n-2},2,$ $\cos(x)<cx+d$ for
$\xi_{2n-2,2}\leq x_{+1}$ .

(vi) $If- \frac{\pi}{2}+(2m+2)\pi<x_{0}<-\frac{\pi}{2}+(2m+2)\pi$ and $2n \pi<x_{+1}<-\frac{\pi}{2}+(2n+1)\pi$ then
the equation has the solutions $\xi_{2m+2,1}<\xi_{2m+2,2}<,$ $..<\xi_{2n-2},1<\xi_{2n-2}$

}
$2<\xi_{2n,1}<$

$\xi_{2n,2}$ ,

Moreover $\cos(x)<cx+d$ for $x_{0}<x<\xi_{2m+2,1},$ $\cos(x)\geq cx+d$ for $\xi_{2m+2,1}\leq$

$x\leq\xi_{2m+2,2},$ $\cdots,$ $\cos(x)\geq cx+d$ for $\xi_{2n-2},1\leq x\leq\xi_{2n-2},2,$ $\cos(x)<cx+d$ for
$\xi_{2n-2},2<x<\xi_{2n,1},$ $\cos(x)\geq cx+d$ for $\xi_{2n,1}\leq x\leq\xi_{2n,2},$ $\cos(x)<cx+d$ for
$\xi_{2n,2}<x\leq x_{+1}$ .

For the negative domain we have an analogous case distinction.

6. $If- l<c<0$ then we have analogous subcases as in case 5.

Proof Obvious from the graphs of $\cos(x)$ and of $cx+d$.
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4 Decision Procedures for univariate formulas
In this section we decide the validity of univariate closed normal formulas in the language $L$

of the form $\exists x(\psi)$ , where $\psi$ is a quantifier-free. In view of the results in the section 2 this will
solve the general decision problems for normal formulas.

Let the input formula $\varphi$ be of the form $\exists x(\psi(X))$ , where $\psi$ is quantifier-free. The only
trigonometric term occurring in $\psi$ is trig $(ax+b)$ where $a,$

$b$ are elements of $F$ and $a\neq 0$ . By the
linear substitution $x\vdasharrow a^{-1}x-a^{-}1b,$

$\varphi$ is equivalent to $\exists x(\psi;)$ , where $\psi’:=\psi(a^{-1}x-a^{-1}b))$ .
Notice that the only trigonometric term occuring in $\psi’$ is trig $(x)$ . So $\psi’$ is a propositional
combination of atomic formulas

$\alpha_{i}:=c_{i}x+d_{i}\rho_{i}trig(X)$ or $c_{i}x+d_{i}\rho_{i}0$ (1)

with $i\in I,$ $\rho_{i}\in\{=, <, >\}$ . Let $s$ be $2\pi$ plus the maximal absolute value of the domain bounds
of all lines $c_{i}x+d_{i}$ with $c_{i}\neq 0$ occurring in $\psi’$ and of the first components of all intersection
points between all lines $y=c_{i}x+d_{i}$ and $y=c_{j}’x+d_{j}’$ with $ci\neq 0$ or with $c_{j}\neq 0$ . Consider
only the region $[-s, s]$ . For every atomic formula $\alpha_{i}$ in $\psi’$ , the set $M_{\alpha_{i}}$ of reals defined by it in
$[-s, s]$ consists of one interval or finitely many disjoint intervals described in lemma 2. So the
set $M_{\psi’}$ of reals in $[-s, s]$ defined by $\psi’$ is a finite union of intervals, whose endpoints are among
solutions of the equations

$c_{i}x+d_{i}=trig(x)$ or $c_{i}x+d_{i}=0$ (2)

obtained from the atomic formulas $\alpha_{i}$ in (1).

Lemma 3 If $\exists x(\psi’)$ holds in $\mathbb{R}$, then it holds in $[-s, s]$ .

