Approximation Algorithms
for Partition and Design Problems

in Networks

Liang ZHAO

p36 lines 6 and 7, p38 line -8, p41 lines 6 and 7,
"E ¥cap 2"W" should be "¥{e ¥cap W | e ¥in E¥} - ¥{¥emptyset¥};

p36 line 8, p41 line 8, "e ¥cap 2*W" should be "e ¥cap W"

p69, subsection 3.5.1, there is a major bug on the conclusion,
since "the Lemmas 3.1, 3.2 CANNOT be extended to MPP in a
straightforward manner," thus it is unknown if the performance
guarantees obtained for MPP-NTs hold for their target split versions.
Thanks for an anonymous referee of DAM for pointing out this.

APPROXIMATION ALGORITHMS
FOR PARTITION AND DESIGN PROBLEMS
IN NETWORKS

Liang ZHAO

Department of Applied Mathematics and Physics
Graduate School of Informatics
Kyoto University
Kyoto 606-8501, Japan

March, 2002

Doctoral Dissertation
submitted to Graduate School of Informatics, Kyoto University
in partial fulfillment of the requirement for the degree of
DOCTOR OF INFORMATICS
(Applied Mathematics and Physics)

Preface

Reliability is one of the most important properties of networks, which has been studied
as a subject in combinatorial optimizations for many years. This thesis treats two kinds
of problems that are related to network reliability: the multiway partition problem (MPP)
considers to estimate the reliability of a given network, and the survivable network design

problem (SNDP) tries to construct reliable networks at low costs.

A family of nonempty, pairwise-disjoint subsets of a set V' whose union is V is called
k-partition of V. Given a system (V,T, f,k), where V is a finite set, T C V, f : 2V — R is
a submodular function and % is an integer, the general MPP asks to find a k-partition P =
{V1,Va,..., Vi } of V satisfying V;NT # () for all i that minimizes f(V1)+ f(Va)+---+ f(Vi).
As an application, the next network problem can be formulated as MPP. Suppose that we
are given a network that consists of two kinds of nodes: terminals and nonterminals, and
links between pairs of nodes. Terminals never fail, whereas nonterminals and links may fail
independently. Given the failure rates, find a set of nonterminals and links with the maximum
failure probability whose failure leaves the terminals with at least k£ pairwise-disconnected
groups. Besides this problem in network reliability analysis, MPP also appears in numerous

applications such as VLSI design, parallel computing and others.

On the other hand, SNDP arises in designing reliable networks at low costs. Analogously,
suppose that we are given a network with two kinds of nodes, terminals and nonterminals,
and links between pairs of nodes. Nonterminals and links have nonnegative weights (e.g., the
installation costs). Let us use “nonterminal/link” to denote a member in the set of nontermi-
nals and links. Problem SNDP is: given integers 4 (connectivity requirement) for each pair
of terminals s and ¢, find a minimum weight subnetwork in which there are at least rg; non-
terminal/link disjoint paths between (each pair of) terminals s and ¢, where nonterminal/link
disjointness means that no two of paths share a common nonterminal or link. Notice that, two
terminals s and ¢ are still connected after the failure of 74 — 1 nonterminal/links in a feasible
solution. In the terminology of reliability, they are said to be able to “survive” the failure of
at least rs; — 1 nonterminal/links. This is where the name of this problem came from. SNDP
captures a generalization of many familiar problems such as shortest path, minimum span-

ning tree, Steiner tree (edge weighted or node weighted), minimum k edge-connected spanning

subgraph. It has many applications in communication systems, transportation systems and

others.

Unfortunately, both MPP and SNDP are NP-hard. Thus it is generally hard to obtain
an optimal solution. So far, a lot of approaches, exact or approximate, have been developed.
However, most of them are either inefficient or are designed for only restricted cases. Espe-
cially, they take no or little consideration on the existence of nonterminals. Before this work,

little was known for our general formulations despite the practical importance.

In this thesis, we aim to design approximation algorithms that can find near-optimal

solutions efficiently. The structure of the thesis goes as follows.

Chapter 1 provides an introduction with applications. After that, we present a unified
framework for developing and analyzing approximation algorithms for MPP in Chapter 2
and 3. Chapter 4 treats SNDP, which is formulated (actually, generalized) by employing
a requirement function. An efficient primal-dual method based approximation algorithm is
proposed. Another approach for SNDP is given in Chapter 5, which utilizes approximation
algorithms for “simpler” versions of SNDP. Finally in Chapter 6, we conclude the results

obtained in this thesis. References and index are given at the end.

We are aware that many unknown facts remain in this exciting field. In particular, how
far we can go is always a challenging question when considering approximation algorithms.
It is deeply hoped that the new results obtained in this thesis would be helpful to stimulate

future researches, as an old saying goes, “This is not an end, but a beginning.”

Kyoto, March 2002

Liang Zhao

Acknowledgement

First of all, I would like to thank my parents Yingzhou Zhao and Jiyi Xiang. Everything
began from them. I also want to thank my brothers Jing and Qing, and their family. Thanks

for caring me so long.

I am greatly indebted to my advisor, Professor Toshihide Ibaraki. He gave me the opportunity
to study in Kyoto University. During my near six years stay as a foreign student, he always
gives me invaluable advice and encouragement, and helps me a lot both in study and in
finance. Even in his very busy moment, he takes time to supervise my study, in particular,
to supervise this dissertation. He commented very carefully on the the manuscript, which

significantly improved the accuracy and quality.

I am deeply grateful to Professor Hiroshi Nagamochi for his heartful and earnest guidance
and discussion. Without his guidance and help, none of the work could have been possible.
I have learned so much, from methodology of doing research to the study of Japanese, from
him that I could not forget at all.

I am indebted to Hirotaka Ono for his continuous, not discrete, helps and discussions through-
out both my master’s and doctoral studies. I also thank other members in the set of Ibaraki
Lab., especially, to Professor Mutsunori Yagiura, Yoshitaka Nakao, Professor Koji Nonobe
and Professor Toshimasa, Ishii. They and Jie Huang and Huiyu Wang have given me so much

helps and pleasure during my studies in Ibaraki Lab.

I am also thankful to Professor Masao Fukushima and Professor Kazuo Iwama for serving on

my dissertation committee.

I want to express my special thanks to Guangyao Luo — my mathematics teacher in high

school, for his showing me the great world of mathematics and computer science.

Finally, I want to express my heartiest appreciation to my wife Xiaqing Zheng. Without her

support, kindness and encouragement, this dissertation would not exist.

iii

Contents

1 Introduction
1.1 Notations and definitions oL o o
1.2 Multiway partition problem (MPP)
1.2.1 Formulation and applications
1.2.2 More applicationso oL L e
1.2.3 Historical background L.
1.3 Survivable network design problem (SNDP)
1.3.1 Formulation and applications L.
1.3.2 More applications L

1.4 Preliminary of set functions in hypergraphs

2 Greedy Splitting Algorithm for MPP
2.1 Imtroduction e
2.1.1 Survey on MPP-NT (MPP with no target)
2.1.2 Survey on general MPP oL oL oo
2.2 Greedy splitting algorithm (GSA) for MPP-NT
2.2.1 Greedy splitting approach o0,
2.2.2 Algorithm description and main lemma
2.2.3 Performance analysis: part T
2.2.4 Performance analysis: part IT
2.3 Modified GSA (M-GSA) for general MPP
2.3.1 Algorithm description and main lemma
2.3.2 Performance analysis

24 Tightexamples oL e

3 Greedy Splitting of Higher Accuracy for MPP
3.1 Imtroduction.
3.2 Greedy splitting algorithm 2 (GSA2)

3.2.1 Algorithm description and main lemma forodd k.

0 xR ==

13
14
14
16
18

21
21
21
26
28
28
29
32
35
38
38
40
42

vi

TABLE OF CONTENTS

3.2.2 Algorithm description and main lemma foreven &
3.3 Performance analysisof GSA2.
3.3.1 Polynomial time implementation
3.3.2 Performance guarantee: part I
3.3.3 Performance guarantee: part IT
3.4 Tightexamples e
3.5 Modified GSA2 (M-GSA2) for general MPP and remarks
3.5.1 Modified GSA2 (M-GSA2) for general MPP
35.2 Remarks. e

A Primal-Dual Approximation Algorithm for SNDP

4.1 Imtroduction. L L e
4.1.1 Network design problem with requirement function (NDRF)
412 Asurveyon SNDP
4.1.3 Preliminary

4.2 Primal-dual approximation algorithm for NDRF

4.3 Proof of performance guarantee oL

4.4 TImplementation for SNDP o o

45 Remarks oL

Another Approach for SNDP

5.1 Imtroduction.

5.2 Algorithms for SNDP
5.2.1 Approximating SNDP by employing algorithm for SNDP-G
5.2.2 Approximating SNDP by employing algorithm for SNDP-G*

5.3 Extensionsto NDRF
5.3.1 Approximating NDRF by employing algorithm for NDRF-G
5.3.2 Approximating NDRF by employing algorithm for NDRF-G*

Conclusion
6.1 Approximation algorithms for MPP
6.2 Approximation algorithms for SNDP

Bibliography

Index

73
73
73
74
76
76
80
85
88

91
91
92
92
94
94
95
96

99
99
101

103

113

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1.10
1.11
1.12

2.1

2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

A (connected) graph and a path (s,t-path).
A spanning tree of the graph in Figure 1.1.
A target-split cut of the graph in Figure 1.1.
A computer network, where computers are connected by links and hubs. . . .
The graph model for Figure 1.4, where nonterminals and edges have weights.
The bipartite graph for Figure 1.5, where only nonterminals have weights. . .
Hypergraph and notations "'and 6.
The hypergraph model for Figure 1.6, where hyperedges have weights.
Hyperedge disjoint (s,t-) paths in a hypergraph and their corresponding non-
terminal disjoint (s,t-) paths in the corresponding bipartite graph.
Graph and Steiner tree.
Unicast and multicast in communication network.
Minimum connected spanning subgraph in hypergraph may not be a tree.

There are two paths (b, {a,b,c},c and b, {d, b, c}, c) between vertices b and c. .

Splitting a p;-partition to obtain a p;yi-partition. Greedy algorithm tries to
minimize the weight increase. Lo
Greedy splitting algorithm (GSA) for MPP-NT
Modified greedy splitting algorithm (M-GSA) for MPP.
A tight example for GSA applied to k-PPSS.o
A tight example for GSA applied to k-PPG.

Greedy splitting algorithm 2 (GSA2) for MPP-NT forodd k.
Ilustration of sub-case (1a) for &-PPG.
Greedy splitting algorithm 2 (GSA2) for MPP-NT foreven k.
Tight example for GSA2 applied to k-PPSS.
Tight example for GSA2 applied to k-PPSSS.
Tight example for GSA2 applied to k&-PPG.
Lemma 3.2 fails if we compute a minimum 3-partition at first.

An example for which main lemmas cannot be extended.

vii

© © 00 Ot N =

10
11

14
15
17

18

29

68

viii

LIST OF FIGURES

4.1
4.2
4.3
4.4
4.5

4.6

5.1
5.2
5.3
5.4
9.5
5.6

ALGO-IP approximation algorithm for (IP).. 7
PRIMAL-DUAL: primal-dual approximation algorithm for (IP); 79
It holds that a € Ag(Co, NCy) UAB(CoUCY). . o o o oo v i oo oo 83
Construct a tree from a laminar set family by the set inclusion relationship. . 83

D transforms a bipartite graph into a directed graph, where edges (u, u¢) have
capacity one, and other edges have capacity co. 86

A tight example for Lemma 4.2. 0. 89

Construction of the edge weight function w from nonterminal weight function w. 92

Algorithm SNDP-G-TO-SNDP. 93
Algorithm SNDP-GT-TO-SNDP it 94
Algorithm NDRF-G-TO-NDRF 96
Construction of the weight function w from the weight function w. 96

Algorithm NDRF-GT-TO-NDRF 97

List of Tables

2.1
2.2

6.1
6.2

6.3

Complexities of MPP-NT's i i 25
Previous best-known approximation results for MPP-NT 26
Approximation results obtained in this thesis for MPP-NT. 99
Performance guarantees of algorithm GSA2 for MPP-NT (assuming the exis-

tence of polynomial time implementations). 100
Approximation results obtained in this thesis for general MPP. 101

ix

LIST OF TABLES

Chapter 1

Introduction

1.1 Notations and definitions

Let us start with graph.

A graph is a pair G = (V, E) of a vertex set V and an edge set E, where edges are two-
elements subsets of V. We use e = {u, v} to denote an edge e with two endpoints u,v € V. In
general, we allow the existence of multiple edges, i.e. edges having the same endpoints. Thus
the set E of edges should be viewed as a set that allows multiple members. The notation
e = {u,v} is used without confusion. Graph is called network if vertices or edges, or both,
have weights.

Let G = (V, E) be a graph. A path (s,t-path) between two vertices s and ¢ is a sequence
Vo = S, €1, Ul, --- Vi—1, €, Vi, ..., €, Uj = t, where v; (resp. e;) are distinct vertices
(resp. edges) such that e; = {v;_1,v;} holds for ¢ =1, ..., j. If there is a path between each
pair of vertices, we say that graph G is connected. Two vertex subsets V1, V, C V are said to
be disconnected if there is no path between a vertex in V; and a vertex in V5. A (connected)

graph and a path in it are illustrated in Figure 1.1.

s @ vertex
” — edge
’ ¢

Path :S, {87 /U1}7 U1, {vlu UQ}-, V2, {'UQ, 1)3}7 U3, {'Ug, t}~t

Figure 1.1: A (connected) graph and a path (s,t-path).

2 CHAPTER 1 INTRODUCTION

Graph G' = (V' E') is subgraph of G if V! C V and E' C EN 2" hold (recall that
2V £ (8| S CV'}). It is spanning if V! = V. The subgraph of G induced by a vertex subset
S C V is defined as G[S] £ (S, EN2%). A connected component, or component in short, is
a maximal connected subgraph of G, i.e., a connected subgraph of G such that adding any
vertex or edge not in it (but in G) violates the connectedness'. Obviously, a component must
be an induced subgraph such that contains at least one vertex.

A tree is such a graph that there is a unique path between each pair of vertices (hence it
is connected). A forest is a graph such that there is at most one path between each pair of
vertices. It is clear that a forest is a collection of trees, where each tree forms a component.
If a spanning subgraph of a graph is tree (resp. forest), we call it spanning tree (spanning

forest). A spanning tree of the graph in Figure 1.1 is shown in Figure 1.2.

Figure 1.2: A spanning tree of the graph in Figure 1.1.

We need more notations. An optimization problem asks to minimize or maximize a func-

tion under given constraints. We consider minimization problem, which can be written as

minimize f(z)

subject to z € €,

where f, z, f(z) and Q are called objective function, solution, objective value and feasible
region (usually specified implicitly), respectively. A solution z is said to be feasible if x € §;
otherwise it is infeasible. A feasible solution z* satisfying f(z*) < f(z) for all z € Q is called
an optimal solution, and f(z*) is called the optimal value or optimum. It is clear that the
optimum is unique (if one exists), whereas optimal solutions may not be unique.

A combinatorial optimization problem (COP) is an optimization problem in which the
feasible region has a combinatorial structure, typically defined by a subset of 2V for a finite
set V. For instance, given a graph, the problem of finding a minimum subset of edges whose
removal leaves the graph with & components (k-way cut problem), and the problem of finding a

minimum spanning tree, are all COPs. Generalizing these two problems, this thesis considers

'In general, we say that a set is mazimal (resp. minimal) with respect to a property if it satisfies the
property but none does its superset (resp. subset) with one more (resp. less) element.

1.1 Notations and definitions 3

two types of COPs: the multiway partition problem (MPP) and the survivable network design

problem (SNDP). Precise formulations will be given in Sections 1.2 and 1.3, respectively.

The minimum spanning tree problem is well known, and can be solved efficiently. However,
as will be seen later, MPP and SNDP are NP-hard. NP-hard problems are strongly believed to
have no polynomial time algorithms (see [GJ 79, Hoc 97]; this is the famous unsolved P # NP
conjecture), where an algorithm is polynomial time, or have polynomial running time, if it
can complete the computation in polynomial time of the input size. Thus it is reasonable to
sacrifice optimality and settle for a “good” feasible solution that can be found efficiently (i.e.,
in polynomial time). While there are algorithmic tools for solving NP-hard problems exactly
(which do not guarantee polynomial running time), polynomial time approximate methods,
called heuristics (or meta-heuristics) and approzimation algorithms are often used. In this

thesis, we take the latter approach: approximation algorithm.

Definition 1.1. Let P be a minimization problem for which each instance I has its optimum
opt(I) > 0. A polynomial time algorithm A is said p-approzimation algorithm for P if it
delivers a feasible solution of objective value at most p-opt(I) for any instance I of P, where

the value p (> 1), independent on I, is called the performance guarantee.

By this definition, an approximation algorithm always has polynomial running time. Other

terms for performance guarantee include approzimation factor, approzimation ratio, etc.

In considering COPs, the next definition contains important concepts. Let R (resp. RT)

denote the set of real numbers (resp. set of nonnegative real numbers).
Definition 1.2. A set function f: 2V — R is said

e symmetric if f(X) = f(V—X) holds for all X CV;

e monotone (nondecreasing) if f(X) < f(Y) holds for all X CY CV;

e submodular (resp. supermodular) if f(X)+ f(Y) > f(XNY)+ f(XUY) (resp.
fFX)+fY)<f(XNY)+ f(XUY)) holds for all X, Y CV;

e weakly supermodular if f(X) + f(Y) < max{f(X NY)+ f(XUY), f(X-Y) +
f(Y = X)} holds for all X,Y C V.

It is trivial to see the next properties.
Proposition 1.1. Let f, g: 2V — R be two set functions.

1. Function —f is submodular if and only if f is supermodular.

2. Function f defined by f(S) = f(V—S8) for all S C V is submodular (resp. supermodular)
if and only if so is f.

4 CHAPTER 1 INTRODUCTION

3. If functions f and g are submodular (resp. supermodular), then function f + g defined
by (f+9)(S) £ £(S) + g(S) for all S C V is submodular (resp. supermodular). In

particular, f + ¢ is submodular (resp. supermodular) for any constant ¢ € R. [l

For further studies, we refer the readers to [DMM 97] for a recent comprehensive anno-
tated bibliographies for combinatorial optimization. Among many good books in this field,
there are two up-to-date textbooks [CCPS 98, KV 00] that cover many of the latest pro-
gresses, as well as fundamental and classical results. For classic books on NP-hard problems
and computational complexity, see [GJ 79, Pap 94]. For exact-algorithm approaches for (NP-
hard) COPs, see [Bel 57, JRT 95, Iba 87, LB 96]. For approximation algorithms (resp. heuris-
tics), see [GGU 72, Joh 74, Hoc 97, KV 00] ([Ree 93, OL 96]). Submodular functions, their
applications and related topics are found in [Fra 97, Fuj 91, Lov 83, Nar 97].

1.2 Multiway partition problem (MPP)
Let us first introduce the multiway partition problem (MPP).

1.2.1 Formulation and applications

Problem 1.1 (MPP). Given a system (V,T, f,k), where V is a finite set, T C V called
target set, f : 2V — R is a submodular function and k > 1 is an integer, MPP is defined by

minimize f(V3) + f(Va) 4+ -+ + f(Vi)

subject to ViUV U--- UV, =V, (1.1)
VinVi=0, 1<i#j<k, (1.2)
VinT#0, i=1,2,...k (1.3)

Without loss of generality we assume |T'| > k, since otherwise there is no feasible solution.
We also assume that function f is given by an oracle which returns f(S) for a given S C V.

A family P = {Vi1, Vs, ..., Vi} of nonempty, pairwise-disjoint subsets of V' whose union is
V is called k-partition of V. If V is identified without confusion, we may say “k-partition”
instead of “k-partition of V7. The weight of P is f(P) & f(Vi) + f(Va) +--- + f(Vk). A
k-partition that satisfies (1.3) (i.e., a feasible solution of MPP) is called target-split (of V,
with respect to 7). Notice that, when 7" = V, MPP reduces to the problem of finding a

minimum weight k-partition of V.

MPP has many practical applications. Let us see one in the following. Consider a
connected communication network that consists of two types of elements: nodes and links
between pairs of nodes. Due to the failures of links, a specified group of nodes (targets) can
possibly be separated into pairwise-disconnected subgroups. Let V and T' C V denote the

1.2 Multiway partition problem (MPP) 5

set of nodes and the set of targets, respectively. To estimate the reliability with respect to
T, one may want to know the maximum probability of such failure of links that disconnect
some k targets from each other, 2 < k < |T'|. Such probability is called robustness indez. It
can be said that the smaller the robustness index, the more reliable the network.

Let us consider a formulation for finding the robustness index. Suppose that the failure
rate (probability) of each link is known in advance, and links fail independently. The failure
probability of a link subset E’ is then the product of failure rates of links in E'. As it is often
convenient to use sum instead of product, we give each link e of failure rate p(e) a weight of
w(e) = —Inp(e) (note w(e) > 0). The weight of a link subset E' is given by

Swle) = — Y luple) = —1n<Hp(e>),

ecE’ ecE’ ec B’
which is large if and only if the failure probability [,z p(e) of E' is small. Let vertices and
edges represent nodes and links respectively. The problem of finding the robustness index for

a k is then formulated as the following problem.