Proof This is an immediate consequence from the definition of $s$ and lemma 2. 1

Let $p_{1}<p_{2}<\ldots<p_{n}$ be the solutions of the equations (2) ordered in increasing order. Then
the truth value of each atomic formula $\alpha_{j}$ of $\psi’$ and hence of $\psi’$ remains invariant in each of
the intervals $(-\infty,p_{1}),$ $(p_{1},p_{2}),$

$..\mathrm{x}$ , $(p_{n-1},p_{n}),$ $(p_{n}.\infty)$ . So following the ideas in [10] in the
present context, it suffices to determine the truth value of each $\alpha_{i}$ at the test $\mathrm{P}^{\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{S}s}-,pi$ , and
$p_{i}+\epsilon$ , where $\epsilon$ is a positive infinitesimal. From the result of these evaluations one can then
determine the truth-value of $\psi’$ at all these points, and thus determine the structure of the set of
real values $x$ for which $\psi’(X)$ holds. In particular one can then decide, whether or not $\varphi$ holds.
More precisely, one obtains the exact number of connected components of the set of real values
$x$ for which $\psi’(X)$ holds.

Two problems arise in this procedure:

1. First, one needs to determine the order relations between the solutions of the equations (2).

2. Second, one must be able to evaluate all atomic formulas $\alpha_{j}$ of $\psi’$ at these solutions, closely
to the right of these solutions, and $\mathrm{a}\mathrm{t}-s$ .

In contrast to the purely linear situation in [10], the solutions of the equations $c_{i}x+d_{i}$ $=$

$trig(x)(i\in I)$ are no longer given in a standard mathematical notation. So the evaluation of
$\alpha_{j}$ at or closely to the right of these solutions has to be done in a roundabout way. It turns out
that both problems can be overcome by case distinctions following lemma 2 and evaluation of
trig $(x)$ at the solution of the equations (2) in $[-s, s]$ .
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The next two lemmas specify the details depending on the cases specified in lemma 2. More-
over, here we also restrict to the case of trig $(x)=\cos(x)$ .

Lemma 4 Let $\ell$ and $\ell’$ be a distinct straight lines defined by $y=cx+d$ and $y=c’x+d’$ ,

respectively, where $C,$ $C^{J}d,$ $d’\in F$ . Let $D$ be the interval $[-t, t]$ where

$t:= \max${ $- \frac{\pi}{2}+(n+1)\pi|n\in \mathrm{N}$ and $- \frac{\pi}{2}+n\pi<s$}.

$Let \mathcal{I}_{2n}=(-\frac{\pi}{2}+2n\pi, -\frac{\pi}{2}+(2n+1)\pi)$ for integers $n$ . We denote as before by $\xi_{2n,1}<\xi_{2n,2}$ the
potential solutions of the equation $\cos(x)=cx+d$ in $\mathcal{I}_{2n}\cap D$ . Similarly we denote by $\xi_{2n,1}’<$

$\xi_{2n,2}’$ the potential solutions of the equation $\cos(x)=c’x+d’$ in $\mathcal{I}_{2n}\cap D$ . We let $(\alpha, \beta)\in F^{2}$

denote the potential intersection point of the lines $\ell$ and $\ell’$ . Notice that $\xi_{2n,1},$ $\xi_{2n,2},$ $\xi’2n,1’\xi_{2n}^{;},2$

are all different from $\alpha$ , since $\cos(x)$ is strongly transcendental. If the line $cx+d>0$ in an
interval, then it is called positive in the interval.

If one of the two lines $\ell$ and $\ell’$ has no intersection point with $\cos(x)$ , the ordering of the
solutions $\xi_{i,j}$ are obvious from lemma 2. Hence we only consider the cases where both two lines
have at least one solution with $\cos(x)$ in $\mathcal{I}_{2n}$ . Then the order relation among the solutions $\xi_{i,j}$

are decided as follows:
1. If the two lines $\ell$ and $\ell’$ are both positive and have intersection points with $\cos(x)$ in $\mathcal{I}_{2n}$ ,

then let $\xi_{2n,1},$ $\xi_{2n},2$ be the intersection points with $\cos(x)$ for the line $\ell$ and $\xi_{2n,1}’,$ $\xi’2n,2$ be
those for the line $\ell’$ . (Note that the case where $\cos(\alpha)=\beta$ is impossible, since $\cos(x)$ is
strongly transcendental.)

$(a)$ Ifthere is no intersection point $of\ell$ and $\ell’$ with $\alpha$ in $\mathcal{I}_{2n}$ or the intersection point $(\alpha, \beta)$ has
$\alpha$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)<\beta$ , then we have $\xi_{2n,1}’<\xi_{2n,1}<\xi_{2n,2}<\xi_{2n,2}’$ for $c(2n\pi)+d>$
$c’(2n\pi)+d’$ and $\xi_{2n,1}<\xi_{2n,1}’<\xi_{2n,2}’<\xi_{2n,2}$ for $c(2n\pi)+d<c’(2n\pi)+d’$ .

$(b)$ If the intersection point of $\ell$ and $l’$ has $\alpha$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)>\beta$ , then we have $\xi_{2n,1}’<$

$\xi_{2n,1}<\xi_{2n,2}’<\xi_{2n,2}$ for $c<c’$ , and $\xi_{2n,1}<\xi_{2n,1}’<\xi_{2n,2}<\xi_{2n,2}’$ for $c>c’$ .

2. If the line $\ell$ is positive and has intersection points with $\cos(x)$ in $\mathcal{I}_{2n}$ and $\ell’$ has an intersec-
tion point $(\gamma, 0)$ with the $x$ -axis in $\mathcal{I}_{2n}$ , let $\xi_{2n,1},$ $\xi_{2}n,2$ be the intersection points with $\cos(x)$

for the line $\ell$ and $\xi_{2n,1}’$ be that for the line 1’. (The case where the line $\ell’$ is positive and has
intersection points with $\cos(x)$ in $\mathcal{I}_{2n}$ and $\ell$ has an intersection point $(\gamma, 0)$ with the x-axis
in $\mathcal{I}_{2n}$ is similar to this case.)

$(a)$ Consider the case $c’>0.\cdot$ If $\cos(\alpha)<\beta$, then we $ha.ve\xi_{2n,1}<\xi_{2n,2}<\xi_{2n,1}’$ . If
$\cos(\alpha)>\beta$ , then we have $\xi_{2n,1}<\xi_{2n,1}’<\xi_{2n,2}$ .

$(b)$ Consider the case $c’<0$ . If $\cos(\alpha)<\beta$, then we have $\xi_{2n,1}’<\xi_{2n,1}<\xi_{2n,2}$ . If
$\cos(\alpha)>\beta$ , then we have $\xi_{2n,1}<\xi_{2n,1}’<\xi_{2n,2}$ .

3. If the two lines $\ell$ and $\ell’$ have the intersection points $(\gamma, 0),(\gamma’, 0)$ with the $x$ -axis in $\mathcal{I}_{2n}$ ,

respectively, let $\xi_{2n,1}$ be the intersection point with $\cos(x)$ for the line $\ell$ and $\xi_{2n,1}’$ be thatfor
the line $\ell’$ .

$(a)$ If there is no intersection point of $\ell$ and $\ell’$ with $\alpha$ in $\mathcal{I}_{2n}$ or the intersection point $(\alpha, \beta)$

has $a$ in $\mathcal{I}_{n}$ and $\cos(\alpha)<\beta$ , then the following cases occur:
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$i$. If $c,$ $c’>0$ then $\xi_{2n,1}<\xi_{2n,1}’$ for $c(2n\pi)+d>c’(2n\pi)+d’$ and $\xi_{2n,1}’<\xi_{2n,1}$ for
$c(2n\pi)+d<c’(2n\pi)+d’$ .

$ii$ . If $c,$ $c’<0$ then $\xi_{2n,1}’<\xi_{2n,1}$ for $c(2n\pi)+d>c’(2n\pi)+d’$ and $\xi_{2n,1}<\xi_{2n,1}’$ for
$c(2n\pi)+d<c’(2n\pi)+d’$ .