Problem 1.2 (Target split problem). Given a graph G = (V, E) with a target set T C'V
and an edge weight function w : E — R, find a minimum weight subset of edges whose

removal leaves T with at least k nonempty pairwise-disconnected subsets.

We call a subset of edges k-way cut if its removal leaves the graph with at least k£ components.
Obviously, a feasible solution of target split problem, called target-split cut, must be a k-way
cut. Alternatively, target-split cut is a k-way cut whose removal leaves the graph with at least
k (may not be all) components that contain at least one target. An example of target-split

cut for the graph in Figure 1.1 is illustrated in Figure 1.3.

o target

- = target-split cut

Figure 1.3: A target-split cut of the graph in Figure 1.1.

Clearly, instead of the original definition of robust index, the weight of a minimum target-

split cut can be used to estimate the reliability between targets: the larger the more robust.

6 CHAPTER 1 INTRODUCTION

Sometimes it is called as the robustness index (instead of the corresponding probability).

Before we give the MPP formulation for target split problem, let us see two special
cases and their applications. One special case with 7' = V (i.e., the problem of finding
a minimum weight k-way cut) is called k-way cut problem. Two decades ago, Pulleyblank
[Pul 82] (see [BG 97]) formulated it in connection with generating the cutting plane for solving
the traveling salesman problem. After that, numerous applications of the k-way cut problem
have been found, e.g., in network reliability analysis for which we have seen an example. See
also [BG 97, Col 87, Cun 85, GH 88, Stoe 92, Tit 99].

We have another application of k-way cut problem. A family DST of spanning trees is
disjoint if no two of them share a common edge. The maximum number of disjoint spanning
trees is considered as a measure of network invulnerability, see e.g., [Gus 83]. Let

|E'|
k—1

o(G) £ min min{

! s _
i ‘ E' is a k-way cut ofG}.

Let DST denote a family of disjoint spanning trees. The next equality is due independently
to Tutte [Tut 61] and Nash-Williams [NW 61] (see also [CCPS 98], Exercise 8.46).

max{|DST|} = |o(G)]. (1.4)

A natural generalization to edge-weighted graph was considered by Cunningham [Cun 85].

He introduced the strength for a graph G with a nonnegative edge weight function w as

o [e W) | oy
o(G,w) = Iknzlgl mln{kf1 ‘ E' is a k-way cut of G}. (1.5)

Thus 0(G) = o(G, 1) holds. Obviously, o(G) (hence max{|DST|}) and o(G,w) can be found
by solving k-way cut problems for k = 2,...,n, where n is the number of vertices.

The k-way cut problem also has applications in parallel computing, in which one wants
to assign n computation tasks to k& processors. It is assumed that, some pairs of tasks must
communicate during the computation, and communications take costs (e.g. network traffics).
If such a pair of tasks are assigned to the same processor, then only a negligible cost will
be incurred. On the other hand, if they are assigned to different processors, then a large
communication cost is incurred. Let vertices denote computation tasks, and edges denote the
need of communication between two tasks. The communication cost of two tasks, if assigned
to different processors, is associated with the corresponding edge. We see that the problem
of finding an assignment of tasks to processors that minimizes the communication cost is
nothing but a k-way cut problem. See also [LKP 90, Ston 77].

Other applications of k-way cut problem include VLSI layout. In VLSI layout, a graph
represents the connection diagram of a circuit, in which vertices and edges represent circuit
modules and interconnections between pairs of modules, respectively. One wants to find a

layout of the circuit into k layers at the minimum layout cost. Similarly as the previous

1.2 Multiway partition problem (MPP) 7

processor assignment problem, if two modules, corresponding to the endpoints of an edge, is
assigned to different layers, then a cross-layer cost occurs; otherwise (i.e., they are assigned
to the same layer), only a small inner-layer cost occurs which can be omitted. Let each
edge be given the cross-layer cost. It is then easy to see that the problem of finding a layout

minimizing the layout cost can be formulated as k-way cut problem. See also [CO 96, Len 90].

Another special case of the target split problem asks to find a minimum weight k-way cut
whose removal disconnects all k specified target vertices (i.e., |T'| = k). It is often called the
multiterminal cut problem . This problem also has applications in network reliability analysis
and others, see [DJPSY 83]. Some other closely-related variants and applications of target
split problem can be found in [Hu 69, Ston 77].

We now show that the target split problem can be formulated as MPP. For this, given a
graph G = (V, E) with a target set 7 C V and a weight function w : E — R, we denote
the weight of an edge subset E' C E by

w(B) £ > wle).

ecE’

Define a function wey : 2V = R* by

Wex(9) £ Z w(e), SCV,
D#enS#e
i.e., wex(S) is the weight of edges that have one but not all endpoints in S. Function wey is
called the cut function, which is submodular (see Proposition 1.4). Let us show that target
split problem can be formulated as MPP with system (V, T, wex, k), where the latter is called
the k-target-split problem in graphs (k-TPG) in this thesis. For this, we consider a mapping
from k-partition to k-way cut, where P = {Vi,Vh,...,V;} is mapped to Ep 2 {{u,v} €
E|3i#3j, u€V; veV} (InFigure 1.3, take P = {V1, V3, V3}, Ep is nothing but the
target-split cut.) It then holds that

k k
wex(P) = Zwex(Vi) = Z Z w(e)

i=1 0£enV;£e

= Z Z w(e) = 2 Z w(e) = 2w(Ep).

e i:Q#enVie eCEp

(Note that each edge has exactly two endpoints). Thus, from a feasible solution P of k-TPG,
we can construct a feasible solution Ep of target split problem with half the weight. On the
other hand, it is not difficult to see that a minimal target-split cut must be a k-way cut Ep:
for some k-partition P’ of V that is feasible to k-TPG. Hence we conclude that the target
split problem can be formulated as k-TPG, i.e., MPP with system (V, T, wex, k).

In particular, the k-way cut problem can be formulated as MPP with system (V, V, wex, k).
We call the latter problem k-partition problem in graphs (k-PPG). We also denote the k-TPG

8 CHAPTER 1 INTRODUCTION

problem with |T'| = k by k-MCP, since it is equivalent to the multiterminal cut problem. In
the following, we will not distinguish between k-way cut problem and k-PPGQG, nor between

multiterminal cut problem (resp. target split problem) and k-MCP (resp. k-TPG).

1.2.2 More applications

In the previous graph models of applications, there is only one kind of vertices. Sometimes
such models may be too simple to handle real networks. For instance, consider a computer
network such as the Internet. We know that computers are not connected simply by links.
Instead, they are connected by links and hubs’. While a link is incident to only two of
computer/hubs (i.e., two computers, or two hubs, or one computer and one hub), a hub
connects two or more computer/hubs by links. This is illustrated in Figure 1.4. This fact

suggests the necessity of new models that consist of two (or more) kinds of vertices.

-J computer

Figure 1.4: A computer network, where computers are connected by links and hubs.

Possibly hubs may fail just as links. Again, suppose that the failure rate of each hub/link
is known in advance and they fail independently. Let terminals, nonterminals and edges
represent computers, hubs and links, respectively. Associate each nonterminal/edge of failure
rate p with weight —Inp > 0. We again obtain a graph (see Figure 1.5). However, it is different
from the previous model. There are two kinds of vertices: terminals and nonterminals, and
nonterminals have weights as well as edges.

For estimating the reliability, we want to determine a minimum weight set of nontermi-
nal/edges whose removal leaves the terminals with (at least) k& pairwise-disconnected subsets.
Note that k-PPG (in general, k-TPG) is a special case with empty nonterminal set. We claim

that this generalized problem can also be formulated as MPP.

*We use “hub” to denote a network element in connections between interested computers but other than

a link or an interested computer. It may or may not be a real hub as used in communication terminology.

1.2 Multiway partition problem (MPP) 9

@ terminal

A nonterminal

_— edge

Figure 1.5: The graph model for Figure 1.4, where nonterminals and edges have weights.

Let us first consider two formulations. The first is bipartite-graph based. Formally, we
replace each edge e = {s,t} of weight w, by two edges {s, ue} and {u,t}, introducing a new
nonterminal ue of weight w(e) (edges {s,ue} and {ue,t} are not given weights). Observe
that, only nonterminals have weights and no two terminals are adjacent® in the resulting
graph. Next, we replace each edge ¢ = {s,t'} between two nonterminals s’ and t' by two
edges {s',v., } and {v,, '}, introducing a new terminal v,,. After the second replacement, the
graph becomes bipartite, i.e., each edge has one endpoint of terminal and another endpoint

of nonterminal. Notice that only nonterminals have weights. See Figure 1.6.

o terminal

O new terminal
A nonterminal
A

new nonterminal

—— (new) edge

Figure 1.6: The bipartite graph for Figure 1.5, where only nonterminals have weights.
We now formulate the above problem by using the resulting bipartite graph.

Problem 1.3 (Target split problem in hypergraphs of type 1). Given a bipartite
graph G with a terminal set V, a nonterminal set U, a target set T C V, a set E of edges
between V and U and a weight function w : U — R™*, find a minimum weight subset of

nonterminals whose removal leaves T with at least k nonempty pairwise-disconnected subsets.

3We allow the existence of edges between terminals in the input. It is not important by this replacement.

10 CHAPTER 1 INTRODUCTION

Let us use G = (V, U, E) to denote the bipartite graph with terminal set V', nonterminal set
U and edge set E between V and U. Before we give another formulation which explains the

name of Problem 1.3, let us introduce the notation of hypergraph.

Hypergraph is a generalization of graph. A hypergraph is a pair H = (V, E) of a vertez
set V' and a hyperedge set E, where hyperedges are nonempty subsets (of any cardinality)
of V' (see Figure 1.7). The degree of a hyperedge is defined as its cardinality. A hyperedge
e = {v1,... ,vx} may also be treated as the set {v1,... ,vx} of vertices, where each v; is called
endpoint of e. Hence graphs are special hypergraphs, in which each hyperedge (i.e., edge) has
degree 2. Again, we note that the set F of hyperedges should be viewed as a set that allows

multiple members, since we allow the existence of multiple hyperedges.

! O vertex
|
h
| yperedge
I o S
: r(s)
|
! 5(S)
|
|

Figure 1.7: Hypergraph and notations I' and 4.

We generalize notations for graph to hypergraph. Let H = (V, E) be a hypergraph. A
subgraph of H is a hypergraph H' = (V', E') that satisfies V/ C V and E' C EN2Y'. The
subgraph of H induced by a vertex subset S is defined as H[S] £ (S, EN2%). A path (s,t-
path) between two vertices s and ¢ is a sequence vy = s, €1, V1, ..., Vi1, €, Vi, ..., €, Vj = t,
where v; (resp. e;) are distinct vertices (resp. hyperedges) such that v;_1, v; € e; holds for
1 =1, ..., j. If there is a path between any two vertices, we say that H is connected. On
the other hand, two vertex subsets V; and V; are disconnected if there is no path between a
vertex in V7 and a vertex in V5.

We further introduce some notations. The set of neighbors of a vertex subset S C V is
I'(S) 2 weV-S|JecE, vee, enS #B}.
The set of hyperedges incident to S is defined as
5(S) 2 {ecE|b#enS #el,

which is called cut if) # S C V holds. For a singleton set {v}, we use I'(v) and §(v) instead
of I'({v}) and §({v}), respectively. The number of neighbors of vertex v (i.e., |I'(v)|) is called
the degree of v. We illustrate the definitions in Figure 1.7.

1.2 Multiway partition problem (MPP) 11

Now the name of Problem 1.3 becomes clear, since we have an alternative description
by hypergraph. More precisely, using the notation I" with respect to bipartite graph G, we
leave terminals unchanged and replace each nonterminal v and all edges incident to it by a
hyperedge e, = I'(u) of the same weight as u. Then we obtain a hypergraph H = (V, E),
where E = {e, = T'(u) | u € U}. This is illustrated in Figure 1.8.

o terminal

O new terminal

hyperedge

Figure 1.8: The hypergraph model for Figure 1.6, where hyperedges have weights.

With this interpretation, Problem 1.3 can be written as follows, where we use F instead

of E to denote the set of hyperedges for simplicity.

Problem 1.4 (Target split problem in hypergraphs of type 1). Given a hypergraph
H = (V, E) with a vertez set V', an hyperedge set E, a target set T CV and a weight function
w: E = RT, find a minimum weight subset of hyperedges whose removal leaves T with at

least k nonempty pairwise-disconnected subsets.

Similarly as before, we call a set of hyperedges k-way cut if its removal leaves the hypergraph
with at least k£ components (i.e., maximal connected subgraphs). If there are at least k (may

not be all) components that contain at least one target, it is called target-split cut.

Now we are ready to show the promised claim that Problem 1.3 can be formulated as
MPP. We use the equivalent formulation of Problem 1.4.

Suppose that we are given a hypergraph H = (V, E) with a target set T C V and a weight
function w : E — R*. Let w(E') £ Y, w(e) denote the weight of a hyperedge subset
E' C E. Let a function wi, : 2¥ — R™ be defined by

win(S) £ Y wle) SCV.
eCS

That is, win (S) is the weight of hyperedges whose endpoints are all in S. Function wj, is super-

modular (see Proposition 1.4). Hence function % — wj, is submodular by Proposition 1.1.
We claim that Problem 1.4 can be formulated as MPP with system (V, T, @ — Win, k). For

12 CHAPTER 1 INTRODUCTION

this, let P = {V1,Va,...,Vi} be a k-partition of V. We see that the weight of P (with respect

to function % — Wi) is
k w(E) k k
> (U2) 00 = w(B) - Swn(¥) = w(m) - Y Y wle
i=1 i=1 i=1eCV;
= Y {w(e)|3i#j enVi#8#enV;}. (1.6)

This is nothing but the weight of k-way cut Ep = {w(e) | Ji # j, eNV; # 0 #enV;}. On
the other hand, given a k-way cut E’, there is a k-partition P’ whose weight is no more than
the weight of E’. Speaking precisely, P’ consists of the vertex subsets of the components
obtained by removing E’ (if there are more than k components, simply bound some as one).

Thus we obtain the next proposition.

Proposition 1.2. The target split problem in hypergraphs of type 1 (Problem 1.4) can be

formulated as MPP with system (V, T, @—’win, k).

In this thesis, we call it k-target-split problem in hypergraphs of type 1 (k-TPH-T1), and call
the special case of T' =V k-partition problem in hypergraphs of type 1 (k-PPH-T1).

In practice, there are two other types of k-target-split problems in hypergraphs. We
denote them by k-TPH-T2 (type 2) and k-TPH-T3 (type 3) respectively. They differ from
k-TPH-T1 by the objective function. Let P = {V1,V5,...,Vi} be a k-partition of V. In the
objective function of k-TPH-T1, the weight of a hyperedge e is counted only once if

pe 2 [{ilenVi#0} > 2

otherwise it is not counted. In k-TPH-T2 (resp., k-TPH-T3), the weight of e is counted p,
(resp., pe — 1) times (if p. > 2). Notice that, when restricted to graphs, these three types of
problems (k-TPH-T1, k-TPH-T2 and k-TPH-T3) reduce to the same problem k- TPG. Even

in hypergraphs, there is no difference between them if k = 2.
We claim that, k-TPH-T2 and k-TPH-T3 can also be formulated as MPP. For this, let a
function (the cut function) wey : 2 — R¥ be defined by
wex(S) £ Y wle), SCV.
D#£enS+#e

(It was first introduced in considering k-TPG). It is not hard to see the next proposition.

Proposition 1.3. Problems k-TPH-T2 and k-TPH-T3 can be formulated as MPP with sys-
tems (V, T, wex, k) and (V,T, wex+win—@,k), respectively.

(A proof for submodularity can be found in Proposition 1.4). We denote the cases of T =V
by k-PPH-T2 and k-PPH-T3, respectively (which generalize k-PPG).

1.2 Multiway partition problem (MPP) 13

1.2.3 Historical background

Let us give a brief review on the historical background of the studies on MPP. A survey on

complexity results and (approximation) algorithms is left to the next chapter.

To our knowledge, the first MPP is k-PPH-T2. It was considered by Lawler as early
as 1970s, even prior to Pulleyblank’s formulation [Pul 82] of k-PPG. Lawler [Law 62] first
formulated a k-partition problem in hypergraphs using a monotone weight function on the
vertex set. Later he [Law 73] gave the first precise definition of k-PPH-T2 (using the cut
function). In the same article, several applications were suggested, which includes network
analysis (where k-PPG was considered), information storage and retrieval, numerical taxon-
omy, and packaging of electronic circuits. However, at that time, he was unable to give good

algorithms, which may be because the NP-hardness that was discovered later.

Several years later in 1983, Dalhaus, Johnson, Papadimitriou, Seymour and Yannakakis
[DJPSY 83] considered k-MCP (in graphs). They showed the NP-hardness of k-MCP for any
(fixed) £ > 3. This result hence implies the NP-hardness of all the target-split versions of

problems mentioned above.

The complexity of k-PPG was open for several years until Goldschmidt and Hochbaum
[GH 88] showed that it is NP-hard even for unit edge weights. In the same article, they also
showed that, however, it is solvable in polynomial time for any fixed k. This is quite different
from k-MCP and k-TPG. Obviously, the NP-hardness of k-PPG implies the NP-hardness of
all the problems mentioned above.

Problem k-TPH-T3 (including k-PPH-T3) is rather new. It arises from circuit partitioning
in VLSI design. Circuit partitioning is a task of dividing a circuit into smaller components,
with the objective to minimize the cost of connecting different components. It is known
that, instead of graphs, hypergraphs are more natural representations of circuits in the layout
process of VLSI design (see [Len 90]). For this, Chopra and Owen [CO 96, CO 99] considered
the next problem. Given a hypergraph H = (V, E) with a set A C V and a weight function
w : E — RT, the A-partition problem on hypergraphs asks to find a |A|-partition P =
{V1,Va,...,V]q)} satisfying [ANV;| = 1 for all 4, and minimizing) . n.w(e), where ne,
called the cutsize of e (see [Don 88]), is defined by

ne = |{i | enV; #0} - 1.

Clearly, this problem is a special case of k-TPH-T3, where 7' = A and k = |A| hold. It
generalizes k-MCP, thus is NP-hard for any £ > 3. Chopra and Owen considered several

formulations with practical experiments, but approximation result was left open.

There is little literature on k-PPH-T1 and k-TPH-T1. Narayanan, Roy and Patkar
[NRP 96] noticed a connection between k-PPH-T1 and k-PPG, which shows the NP-hardness

14 CHAPTER 1 INTRODUCTION

of k-PPH-T1. In the same article, they also considered to approximate it from a theoretical
view of point, with no mention on applications. An application in VLSI layout was presented

by Hadley [Had 95]. We have seen an application in network reliability analysis before.

1.3 Survivable network design problem (SNDP)

1.3.1 Formulation and applications

In the previous section, we have seen how to formulate the problem of estimating the reli-
ability of given networks as MPP. The converse question is, what is the least cost network
that provides enough reliability? Survivable network design problem (SNDP) considers such

questions. Before we formulate it, more notations are needed.

Paths in a hypergraph are said hyperedge disjoint if no two of them share a common
hyperedge. Let G = (V, U, E) be a bipartite graph, where U is the set of nonterminals. Paths
in G (in the sense of hypergraph) are said nonterminal disjoint, or U-disjoint, if no two of
them share a common nonterminal. Notice that they reduce to hyperedge disjoint paths in

the corresponding hypergraph. This is illustrated in Figure 1.9.

Figure 1.9: Hyperedge disjoint (s,t-) paths in a hypergraph and their corresponding

nonterminal disjoint (s,t-) paths in the corresponding bipartite graph.

We first give a definition of SNDP.

Problem 1.5 (SNDP: hypergraph formulation). Given a hypergraph H = (V, E) with
a weight function w : E — RT and connectivity requirements s for each pair of distinct
vertices s,t € V, find a minimum weight subset E* C E such that there are at least rg
hyperedge disjoint paths between each pair of distinct vertices s and t in the subgraph H* =
(V,E*) of H.

1.3 Survivable network design problem (SNDP) 15

Equivalently, we have an alternative description with the bipartite graph model.

Problem 1.6 (SNDP: bipartite graph formulation). Given a bipartite graph G =
(V,U, E) with a weight function w : U — R and connectivity requirements rs for each
pair of distinct terminals s,t € V, find a minimum weight subset U* C U such that there are
at least rs; nonterminal disjoint paths between each pair of distinct terminals s,t € V in the
subgraph G* = G[T UU*| of G.

Let us see some applications. To avoid confusion, by “SNDP” we mean the general SNDP
as formulated in Problem 1.5 (hypergraph model) or Problem 1.6 (bipartite graph model).
On the other hand, by “SNDP in graphs” (SNDP-G), we refer the graph-restricted problem
of SNDP formulated in Problem 1.5.

Some special cases of SNDP-G are well known, e.g., the shortest path problem (SPP).
Given a graph with nonnegative edge weights (distances) and two vertices s and ¢, SPP asks
to find a minimum weight path between s and t. It is easy to see that SPP can be formulated
as SNDP-G with g = 1 (other requirements are zero). In fact, a minimal optimal solution
(if all edges have positive weights, any optimal solution) of this SNDP-G must be a shortest
s,t-path, and vice versa. We note that SPP can be solved by Dijkstra’s algorithm ([Dij 59])
in O(m +mnlogn) time ([FT 87]), where n (resp., m) is the number of vertices (resp., edges).