$(b)$ If the intersection point $\ell$ and $\ell’$ has $\alpha$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)>\beta$, then the following cases
$occu\gamma.\cdot$

$i$. If $c,$ $c’>0$ then $\xi_{2n,1}’<\xi_{2n,1}$ for $c(- \frac{\pi}{2}+2n\pi)+d>c’(-\frac{\pi}{2}+2n\pi)+d’$ and
$\xi_{2n,1}<\xi_{2n,1}’$ for $c(- \frac{\pi}{2}+2n\pi)+d<c’(-\frac{\pi}{2}+2n\pi)+d’$ .

$ii$. If $c,$ $c’<0$ then $\xi_{2n,1}<\xi_{2n,1}’$ for $c(- \frac{\pi}{2}+2(n+1)\pi)+d>c’(-\frac{\pi}{2}+2(n+1)\pi)+d’$

and $\xi_{2n,1}’<\xi_{2n,1}$ for $c(- \frac{\pi}{2}+2(n+1)\pi)+d<c’(-\frac{\pi}{2}+2(n+1)\pi)+d’$ .
$iii$. If $cc’<0$ then $\xi_{2n,1}<\xi_{2n,1}’$ for $c<0,$ $c’>0$ and $\xi_{2n,1}’<\xi_{2n,1}$ for $c>0,$ $c’<0$ .

The interval $\mathcal{I}_{2n+1}$ for an integer $n$ is treated in analogous way to the interval $\mathcal{I}_{2n}$ .

Lemma 5 Let $\xi_{2n,1}<\xi_{2n,2}$ be the potential solutions of the equation $cx+d=\cos(x)$ in
$\mathcal{I}_{2n}\cap D$ . Let the potential intersection point of two lines $\ell$ and 1’ be $(\alpha, \beta)$ . We only consider
the cases where both two lines have at least one solution with $\cos(x)$ in $\mathcal{I}_{2n}\cap D$ . Then the order
relation between $c’\xi 2n,i+d’$ and $\cos(\xi 2n,i)\mathcal{I}_{2}n$ is decided as follows:

1. If the two lines $\ell$ and 1’ are both positive on $\mathcal{I}_{2n}$ and have intersection points with $\cos(x)$ in
$\mathcal{I}_{2n}$ , then let $\xi_{2n,1},$ $\xi_{2}n,2$ be the intersection points with $\cos(x)$ for the line $\ell$ .

$(a)$ If there is no intersection point of 1 and 1’ with $\alpha$ in $\mathcal{I}_{2n}$ or the intersection point $(\alpha, \beta)$

has $\alpha$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)<\beta$ , then we have $c’\xi_{2n},1+d’<\cos(\xi 2n,1),$ $C’(\xi_{2n,1}+\epsilon)+d’<$

$\cos(\xi_{2}n,1),$ $c’\xi_{2n},2+d’<\cos(\xi 2n,2),$ $c^{J}(\xi 2n,2+\epsilon)+dJ<\cos(\xi_{2}n,2)$ , for $c(2n\pi)+d>$
$c’(2n\pi)+d’$ and $c’\xi_{2n},1+d’>\cos(\xi_{2}n,1),$ $c’(\xi_{2}n,1+\epsilon)+d’>\cos(\xi 2n,1),$ $c\xi\prime 2n,2+d’>$

$\cos(\xi_{22}n,),$ $c(;\xi 2n,2+\epsilon)+d’>\cos(\xi_{2n,2})$ for $c(2n\pi)+d<c’(2n\pi)+d’$ .
$(b)$ If the intersection point of1 and $\mathit{1}’$ has $a$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)>\beta$, then we have $c’\xi_{2n},1+$

$d’<\cos(\xi 2n,1),$ $c’(\xi 2n,1+\epsilon)+d’<\cos(\xi_{2n,1}),$ $c’\xi_{2n,2}+dJ>\cos(\xi 2n,2),$ $c’(\xi 2n,2+\epsilon)+$

$d’>\cos(\xi_{2n,2})$ , for $c<c’,$ $c’\xi_{2n},1+d’>\cos(\xi_{2n,1}),$ $c’(\xi 2n,1+\epsilon)+d’>\cos(\xi_{2n,1})$ ,
$C’\xi_{2n},2+d’<\cos(\xi 2n,2),$ $c’(\xi_{2n},2+\epsilon)+d^{J}<\cos(\xi 2n,2)$ for $c>c’$ .

2. If the line $\ell$ is positive and has intersection points with $\cos(x)$ in $\mathcal{I}_{2n}$ and $\ell’$ has an intersec-
tion point $(\gamma, 0)$ with the $x$ -axis in $\mathcal{I}_{2n}$ , let $\xi_{2n,1},$ $\xi_{2}n,2$ be the intersection points with $\cos(x)$

for the line $\ell$ . (The case where the line $\ell’$ is positive on $\mathcal{I}_{2n}$ and $\ell$ has an intersection point
$(\gamma, 0)$ with the $x$ -axis in $\mathcal{I}_{2n}$ is similar to this case.)

$(a)$ Consider the case $c’>0.\cdot$ If $\cos(\alpha)<\beta$ , then we have $c’\xi_{2}n,1+d’<\cos(\xi_{2}n,1)$ ,

$c’(\xi 2n,1+\epsilon)+d’<\cos(\xi_{2n,1})C’\xi_{2n},2+d’<\cos(\xi_{2}n,2),$ $C’(\xi 2n,2+\epsilon)+d’<\cos(\xi 2n,2)$ .

If $\cos(\alpha)>\beta$, then we have $c’\xi_{2}n,1+d’<\cos(\xi 2n,1),$ $c’(\xi_{2}n,1+\epsilon)+d’<\cos(\xi_{2}n,1)$

$c’\xi_{22}n,+d’>\cos(\xi 2n,2),$ $C’(\xi 2n,2+\epsilon)+d’>\cos(\xi 2n,2)$ .

$(b)$ Consider the case $c’<0$ : If $\cos(\alpha)<\beta$ , then we have $c’\xi_{2}n,1+d’<\cos(\xi_{2}n,1)$ ,

$c’(\xi_{2}n,1+\epsilon)+d\prime \mathrm{c}<\mathrm{o}\mathrm{s}(\xi_{2n,1})_{C\xi 2n,2};+d^{;}<\cos(\xi_{22}n,),$ $C’(\xi_{2}n,2+\epsilon)+dJ<\cos(\xi 2n,2)$ .
If $\cos(\alpha)>\beta$, then we have $c’\xi 2n,1+d’<\cos(\xi_{2}n,1),$ $c’(\xi 2n,1+\epsilon)+d’<\cos(\xi_{2n,1})$

$c’\xi_{2n},2+d’>\cos(\xi 2n,2),$ $c’(\xi_{22}n,+\epsilon)+d’>\cos(\xi 2n,2)$ .
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3. If the two lines $\ell$ and $\ell’$ have the intersection points $(\gamma, 0),(\gamma’, 0)$ with $x$ -axis in $\mathcal{I}_{2n}$ respec-
tively, let $\xi_{2n,1}$ be the intersection point with $\cos(x)$ for the line $\ell$ .

$(a)$ If there is no intersection point of $\ell$ and $\ell’$ with $\alpha$ in $\mathcal{I}_{2n}$ or the intersection point $(\alpha, \beta)$

has $\alpha$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)<\beta$, then the following cases $ocCur.\cdot$

$i$ . If $c,$ $c’>0$ then $c’\xi_{2n,1}+d’<\cos(\xi 2n,1),$ $c’(\xi_{2n,1}+\epsilon)+d’<\cos(\xi_{2n,1})$ for $c(2n\pi)+$

$d>c’(2n\pi)+d’$ and $c’\xi_{2}n,1+d’>\cos(\xi_{2n,1}),$ $c’(\xi 2n,1+\epsilon)+d’>\cos(\xi_{2}n,1)$ for
$c(2n\pi)+d<c’(2n\pi)+d’$ .