Another example is the minimum spanning tree problem (MST). Given a graph with
nonnegative edge weights, MST asks to find a minimum weight spanning tree. Problem MST
can be formulated as SNDP-G with g = 1 for all pairs of vertices s and . It is known that
MST can be solved in O(m + nlogn) time ([FT 87]).

A variant of MST, the Steiner tree problem (STP), is however NP-hard. Given a graph

@® terminal

O Steiner vertex

O

. O O

Figure 1.10: Graph and Steiner tree.

with nonnegative edge weights and a terminal set 7" C V, STP asks to find a minimum

weight subset of edges that connects all vertices in T', where vertices in V' — T (called Steiner

16 CHAPTER 1 INTRODUCTION

vertices) can also be used. This is illustrated in Figure 1.10. Notice that a minimal solution
must be a tree. Obviously, STP can also be formulated as SNDP-G, in which rs; = 1 holds
for s,t € T (0 otherwise). Karp [Karp 72] has shown the NP-hardness of STP even for unit
edge weights. This result hence implies the NP-hardness of SNDP-G and SNDP.

A special case of SNDP-G with connectivity requirements in the set of {0,1} generalizes
STP. It is often called the generalized Steiner tree problem or Steiner forest problem (notice

that a minimal solution must be a forest). In this thesis, we refer it as 0-1 SNDP-G.

Another important application is the minimum k edge-connected spanning subgraph prob-
lem, where the connectivity requirements are k for all pairs of distinct vertices. This problem
is extensively studied in designing reliable networks. Not surprisingly, it is also NP-hard,

even for £ = 2 and graphs with unit edge weights (see, e.g., [Fer 98]).

Problem SNDP-G (with arbitrary connectivity requirements) is also called the generalized
Steiner network problem. Notice that, each pair of vertices s and ¢ are still connected after
the removal of r5; — 1 edges in a feasible solution. In the words of network reliability, they
are said to be able to “survive” the failure of at least r,, — 1 edges. This is where the name
(survivable network design) came from. For more about SNDP-G, we refer the readers to
[GW 97, Wil 01].

1.3.2 More applications

We have seen some applications of SNDP-G. They are fundamental and important in both
practice and theory combinatorial optimizations. However, as stated before, the graph model
with only one kind of vertices may be too simple to fulfill the needs of applications. This

motivated our study on hypergraph-based SNDP.

Let us first see an application, the multicasting in communication system. Consider a
computer network that consists of computers, links and hubs (see Figure 1.4). A special
computer (called the server) wants to send the same data to some other special computers
(called clients). This is the case of Internet/intranet radio, TV, or other streaming broadcast
systems. In the traditional method, called unicast, the server is required to send the data

once per client. This is illustrated in Figure 1.11.

Since the same data is sent as many time as the number of clients, this method of unicast
may result in large, unaffordable network traffics in total. In order to do it more efficiently,
multicast is proposed recently. By multicasting, the server only needs to send the data once.
It is the responsibility of hubs in the multicasting route to send (if needed, copy and send)
the data to the next hub until it reaches the clients. This is also illustrated in Figure 1.11. It
is clear that multicast is more efficient in reducing the network traffic. In fact, it is considered

as one of the core technologies in networks of the next generation, see [KK 98].

1.3 Survivable network design problem (SNDP) 17

client 2

client 2

® data
server : server

|

|

|

|

|

|

|

|

l

® é |

|

o> |
:

|

client 1 ! client 1

|

|

|

|

|

|

[Unicast: server sends the }

Multicast: server sends the
same data once per client

same data only once.

Figure 1.11: Unicast and multicast in communication network.

From the viewpoint of efficiency, it is of our interest to find an optimal multicasting route.
Obviously, this is a problem of finding a minimum subnetwork to connect given nodes in a

network. We formulate it as the next multicasting problem.

Problem 1.7 (Multicasting problem). Given a graph G = (V, E) with a server s € V
and a set T CV of clients, where other vertices and edges have nonnegative weights, find a

minimum weight subgraph of G that contains at least one s,t-path for each client t € T.

In practice, the weight may represent transmission or switching time, or simply one if we are

interested in minimizing the number of intermediate hub/links.

Now let us show that it can be formulated as SNDP. Similarly as before (see Subsec-
tion 1.2.2), by treating edges as nonterminals and inserting terminals between two adjacent
nonterminals, we can have a bipartite graph model in which the server and clients are ter-
minals and only nonterminals have weights. An optimal multicasting is thus obtained by
solving the SNDP problem with 75 = 1 for each ¢ € T' (0 otherwise). Obviously, a minimal

solution must be a tree, which is often called the multicast tree or distribution tree.

The multicasting problem also has applications in designing reliable networks. Suppose
that we have some computers that need to be connected. Assume that we know in advance
the places suitable for installing hub/links and the cost for each installation. The problem
is: from given candidate places for installation, find a minimum cost plan that connects the
computers. Giving each nonterminal/edge (i.e., candidate) with the installation cost, we see
that this problem can be formulated as SNDP with ry; = 1 for distinct computers s and t.

This is equivalent to the multicasting problem.

18 CHAPTER 1 INTRODUCTION

Using hypergraph model, multicasting problem can be described as to find a minimum
weight set of hyperedges that connects given vertices. Thus it captures a hypergraph gener-
alization of STP (Steiner tree problem). We note that, while a minimal solution of STP is a
tree, it is not true for this generalization (in hypergraph). In fact, even to determine the ex-
istence of a spanning tree (i.e., a spanning subgraph in which there is a unique path between
each pair of vertices) in a general hypergraph is known to be NP-complete ([TZ 94, War 98]).

See Figure 1.12 for an illustration.

Figure 1.12: Minimum connected spanning subgraph in hypergraph may not be a tree.

There are two paths (b, {a,b,c},c and b, {d, b, c}, c) between vertices b and c.

In this thesis, we consider the general SNDP problem. Note that, any two vertices s and

t are still connected after the removal of at most rs; — 1 hyperedges in a feasible solution.

1.4 Preliminary of set functions in hypergraphs

Let us see several submodular or supermodular functions defined in hypergraphs, which are

heavily used in this thesis.

Proposition 1.4. Let H = (V, E) be a hypergraph with a vertex set V, a hyperedge set E
and a nonnegative hyperedge weight function w : E — R*. Let two functions wey : 2V — R
and wip : 2V — R* be defined by

we(S) 2) wle) = Y wle), (1.7)

e€d(S) O#enS#e

Zw(e) (1.8)

eCS

(1>

win(S)

for all sets S C V. Then function wex is symmetric and submodular, whereas functions
Wex + Win and wiy, are submodular and supermodular, respectively. In particular, function
18] : 2V — R* defined by |6|(S) = |6(S)| for all sets S C V is symmetric and submodular.

Proof. The submodularity of wex is well known, see, e.g., [KW 96]. We give a proof for

1.4 Preliminary of set functions in hypergraphs 19

completeness. Let X and Y be two subsets of V. We have

Wex (X) + Wex (V) — wex (X NY) — wex (X UY)

= Ywle) + Dowe) - D wle) = Y wle)

D£eNX#e D#£eNY #£e D£en(XNY)#e P£en(XUY)#e
= S {w(e) len(X-¥)#0#£en (Y-X), en(XnY) =0}
+Z{) en(X-Y)#0£en(Y-X), e (XUY)} > 0.
Thus function wey is submodular. Clearly it is also symmetric. Let us next show that

functions wex + win and wiy, are submodular and supermodular, respectively. Notice that, by

definition,
(Wex+win)(S) = D wle) = win(V) —win(V-5) VSCV.
eNS#)

Thus, by Proposition 1.1, it is sufficient to show that function w;i, is supermodular. This can

be seen by

win(X) + win(Y) — win(X N Y) — win(X U Y)

= Zw(e) —I—Zw(e) - Z w(e) — Z w(e)

eCX eCY eC(XnNY) eC(XUY)
- —Z{)| en(X—Y)£0#£en(Y-X), e (XUY)} < 0.
Therefore functions wex + win, and wi, are submodular and supermodular, respectively.
Taking the case of weight function w' = 1, we see that |§| = wl, is symmetric and submodular.

O

Finally, we note that function wey is called the cut function.

20

CHAPTER 1

INTRODUCTION

Chapter 2

Greedy Splitting Algorithm for
MPP

2.1 Introduction

We first give a survey on MPP. Due to the difference in complexities, we review two kinds
of problems individually. One is to find a minimum weight k-partition, called MPP with no
target (MPP-NT). The other is MPP with target, which is simply (the general) MPP.

2.1.1 Survey on MPP-NT (MPP with no target)

Let V be a finite set. If function f : 2V — R is submodular, we call the pair (V, f) submod-
ular system. Analogous notations are used for nonnegative submodular systems, symmetric
submodular system, etc. Recall that MPP-NT has the next formulation.

Problem 2.1 (MPP-NT). Given a system (V, f,k), where (V, f) is a submodular system
and k > 1 is an integer, find a family P = {V1,Va,...,Vi} such that

minimize f(V3) 4+ f(Va) 4+ -+ + f(Vi)

subject to ViUV U-- UV, =V, (2.1)
VinVi=0, 1<i#i<h (2.2)
Vi £ 0, i=1,2,... k. (2.3)

Recall that a family P = {V1, Vs, ..., Vi } satisfying (2.1) — (2.3) is called k-partition (of V).
We assume that function f is given by an oracle that returns f(5) for a given set S C V.

Observation 2.1. If function f is changed to f + ¢, where ¢ € R is a constant, then the

weight of a k-partition increases (or decreases) by kc.

22 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

Notice that kc is not dependent on the k-partition. Hence an optimal solution with respect
to f is also an optimal solution with respect to f + ¢. However, this is inappropriate for
defining performance guarantee and may not be interesting in practical applications (e.g., a
bigger ¢ yields a better guarantee). Throughout this thesis, we assume that the optimum is

nonnegative. We consider the next problem classes.

Problem 2.2 (k-PPSS). The k-partition problem in submodular systems (k-PPSS) is to

find a minimum k-partition of V' for a given nonnegative submodular system (V, f).
In short, k-PPSS is MPP-NT in nonnegative submodular system.

Problem 2.3 (k-PPSSS). The k-partition problem in symmetric submodular systems (k-
PPSSS) is k-PPSS with symmetric function f.

Problem 2.4 (k-PPMSS). The k-partition problem in monotone submodular systems (k-
PPMSYS) is k-PPSS with monotone function f.

In Chapter 1, we have seen k-PPH-T2 (k-partition problem in hypergraphs of type 2),
and k-PPG (k-partition problem in graphs).

Problem 2.5 (k-PPH-T2, k-PPG). Given a hypergraph H = (V, E) with a weight func-
tion w : E — R™T, problem k-PPH-T2 is k-PPSSS with system (V,wex, k), where wey is the
cut function of H. Problem k-PPG is k-PPH-T2 restricted to graphs.

(Notice that, by Proposition 1.4, a cut function is nonnegative, symmetric and submodular.)
Obviously, we have the next inclusion relationship among the above problem classes.

k-PPG C k-PPH-T2 C k-PPSSS C k-PPSS. (2.4)
Later we will see that, in a sense slightly different from the above,

k-PPG C k-PPMSS C k-PPSS.

Our study starts from k-PPG. As noted in Chapter 1, it is NP-hard even for unit edge
weights ([GH 88]). On the other hand, it is polynomial time solvable for any fixed k. More
precisely, the running time is O(n**/2-3%/2+4 F(m,_n)) for a graph with m edges and n vertices
([GH 88]), where F'(m,n) stands for the running time of a maxflow algorithm (for network
flow theory, see e.g., [AMO 93]). It is known that F(m,n) = O(mnlog(n?/m)) ([GT 88]).

Afterwards, Karger and Stein [KS 96] developed a randomized algorithm that can find an
optimal solution of k&-PPG with high probability in O(n?*~1log3n) time. Kamidoi, Wak-
abayasi and Yoshida [KWY 97] proposed another deterministic algorithm and claim (with
no full proof) that it runs in O(n?*=2) F(m,n)) time. Goldschmidt and Hochbaum [GH 90]

found a linear time algorithm which “almost certainly” solve k-PPG in a kind of “random

2.1 Introduction 23

graphs”. Dalhaus et al. [DJPSY 83] showed an O(n®®) time algorithm for k&-PPG in planar
graphs, where a graph is planar if it can be drawn in the plane such that no pair of edges

intersect. This result is later improved by Hartvigsen [Har 93] to O(n2¢~1).

For small k, there are more efficient algorithms. Problem 2-PPG, more commonly known
as the minimum cut problem, is shown to be solvable in O(mn + n?logn) time due to Nag-
amochi and Ibaraki [NI 92|, later simplified by Stoer and Wagner [SW 94]. An algorithm due
to Hao and Orlin [HO 94] also solves 2-PPG in O(mn log(n?/m)) time. Random algorithms
in [KS 96] and [Kar 96] can find a minimum cut with high probability in O(n?log®n) and
O(mlog®n) time, respectively. There are reports [CGKLS 97, JRT 00] on practical perfor-
mance of these algorithms. It is also known that an algorithm due to Gabow [Gab 95] can
solve 2-PPG in graphs with unit edge weights in O(m + A?nlog(n/))) time, where) is the
size of a minimum cut (called edge connectivity; observe that A < 2m/n holds).

For k € {3}, {3,4}, Kapoor [Kap 96] and Kamidoi, Wakabayashi and Yoshida [KWY 02]
showed that k-PPG can be solved in O(n*F(m,n)) time. An improved O(mn?) time algo-
rithm for 3-PPG is found by Burlet and Goldschmidt [BG 97]. For k € {3,4}, Nagamochi
and Tbaraki [NT 00] proposed improved O(n*~1F(m,n)) time algorithms. Later the results
are extended to k € {5,6} by Nagamochi, Katayama and Ibaraki [NKI 00]. Using their idea,
Levine [Lev 00] found an O(mn*~2log®n) time random algorithm (of Monte Carlo type) for
k € {3,4,5,6}. For planar graphs, Hochbaum and Shmoys [HS 85] showed that 3-PPG with
unit edge weights can be solved in O(n?) time. Later it is improved to O(nlogn) by He
[He 91]. For k € {3}, {3,4} and {5,6}, k-PPG in planar graphs with arbitrary edge weights
can be solved in O(n*) time ([Har 93], [NI 00] and [NKI 00]).

From the NP-hardness of k-PPG, it is clear that k-PPH-T2, k-PPSSS and k-PPSS are
also NP-hard. Queyranne [Que 99] claimed (where no full proof is available) that, for any
fixed k, k-PPSSS is solvable in O(|V|¥*6) time, where 6 is the time bound of the value
oracle for f. Notice that, for k.-PPH-T2 in which f is the cut function, we can estimate
F(S) = 2psensze w(e) in @ = O(D) time for all sets S C V' in a straightforward manner,
where D is the sum of the degrees of hyperedges,

On the other hand, no similar result is known for k-PPSS except for £ = 2. Problem
2-PPSS is shown to be solvable in O(|V|2) time due to Queyranne [Que 95]; see also [NT 98].
Of course, this also holds for 2-PPSSS. In particular, 2-PPH-T2 can be solved in O(n3D)
time. The last result is later improved by Klimmek and Wagner [KW 96] to O(n?logn+nD)
(notice that we can assume n < D without loss of generality). Another algorithm for 3-PPSSS
is obtained in [NT 00].

In Chapter 1, we have introduced other two problems in hypergraphs: k-PPH-T1 and
k-PPH-T3. Let H = (V, E) be a hypergraph, and P = {V31,V3,..., Vi } be a k-partition of V.
The objective function in k-PPH-T1 (resp., k-PPH-T3) counts the weight of a hyperedge e

24 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

once (resp., pe — 1 times) if p, = |{i | eNV; # 0}| > 2. We have shown in Proposition 1.3 that,
k-PPH-T1 and k-PPH-T3 can be formulated as MPP with systems (V,V, @ — Win, k) and

(V, V, Wex +win — %, k), respectively. (Functions wex and wjy, are defined in Proposition 1.4.)

Problem 2.6 (k-PPH-T1, k-PPH-T3). Given a hypergraph H = (V,E) with a weight
function w : E — RT, problems k-PPH-T1 and k-PPH-T3 are MPP-NT with systems
(v, wTE) — Win, k) and (V, Wex + win — %,), respectively.

Currently, there is no result of showing polynomial time algorithm or the NP-hardness for
these two problems even for fixed & > 3. As noted in Chapter 1, in graphs, they reduce to
k-PPG. Also we have 2-PPH-T1 = 2-PPH-T3 = 2-PPH-T2.

No literature is available for k-PPMSS so far. We are not aware much of its practical
applications. Considering the complexity of k-PPMSS, recall that we claimed that k-PPG is
a special case of k-PPMSS. Let us see this in the following.

Given a hypergraph H = (V, E) with a nonnegative hyperedge weight function w, k-PPH-
T3 employs function wex + win — @, which is monotone and submodular, but may not be
nonnegative. Nevertheless, since it is equivalent to employing function wey + wi,, we see that

k-PPH-T3 is a special case of k-PPMSS. Hence we obtain the next inclusion.
k-PPG C k-PPH-T3 C k-PPMSS C k-PPSS. (2.5)

This shows that k-PPMSS is also NP-hard. We note that, for applications, the rank function
of a polymatroid is nonnegative, monotone and submodular. Furthermore, a nonnegative,
monotone and submodular function f (with f(@)) = 0) is the rank function of certain polyma-
troid. Thus k-PPMSS can be viewed as multiway partition problem in polymatroids, which
suggests potential applications since polymatroid is a large class of systems. We will not go

further details on polymatroid and its rank function, see e.g., [KV 00].
We now summarize the complexities of MPP-NTs in Table 2.1.

From Table 2.1, we see that, even if a problem (e.g. k-PPG) is solvable for fixed k, the
time complexity grows exponentially with respect to k. Thus it is of great interest to design
efficient approximation algorithms whose running time are also polynomials with respect to
k. The history of studies on approximation algorithms for these problems is rather short,

actually, only one decade.

Saran and Vazirani [SV 91] proposed the first approximation algorithm for k-PPG. Ac-
tually they provided two. The first is based on the so-called cut-tree (or Gomory-Hu tree)
structure of graphs (see [GH 61]) and runs in O(nF(m,n)) time. The second is a greedy
algorithm that splits the graph in £ — 1 phases, where in each phase it increases the size of
partition by one. By a sophisticated proof using cut-tree structure, they showed that both

algorithms achieve the same performance guarantee of 2 — % Since at that time, people did

2.1 Introduction 25

Table 2.1: Complexities of MPP-NTs

Problem Arbitrary k Time complexity for fixed k

k-PPG | NP-hard [GH 88] | O(n*")* [GH 88] (better in special cases)
k-PPSSS . O(V|¥*9)t [Que 99)F

k-PPSS l for k =2, O(|V|30) [Que 95]
k-PPH-T1 NP-hard for k = 2, same as 2-PPH-T2
k-PPH-T2 NP-hard for k = 2, O(n?logn +nD)S [KW 96]
k-PPH-T3 NP-hard for kK = 2, same as 2-PPH-T2
k-PPMSS 4 for k = 2, see k-PPSS

*n: number of vertices.

19: time bound of the value oracle for function f.
¥No full proof available.

$D: sum of degrees of hyperedges.

not know how to compute a minimum cut efficiently, they were unable to give an efficient

implementation for the greedy algorithm.

Later Kapoor [Kap 96] pointed out that the greedy algorithm in [SV 91] can be imple-
mented by O(k) minimum cut computations in O(mn + n?logn) time per phase. Therefore
it yields a total running time of O(kn(m + nlogn)). He further claimed that, for any fixed
j > 2, k-PPG can be approximated within factor 2 —]%1 + Jk%l + O(lg—s) in polynomial time.
However, the correctness proof is not complete, since it contains a lemma which is not valid

in general (we will discuss it in detail in Chapter 3).

Recently, Naor and Rabani [NR 01] proposed a 2-approximation algorithm that is based
on an LP (linear programming; see e.g., [Sch 98]) relaxation. While their algorithm does not
give an improved guarantee nor a faster running time, it is of interest in the sense that all the
other algorithms for k-PPG are combinatorial. We now know that approximation results for
many problems can be improved if good LP relaxations were found. We will see an example
k-MCP in the next subsection.

For k-PPH-T1 and k-PPH-T3, Narayanan, Roy and Patkar [NRP 96] considered approx-
imation algorithms via the so-called principal partition structure of graph (see [Nar 91]).
Using a complicated proof (without running time analysis), they showed the performance
guarantees of dmax (1 — %) and 2 — % for k-PPH-T1 and k-PPH-T3 respectively, where dmax

is the maximum degree of hyperedges and n is the number of vertices.

Several years later, Queyranne [Que 99] pointed out that, the greedy algorithm in [Kap 96,
SV 91] can be extended for approximating k-PPSSS. He claimed that a performance guarantee

of 2 — % can be obtained. We note that Queyranne’s proof also uses a lower bound derived

26 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

from the cut-tree structure (for symmetric submodular systems; see [Que 93, GR 95]), which
is rather complicated and does not work for general submodular systems (see [Ben 95]). As
will be seen later, our approach does not need the cut-tree structure and works for any
submodular system. In a much simpler way, we will show the same or improved results
compared with those obtained so far by [Kap 96, NRP 96, SV 91, Que 99].

We summarize the previous best-known approximation results in the next table. (None
was known for k-PPMSS and k-PPSS.) New results obtained in this thesis will be summarized
later in Table 6.1 in Chapter 6.