$ii$. If $c,$ $c’<0$ then $c’\xi_{2n},1+d’>\cos(\xi 2n,1),$ $c’(\xi_{2n,1}+\epsilon)+d’>\cos(\xi_{2n,1})$ for $c(2n\pi)+$

$d>c’(2n\pi)+d’$ and $c’\xi_{2}n,1+d’<\cos(\xi_{2}n,1),$ $c’(\xi 2n,1+\epsilon)+d’<\cos(\xi_{2n,1})$ for
$c(2n\pi)+d<c’(2n\pi)+d’$ .

$(b)$ If the intersection point of $\ell$ and $\ell’$ has $\alpha$ in $\mathcal{I}_{2n}$ and $\cos(\alpha)>\beta$ , then the following cases
occur:
$i$. If $c,$ $c’>0$ then $c’\xi_{2n,1}+d’>\cos(\xi_{2n},1),$ $C^{;}(\xi_{2n,1}+\epsilon)+d’>\cos(\xi_{2n,1})$for $c(- \frac{\pi}{2}+$

$2n \pi)+d>c’(\frac{\pi}{2}+2n\pi)+d’$ and $c’\xi_{2}n,1+d’<\cos(\xi_{2n,1}),$ $c’(\xi_{2}n,1+\epsilon)+d’<$

$\cos(\xi_{2n,1})$ for $c(- \frac{\pi}{2}+2n\pi)+d<c’(\frac{\pi}{2}+2n\pi)+d’$ .
$ii$. If $c,$ $c’<0$ then $c’\xi_{2}n,1+d’>\cos(\xi_{2}n,1),$ $C’(\xi_{2n,1}+\epsilon)+d’>\cos(\xi_{2}n,1)$for $c(- \frac{\pi}{2}+$

$2(n+1) \pi)+d>c’(\frac{\pi}{2}+2(n+1)\pi)+d’$ and $c’\xi_{2}n,1+d^{J}<\cos(\xi 2n,1),$ $C^{J}(\xi_{2}n,1+\epsilon)+d^{;}<$

$\cos(\xi_{2n,1})$ for $c(- \frac{\pi}{2}+2(n+1)\pi)+d<c’(\frac{\pi}{2}+2(n+1)\pi)+d’$ .
$iii$. If $cc’<0$ then $c’\xi_{2n,1}+d’<\cos(\xi_{2}n,1),$ $c’(\xi_{2}n,1+\epsilon)+d’<\cos(\xi_{2}n,1)$ .

The interval $\mathcal{I}_{2n+1}$ for integers $n$ is treated in analogous way to the interval $\mathcal{I}_{2n}$ .

Proof of lemma 4 and 5 These facts are an immediate consequence of lemma 2. Draw a
diagram for each case. 1

Armed with the two lemmas we can now determine the exact number of non-empty con-
nected components of the set $M$ of all real values $x$ , where $\psi’(X)$ holds. Since all coefficients
occurring in $\psi’$ are real algebraic numbers in $F$ and $\cos(x)$ is strongly transcendental we can
decide equations and order inequalities between the elements of $F$ and between the values of
$\cos(x)$ for $x\in F$ . Then all the case distinctions made in the two proceeding lemmas can be eval-
uated algorithmically. So we can determine algorithmically the exact number of real solutions of
every equation arising from an atomic subformula of $\psi’$ . Next we can order all these solutions by
the first lemma. By the second lemma we can evaluate the truth value of every atomic subformula
of $\psi’$ and hence of $\psi’$ at all these points in $[-s, s]$ , and closely to the right of all these points.
From these evaluations we obtain immediately the number of non-empty connected components
of the set $M_{\psi’}$ , and moreover the type of intervals that these components constitute in increasing
order.