Table 2.2: Previous best-known approximation results for MPP-NT

Problem Reference Guarantee Running time Proved by

k-PPG [Kap 96, SV 91] 2-2/k O(kn(m + nlogn))* cut-tree
k-PPH-T1 [NRP 96] dmax(1 — 1/n)t N/A principal partition
k-PPH-T2 [Que 99] 2 —2/k O(kn®D)t see k-PPSSS
k-PPH-T3 [NRP 96] 2-2/n N/A principal partition
k-PPSSS [Que 99] 2-2/k O(k|V|36)} cut-tree

*m (resp. m): number of edges (resp. vertices).
tdmax: maximum degree of hyperedges.

¥D: sum of degrees of hyperedges.

§9: time bound of the value oracle for function f.

2.1.2 Survey on general MPP

Recall that the general MPP is formulated as the next problem.

Problem 2.7 (MPP). Given a system (V,T, f, k), where V is a finite set, T C V called
target set, f : 2V — R is a submodular function and k is an integer, MPP is defined by

minimize f)+ f(Vo) +---+ f(Vk)

subject to ViUV U---UVp =1V, (2.6)
VinVy=0, 1<i#j<Ek, (2.7)
VinT £0, i=12,...k (2.8)

Recall that a feasible solution of MPP, i.e. a k-partition of V satisfying (2.8), is called k-
target-split (with respect to T'). We assume that |T'| > k holds and the function f is given
by an oracle. We further assume that the optimum is nonnegative. Similarly as before, we

consider the next problem classes.

2.1 Introduction 27

Problem 2.8 (k-TPSS). Given a nonnegative submodular system (V, f) with a target set
T CV, the k-target-split problem in submodular systems (k-TPSS) asks to find a minimum
k-target-split of V.

Problem 2.9 (k-TPSSS). The k-target-split problem in symmetric submodular systems (k-
TPSSS) is k-TPSS with symmetric function f.

Problem 2.10 (k-TPMSS). The k-target-split problem in monotone submodular systems
(k-TPMSS) is k-TPSS with monotone function f.

Problem 2.11 (k-TPH-T2, k-TPG). Given a hypergraph H = (V, E) with a target set
T C V and a weight function w : E — R™T, problem k-TPH-T2 is k-TPSSS with system
(V, T, wex, k), where wex is the cut function of H. Problem k-TPG is k-TPH-T2 restricted to
graphs.

Problem 2.12 (k-TPH-T1, k-TPH-T3). Given a hypergraph H = (V, E) with a target
set T CV and a weight function w : E — R™*, problems k-PPH-T1 and k-PPH-T3 are MPP

with systems (V,T, % — Win, k) and (V, T, wex + win — %, k), respectively.

We have the next inclusion among the above problem classes.

k-TPG C k-TPH-T2 C k-TPSSS C k-TPSS (2.9)
k-TPG C k-TPH-T3 C k-TPMSS C k-TPSS. (2.10)

Recall that k-TPG with |T'| = k is called k-MCP (multiterminal cut problem). Clearly, k-
PPG can be solved by at most (m
combinations of targets. This suggests that k-MCP may be more difficult than k-PPG, in

the sense of existence of polynomial time algorithms. In fact, Dalhaus et al. [DJPSY 83]

) = O(n*) k-MCP computations, by considering all possible

showed that, unless P=NP, there is no approximation algorithm for 3-MCP with performance
guarantee better than 1+ € for some constant € > 0. They also showed that, k-MCP in planar
graphs is solvable in O(n?®)) time, which implies that k&-PPG (and k-TPG) in planar graphs

is solvable in O(n®®)) time. They gave a combinatorial approximation algorithm for k-MCP
2

with a performance guarantee of 2 — -

In the next fifteen years since [DJPSY 83], there was no better result for k&-MCP until

a revolutionary algorithm was proposed by Calinescu, Karloff and Rabani [CKR 98]. They

proposed a novel geometric relaxation, and use it to obtain a (% — %)-approximation algorithm.

Later Cunningham and Tang [CT 99] showed that, for ¥ = 3, the approximation guarantee %—
1_7 12
376 11
used. The same result is independently obtained by Karger, Klein, Stein, Thorup and Young
[KKSTY 99]. Karger et al. further showed that, for & = 4, 5, > 6, the performance guarantee

can be improved to 1.1539, 1.2161 and 1.3438, respectively. These are the best known results

can be improved to which is the best possible as long as the geometric relaxation is

28 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

for k-MCP. For studies related to k-MCP, see [BTV 99, CO 96, CO 99, CR 91, EFS 99,
ES 94, FK 00, GVY 94, Har 98, NZ 97, Yeh 01]. We note that, the geometric relaxation in
[CKR 98] exploits the fact that there are exactly k targets, which is not valid for the general
k-TPG problem.

Problem 2-MCP is well-known as the minimum s,t-cut problem for T = {s,t}. It
is well-known that this problem can be solved by a single maximum flow computation
([FF 56]), as the famous mazflow-mincut theorem. Numerous applications have been found for
maxflow/mincut problem (see [AMO 93]). It has been extensively studied and various algo-
rithms have been developed so far (see also [AMO 93]). It can be solved in O(mn log(n?/m))
time in a general graph ([GT 88]), in O(min{m%,n%}n) time in a graph with unit edge
weights ([ET 75]), and in O(nlogn) time in a planar graph ([AMO 93]), where n and m are

the numbers of vertices and edges respectively.

Little is known for problems in hypergraph. Garg, Vazirani and Yannakakis [GVY 94]
considered a node weighted version of k-MCP, where, instead of edges, vertices have nonneg-
ative weights. It is easy to see that this problem is equivalent to k-TPH-T1 with |T'| = k.
Garg et al. [GVY 94] gave a (2 — £)-approximation algorithm. Their algorithm is also based
on LP relaxation and exploits the fact that there are exactly |T'| = k targets, hence does not

apply to the general k-TPH-T1 problem. No more literature is known.

The literature is even poorer for problems in general submodular systems. The only
known result is that 2-TPSS (hence 2-TPSSS and 2-TPMSS), can be solved by polynomial

time calls to the value oracle for function f (see Lemma 2.3).

While all the previous literatures treat k-MCP (in graph or hypergraph), Maeda, Nag-
amochi and Ibaraki [MNI 93] considered the first target split problem k-TPG, in which they
showed that it can be approximated within a factor of 2 — % As far as we know, there is no

more result available for other target split versions of problems.

2.2 Greedy splitting algorithm (GSA) for MPP-NT

In this section, we present a framework for approximating MPP-NT. The idea is to greedily

increase the size of partition and use submodularity to derive performance guarantee.

2.2.1 Greedy splitting approach

We first give a general description of the greedy splitting approach. The idea is natural: if
it is hard to get an optimal solution, let us greedily construct a near-optimal one in several
phases. We start with P, = {V'}. In the i"® phase, a p;,i-partition P;, is constructed by

splitting some member(s) of the previously obtained p;-partition P;, where of course p; 11 > p;

2.2 Greedy splitting algorithm (GSA) for MPP-NT 29

holds. This is illustrated in Figure 2.1. The splitting process stops as soon as a k-partition

is obtained.

Figure 2.1: Splitting a p;-partition to obtain a p;;i-partition.

Greedy algorithm tries to minimize the weight increase.

Since it is desired to get a solution with weight as small as possible, we want to find such a
way of splitting that minimizes the weight increase, or splitting weight that is f(P;11) — f (P;)
in each phase i. Actually we do not know how to do this efficiently for arbitrary numbers of
pi+1 and p;. Nevertheless, we can do it in some cases, e.g., when p; 11 —p; = 1 holds. This is
the subject of the next subsection.

2.2.2 Algorithm description and main lemma

We first observe that 2-PPSS and a variant of it can be solved efficiently.

Theorem 2.1 (Queyranne [Que 95]). Given a symmetric submodular system (V,g),
where |V| > 2 holds, a nonempty proper subset S* of V' such that g(S*) is minimum can be
found in O(|V'30,) time, where 0, is the time bound of the oracle for g. O

Theorem 2.2. Given a submodular system (V. f) and a set W C V satisfying [W| > 2, a
nonempty proper subset S* of W such that f(S*) + f(W — S*) is minimum can be found in
O(|W |20) time, where 0 is the time bound of the oracle for f.

Proof. Consider a system (W, g), where function g: 2" — R is defined by g(S) = f(S) +
f(W — S) for all sets S C W. Notice that function ¢ is symmetric and submodular, and we
can estimate g(S) in at most 20 time for any set S C W (by two calls to the oracle for f).
Obviously, f(S*) + f(W — S*) is minimum if and only if ¢(S*) is minimum. Theorem 2.1
then shows that such a set S* can be found in O(|W[30) time. O

We now present the greedy splitting algorithm (GSA) in Figure 2.2. (Note that “argmin”

means the value of argument that minimizes the objective.)

GSA contains k — 1 phases. It starts with P; = {V'}. In the i** phase, we compute a
pair (S;, W;) that minimizes the splitting weight f(S) + f(W — S) — f(W) over all S and W

30 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

Input: A submodular system (V, f) and an integer & > 1.
Output: A k-partition Py of V.

P1<—{V}

fori=1,...,k—1do
(Si, W;) « argmin {f(S) + f(W-=S)—f(W) |0 #£S CW, W € P;}
Piy1 (Pi — {Wi}) U{Si, Wi — Si}

end /* for */

G W W DN =

Figure 2.2: Greedy splitting algorithm (GSA) for MPP-NT

satisfying) # S C W and W € P;. We then get P;1; from P; by replacing W; with S; and
W; — S;. It is obvious that for all £ =1,2,... |k, the weight of £-partition Py is

o~

-1

FP) = 1)+ 3 (£(S) + F(Wi = 85) — F(Wi). (2.11)

1

<.
Il

Clearly the output Py is a k-partition of V. Let us consider the running time of GSA. For
any (fixed) W C V, Theorem 2.2 shows that, we can find a nonempty set S* C W such that
f(S8*)+ f(W — §*) (hence f(S*)+ f(W —S*) — f(W)) is minimum in O(|W[*@) time. Thus
we can execute Line 3 in Yy cp O(WP0) = O(Xyyep, [W[0) = O(|V]?0) time in the it
phase (notice |V| =}y cp. [W]). This implies that the running time of GSA is O(Kk|V|20).

We note that GSA can be made faster. Suppose that, before the i** phase we have
computed an Sy for each W € P; that minimizes f(S) + f(W — S) — f(W). Then in the
i'" phase, Line 3 can be done in O(k) time by choosing the pair (S;, W;) that minimizes
f(Sw)+ f(W — Sw) — f(W). Before leaving the i** phase, in which W; is replaced by S; and
W;—S;, we compute an Sy that minimizes f(S)+f(W—S)—f(W) for each W € {S;, W;—S;}.

This observation does not improve the time bound but it avoids duplicate computations.

We summarize the arguments so far as the next theorem.

Theorem 2.3. Given a submodular system (V, f) and an integer k > 1, algorithm GSA finds
an L-partition Py of V for £ = 1,2,....k in a total time of O(k|V|30), where 0 is the time
bound of the oracle for f.]

Note that we can use an efficient 2-partition algorithm directly instead of calling the
oracle. In particular for k&-PPG, Line 3 can be done in O(mn + n?logn) time if implemented
by the minimum cut algorithm of [NI 92] or [SW 94|, where m and n are the numbers of
edges and vertices respectively. This was first pointed out by Kapoor [Kap 96].

2.2 Greedy splitting algorithm (GSA) for MPP-NT 31

We now consider to derive the performance guarantee of GSA. For this, we first prove a

technical lemma.

Lemma 2.1 (Main lemma). Let Py be the £-partition of V found by GSA in the (£ — 1)t
phase, 1 < £ < k. For any {-partition P = {V1,Va,...,Vy} of V, it holds that

-1
FP) < D (fVi) + [V =Wa) = (£ = 2)f(V). (2.12)
=1
Before going to the proof, notice that the right-hand side of (2.12) varies with the choice of
the last member in P (i.e., numbered ¢) for a fixed ¢-partition P.

Proof. We proceed by induction on £.

It is trivial for £ = 1. Suppose that it holds for £ — 1. Consider an {-partition P =
{Vi,Va,...,V;}. Since Py, is an (£ — 1)-partition, there must exist W € P,_; and V}, V), € P
with j < h satisfying W NV, # 0 # W NV}, (imaging to put £ balls v; € V; into £ — 1 boxes
W' € Py_1). We here define an (¢ — 1)-partition P’ = {Vi,...,Vj_1,Vj41,...,Vie1,V; UV},
in which V; is merged with V; and comes to the last. Applying the induction hypothesis on
Py¢_1 and P, we have

f(Pra) < Yo (V) + [V -W) = (£=3)f(V). (2.13)

1<i<t—1,i#]
Thus to show (2.12), it suffices to show
F(Po) = f(Pe—1) < f(V5) +F(V =V;) = f(V). (2.14)

Notice that § # W NV; C W holds. Thus pair (W NV}, W) is a splitting candidate for Line
3 of GSA in the (¢ — 1)*» phase. Hence, by the optimality of (S;_1, Wy_1), we have

f(Pe) = f(Pe=1) = f(Se=1) + fF(Wie—1 = Se—1) — f(Wi—1)
< fWav) 4+ f(W=V;) - f(W)
< FV)+fW =V;) = f(WUV)
< fV)+FV=Vy) = F(V),
where the last two inequalities are from submodularity. U

Remark: Lemma 2.1 holds for any submodular system, not necessarily symmetric or nonneg-

ative. In fact, it is valid for system (V, f) that satisfies the next inequality
FXNY)+f(X=Y)+f(V) < fY)+f(V-Y)+ f(X) (2.15)
forall X, Y CV with) #XNY C X. O

Lemma 2.1 does not immediately provide the performance guarantee. Let us find the

performance guarantees of GSA for various MPP-NTs in the next two subsections.

32 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

2.2.3 Performance analysis: part I

Theorem 2.4. Given a submodular system (V, f) and an integer k > 2, where f(V) > 0
holds, GSA finds a k-partition of V' with weight at most (1 + «)(1 — %)opt, where opt is the
optimal value, and o is an arbitrary constant that satisfies Zle f(V-v;) < aZfZl f(Vi)
for all k-partitions P = {V1,...,Vx} of V.

Proof. Let P* = {V{*, V..., V;*} be a minimum k-partition of V satisfying

PR+ 1V Vi) = max{7(V)+F(V - V)

It then holds that f(V;") + f(V—V) > + 38 (f(Vi*) + f(V—V;)). Therefore we have

k—1 k
* '3 1
DUVHHIV -V < 0= D (V) +IV-V)
=1 1=1
1. < 1
< (a1 DY FF) = (L+a)(1- Dopt
i=1

On the other hand, by Lemma 2.1 and f(V) > 0, GSA finds a k-partition with weight at
most Zi-:ll (f(Vi*) + f(V = V;*)). Hence the proof is completed. O

(Note that, in considering performance guarantee, we may have to further assume opt > 0.)

It is clear that, for symmetric functions (i.e., f(V —X) = f(X) holds for all X C V), we

can let @« = 1 and thus obtain the following corollaries.

Corollary 2.1 (Queyranne [Que 99]). Problem k-PPSSS in a nonnegative symmetric
submodular system (V, f) can be approzimated by GSA within a factor of 2 —% in O(k|V[30)

time, where 0 is the time bound of the oracle for f. [

Corollary 2.2 (Saran, Vazirani [SV 91] and Kapoor [Kap 96]). Problem k-PPG can
be approzimated by GSA within a factor of 2 — % in O(kn(m + nlogn)) time, where n and

m are the numbers of vertices and edges respectively. U

Corollary 2.3. Problem k-PPG in a planar graph with n vertices can be approximated within
a factor of 2 — % in O(kn?) time.

Proof. Employ an O(n?) time minimum cut algorithm for planar graph (see [NI 00]). O

In Chapter 1, we have noted the strength of a graph. Given a graph G with a nonnegative
edge weight function w, the strength of G is defined by

. (the optimum of k-PPG in G
(Gw) = | = J

By applying GSA to k-PPG in G for k£ = n, we obtain the next result.

2.2 Greedy splitting algorithm (GSA) for MPP-NT 33

Corollary 2.4. Given a graph G with nonnegative weights on edges, a value o satisfying

g
2 —

< O'(G,’U)) <o

S

can be determined in O(n?(m + nlogn)) time, where o(G,w), n and m are the strength of

G, number of vertices and number of edges, respectively. O

We note that o(G,w) can be find in O(mn?(m + nlogn)) time, see [Cun 85]. Our (2 — 2)-

approximation algorithm is faster by a factor of m.

For k-PPSS we cannot use & = 1. Nevertheless, we show that « = k — 1 is enough.

Lemma 2.2. For any k-partition {Vi,...,Vi} of a submodular system (V, f), it holds that

k k

Y FV=V) < (k=1 f(Vi) —k(k —2)£(0).
i=1 i=1
Proof. For any sets X, Y C V satisfying X NY =0, f(XUY) < f(X)+ f(Y) — f(0)

holds by submodularity. An easy induction then shows that f(V —V;) = f (UJ i V;) <

>z f(Vj) = (k=2)f(0) for alli = 1,..., k. Hence the lemma. O

Theorem 2.5. Problem MPP-NT in a submodular system (V, f) satisfying f(V) > 0 and
f(0) > 0 can be approzimated within a factor of k — 1 in O(k|V|20) time, where 0 is the time
bound of the oracle for f.

Proof. We first show that any k-partition P = {Vi, V5, ..., Vi} has weight f(P) > 0 (for the

definition of performance guarantee). This can be seen by

k k

fP) = DY fV) > fiuVa) + f(0) +) f(V)

=1 1=3
k
> FAUVUV) 200+ (V) > o > f(V)+ (k- 1SO).

It is then easy to see the guarantee kK — 1 by Theorem 2.4 and Lemma 2.2 (or applying
Lemma 2.1 directly). O

Corollary 2.5. Problem k-PPSS for a nonnegative submodular system (V, f) can be approz-
imated by GSA within a factor of k — 1 in O(k|V|30) time, where 0 is the time bound of the
oracle for f. O

Let us next consider k-PPMSS.

Theorem 2.6. Problem MPP-NT in submodular system (V,f) satisfying f(0) > 0 and
fV) > f(S) for all ® # S C V can be approzimated by GSA within a factor of 2 — %
in O(k|V'|30) time, where 6 is the time bound of the oracle for f.

34 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

Proof. Let P* = {V*,V,...,V,*} be a minimum k-partition of V satisfying

1<i<j<k

k
f(Vie) + £(Vy) = max {f(V%*)Jrf(V}*)}Z%Zf(W)-

By Lemma 2.1, we see that GSA finds a k-partition P, with weight

B

-1

fP) <) (FVH) +FV =V)) = (E=2)f(V). (2.16)

=1

By assumption, f(V) > f(V — V;*) holds for all <. Thus we have

k—1
DIV + V-V

FPe) <
-
< QPO+ >)
i=1 1<i<k,itk—1
k k
= 2N SV -) - 105 < 2= D) D).

(For the second inequality, see the proof of Lemma 2.2.)

For showing the performance guarantee, we need to show f(P*) = Ele f(v¥) > 0.
In fact, we can show a stronger result that f(S) > 0 holds for all S C V. Notice that,
for any set S with 0 # S C V, f(S)+ f(V-S) > f(V)+ f(0) holds by submodularity.
Since f(V)) > f(V—.S) holds by assumption, we have f(V) > f(S) > f(0) > 0. Hence the
theorem. O

Corollary 2.6. Problem k-PPMSS can be approzimated by GSA within a factor of 2 — % n
O(K|V|20) time for any nonnegative monotone submodular system (V, f), where 6 is the time
bound of the oracle for f. O

Our derivation of the performance guarantees of GSA is not only simple and unified, but
it also allows us to use approximation algorithms in Line 3 of GSA. Let us see the details in

the following.

Assume that f(S)+ f(W—-S)— f(W) > 0 holds for any § # S C W C V (which is true if
(@) > 0 holds). Suppose that a p-approximation algorithm is used in Line 3 of GSA, where
p is independent on the choice of W. We observe that, by a similar induction as the proof
for Lemma 2.1, the £-partition Py, 1 < £ < k, obtained by this variant of GSA has weight

-1
f(P) < p (Z(f(VE) +IV=-V) - (¢~ 2)f(V)) :

=1

Therefore we have the next theorem.

2.2 Greedy splitting algorithm (GSA) for MPP-NT 35

Theorem 2.7. The variant of GSA that uses a p-approximation algorithm in Line 3 is a
p(l+a)(1 — %)-approximation algorithm for k-PPSS, where a is an arbitrary constant that
satisfies Ele fV-v) < 0‘2?:1 f(Vi) for all k-partitions {V1,...,Vi} of V. O

(Note that a@ < k — 1 holds in general and @ = 1 holds for symmetric submodular systems.)
As a result, we obtain the next corollary by using the linear time (2 + €)-approximation
algorithm [Mat 93] for the minimum cut problem in graphs with unit edge weights, where

e € (0,1) is an arbitrary number.

Corollary 2.7. Problem k-PPG in a graph with unit edge weights can be approzimated within
a factor of (4+¢€)(1 —) in O(k(n + m)) time, where € € (0,1) is a constant, n and m are

the numbers of vertices and edges respectively. U

Obviously, similar results can be obtained for other MPP-NTs.

2.2.4 Performance analysis: part II

In this subsection, we consider to apply GSA to k-partition problems in hypergraphs.