5 The mixed real-integer case
In this section we consider a considerable extension of linear-exponential problems given

by an extension of the concept of term used so far. We admit as new operation symbol in our
extension language the integer-part operation [-] (compare [27]). Similar as in the language
$L”$ considered in [27], extended terms are now expressions obtained from terms by means of
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addition, scalar multiplication by rational constants and the integer-part operation. Notice that
these operations may be nested in an arbitrary way. Atomic formulas in the extended sense are
then of the form $t=0,$ $t>0,$ $t\geq 0$ , for extended terms $t$ . Formulas, closed formulas and
normal formulas in the extended sense are obtained from atomic formulas as before with the
additional restriction that the quantifier over the mixed variable $x$ should range now only over
a bounded interval $[-S, S]$ . By means of the integer-part operation we are now able to code
also quantifiers ranging over the integers. Indeed a quantifier $(\exists x\in \mathbb{Z})(\varphi)$ can be equivalently
expressed by the extended formula $\exists x$ ($x=[x]$ A $\varphi$ ). So the problems that can be expressed by
normal formulas in the extended sense are now mixed real-integer linear-trigonometric problems.

We are now going to describe a decision procedure for normal formulas in the extended
sense: By an argument similar to the one in section 2 we can use the mixed real-integer linear
quantifier elimination of [27] to reduce the decision problem for normal formulas to the case of
normal formulas with just one existential quantifier

$\exists x(-s\leq x\leq s\wedge\psi(x))$ (3)

where $\psi(x)$ is quantifier-free. From the given bound $S$ we can compute an integer bound $T$ for
the absolute values of all extended terms and subterms $t(x)$ occurring in $\psi(x)\mathrm{f}\mathrm{o}\mathrm{r}-S\leq x\leq S$.
Next, we successively eliminate all occurrences of the integer-part operation from (3): Let $[t]$

be an innermost occurrence of integer-part operation in $\psi(x)$ . We write $\psi(x)$ as $\tau([t])$ . Then (3)
is equivalent to $_{i=-T}^{T}\exists x$ ( $-s\leq x\leq S$ A $i\mathrm{l}\leq t(x)<(i+1)1$ A $\tau(i1)$ ) This decreases
the number of occurrences of the integer part operation by one. By iteration of the procedure all
occurrences of the integer part operation can be eliminated from the given formula. At this point
the resulting formula can be decided as in section 4.

6 The Tangent case
So far the trigonometric function in normal formulas was essentially the sine or the cosine

function. What happens if we replace this function by the tangent function?
The obvious changes are the following: $tan(X)$ is defined only for $x \neq\frac{\pi}{2}+n\pi$ for integer

$n,$ $tan(X)$ has period $\pi$ , and $tan(X)$ is unbounded. We extend $tan(X)$ to a total function on IR
by setting $tan( \frac{\pi}{2}+n\pi)=0$ . So the new tasks are the following:

1. Compute the real zeros of the functions $f_{\mathrm{c},d}(x):=tan(X)+cx+d$ where $c,$ $d\in F$ and
determine the sign of $f_{c,d}(x)$ infinitesimally to the right of these zeros.

2. Eliminate the occurrence of the integer part operation from an univariate extended normal
formulas.

For the first task we note to begin with that in each basic interval $\mathcal{I}_{n}$ the function $f_{c,d}(x)$

has exactly one zero, with the possible exception of the interval $\mathcal{I}_{m}$ containing the $\mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o}-d/c$

of the line $cx+d$ in case $c\neq 0$ . In the exceptional interval $\mathcal{I}_{m}$ the function has exactly one
zero if $c>-1$ , or $c=-1$ and $d=0$ , or $c<-1$ and the values of $tan( \pm acos(\frac{1}{\sqrt{-c}}+m\pi))$

have the same sign, and exactly three zeros otherwise. This follows from the following facts:
$f_{c,d(X)}’=(\cos(x\mathrm{I})^{-2}+c>0$ for $c>-1$ . For $c<-1,$ $f_{c,d}’(X)$ has exactly two real zeros
$\pm acos(\frac{1}{\sqrt{-c}}+n\pi)$ in each of the intervals $\mathcal{I}_{n}$ . By the strong transcendence of $tan(X),$ $f_{c,d}(x)$
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has a multiple zero iff $c=-1$ and $d=0$ . Using these facts we can solve the first task similarly
as in section 4. As a consequence we can decide normal formulas with trig $(x)=tan(X)$ .

We do not know how to solve the second task, since $tan(X)$ is unbounded. Instead we
modify the tangent function by truncating its values at some fixed positive integer $k$ as follows:
Put $tan_{k}(x)=tan(X)$ ; if $|tan(X)|\leq k,$ $tan_{k}(x)=-k$ for $tan(X)<-k,$ $tan_{k(X})=k$ for
$tan(X)>k$ . Then the second task can be solved similarly as in section 6. So for each fixed $k$ we
obtain a decision procedure for extended normal formulas with trig $(x)=tan_{k}(x)$ .

Again these decision procedures can be modified as indicated before for quantifiers ranging
over a subfield of the field of real algebraic numbers.

7 Deciding linear-trigonometric problems over subfields
So far we have considered the decision problem for (extended) normal formulas, where all

quantifiers range over the field of real numbers. It is well-known that the truth value of linear
formulas does not change when quantifiers are restricted to an arbitrary subfield of the reals
[10]. By [27] the same applies to mixed real-integer linear fornulas. For linear-trigonometric
problems there is, however, a big difference between validity in $\mathbb{R}$ and in some subfield $F$ of the
real algebraic numbers: Consider for example the normal formula $\exists x(\cos(X)=x)$ . In the reals
this formula is true, since the equation $\cos(x)=x$ has a unique real solution $\xi$ in the interval
$(0, \pi/2)$ . By the strong trancendency of $\cos(x)$ this solution is transcendental, and hence the
formula is false in $F$.

So over $F$ the elimination of linear variables from (extended) normal formulas remains valid,
while the decision of univariate normal formulas involving a trigonometric function in section 4
may become incorrect.

In the following we sketch a modified decision algorithm that will be valid for arbitrary
subfields $F$ of the field of real algebraic numbers. As remarked above it suffices to modify the
decision of univariate normal formulas $\exists x(\psi(x)$ . Since the decision works by substituting finitely
many test points, it suffices to delete all test point that are not in $F$. These are exactly the test
points of the form $\xi_{n,i}$ arising as zeros of functions $f(x)=trig(x)+cx+d$ different from zero.
Notice, however, that we keep all the test point of the form $\xi_{n,i}+\epsilon$ , since they could be replaced
by an element of $F$.

Thus in our example $\exists x(\cos(X)=x)$ the decision in the real line uses as test $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{S}-1-2\pi$ ,
the solution $\xi$ of the equation $\cos(x)=x$ , and the point $\xi+\epsilon$ for a positive infinitesimal $\epsilon$ ,
whereas in $F$ the test point $\xi$ is dropped. Hence the result of the decision is “true” in the reals
and “false” in $F$.

Remark 6 (Complexity of the decision problem) The complexity of the decision problem for
(extended) normalformulas has not been determined yet exactly. We expect our decision method
to run in doubly exponential time for non-extended normalformulas and in exponential time for
existential non-extended normalformulas.
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8 Conclusions
We have shown that the decision problem for several classes of formulas involving real and

integer variables, linear polynomials and a trigonometric function is decidable. This is in con-
trast to the undecidability of the full elementary theory of the reals with a specific trigonometric
function. The formulas may involve one mixed linear-trigonometric variable and several lin-
ear variables. The decision method uses linear quantifier elimination and a symbolic test point
method. It is quite explicit and implementable. Variants of it work over subfields of the real
algebraic numbers. In its approach it is similar to the decision method for linear-exponential
problems announced in [26]. We expect that the approach can be generalized to formulas involv-
ing larger classes of elementary functions.

Our decision method can be construed as a modified quantifier elimination method, when
the coefficients of terms are taken as parameters. Notice, however, that in this case the output
formula will no longer be normal, but will include more complicated terms.
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