Let H = (V,E) be a hypergraph with a weight function w : F — R™. Recall that
three types of k-partition problems, k-PPH-T1, k-PPH-T2 and k-PPH-T3, employ objective

functions f; = % — Win, fo = Wex and f3 = wip + Wex — %, respectively.

First of all, observe that function fo = wey is nonnegative, symmetric and submodular.
Thus k-PPH-T2 is a special case of k-PPSSS. Hence GSA isa (2— %)—approximation algorithm
for k-PPH-T2. Let us consider its running time. Recall that wex can be evaluated in O(D)
time, where D is the sum of degrees of hyperedges. Thus GSA can be implemented so that
it has O(kn3D) running time in a hypergraph with n vertices. In the next theorem, we show

that a faster implementation is available.

Theorem 2.8. The k-PPH-T2 problem can be approzimated by GSA within a factor 0f2—%
in O(kn(nlogn+ D)) time, where n and D are the number of vertices and the sum of degrees

of hyperedges respectively.

Proof. The guarantee is implied by Corollary 2.1. We next show a faster implementation.
Suppose that a hypergraph H = (V, E) with a weight function w is given. We claim that,
for any W C V, a nonempty set S C W minimizing wex(S) + wex (W — S) — wex (W) can be
found in O(|W|?log |W| + |W|D) time. This implies that Line 3 of GSA can be executed
in O(ZWEPi(|W|210g |W| 4 |W|D)) = O(n?logn + nD) time in the i** phase. Hence the
claimed running time.
Now we show the claimed fact in the following. Denote the set of hyperedges between two

vertex subsets V; and V5 by

EWVi:V) £ {e€cE|enVi#0#enVy, e CVIUV}

36 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

We have

Wex () + Wex (W — S) —wex (W) = Z w(e) + Z w(e) — Z w(e)

e€d(S) ecd(W-S) ecd(W)

= 2 Z w(e) + Z w(e)

e€E(S:W-S) e€8(S)NS(W—S)N&(W)

= 2 Z w(e) + Z #

e€E(S:W-S) e€8(S)NS(W—S)N&(W)

Thus minimization of wey(S) + Wex(W — S) — wex (W) can be reduced to 2-PPH-T2 (i.e.,
minimum cut problem) in hypergraph H[W] = (W, EN2") with a modified weight function
w' : EN2" — R7T defined by

w(e) ife CW,
w'(en 2W) = (€) -
we) ife e 6(W).
(Notice that there may exist multiple hyperedges.)

Therefore, we can minimize Wex (S) + Wex (W — 8) — wex (W) in O(|W|? log |W| + |W|D)
time by applying the minimum cut algorithm [KW 96]. O

Now let us consider problems k-PPH-T1 and k-PPH-T3.

Functions f; = wT) — Wi and f3 = Win+Wex — % may not be nonnegative or symmetric.

Thus Corollary 2.1 or Theorem 2.4 cannot be applied. Nevertheless, since both Theorem 2.2
and Lemma 2.1 do not require nonnegative or symmetric function, we can still use GSA
to find a k-partition in polynomial time (by Theorem 2.2), and estimate the performance
guarantees (by Lemma 2.1). Let us see the details in the next two theorems, where we also

provide faster implementations.

Theorem 2.9. The k-PPH-T1 problem can be approrimated by GSA within a factor of
(1 — ;) min{k,d},} in O(kn(nlogn + D)) time, where d;

raxs ™ and D are the mazimum

degree of hyperedges of positive weights, the number of vertices and the sum of degrees of

hyperedges, respectively.

Proof. Suppose that a hypergraph H = (V, E) with a weight function w : E — R™ are given.
We first derive the performance guarantee of GSA. For this, let P* = {V*, V*,...,V;*} be
an optimal solution satisfying

k
1
Y ¥ > - *)
walVi) = eV} 2 13 un(V)

2.2 Greedy splitting algorithm (GSA) for MPP-NT 37

By Lemma 2.1, GSA finds a k-partition whose weight is at most

k—1
S (AW + AV =V) = (k= 2)f1(V)
=1
k—1
= 3 (2)+ (M2 v =)) - - (A —)
=1
k—1
= > (w(B) —win (V") —wn(V = V7)) = D wex(V5)
=1 i
1 k
< (- D)
< (1—%) min{k, d ax}Zfl (2.17)

The last inequality is based on the fact that the weight of a hyperedge e is counted once in the
optimum Z "1 f1(V*), whereas it is counted p, times in Zle Wex (Vi) if pe = |{i | eNV* #
0} > 2 (otherwise it is not counted at all). Notice that we only need to consider hyperedges
with positive weights, for which p, < min{k, d .} holds.

Since we can evaluate f; = @ — Wiy in O(D) time, GSA for k-PPH-T1 can be executed

in O(kn3D) time. We give a faster implementation in the following.

Similarly to the proof of Theorem 2.8, we show how to find a nonempty set S C W
minimizing f1(S) + f1(W — 8) — f1(W) in O(|W |? log |W |+ |W D) time for any fixed W C V.
For this, notice that

w(E)

fl(S) + fl(W — S) — f1(W) = win(W) - win(S) — win(W - S) + T
holds. Hence minimization of f1(S) + f1(W — S) f1(W) can be reduced to 2-PPH-T1 (i.e.,
minimum cut problem) in hypergraph Hy = (W, Ey), where Eyy = {e € E | e C W}
and hyperedges in Ey have the same weights as they have in H. Using the minimum cut
algorithm [KW 96], we can minimize it in O(|W|?log |W| + |W|D) time. O

Theorem 2.10. The k-PPH-T3 problem can be approrimated within a factor of 2 — % by
GSA in O(kn(nlogn + D)) time, where n and D are the number of vertices and the sum of
degrees of hyperedges, respectively.

Proof. Suppose that a hypergraph H = (V, E) with a weight function w : F — R™ are given.
We first derive the performance guarantee. Let P* = {V*,V5¥,..., V/*} be an optimal solution
satisfying wex (V') = maxi<i<k wex(V;*) > 7 Zf:l Wex (V")

38 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

By Lemma 2.1, GSA finds a k-partition whose weight is at most

k—1
D sV + f5(V = Vi) = (k= 2) f5(V)
=1
k—1
= 3 (%) +weV) = 52) 4 (wnlV = 1) 4wV -) - 2
=1
w(E)
— (k—-2) (win(V) + wex (V) — T)
k—1
= Zwm) + wex (Vi*) + win(V = Vi) + wex (V — Vi) — w(E))
1< 2 &
= Zwexm*) < (=) we(Vi) < 2-3) D f5(7). (2.18)
=1 i=1 i=1

The last inequality is based on the fact that the weight of a hyperedge e is counted p, — 1
times in the optimum Zle f3(V;*), whereas it is counted p, times in ZZ | Wex (V3¥), if pe =
{ilen vy # 0} > 2.

Next, let us consider a fast implementation of GSA. Again, we only need to show how to
find a nonempty S C W minimizing f3(S) + f3(W — S) — f3(W) in O(|W|? log |W| + |W|D)
time for any W C V. For this, notice that

f3(8) + f3(W = 8) — f3(W)

= (wln(S) + weX(S) - @) + (win(W - S) + weX(W - S) -

w(E))
k
— (win(W) + wex (W) — @)

= (Z w(e) + Z w(e)) — @

eCE(S:W-5) €€8(S)NS(W-S)NS(W)

holds. Therefore, the minimization of f3(S) + fa(W — S) — f3(W) reduces to minimum cut
problem in hypergraph H[W] = (W, EN2%), in which hyperedges have the same weights as
in H. Again, using the algorithm [KW 96], we can minimize it in O(|W|?log |W| + |W|D)
time. 0

2.3 Modified GSA (M-GSA) for general MPP

2.3.1 Algorithm description and main lemma

In the previous section, we have discussed algorithm GSA (greedy splitting algorithm) for
MPP-NT. We introduce in this section a slightly modified version of GSA (M-GSA) to ap-
proximate the general MPP. See Figure 2.3.

2.3 Modified GSA (M-GSA) for general MPP 39

Input: A submodular system (V, f), a target set 7 C V and an integer k, 1 < k < |T|.
Output: A target-split Py of V.

P (—{V}
fori=1,...,k—1do
(S5, Wi) argmin{f(S) + f(W—8) — f(W) |0 £S5 CW, W e P,
SNT#0#W-S)NT}
4 Pir1 < (P — {Wz}) U {Si,Wi — Sz'}
5 end /* for */

Figure 2.3: Modified greedy splitting algorithm (M-GSA) for MPP.

Only Line 3 is different from GSA, where we want to minimize f(S) + f(W—S) — f(W)
under an additional constraint SNT # @ # (W —S) NT. By this constraint, we can ensure
that the output Py is a target-split of V' with respect to T'.

Let us first consider the minimization of f(S) + f(W —S) for a fixed W C V, under the
constraints) #S CW and SNT # 0 # (W — S)NT. If W C T, the constraints reduce to
() # S C W only, which implies that the minimization can be achieved in O(|W|38) time by
Theorem 2.2. Otherwise, as shown soon in Theorem 2.11, it can be achieved by solving the

next partial s,t-partition problem.

Problem 2.13 (Partial s,t-partition problem). Given a submodular system (V, f) with
a set W CV and distinct s,t € W, find a set S such that

minimize f(S)+ f(W—=S) — f(W)
subjectto se€ SCW, teW-S.
Lemma 2.3. Given a submodular system (V,f), W C V and distinct s,t € W, a set S*

such that s € S* C W, t € W —S* and f(S*)+ f(W —S8*) — f(W) is minimum can be found
in O(|W|" log |W16) time, where 0 is the time bound of the oracle for f.

Proof. Consider a system (W — {s,t},g), where function g : oW—{st} _, R is defined by
9(5) = f(SU{s}) + f(W—-(SU{s})) SCW—{s,t}.

We only need to find a set S" C W — {s,t} such that ¢(S’) is minimum and let S* = S’ U{s}.
It is easy to verify that function g is submodular. Submodular functions can be minimized
in polynomial time ([GLS 88, IFF 00, Sch 00]). In particular, an algorithm in [IFF 00] has a
running time of O(|W|" log |W|6). Hence the lemma. O

40 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

Theorem 2.11. Given a submodular system (V,f), T CV and an integer k > 1, M-GSA
has running time of O(k|T||V|"log |V |6), where 0 is the time bound of the oracle for f.

Proof. The minimization of f(S)+ f(W —S)— f(W) for a fixed W C V under the constraints
0£SCWand SNT #0 # (W — S)NT can be achieved by applying at most |7 NW| — 1
partial s,¢-partition computations. More precisely, we choose an arbitrary s € W N'T and
compute a minimum partial s, -partition of W for each t € WNT — {s}. It is clear that the
minimum partial s,f-partition among all ¢ is a required solution. Hence Line 3 of M-GSA can
be done in > ycp O(T N WI|W|"log |W|0) = O(|T||V|"log|V'|#) time. This implies that
the running time of M-GSA is O(k|T||V|" log |V |6). O

Remark: Of course, we can get faster implementations in special cases. For instance, it is easy
to see that the partial s,t-partition problem for k-TPG reduces to minimum s, t-cut problem.
Thus in this case, M-GSA can have O(k|T|mn log(n?/m)) running time for a graph with n

vertices and m edges. U

Consider the performance of M-GSA. It is not difficult to see that analogous results as
obtained in the previous section can be obtained in a straightforward manner. Analogously

to Lemma 2.1, we obtain the next technique lemma.

Lemma 2.4. Let Py be the £-target-split of V found by M-GSA in the (£ — 1) phase, 1 <
£ < k. For any £-target-split {V1,Va,...,Vy} of V, it holds that

-1

FP) < D (FVR)+FV=V) = (-2 f(V). (2.19)

i=1

2.3.2 Performance analysis
Similarly as before, we obtain the next theorem as a result of Theorem 2.11 and Lemma 2.4.

Theorem 2.12. Given a nonnegative submodular system (V, f) with a target set T CV, k-
TPSS can be approzimated by M-GSA within a factor of (14+)(1—1) in O(k|T||V|" log|V|6)
time, where « is an arbitrary constant satisfying Zle f(v-=v;) < aZfZl f(V3) for all k-
target-split {V1,...,Vi} of V, and 6 is the time bound of the oracle for f. O

Corollary 2.8. Given a nonnegative submodular system (V, f) with a target set T CV, k-
TPSS can be approzimated by M-GSA within a factor of k — 1 in O(k|T||V|"log|V|0) time,
where @ is the time bound of the oracle for f. [

Corollary 2.9. Given a submodular system (V,f) with a target set T C V, where f is
nonnegative and symmetric, k-TPSSS can be approzimated by M-GSA within a factor of
2 — 2 in O(K|T||V|"1og |V|0) time, where 0 is the time bound of the value oracle for f. [

2.3 Modified GSA (M-GSA) for general MPP 41

Theorem 2.13. , Given a hypergraph H = (V, E) and a target set T C V, k-TPH-T2 can
be approzimated by M-GSA within a factor of 2 — 2 in O(k|T|m'n’' log(n'?/m') time, where
m' =2D + |E|, n' = |V |+ 2|E| and D is the sum of degrees of hyperedges.

Proof. The guarantee is implied by Corollary 2.9. We give a faster implementation.

Analogously to Theorem 2.8, it is not difficult to see that, the partial s,t-partition problem
reduces to 2-TPH-T2 with target set {s,} in hypergraph H[W] = (W, EN2") with a modified
weight function w’ : EN 2% — R* defined by

w(e) ifeCW,

w'(en2V) =
wle) it e € 5(W).

Problem 2-TPH-T2 with two targets can be reduced to a maxflow problem ([Law 73]). More
precisely, given a hypergraph H” with n” vertices and m” hyperedges, where the sum of
degrees of hyperedges is D", it reduces to a maxflow problem in a (directed) graph with

n"+2m" vertices and 2D" +m/ edges. The theorem is then shown by an easy calculation. [
Combining with the remark of Theorem 2.11, we have the next corollary.

Corollary 2.10 (Maeda, Nagamochi and Ibaraki [MNI 93]). Problem k-TPG can be
approzimated by M-GSA within a factor of 2 — 2 in O(k|T|mnlog(n?/m)) time, where T is

the target set, n and m are the numbers of vertices and edges, respectively. O
Similar results can be obtained in a straightforward manner.

Theorem 2.14. Problem MPP in submodular system (V, f) satisfying f(0) > 0 and f(V) >
f(S) for all ® # S C V can be approzimated by M-GSA within a factor of 2 — % in
O(k|T||V|"1og |V'|0) time, where O is the time bound of the oracle for f. O

Corollary 2.11. Given a nonnegative, monotone submodular system (V, f) with a target set
T CV, k-TPMSS can be approzimated by M-GSA within factor 2—% in O(k|T||V|" log|V'|6)

time, where 0 is the time bound of the oracle for f. [
Analogously to the proof of Theorems 2.13, 2.9 and 2.10, we have the next two theorems.

Theorem 2.15. Given a hypergraph H = (V, E) with a target set T CV, k-TPH-T1 can be
approzimated by M-GSA within a factor of (1 —) min{k,d .} in O(k|T|m'n’ log(n'?/m")
time, where m' = 2D + |E|, n' = |V| + 2|E|, d,, is the mazimum degree of hyperedges with
positive weights, and D is the sum of degrees of hyperedges. O

Theorem 2.16. Given a hypergraph H = (V, E) with a target set T C V, k-TPH-T3 can
be approzimated by M-GSA within a factor of 2 — 2 in O(k|T|m'n’ log(n'?/m') time, where
m' =2D + |E|, n' = |V |+ 2|E|, and D is the sum of degrees of hyperedges. O

42 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

Again, our proof allows us to use approximate algorithms in Line 3 of M-GSA. Assume
that f(S)+f(W—-S)—f(W) > 0holdsforall) #S Cc W, W € P, and SNT # 0 # (W-S)NT
(which is true if f(@) > 0 holds). It is easy to see the next theorem.

Theorem 2.17. The variant of M-GSA that uses a p-approximation algorithm in Line 3 of
M-GSA is a p(1 + a)(1 — —) approximation algorithm for k-PPSS, where o is an arbitrary
constant satisfying EZ L fV=V) < aZZ L (Vi) for all k-target-split {V1,...,Vi} of V. O

Again, we note that o < k — 1 holds in general, and a = 1 holds for symmetric submodular

systems. Similar results as in Section 2.2 can also be obtained for other MPPs.

2.4 Tight examples

In this section, we construct tight examples for algorithm GSA (such examples are also tight

examples for M-GSA). For this, we need an easy property.

Proposition 2.1. Let (V, f) and (W, g) be two submodular systems, where V and W are not
necessarily disjoint. Define a function h: 2V — R by h(S) = f(SNV) +g(SNW) for all

sets S CV UW. Function h is submodular. Furthermore, it is symmetric if so are f and g.

Proof. We first show the submodularity of A. For any sets X,Y C V U W, we have

MX)+hY) = (f(XNV)+gXnW)+(fYNV)+g(Y NW))
(FEXNV)+ Y nV))+ (X NW)+g(Y NnW))
> f(XnV)n(YnV)+f(XNnV)Uu(Y nV))
+9(XNW)NY NW))+g(XNW)U (Y NnW))
fXNY)NnV)+g((XNY)NW)

+ A((XUY)NV)+g((XUY)NV)

= h(XNY)+h(XUY).

Hence function h is submodular.

Now suppose that functions f and g are symmetric. For any sets X C V U W, we have

R((VUW)=X) = f(VUW)=X)NV)+g((VUW) - X)NW)
= - X)+g<W X) = [(XNV)+g(XNW)
= h(X).
Hence function h is symmetric. O

Proposition 2.2. For any € > 0, there exists a nonnegative submodular system for which

GSA always finds a k-partition whose weight is at least k — 1 — € times of the optimum.

2.4 Tight examples 43

Proof. Define two submodular systems (V, f) and (W, g) as follows.

Let V = {vg,v1,...,v5 1}, and function f be defined by f(S) 2 |S| if S C V and
f(V)=0. Let W = {vg,wn,...,wg_1} (note VAW = {vg}). Let g be the cut function of
graph (W, E) for E = {{vg, w1}, {vo, w2}, ..., {vo, wg_1}} of edges of weight % See Figure
2.4. Obviously, functions f and g are submodular. Let us consider a system (V UW, h), where
h(S) = f(SNV)+g(SNW), S CVUW. By Proposition 2.1, function h is submodular

(obviously it is also nonnegative).

O O
Ovz
O O

Vk—1 Wi—1

Figure 2.4: A tight example for GSA applied to k-PPSS.

There is a k-partition P = {{vi},{ve},...,{vk_1}, W} with weight k. On the other
hand, since any 2-partition separating some pair of members in V has weight at least k, the
minimum 2-partition is {{w; }, (VUW)—{w;}} of weight k — € for some . Therefore GSA first
finds a 2-partition {{w;},(V UW)—{w;}} for some i. It is then easy to see that the output
of GSA is the k-partition P’ = {{w1}, {wa},...,{wg—_1},V}, whose weight is (k — 1)(k — €).
Thus the performance guarantee is at least as bad as

(k=D(k—¢ _,_, (k=De

—1—e
. A > k €

O

Proposition 2.3. For any € > 0, there exists a graph for which GSA always finds a k-way

cut whose weight is at least 2 — % — € times of the optimum.

Proof. Recall that k-way cut is a subset of edges whose removal leaves the graph with at
least k components. Problem k-PPG is equivalent to find a minimum weight k-way cut.

Let us consider a graph G = (V, E), where V = {vg,v1,. .-, V1, W1, W2y ..., Wk_1}, B =
{{vi,v;} 10 <i<j <k—1}U {{vg,w;} | 0 <i < k—1}. (The subgraph of G induced by
vertices {vg,v1,...,v5—1} is a clique of size k). Each edge {v;,v;} has weight 1, whereas each
edge {vo, w;} has weight k—1—e. The graph is shown in Figure 2.5.

44 CHAPTER 2 GREEDY SPLITTING ALGORITHM FOR MPP

U1 wy

Vo

Vk—1 Wk—1

w{vi,v}) =1 w({vg, w;}) =k—1—e¢

Figure 2.5: A tight example for GSA applied to k-PPG.

It is easy to see that the optimal k-way cut is the set of edges of weight 1, whereas GSA
finds a solution consisting of the edges with weight £ — 1 — e. Therefore the performance
guarantee of GSA is at least as bad as

(k—1)(k—1—¢) 2 2 2
Rk TR R ZiPTROC

We note that the guarantee 2 — % is tight even for graphs with unit edge weights. This
can be seen by modifying Figure 2.5 such that each vertex w; and edge {vg,w;} are replaced

by a large clique that is connected to vy by exactly & — 1 edges. U

Observe that the example in Proposition 2.3 also serves as a tight example for GSA
applied to some other MPPs as k-PPH-T1, k-PPH-T2, k-PPH-T3 and k-PPSSS.

Chapter 3

Greedy Splitting of Higher
Accuracy for MPP

3.1 Introduction

In the previous chapter, we have presented an algorithm GSA (greedy splitting algorithm)
for MPP, which greedily increases the size of partition by one in each phase. As a natural
extension, one may consider to increase the size of partition more than one in each phase. In
this chapter, we consider to increase the size of partition by two or more.

Unlike the case of GSA, increasing the size of partition by two at the smallest weight
increase may be difficult to implement. In fact, we do not know how to implement it in poly-
nomial time for an arbitrary submodular system. Nevertheless, we can show some interesting
properties on the quality of the obtained solutions. At the end of this chapter, we also give

a remark on the extension of greedily increasing the size of partition by three or more.

We first consider MPP-NT (MPP with no target), which is easier than the general MPP

problem.

3.2 Greedy splitting algorithm 2 (GSA2)

3.2.1 Algorithm description and main lemma for odd &

Let k be a positive odd integer. We consider an approximation algorithm, called greedy
splitting algorithm 2 (GSA2), which is described in Figure 3.1.

GSA2 contains % phases. It starts with P; = {V}. In the i’* phase, it constructs
an (2 + 1)-partition P;;1 by splitting some member(s) of the previously obtained (27 — 1)-
partition P; with the smallest weight increase. There are two ways of splitting (in order to

increase the size of partition by two). One is to split two members in P; into four. The other

46 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

is to split one member in P; into three. These are considered in Lines 3 and 4 of GSA2,
respectively. We choose P;y1 so that the weight increase from P; is minimum. This is done
in Lines 5-9 of GSA2.

Input: A submodular system (V, f) and an odd integer k > 1.
Output: A k-partition Pr+1 of V.
2

Pl «— {V}
for 1=1,..., % do
(S}, Wi, 7, W?) argmin{327_, (f(S7) + f(WI — §7) — f(W7)) |
0+#87 c Wi, j=1,2, for distinct W1, W?2 € P;}

4 (T}, T, Wi) - argmin{f(T") + f(T?) + f(W-T'-T?) — f(W) |
' ' {Tl,TQ, W—'TI—TZ} is a 3-partition of W € P;}
5 if 351 (F(8]) + F(W] = 5]) = f(W)))

< f(TH) + f(T7) + f(Wi =T} =T7?) — f(W;) then
Pit1 + (Pi — {W}H,W2H) U{S}, W} — S}, 52, W2 — 52}
Piy1 < (P —{W;}) U{T}, T2, W;— T} -T?}
end /* if */
10 end /* for */

6
7 else
8
9

Figure 3.1: Greedy splitting algorithm 2 (GSA2) for MPP-NT for odd &

Clearly, the output Pru1 is a k-partition of V. Let us consider the running time of GSA2.
Line 3 can be done in Z2We1>i O(|W26) = O(|V|?0) time by Theorem 2.2. On the other
hand, since we do not know how to find efficiently a minimum 3-partition in an arbitrary
submodular system, the complexity of Line 4 is open in general. For the purpose of ensuring

that GSA2 runs in polynomial time, we assume the next.

Assumption 1. For any set W C V, a 3-partition {T*,T?>, W — T —T?} of W that mini-
mizes f(T) + f(T?) + f(W — T' —T?) — f(W) can be found in polynomial time.

To analyze the performance of GSA2, we show a lemma that is analogous to Lemma 2.1.

Lemma 3.1. For £ =0,1,... ,%, let Pyy1 be the (2¢ + 1)-partition of V' found by GSA2
in the " phase. For any (2¢ + 1)-partition P = {V1,Va,...,Vagi1} of V, it holds that

J4

FPer) <D (F(Vaia) + £ (Vi) + F(V = Va1 = Vi) — (€=1) (V). (3.1)

i=1

3.2 Greedy splitting algorithm 2 (GSA2) 47

Proof. Notice that the right-hand side of (3.1) is dependent on the order of Vi, Vs, ..., Vopyq.
More precisely, it is symmetric between V5;_1 and Vo;, 1 < ¢ < £, and the last member of

{V1,Va,...,Vopi1} does not appear at all.

The proof is rather long, continuing to the end of this subsection. Similarly as before, we
proceed by induction on £. It is trivial for £ = 0. Suppose that it holds for £ — 1. Let us
consider a (2¢ 4 1)-partition P = {V1,Va, ..., Vapi1}.

We will show that, there always exists a “splitting candidate” that is a candidate in Line
3 or 4 for GSA2. This implies that its splitting weight (the weight increase) is an upper
bound on f(Pyy1) — f(Pg). We then show how to construct a “nice” (2¢ — 1)-partition P’ =
{V{,...,Vgp_,} from P, for which Zf;ll (f (Vai) + F(Vay) + F(V=V3,_1=V3,;)) = (£=2)f(V)
plus the splitting weight of the “splitting candidate” is at most the right-hand side of (3.1).
This will prove the lemma by applying the induction hypothesis on P; and P’. Let us see
the details in the following.

We first consider to find the splitting candidate. Since Py is a (2£ — 1)-partition of V', we
see that at least one of the next two cases occurs (imaging to put 2 + 1 balls v; € V; into
2¢ — 1 bozes W' € Py).

(1) There isa W € P, and at least three distinct indices r,s,t € {1,2,...,2¢+ 1} such that
W NV; # 0 holds for all i € {r,s,t} (one bozx obtains at least three balls).

(2) There are two distinct W', W2 € P, and four distinct indices a, b,p,q € {1,2,...,2¢+1}
such that WNV, # 0 # WinV, W2nV, # 0 # W?nV,, W' C V,UV, and W? C V,UV,

hold (roughly speaking, each of two boxes contains exactly two balls).

We can easily find splitting candidates in cases (1) and (2). However, it is still unclear
how to construct the “nice partition”, since, as will be seen later, the nice partitions vary
with the choice of indices (i.e., r,s,t and a, b, p, ¢). Thus we consider the next five sub-cases.

From the symmetry in (3.1), we say Vo;—1 and Vo; “partners” of each other, 1 < i < /.

Let us first consider two sub-cases derived from case (1).

(1a) There is an index h € {1,...,¢} satisfying {2h—1,2h} C {r,s,t} (i.e., two partners
appear simultaneously in W). Let r = 2h—1 and s = 2h.

(1b) Otherwise [{2i—1,2i} N {r,s,¢}| < 1 holds for all i € {1,...,£}. Let r € {2h—1,2h}
and s € {2h'—1,2n'} for 1 < h < A’ < £. By assumption, W N V; = (§ holds for all
j € {2h—1,2h,2h' —1,2h'} — {r, s} (i.e., no partner of V; or V; appears in W). By the
symmetry of partners, we suppose without loss of generality that r = 2h and s = 2h/.
Then W N Vo, 1 = W N Vap_1 =0 holds.

48 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Case (2) is a little complicated. We first consider the sub-case in which
Ha,b} N {2h—1,2n}| = H{p,q} N{2h' —=1,2h"}| = 1
holds for some 1 < h # h' < £. By symmetry, we assume the next without loss of generality.
(2a) Let @ =2h and p = 2R/ for 1 < h < b/ < £ Then W NVo_1 = W2N Va1 = 0 holds.
Otherwise, we have the next two sub-cases.

(2b) |{a,b} N{2h—1,2h}| = |{p,q} N{2h'—1,2h'}| =2 holds for 1 < h # h' < L. Let h < I/,
a = 2h—1,b=2h, p = 2h'—1, ¢ = 2h'. By the assumption of case (2), W' C Vop_1 UVap
and W2 C Va1 U Vo hold,

(2¢) {{a,b} Nn{2h—1,2R}|, |{p,q} N{2h' —1,2R'}|} = {1,2} hold for some 1 < h # K’ < L.
Let a = 2h—1, b= 2h, p € {2h'—1,2h'} and q & {2h'—1,2h"}. Without loss of generality,
we assume p = 2k’ and h < h'. Hence W' C Vyp_1 U Vap, and W2 N Vap—1 = 0 hold.

Notice that at least one of sub-cases (2a), (2b) and (2c) must occur in case (2).

Now let us show the “splitting candidate” and the corresponding “nice partition” for each

sub-case. In constructing the “nice partition”s, the idea is

() binding members of P to hide weights that are used by the splitting candidate.
Let us see the details in the following, where we will explain the above idea.
(1a) Split W into three pieces W N Vop_1, W N Vop and W — Vo1 — Vop,. Let

P = {Vi,..., Van—2, Vanit,- - Voo, Va1 U Vop U Vagy1).

Applying the induction hypothesis on P, and P2, we have

f(Py) < Z (f(Vaiz1) +f (Vai) + F(V—Vaim1—Va;)) — (£=2) f(V). (3.2)

1<i<e, i#h

Thus, to prove (3.1), it suffices to show
f(Pey1) = f(Pe) < f(Van-1) + f(Van) + f(V=Van1—Van) — f(V). (3.3)
In fact, since (W N Vop_1, W N Vop,, W) is a candidate in Line 4 for GSA2, we have

f(Pegs1) = f(Pe) < fWNVop 1)+ f(WNVop) + f(W—Vop1—Vap) — fF(W). (3.4)

3.2 Greedy splitting algorithm 2 (GSA2) 49

Let us show that the right-hand side of (3.3) is at least as large as the right-hand side of
(3.4). This will prove the lemma for sub-case (1a). Actually, by submodularity, we have

fVon—1) + f(Van) + f(V=Vap_1—Van) — (V)

FWNVap1) + fF(IWUVap1) + f(Var) + fF(V—=Vap_1—Van) — f(V) — f(W)

FW N Vap_1) + fF(W N Vap) + fF(W U Va1 UVap) + f(V—Vop_1—Vap) = f(V) = f(W)
> fWNVop_1) + F(W N Vap) + fF(W—Vap_1—Vap) — f(W).

Y

Y

Therefore sub-case (1a) is completed.

Let us take an example k-PPG to give an explanation of the idea (*). In sub-case (1a), the
splitting candidate is to split W into three pieces WNVayy, 1, WNVyp, and W — Vo 1 —Vop. See
Figure 3.2. The splitting weight (i.e., f(WNVaop_1)+ f(WN Vo) + fF(W—Vop_1—Vap) — f(W)
where f is the cut function) is two times of the weight of edge set

EWNVop_1 : WNVop)UEW N Va1 : W—=Vap_1 =Vop) UE(W N Vaop : W —=Vap_1—Vap)

(recall that E(X :Y) is the set of edges between vertex sets X and Y). It is of course no

more than two times of the weight of edge set
E(Vap1: Vo) UE(Vap 1 : V=Vap1—Vap) UE(Vap, : V =Vop_1—Vap),

which is nothing but f(Vop—1) + f(Van) + f(V —Vop_1—Vap) — f(V), the right-hand side of
(3.3). Therefore we “bind” Vo, 1 and Vo to V41, and let them be the last member in the

constructed nice partition P'2. Analogous explanations are available for other sub-cases.

Figure 3.2: Illustration of sub-case (1a) for k-PPG.

Next let us consider sub-case (1b).

(1b) Recall that in sub-case (1b), we have a W € P, such that W N Vo, # 0 # W N Vo,
W — Vop — Vopr #@andWﬂVgh_l =W nNVop_q = () hold for 1 Sh<h’§€

Split W into W N Vo, W N Vo and W — Vo, — Vo, Let

1b
PP ={Vi,...,Vap—2,Vont1,-- -, Vow—2, Vopr1, - - -, Vag, Van—1, Vo —1, Vop U Vapr U Vapy 1 }.

50 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Applying the induction hypothesis on P, and PP, we have

JP) <3 (FVais) £ (Va) + (V= Vains ~ Vai))

1<i<t, i#h,h
+ (FVaroa) + f (Vaw1) + F(V=Von 1 =Vaw1)) = (E=2) (V). (35)
Thus it suffices to show
f(Per1) — f(Pe) < f(Vap) + fF(V—Vap_1—Vap) + f(Vanr)
+ f(V—=Vop_1—Vap) = f(V—Vap_1—Vop—1) — f(V). (3.6)
Since (W N Vop, W N Vopr, W — Vo, — Vo) is a candidate in Line 4 for GSA2, we have
fPe1) = fF(Pe) < f(WNVap) + fF(WNVop) + f(W=Vap—Vop) — f(W). (3.7)

To complete the proof for sub-case (1b), we show that the right-hand side of (3.6) is no less
than the right-hand side of (3.7). By transferring negative terms, this is equivalent to

F(Von) + F(V—=Vop_1=Vap) + f (Vo) + F(V=Vapr—1 = Vo) + fF(W) >
FW N Vap) + fF(W N Vo) + fFW =Vap—Vopr) + fF(V—=Vap—1—Vapr—1) + f(V). (3.8)

We can prove (3.8) by submodularity as follows.

38) <= f(WUVa)+ f(V—Vop1—Von) + f(Van) + f(V—Van -1 —Vaw)
> f(WNVaw) + f(W—=Vop—Vow) + f(V—Vap_1—=Vop 1) + f(V)
= fWUVop UVop) + f(V—=Vap1=Van) + f(V—=Vop—1—Vaw)
> f(W=Vap=Vop) + f(V=Vop_1=Vop—1) + (V)
= f(WUVap UVop) + f(V—Vap—1—Vop—Vap—1—Vaw)
> f(W—=Var,—Vop) + f(V—Von—1—Vop-1).
(Note that the last inequality uses the fact W N Vo1 = W N Vop_y = 0.)
Similarly we consider sub-case (2a).

(2a) Recall that in sub-case (2a), we have W', W2 € P, such that § # W' nVy, C W1,
0#W2N Vo CW2and W N Va1 = W2N Vo1 =0 hold for 1 < h < b < £. Split
W'into Wln Vo, and wt— Van, W? into W2 N Vopr and w?— Vopr. Let P =

Vi, Van—2, Vopsts -, Vawr—2, Vanr 1y - - -, Vag, Va1, Va1, Vop, U Vopr U Vg1 }

Notice that P? = PP, Thus it suffices to show (3.6). Since (W' N Vap, W, W2 N Vapr, W?)
is a candidate in Line 3 for GSA2, we have
FPer1) = f(Pe) < fW'NVap) + FW' = Vap) = F(W)
+ fW? 0 Vo) + fF(W? = Vawr) — F(W?).

3.2 Greedy splitting algorithm 2 (GSA2) 51

Therefore we only need to show the next inequality to complete the proof.
f(Van) + f(V=Van 1= Van) + f (Vaw) + f(V =Vap 1= Vaw) + F(W') + f(W?)
> fWHNVar) + f(W! = Vo) + f(W? 0 Vo) + f(W? = Vo)
+ f(V—Vop_1—Vop—_1) + f(V). (3.9)
This can be done as follows.
(3.9) <« f(W'UVap) + F(W?U Vaw) + fF(V—Von1—Van) + f(V—Vap 1 —Vopr)
> fW! = Van) + fF(W? = Vo) + f(V—=Von-1—Vaw—1) + f(V)
= f(V-Vop1) + f(V—-Vop_1) > f(V—-Vop_1—Vop_1) + f(V).
Notice that fact W' N Vap_1 = W2 N Vo1 = 0 is used to obtain the second “<=".
(2b) Recall that in sub-case (2b), we have W', W2 € P, such that WNVa,_1 # 0 # WiNVay,
W2NVap—1 0 # W2N Vapr, W C Vo1 U Vo, and W2 C Vapr_y U Vo hold for

1 <h<h <¢£ Split W!into W' N Vy,_1 and W' N Vyy,, W2 into W2 N Vop—1 and
W2 N Vap. Let P> =

Vi, Van—o, Vonsts - - o, Vanr—o, Vapr 15 - - -, Vag, Vo1 UVap, Va1 UVopr, Vogiq 1.

Applying the induction hypothesis on P, and P?°, we have

f(Pg) < > (f(sz'—1) +f(Vai) + f(V_V2i—1_V2i)) + (f(VQh—l U Van)
1<i<t, i#hh!

+ f(Vopr—1 U Vapr) + f(V_VZh—l_VQh_V2h’71_V2h’)) = (£=2)f(V).
Thus, it suffices to show
JPe) = 1P < (F(Van-1) + 1 (Van) + F(V=Vanor=Van)) + (£ (Vaw—1) + £ (Vaw)
+ f(V—%hul—VQh')) - (f(V2h—1 U Vap) + f(Vap -1 U Vapr)
+ F(V=Von 1=Von—Vaw_1=Vaw) + (V). (3.10)
Since (W N Vaop, W W2 N Vo, W2) is a candidate in Line 3 for GSA2, we have
fPey) = f(P) < fW' N Vany) + f(W' 0 Van) — (W)
+ fW?N Vaw 1) + F(W? N Vi) — F(W?).
Hence we only need to show the next inequality.

FVono1) + f(Van) + F(V =Von_1=Vap) + F(W?)
+ f(Vaw—1) + f(Vaw) + F(V =Vap—1— Vo) + f(W?)
> fW N Van 1)+ FW 0 Van) + FW? 0 Vawr 1) + F(W? 0 Vawr) + f (Van 1 U Vo)
+ f(Van—1 U Vo) + f(V—=Vop_1 =Vor, = Va1 = Vo) + f(V). (3.11)

52 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

In fact, by submodularity, we have

(3.11) <= fW'UVap1) + f(Van) + f(V —Von-1—Van)
+ fFW? U Vap 1) + f(Vaw) + F(V—Vap—1—Vaw)
> fW' N Vap) + F(W? N Vow) + f(Van-1 U Vap)
+ f(Vap 1 U Vop) + f(V—=Vap 1= Vap—Vop 1 =Vop) + f(V)
= f(V—Van1=Van) + FW? U Vap_1) + f (Vaw) + (V= Vaw—1—Van)
> f(W?N Vaw) + f (Vow -1 U Vaw) + F(V=Van—1—Von—Vow —1—Vow) + f(V)
— f(V-Vap—1—Van) + f(V—Vap—1— Vo)
> f(V—Van—1—Vop—Vop—1=Vop) + f(V).

Notice that the facts W' C Vap_1 U Vo, and W2 C Vypr_1 U Ve are used to obtain the second
and the third “<=", respectively.

Finally we consider sub-case (2c).

(2c) Recall that in sub-case (2c), we have W', W2 € P, such that W'NVo,_1 # 0 # WiNVy,
Wzﬂ‘/éhl #@C Wo, wt C Vop_1 UV, and W2ﬂ‘/2hl,1 =Qholdfor 1 <h < h </
Split W into W' N Vy,_1 and W' N Vo, W2 into W2 N Vyy, and W2 — Vap. Let P* =

Vi, Van—2, Vonits - o, Vawr—2, Vapr 1,y - -+, Vag, Vo1 U Vo, Vapr 1, Vopr U Vapy 1 }.

Applying the induction hypothesis on P, and P?°, we have

f(P) < > (f(VZifl) +f(Vai) + f(V—VQiﬂ—Vzi)) + (f(VQh—l U Vap)

1<i<e, i#h,h'

+ F(Vaw 1) + F(V=Vono1—Van—Vaw 1)) = ((=2) (V). (3.12)
Thus, it suffices to show
J(Pesa) - < (F(Vanos) + £ (Van) + F(V —Van-1=Van))

+ (f(V2h')+f(V Vopr — 1—V2h'))

— (F(Van1 U Vi) + £ (V= Vo 1=Var—Vaw) + £(V)) (3.13)
Since (W N Vaop, W W2 N Vo, W2) is a candidate in Line 3 for GSA2, we have

F(Pes1) = F(Pe) < FW N Vap1) + F(WEN Vay) — F(WH)
+ fW? N Vap) + F(W? = Vap) — F(W?).

3.2 Greedy splitting algorithm 2 (GSA2) 53

Hence we only need to show the next inequality

FVan-1) + f(Van) + fF(V—=Vap 1—Vap) + fF(W)
+ f(Vaw) + f(V=Vaw—1—Vaw) + f(W?)
> f(W'NVonot) + F(WH N Vap) + F (W20 Vaw) + f(W? — Vap)
+ f(Vah—1U Vap) + f(V=Vap—1—Vop —Vop—1) + f(V). (3.14)

This can be proved as follows.

(8.14) <« f(W'UVap_y) + f(Van) + F(V—Vano1—Vap)
+ W2 U Vap) + f(V—Vap_1—Vapr)
> fW' N0 Vap) + f(W? = Vaw) + f(Van-1 U Van)
+ f(V—=Vap—1—=Vop—Vop_1) + f(V)
= f(V—=Vop1—Van) + F(W2U Vop) + fF(V —Vap—1—Vap)
> fF(W? = Vop) + fF(V—=Vap_1—=Vop—Vap _1) + f(V)
= f(V=Van1=Van) + fF(V=Vaw_1) > f(V—=Vono1=Van—Vaw_1) + f(V).

Notice that the facts W C Vo1 U Vap, and W2 N Vo1 = 0 are used to obtain the second
and the third “<=", respectively. O

3.2.2 Algorithm description and main lemma for even &

For a positive even k, we start with a minimum 2-partition of V', and repeatedly increase the
size of the partition by two greedily as we did before. It is described in Figure 3.3, where the

same code as in Figure 3.1 is omitted.

Input: A submodular system (V, f) and an even integer k > 2.
Output: A k-partition P of V.
2

1 P1 < a minimum 2-partition of V'
2 fori=1,...,5-1do
3-10 (The same code as Lines 3 — 10 in Figure 3.1)

Figure 3.3: Greedy splitting algorithm 2 (GSA2) for MPP-NT for even k.

Clearly the output P is a k-partition of V. In order to obtain a polynomial time algo-
2

rithm, it also requires that Assumption 1 holds.

We now give a lemma, on the performance.

54 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Lemma 3.2. Let P; be the 2¢-partition of V found by GSA2 in the (£ — 1) phase, £ =
1,2,..., % For any 2¢-partition P = {V1,Va,...,Voy} of V, it holds that

f(P) < fV)+F(V-W)

-1
+ Z (f (Vag) + £ (Vais1) + F(V = Vag = Vaiy1)) — (£ = D F (V). (3.15)

Proof. Again, we proceed by induction on £. It is trivial for £ = 1. Suppose that it holds for
£ — 1. We consider a 2¢-partition P = {V1, Vs, ..., Vae}, where £ > 2 holds.

Referring to the proof for Lemma 3.1, we see that at least one of cases (1) and (2) must
happen. Before considering the sub-cases, we redefine the notation of “partners”. Notice
that (3.15) shows the symmetry between Vo; and Vi1 for all i. Thus we say that Vo; and
Voit1 are partners of each other, 1 =1,2,...,/—1.

Observation 3.1. All the sub-cases (1a), (1b), (2a), (2b) and (2c) in the proof of Lemma 3.1
can happen with the new definition of partner. In each one sub-case of them, the proof can

be done by fixing V1 as the first member in the constructed nice partition.

Hence we only need to consider such sub-cases that are not covered. First, let us consider

case (1). The only sub-case that is not covered is the next.

(1c) 1 € {r,s,t} and {W N Vaop, W N Vopa }| = 1 hold for some h € {1,...,£—1}. Let r =1
and suppose without loss of generality that s = 2h (hence W N Vo, 1 =) holds. Split
W into W NV, WNVy, and W — Vp — Vo, Let

P = (Vani1, Vo, Van1, Vanta, - - - Var_1, Vi U Vap U Vay).

(Note that 1 < 2k < 2h+1 < 2£.) Applying the induction hypothesis on P, ; and P, we
have

f(Pe—1) < f(Vapgr) + F(V = Vapsa)

+ D (FVa) + f(Vair) + F(V=Vai=Vaita)) — (€=2)f(V). (3.16)
1<i<0=1, i#h

Therefore, it suffices to show

fPe) — f(Pe—1) < f(V)+ f(V=V1)+ f(Vap) + f(V—=Vor—Vapy1)
— f(V=Vapy1) = f(V). (3.17)

Since (W NVy, W N Vo, W) is a candidate in Line 4 for GSA2, we have

fPe) = f(Pe) < fWAOW) + f(WNVan) + f(W—=V1i=Van) — f(W). (3.18)

3.2 Greedy splitting algorithm 2 (GSA2) 55

Hence we only need to show

FV) + f(V=V1) + f(Vap) + f(V=Var—Vapy1) + f(W)
< W)+ fW N Vay) + fFW=V1—=Vap) + fF(V=Vopy1) + (V). (3.19)

In fact, this can be proved by submodularity as follows.

(319) <= f(WUW)+ f(V=V1)+ f(Vap) + f(V=Von—Vapy1)
< FWnVap) + f(IW=Vi=Vop) + f(V—Vapy1) + £(V)
= fWUViuVa)+ f(V-Vi)+ f(V—Var—Vont1)
< f(W=Vi—Vap) + f(V—Vont1) + f(V)
= (W -=V)UVoy)+ f(V—Vor,—Vapy1)
< FW=Vi—Vap) + f(V—Vapi1).

Note that the fact W N Va1 = (0 is used to obtain the last inequality.

Next, let us consider sub-cases of case (2). Sub-cases that are not covered by (2a), (2b)

and (2c) are the following two, where we fix a = 1 (since 1 € {a, b, p, q}).

(2d) |{p,q} N{2h,2h+1}| =1 holds for some 1 < h < £—1. Without loss of generality, let
p = 2h. Thus W2 N Va1 = 0 holds.

(2¢) {p,q} = {2h,2h+1} holds for some 1 < h < ¢/—1. Hence W2NVa, #0 #W?2nN Vaohi1
and W?2 C Vo, U Vop 1 hold.

Let us first consider sub-case (2d).
(2d) Split W' into W' NV; and W' — Vi, W? into W2 N Vyy, and W2 — Vyy,. Let

P = (Voni1,Vay ooy Vono1, Vansa, - -+, Var_1, Vi U Vap, U Vo).

Notice that 724 = PI¢ holds. Hence we only need to show (3.17). Since (W' NV, W1, W?2n
Von, W?) is a candidate in Line 3 for GSA2, we have

fP) = f(Pe—1) < fFWINW) + f(WH=W1) — f(WY)
+ FW2N0 Vo) + F(W? = Vi) — F(W?). (3.20)

Therefore we only need to show

FOA) + F(V=V) + f(Van) + F(V =Van—Vany1) + F(WH) + F(W?)
> fWINW) + f(WH=V1) + F(W? N Van) + f(W? — V)
+ f(V =Vopa) + (V). (3.21)

56 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

This is proved by submodularity as follows.

(321) < f(W'UV)+ f(V-V1)+ f(W>U Vay) + f(V—Vor,—Vapi1)
> f(W'=Vi) + f(W? = Vap) + f(V = Vang1) + F(V)
= fWPUVa)+ f(V-—Vor,—Vont1) > F(W? = Vop) + F(V — Vontr)

Note that the fact W2 n Vont1 = 0 is used to obtain the last inequality.
Finally, we consider sub-case (2e).
(2e) Split W' into W' NV; and W' — Vi, W? into W2 N Vo, and W2 N Vopyq. Let

P = {Vop UVontt, Vo, ..., Vonot, Vanya, - - o, Varo1, Vi U Vi)

Applying the induction hypothesis on P,_; and P?¢, we have

F(Pe—1) < f(Van UVopgr) + f(V—Vop—Vopt1)

+ Y (FVR) + f(Vairr) + F(V=Vai—Vaiga)) — (£=2)F(V).(3.22)
1<i<O-1, i#h

Therefore, it suffices to show
F(Pe) = f(Pe-1) < f(Vi) + F(V=V1) + f(Von) + f(Vont1) — fF(Vor U Vony1) — F(V). (3.23)
Since (W NV, WL, W2 N Vyp,, W?) is a candidate in Line 3 for GSA2, we have

f(P) = f(Pee1) < fW'nWA)+ f(W'=V1) — f(W1)
+ f(W2N Vap) + F(W2 N Vappr) — F(W?). (3.24)

Therefore we only need to show

FOR) + F(V=V1) + f(Van) + f (Vant1) + F(W) + f(W?)
> fWEnW) + fWE=W1) + fF(W2 0 Vay) + F(W? N Vo)
+ f(Van UVapgr) + f(V). (3.25)

This can be proved by submodularity as follows.

(3.25) «— f(W'UW)+ FW>UVan) + F(V-V1) + f(Vans1)
< fFW'=VA) + F(W? N Vapy) + F(Van U Vapy) + F(V)
= fWAUVap) + f(Vans1) < FW2N Vappr) + F(Var U Vapga).

Notice that the fact W2 C Vo, U Van+1 is used to obtain the last inequality. O

3.3 Performance analysis of GSA2 57

3.3 Performance analysis of GSA2

3.3.1 Polynomial time implementation

We have noted that, GSA2 has polynomial running time if the next problem, called partial

3-partition problem, can be solved in polynomial time (Assumption 1 in Section 3.2).

Problem 3.1 (Partial 3-partition problem). Given a submodular system (V, f), W CV
(IW| > 3), find a 3-partition {S},S5,S5} of W that minimizes f(ST) + f(S5) + f(S3).

Obviously, the partial 3-partition problem reduces to 3-PPSS in submodular system
(W, flw), where f|w denotes the restriction of f to W. One may think that, if f is sym-
metric, then it can be solved by the algorithm [Que 99] for 3-PPSSS. However, this does
not work, since function f|y can lose the symmetric property when restricted to W. An
interesting question is thus to find problem classes for which the partial 3-partition problem
can be solved in polynomial time. The next proposition shows one of such problem classes:
k-PPG.

Proposition 3.1. Given a graph G = (V, E) with a weight function w : E — R™, a 3-
partition {S},S5,55} of a W CV with |W| > 3 that minimizes Wex(ST) + Wex(S5) + Wex(S3)

can be found in polynomial time.

Proof. Equivalently, consider to minimize weyx(S1) + wex(S2) + wex(S3) — wex (W) over all
3-partitions {S1, S2, 53} of W. This is nothing but 3-PPG in the reduced subgraph G[W] of
G. Thus it can be solved in polynomial time ([GH 88]). O

Since 3-PPG can be solved in O(mn?log(n?/m)) time for a graph with n vertices and m

edges ([NI 00]), we have the next corollary.

Corollary 3.1. GSA2 for k-PPG in a graph with n vertices and m edges can be implemented
in O(kmn3log(n?/m)) running time. O

Problem k-PPG is not the only class for which the partial 3-partition problem can be

solved in polynomial time. A slightly generalization, i.e., k-PPH-T2 with df, < 3, is

max

available. See the next observation.

Observation 3.2. The partial 3-partition problem for k-PPH-T1 (resp. k-PPH-T3) can be
reduced to 3-PPH-T1 (3-PPH-T3). For k-PPH-T?2, it reduces to k-PPH-T2 when df . <3

max

holds, where df,. is the mazimum degree of hyperedges with positive weights.

This observation can be shown by the same ideas in proofs for Theorems 2.8, 2.9 and 2.10.
Notice that the idea in Theorem 2.8 does not work in general. Since the complexities for
3-PPH-T1 and 3-PPH-T3 are still open, the question of whether GSA2 can have polynomial
running time or not remains open in general for any one of k-PPH-T1, k-PPH-T2 and k-
PPH-T3.

58 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

3.3.2 Performance guarantee: part I
Assuming that GSA2 has polynomial running time, we derive its performance guarantees.

We first note that, not surprisingly, GSA2 does no worse than GSA. This can be seen by
comparing the right-hand side of (2.12) with the right-hand sides of (3.1) and (3.15). Notice
that f(V -X -Y)+ f(V) < f(V-X)+ f(V —-Y) holds for any disjoint X,Y C V.

In fact, using Lemma 3.1 and Lemma 3.2, we have the next result.

Theorem 3.1. The performance guarantee of GSA2 is I_%J for k-PPSS, and 2 — % for k-
PPSSS (k > 2). There are examples indicating that these bounds are tight.

Proof. First consider k-PPSS. Let P* = {V}*, V¥,...,V/*} be a minimum k-partition.

Let k be an odd number. By Lemma 3.1, GSA2 finds a k-partition whose weight is at

most

Z (F(Voi) + F (Vo) + F(V = Vg = Vi) - (3.26)

=1
(Note f(V) > 0.) Notice that
FV -V -Ve) = fC J v < D).

J#2i—1,2i J#2i—1,2i
(Note f(0) > 0.) Hence (3.26) is at most A2 28 | £(V;%).

Similarly, let us consider an even k. By Lemma 3.2, GSA2 finds a k-partition whose

weight is at most

k
571

FOV) + f(V = V) Z (Vai1) + f(Vay) + F(V = Vi — V)
=1

-1 g k

< Z O+ DA = 53507 (3:27)

1=1 =1 =1
Hence the guarantee of GSA2 is |£| for k-PPSS.

The performance guarantee 2 — % for k-PPSSS is trivial, since we have noted that GSA2
performs at least as good as GSA. Tight examples will be given in Section 3.4. O

Let us now consider k-PPMSS.

Theorem 3.2. The performance guarantee of GSA2 for MPP-NT in submodular system
(V, f) satisfying f(0) > 0 and f(V) > f(S) forall) £#S CV is 2 — % for any k > 3. In
particular, this is true for k-PPMSS.

3.3 Performance analysis of GSA2 59

Proof. Let P* = {V*,V,...,V}*} be a minimum k-partition with the order f(V7*) < f(V5) <
- < f(VE) < f(VY). Let k > 3 be an odd number. By Lemma 3.1, GSA2 finds a
k-partition whose weight is at most

S (FVar) + FV3) + V= Vi = V3) = (5= = DY)
k-1
S F) V= Vi - Vi)
k k
< 2D A~ GO + A + 105 < 2=)3 (7).

i=1 i=1

VAN

Similarly, we can show the theorem for an even k > 4. O

An interesting and somewhat strange result is, while GSA2 improves the guarantee of GSA
for k-PPSS and k-PPMSS, it performs as bad as GSA for k-PPSSS. In fact, we later will
see that, there exist instances of k-PPSSS for which no guarantee better than 2 — % can be
obtained, even the size of partition is increased by j per phase for any j > 1.

3.3.3 Performance guarantee: part I

In this subsection, we show that GSA2 performs better than GSA for a special case k-PPH-
T2 (hence k-PPG) of k-PPSSS. We also show that improved guarantees can be obtained
for k-PPH-T'1, and for some cases of k-PPH-T3. We assume that GSA2 runs in polynomial
time, which is true for k-PPH-T2 with d,. < 3 (hence k-PPG) as stated in Corollary 3.1
and Observation 3.2.

Theorem 3.3. The performance guarantee of GSA2 for k-PPH-T2 is 2 — % for odd k > 3,
and?—%—l—ﬁforevenkZ?.

Proof. Let H = (V, E) be a hypergraph with a weight function w : E — R*. Denote the cut
function by f = wex. Let P* = {V*,V5,...,V}*} be a minimum k-partition. Let 7 denote a
permutation of {1,...,k}, where (i) denotes the number of 7 in 7.

First we consider an odd k£ > 3. By Lemma 3.1, for any permutation 7, GSA2 finds a
k-partition whose weight is at most

k-1

2

.fﬂ' = Z (weX(V;(Qiil)) + weX(V’i:(Qi)) + wex(V - V'/:((Qifl) — V:(%))) . (328)
i=1

To show the theorem for an odd k, we want to show that there is a permutation 7* such that

3. 3
for < (Q_E)Zwex(vi*) = 2-2)f(P). (3.29)

60 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Inequality (3.29) can be proved by considering all permutations and showing that the
average value of fr is at most (2 — %) f(P*). Alternatively, letting

Ar = 2f(P)~fr

= 2weX(V7;k(lc)) + Z (weX(V:(%—l)) + weX(V:(Qi)) — wex(V — :(21'—1) _V:(Zz'))) ’
i=1

we only need to show that, the average value of A, is at least %f(P*) We prove this fact by
showing that, for any hyperedge e (of weight w(e)), the average number that w(e) is counted

in A is at least 2 times of the number that w(e) is counted in f(P*).

For simplicity, we contract each V;* to a single node v;. This may decrease the degree of
e. Let H|p- denote the hypergraph obtained after contraction. To avoid confusing, we use
“node” to denote v; in H|p~. We assume that H|p~ is complete and simple; i.e., the set of
hyperedge in H|p- consists of all possible hyperedges, and there are no multiple hyperedges.
Otherwise we can realize this assumption by adding zero weight hyperedges and merging

multiple hyperedges.

Let the degree of e after contraction be d. We may assume that d > 2; since otherwise
w(e) is not counted in A, or f(P*). Recall that wex(S) is the sum of weights of hyperedges
that have at least one but not all endpoints in S for a set S C V. Thus w(e) is counted,
due to the term of 2weX(V7:‘(k)) in Ay, twice if one endpoint of e (in hypergraph H|p-) has
number k. Since H|p« has k nodes, we see that the average number (i.e., expected value)

that w(e) is counted due to term 2wey(;(k)) is 24,

On the other hand, due to term Z;:Tll (weX(V;(QZ._l))+wex(V:(2i))—weX(V—V;(QZ._l)—V;(%)))
in Ay, if d = 2 and the two endpoints of e are numbered 7(2¢ — 1) and 7(2i) for some i, then
w(e) is counted twice. Otherwise, w(e) is not counted if d = 2, whereas it is counted p times
if d > 3, where p is the number of pairs of endpoints of e that are numbered 7(2¢ — 1) and

m(2i) for some i.

Notice that for each pair of indices 2 — 1 and 2i, the average number (expected value)

that both nodes vo;_1 and v9; are endpoints of e is

Since there are % pairs of indices, the average number (expected value) that w(e) is counted
k-1

due to term >, % (Wex (Vi9i—1)) + Wex(Vigp) — Wex(V =V 9,1y =V5;))) is thus

k-1 2-(2-1) 2 .
: — ° ifd=2
> h=1) K TATE

2.

3.3 Performance analysis of GSA2 61

or

k—1 dd—1) dd—1) |
. _ > 3.
2 k(k—1) o td=3

Since w(e) is counted d times in the optimum f(P*), we see that the contribution of w(e)
to the average value of A, is

1 (4 2 3 1 (2d dd-1)\ _ 3
— . — — = — = — —_— > — >
5 <k+k) 2 (d=2) and 7 (k + o >_k (d>3)

times of the contribution to f(P*). Thus the average value of A, is at least % f(P*), proving
the theorem for odd k.

Similarly, for an even k, let

Ar = 2f(P*)_f7r

k
L

= 20ex(Vig) + 2 (wex(Viian) + wex (Viaizn)) = Wex (V=Vian = Vi)

i=1
Let e be a hyperedge whose degree after contraction is d > 2. Again, the average number

that w(e) is counted due to term 2fweX(V:(k)) is Qk—d. Due to other terms, it is

k 2.(2-1) 20k-2) ..
2'(5_1>'k(k—1) = Rko1) d=E

or

k dd—1) dd-1)((k-2) .
(5_1>'k(k—1): 1) Ld=3

Therefore the contribution of e to the average value of A is

1 (4 2k-2)) 3 1 .
§'<E+k(k—1)> =5 w—k @Y

and
1 [(2d d(d—-1)(k-2) 3 1
- — > ———— (d>3
d (k+ 2k(k —1) — k K-k (d23)
times of the contribution to f(P*). This proves the theorem for an even k. O

Combining this result with Corollary 3.1, we have the next corollary.

Corollary 3.2. Problem k-PPG in a graph with n vertices and m edges can be approrimated
by GSA2 within a factor of 2 — % for any odd k > 3, and within a factor of 2 — % + ﬁ for
any even k > 2, in O(kmn3log(n?/m)) time. O

Let us now consider k-PPH-T1. We have the next proposition.

62 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Proposition 3.2. The guarantee of GSA2 for k-PPH-T1 is (1 — %)min{k,drflax} for odd
k>3, and (1 — %) min{k,df} . .} for even k > 2, where df,
hyperedges of positive weights.

< 18 the mazimum degree of

Proof. Let H = (V,E) be a hypergraph with a weight function w : E — RT. Let f =
ﬂk@ — win be the function employed by k-PPH-T1 (recall that win(S) = > .cgw(e)). Let
P* = {V*,V5,..., Vi } be a minimum k-partition of V' with respect to f. Let 7 denote a

permutation of {1,...,k}, and let m(i) be the number of 7 in =.

First consider an odd & > 3. By Lemma 3.1, for any permutation 7, GSA2 finds a

k-partition whose weight is at most

k—

M)
[u"

Ja = ' (f(V:(Zi—l)) +f(Van) + F(V = Vigisyy — 7:(21'))) — (% — 1) f(v)

<
Il
o

£
vl |

3w(E) . i . .
= Z < L — win(V’”(Qifl)) — win(V’iT(Q’i)) — win(V_VW(Qifl) — 71_(20))

i=1 B (% _ 1) (@ - 'win(V))

(w(E) - win(V;@i—l)) - win(V;(Qi)) - win(V_V:(%A) _V;(%)))

£
|
-

Il
Nt

1=1

T2
= >y (weX(V;(Qifl)) +wex(Vyop) —w({e € E [enVig) #0# V;(m‘)}))
=1
k—1

k
= S we (V) — e (Vi) = S w ({e €E | eN Vi #0# V;(%)}) . (3.30)
=1 i=1

v ‘

Il

Let us consider the average value of fr. Let

k-1
k T

Ar = Zwex(Vi*) —fr = wex(V;(k)) + Zw ({e €Elen 7:(%*1) 70 V;(Qi)}))
i=1 =1

For each hyperedge e, we consider the average number that w(e) is counted in A,. Let H|p~
be the hypergraph obtained by contracting each V;* to a single node v;. Assume without loss

of generality that H|p~ is complete and simple.

Suppose that after contraction, e has degree d > 2. Due to the term of weX(V;(k)), w(e)
is counted once if one endpoint of e (in H|p~) is numbered k. Therefore the average number

that w(e) is counted due to term wex(V:(k)) is %.

On the other hand, due to other terms in Ay, w(e) is counted p times if there are p pairs

of endpoints of e that are numbered 7(2¢ — 1) and 7(27) for some i. Thus the average number

3.3 Performance analysis of GSA2 63

that w(e) is counted due to term), 51 w ({e €eE|enV 7r(22 1) #0# V;(%)}) is

k-1 (23) k-1 dd-1) dd-1)
2 2 k(k-1) 2%

Since w(e) is counted d times in Y%, wey (V;*), we see that the contribution of w(e) to the

average value of A is

(£ A0y s 3

d \k 2k 2k
times of the contribution to Z;c:l Wex(V;*). Thus the average value of fr is at most
3. <) 3. oy)
(1= g DwlV5) < (1= gy minth i) S(P)

proving the theorem for odd k (recall that S5 | wey (V;*) < min{k, dt,. }f(P*)).

We can apply a similar argument for even k. By Lemma 3.2, for any permutation ,

GSA2 finds a k-partition whose weight is at most

fo = F(Vi) + 1V =Vig)

L.
2
* * * k
+ 2 (V) + £ Vitaian) + OV = Vi = Vataia)) = (G = DFV)
=1
k 51
= Y welV) — we(Vi) = Yo w (fe € B enVigy #0# Vigip}) - (331)
= =1
Let
£
Zwex V* 7r = weX(V;(k)) + w ({6 €l | enV, (22) 7é @ 7é 7r(21—|—1 })
=1

Let e be an hyperedge of degree d > 2 after contraction. The average number that w(e) is
counted due to term weX(V:(k)) is %. The average number due to other terms is

(k 1) dd—1) _dd-1)(k—2)

2) k(k—-1) 2k(k—1)

Thus the contribution of e to the average value of A, is

1(d d(d—1)(k—2) 3k — 4
E(E+ 2k(k — 1) >Z2k(k—1)

times of the contribution to Zf 1 Wex(V;*). Therefore the average value of fr is at most

(1 Sk 4)i“’ = (“%) min{k, dibac} £ (P"),

proving of the theorem for even k. O

64 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Theorem 3.4. The performance guarantee of GSA2 for k- PPH T3is2—32 % (resp. 2— ?Eﬁ %))
for odd k > 3 (even k > 2) if di,, = 2. Otherwise, it is 2 — 2 for any k > 2, where df,,. is

the mazimum degree of hyperedges with positive weights.

Proof. Again, let H = (V, E) be a hypergraph with a weight function w : E — R*. Let
[= win + Wex — M be the function employed by k-PPH-T3. Let P* = {V*,V,...,V}}
be a minimum k- partltion of V with respect to f. Let = denote a permutation of {1,...,k},

and let 7(i) be the number of ¢ in .

First consider an odd number k > 3. By Lemma 3.1, for any permutation 7, GSA2 finds

a k-partition whose weight is at most

£
..

E—
(f(V* 2i-1)) + f(Vaei) + F(V = Vieiq) — 7:(21‘))) - (Tl - 1) f(V)

(7

fﬂ:

1=1

2
= Z (win(v:(%l)) + wex(V;(zifl)) + win(V;(zi)) + weX(V:(zi))
i=1

k
() (e

= Z (’win(V:(Qi_l)) + weX(V:(QZ-_I)) + wln(V:(Qz)) + weX(V:(Qi))

+win(V = Vigio1y = Vi) + wex(V = V1) — Vi) — ()>

Fwin(V = Vigicty = Vi) + wex(V = Vigimty — Vi))—w(E))

%
= > (wex(Vytai1y) + wex(Viany) = 0(B(Vilai 1y : Vo)
=1
%

=1

(Recall that E(X : V)2 {e€ E|eCXUY,eNX #0#enY} forany X,Y CV.)

Let us consider the average value of f;. Let

ZwSX —fr = wex (Vi) +Z ((Vii-1) 5V7:(2i)))-

Let e be an hyperedge of degree d after contracting each V* to a node v;. The average number
that w(e) is counted due to the term of weX(Vﬂ’_‘(k)) is %. The average number due to other
terms is (%)ﬁ = % if d = 2, and 0 otherwise. Thus the contribution of w(e) to the
average value of A is 2 (for d = 2) or 1 (for d > 3) times the contribution to Ele Wex (V).

3.3 Performance analysis of GSA2 65

Therefore, the average value of f; is at most

(1—%)§;wex<w*) < @ Df(P) i df =2
or
1< 2
=P Lwall) < @ DIP) >3

(Note that we only need to consider hyperedges of positive weight.) Hence the theorem for
odd k has been proved.

We can apply a similar argument for an even k. By Lemma 3.2, for any permutation 7,
GSA2 finds a k-partition whose weight is at most

fo = FVi) + 1V =Viu)

L
2
* * X * k
+ 0 (V) + £ Vitaian) + V= Vi = Vataian)) = G = DFV)
=1
k 5-1
= Y weV) — wex(Vig) = 20w (B(Vitan : Vi) - (3.33)
i=1 =1
Let
k 5-1
Ar = Y wex(Vi") = fr = wex(Vigy) + D w (E(V:(Zi) : 7:(21'—1—1))) -
=1 =1

Let e be an hyperedge of degree d > 2 after contraction. The average number that w(e)
is counted due to the term of weX(VW*(k)) is %. The average number due to other terms is
(& - 1)% = % if d = 2, and 0 otherwise. Thus the contribution of w(e) to the average
value of Ay is + k(kk__zl) = 21?&‘_41) (for d = 2) or % (for d > 3) times the contribution to

k *
2i=1 Wex (V")

Therefore, the average value of f, is at most

(1—%)2%(%“) < (z—%) F(P) if dipy = 2:

or

1\ <& . 2 o
(17);%41@) < (2-2) 5P itdfu>s.

Hence the theorem for even k& has been proved. O

66 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

3.4 Tight examples

Let us see that the performance guarantees of GSA2 obtained so far are tight.

Proposition 3.3. For any k > 4 and € > 0, there exists a nonnegative submodular system

for which GSA2 always finds a k-partition of weight at least L%J — € times of the optimum.

Proof. First consider an odd k& > 5. Define two systems (V, f) and (W, g,) as follows.

Let V. = {vo,v1,...,v5 1}. Define f by f(S) = |S| if S € V and f(V) = 0. Let
W = {vy,w1,...,wx_1}, where VW = {vo} holds. Let g, be the cut function of graph
(W, E,) for E, = {{vg, w1}, {vo,w2},...,{vo, wx—1}} of edges with weight £¢. Obviously,
both f and g, are submodular. Let us consider submodular system (V U W,h,), where
ho(S) = f(SNV) 4+ go(SNW), S CVUW. See Figure 3.4.

For odd k: : For even k:
I wy
|
O | O
| wo;
O l
|
\ O Vi W2i+1
|
O l
| Wk—2
|
O | O
|
|
| W1
|
! k— k—
| w({vg, w1 }) = 5 ¢ w(e) = € for other edge e

Figure 3.4: Tight example for GSA2 applied to k-PPSS.

There is a k-partition P = {{v1}, {ve},...,{vk_1}, W} whose weight is k. On the other
hand, since any 3-partition separating some members in V has weight at least k, the minimum
3-partition is {{w;}, {w;}, (VUW)—{w;, w;}} for some i # j, whose weight is k —e. It is then

easy to see that, GSA2 finally outputs k-partition P’ = {{w1},{wa},...,{wk_1}, V}, whose

k-1

weight is %5

(k — €). Thus the performance guarantee is at least as bad as

(k=Y(k—9 _ k=1 (k=lec _ |k

2% - 2 2% L3 -«

Let k& > 4 be an even number. Consider the cut function ge of graph (W, E,) for E, =
{{vo, w1}, .-, {vo, wg—1 } }U{{we,ws}, ..., {wg_2, wr_1}}, where edge {vy, w1 } has weight %,

3.4 Tight examples 67

and other edges have weights %. Construct a submodular system (V U W, h,), where
he(S) = f(SNV)+go(SNW), S CV UW. This is also shown in Figure 3.4.

The k-partition P = {{v1},{va},...,{vk_1}, W} has weight k. However, GSA2 outputs
a k-partition P’ = {{w1},{w2},...,{wk_1}, V'} with weight %(k —¢€). Thus the performance

guarantee is at least as bad as

O

Proposition 3.4. For any k > 4 and € > 0, there exists a nonnegative symmetric submodular
system for which GSA2 always finds a k-partition of weight at least 2 — % — € times of the

optimum.

Proof. We define two submodular systems (V, f) and (W, g).

Let V = {vg,v1,..-,0¢_1}, and £(S) £ min{|S|,|V—-S|} for all § C V. It is not hard to see
that f is symmetric and submodular. Let W = {vg, w1, . .., wg—1}, where VW = {vy} holds.
Let g be the cut function of graph (W, E), where E = {{vg, w1}, {vo, w2}, ..., {vo, wg_1}}
consists edges of weights 1 — 7. Function g is also symmetric and submodular. Let us
consider a system (V U W, h), where h(S) = f(SNV)+g(SNW), S CVUW. See Figure

3.5. By Proposition 2.1, function A is symmetric and submodular (and also nonnegative).

O
O Vi O Wi
O

Figure 3.5: Tight example for GSA2 applied to k-PPSSS.

There is a k-partition P = {{vi},{v2},...,{vk—1}, W}, whose weight is k. However, it
is easy to see that GSA2 outputs a k-partition P’ = {{w1}, {wa},...,{wk-1},V} of weight

(k —1)(2 — 5). Thus the performance guarantee is at least as bad as

(k-D@-5) _, 2 _(i—De

9
2 =2y T i e

68 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

Proposition 3.5. For any ¢ > 0, there exists a graph for which GSA2 always finds a k-
partition (or k-way cut) of weight at least 2 — % — € times of the optimum for odd k > 5, and
2—%+ﬁ—eforevenk24.

Proof. First consider an odd k > 5.
Let V = {vg,v1,...,v4—1} and W = {wvg, w1, ..., wg_1}. Consider a graph (V UW, E,) for
Eo = {{vi,v;} | i # j}U{{vo, w1}, {vo, w2}, ..., {vo, wx_1}}. Each edge {v;,v;} has weight 1,

whereas each edge {vg,w;} has weight 2:=3=¢. See Figure 3.6.

For even k:

For odd k:

W2i+1

Wg—2

Wk—1
w({vi,v}) =1 w{vg,wn}) =k—1—¢

w{v;,v}) =1 w({vo, wi}) D) w(e) = € for other edge e

Figure 3.6: Tight example for GSA2 applied to k-PPG.

There is a k-partition P = {{v1},{ve2},...,{vk—1}, W}, whose weight is k(k — 1). On the
other hand, since any 3-partition separating some members in V' has weight at least 4k—6, the
minimum 3-partition is {{w;}, {w;}, (VUW)—{w;,w;}} for some i # j, whose weight is 4k —
6—2¢. It is then easy to see that, GSA2 outputs k-partition P’ = {{w1},{ws},..., {wk_1},V},

whose weight is (k — 1)(2k — 3 — €). Thus the performance guarantee is at least as bad as

(k-D@k-3-¢ _,

§ >2_
k(k — 1) Tk

€ 3_,
k k ’

Let £ > 4 be an even number. Consider a graph (V U W, E;), where E, = {{v;,v;} | i #

.7} U {{1)0771]1}7 {U07w2}7 RS {U07wk71}} U {{w27 U}3}, {w4,w5}, RS {wka,wkfl}}' Each edge

{vi,v;} has weight 1, whereas edge {vo, w1} has weight k — 1 — e. Other edges have weight

2k—3—
3
The optimal k-partition is P = {{v1},{ve},...,{vk_1}, W}, whose weight is k(k — 1).

However, it is easy to see that GSA2 outputs k-partition P! = {{w1},{ws},....,{wg_1},V},

See also Figure 3.6.

3.5 Modified GSA2 (M-GSAZ2) for general MPP and remarks 69

whose weight is 2(k — 1 — €) + %52 (4k — 6 — 2¢). Thus the performance guarantee is at least
as bad as
2k —1—€e)+(k—2)(2k—3 —¢) 3 1 € 5 3 1

—9_Z4_- _gy -
Kk —1) PR — FT ek

O

3.5 Modified GSA2 (M-GSA2) for general MPP and remarks

3.5.1 Modified GSA2 (M-GSA2) for general MPP

Since problem 3-MCP (multiterminal cut problem) is NP-hard, we cannot expect a polyno-
mial time algorithm to compute a minimum 3-target-split in general (unless P=NP holds).
Nevertheless, we note that Lemmas 3.1, 3.2 can be extended to MPP in a straightforward
manner, hence the performance guarantees obtained for MPP-NT's hold for their target split

versions.

3.5.2 Remarks

Remark 1. Possible improvements of performance guarantee.

It is possible to obtain better performance guarantees in some cases. Let us take GSA for
kE-PPSS as an example. Given a nonnegative submodular system (V, f), by Lemma 2.1, the
weight of the solution Py obtained by GSA is at most

k-1

SV + FV=Vi) = (k—2)f(V)

i=1
for any k-partition {V1,Va,...,Vi} of V. Thus the performance guarantee is bounded by

1, (k=2)7V)

1+a)d) o (3.34)

where opt is the optimum (the trivial case of opt = 0 is simply omitted), and « is an arbitrary
number satisfying Z;C:l fV-V) <a Zle f(V;) for all k-partitions {V1,...,Vi} of V. This
is meaningful if f(V) > 0 and opt is not too large; e.g., it gives the correct guarantee 1,
instead of 2 — %, for a constant function f. We note that it may be hard to find the value of

opt in general. A good approximate value is then valuable.

In particular, since

70 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

holds for any k-partition by Lemma 2.2, we see that « can be chosen to be

Kk —2)1(0)
opt

k—1-

Hence the performance guarantee is at least as good as

(- HE=DAON) (1) (E=2i0)

opt k opt

e (1 NG —2)f(®)> _(=2fV)

opt opt

Remark 2. On the timing of using the minimum 2-partition computation.

Recall that we start with a minimum 2-partition in GSA2 for an even k (Figure 3.3). This
ensures that a k-partition is eventually obtained, since later we increase the size of partition
by two in each phase. From the viewpoint of the size of partition, 2-partition can be used
in any (single) phase, not necessarily the first. However, it is critical in our proof to start
with a minimum 2-partition. Otherwise inequality (3.15) in Lemma 3.2 may not hold. Let

us illustrate by an instance of 4-PPG in the next graph.

Consider a graph G = (V, E), where V = {a,b,c,d,e}, and E = {{a,b}, {b,c}, {c,d},
{d,e}, {e,c}}. Edge {b,c} has weight 1.5 and others have weight 1. Let w denote the edge
weight function. This graph is shown in Figure. 3.7.

b 15 ¢
1 1
a e 1 d

Figure 3.7: Lemma 3.2 fails if we compute a minimum 3-partition at first.

If we compute a minimum 3-partition at first, we may get a solution of 4-partition P =
{{a}, {b}, {c},{d,e}}, whose weight is 9. However, considering a 4-partition {{a}, {d}, {e},
{b,c}} (the optimal solution), we have

(wex({a}) + wex(V —{a})) + (wex({d}) + wex({€}) + wex(V —{d}—{e})) =2+ 6 =8,

which is smaller than the weight of P ! This violates the claim in Lemma 3.2.
Actually, the algorithm in [Kap 96] constructs a k-partition in this way. Thus Lemma 4.3
in [Kap 96], which in this case is equivalent to (3.15), is not valid. We further discuss this in

the next remark.

3.5 Modified GSA2 (M-GSAZ2) for general MPP and remarks 71

Remark 3. Extensions of GSA and GSA2.

A natural question asks whether GSA and GSA2 can be further extended. That is,
how does it perform when the size of partition increases three per phase, ..., 57 per phase
(2 < j < k). One may wonder that, naturally, a larger j would take longer running time but
should give better performance guarantee. Here we note that, unfortunately, the approach
taken in this thesis does not help to answer this question.

In fact, such greedy algorithm was first considered by Kapoor for k-PPG. He claimed
(Lemma 4.3 [Kap 96]) that, given a graph with a nonnegative edge weight function w, for
any j > 2 and any k-partition P = {Vi, Vs, ..., Vi }, by increasing the size of partition j per
phase (except for the last phase), the weight of the obtained k-partition is bounded by

L=y

J
> (w‘*"(Vm-ml) + e Wex (V(j(im1)45) + Wex (U Vj(z'—1>+‘f>)

i=1 =1
k—1 k—1
+ Z wex(Vi) + Wex U Vi . (3.35)
i=j*5t]+1 i=j | *5t +1

Notice that this extends Lemmas 2.1, 3.1 and 3.2. However, we here provide a counter
example which shows that such an extension is not valid even for j = 3 (for j = 2, see the

previous remark).

Let k = 7. Consider a graph (V, E), where V' = {a,b,c,d,e, f,g9,h} and E = {{a, b}, {b, c},
{c¢,d},{d,b},{d, e}, {e, f},{f,9},{9,¢e},{g,h}}. Edge {d,e} has weight 3 and others have 2.
Let w denote the edge weight function. This graph is shown in Figure. 3.8.

Figure 3.8: An example for which main lemmas cannot be extended.

Similarly to GSA/GSA2, we first get the minimum 4-partition {{a}, {b,c,d},{e, f, g},
{h}}, and then get a 7-partition P = {{a}, {b},{c},{d},{e},{f,g},{h}} of weight 34. Ac-

72 CHAPTER 3 GREEDY SPLITTING OF HIGHER ACCURACY

cording to (3.35), one may expect that

wex(P) < (w(V1) + w(V2) + w(V3) + w(V1 UVa U V3))
Hw(Va) + w(Vs) + w(Ve) + w(VaUVs UVs)) (3.36)

holds for any 7-way partition P’ = {Vi,Va,...,Vz}. However, taking P’ = {{a}, {b}, {c},
{f},{g},{h},{d,e}}, inequality (3.36) yields 34 < 16 + 16 = 32, a contradiction.

Remark 4. Performance guarantees for k-PPG and k-PPSSS.

In the previous remarks, we have seen that extensions of the main lemmas (Lemmas 2.1,
3.1 and 3.2) may be difficult to obtain even for k-PPG. Notice that, however, bad examples
are still unknown for showing that improved guarantees cannot be obtained by greedily in-
creasing the size of partition j > 3 per phase. Here we note that, however, for k-PPSSS
(MPP in nonnegative symmetric submodular system), bad examples exist for showing that
no guarantees better than 2 — % can be obtained by greedy splitting.

Let GSA’ denote such greedy algorithm that increases the size of partition j per phase
(GSA! is just GSA, and GSA? is GSA2). We claim that, GSA7 has the same performance
guarantee as GSA when they are applied to k-PPSSS. An example is shown in Figure 3.5,
by choosing k = 25 + 1 (or larger) for each j > 3.

Chapter 4

A Primal-Dual Approximation
Algorithm for SNDP

4.1 Introduction

4.1.1 Network design problem with requirement function (NDRF)

In the following two chapters, we consider the survivable network design problem (SNDP).

Recall that the general (bipartite-graph based) formulation of SNDP is the following.

Problem 4.1 (SNDP). Given a bipartite graph G = (V,U, E) with a set V of terminals, a
set U of nonterminals, a set E of edges between V and U, a weight function w : U — R*
and connectivity requirements rg; for each pair of distinct terminals s,t € V, find a minimum
weight subset U* C U such that there are at least rg; nonterminal disjoint paths between each
pair of distinct terminals s and t in the subgraph G* = G[V UU*] of G.

(There is a hypergraph-based formulation as stated in Chapter 1. But we only use the above
formulation in this chapter.)

Let dmax and d;;ax denote the maximum degree of nonterminals and of nonterminals with
positive weights, respectively. Without loss of generality we suppose df . > 2. We call SNDP
with rg; € {0,1} 0-1 SNDP. Problem SNDP-G (SNDP in graph) is SNDP with dp,x = 2 (this
is graph version of the hypergraph-based formulation of SNDP). SNDP-G with rg € {0,1}
is referred as 0-1 SNDP-G. A problem class between SNDP and SNDP-G is SNDP with

dt. =2, which we refer as SNDP-G™.

max

We first give a general formulation of network design problems by employing a requirement
function. Let Z1 denote the set of nonnegative integers. We consider the next network design

problem with requirement function (NDRF).

74 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

Problem 4.2 (NDRF). Given a bipartite graph G = (V,U, E) with a weight function w :
U — R* and a requirement function r : 2¥ — Zt, NDRF is defined as follows.

(IP) minimize Z w(u) Ty (4.1)
uelU

subject to z(A(S)) > r(S) SCV, (4.2)

z,, € {0,1} u e, (4.3)

where A(S) £T(S)NT(V = S) CU and z(U") £ Y cpp 2w, U' CU.

Without loss of generality we assume 7() = r(V) = 0 and rmax = maxgr(S) < |U], since
otherwise there is no feasible solution. We note that NDRF can be described in the words of
hypergraph, which will be considered in the next chapter.

4.1.2 A survey on SNDP

We first give a brief survey on problems SNDP and NDRF. We do not review special cases
such as SPP (shortest path), MST(minimum spanning tree), STP(Steiner tree) and minimum
k edge-connected spanning subgraph. There are numerous literatures on them; see [AMO 93,
DSR 00, GP 88, HRW 92, Khu 97, KR 93].

The study on SNDP was started by Agrawal, Klein and Ravi [AKR 95]. Considering 0-1
SNDP-G, they gave a sophisticated approximation algorithm based on primal-dual method.
It is shown that 0-1 SNDP-G can be approximated within a factor of 2 by their algorithm.
An independent work was also done by Goemans and Williamson [GW 92].

Later Williamson, Goemans, Mihail and Vazirani [WGMV 93] extended the primal-dual
approximation algorithm to general SNDP-G. They formalize a basic mechanism of using
primal-dual method. It picks edge sets in ry,x phases. In each phase it tries to augment
the size of cuts with deficiency at the least cost by solving an integer program. The integer
program is in general NP-hard, but can be approximated within factor 2 by a primal-dual
method based approach (which extends the algorithms in [AKR 95, GW 92]). They showed
that their algorithm has a performance guarantee of 2rpy,,x, which is the first nontrivial result
for the general SNDP-G. An efficient implementation can be found in [GGW 93].

After that, Goemans, Goldberg, Plotkin, Shmoys, Tardos and Williamson [GGPSTW 94]
showed that, by augmenting the size of only those cuts with the maximum deficiency in
the algorithm of [WGMV 93], a 27 (rmax)-approximation algorithm can be obtained, where
H(k) = 14 % + -+ + ¢ is the k" harmonic number. It is reported that the primal-dual
approximation algorithm works well in practice, see [Wil 95, MSDM 96]. For a detail overview
and other applications of the primal-dual algorithms, we refer the readers to the well-written
surveys [GW 97, Wil 01].

4.1 Introduction 75

Jain [Jain 98] showed that there is an edge e with z} > I in any basic solution z* of

the LP relaxation of SNDP-G, where the constraint z, € {0,1} is relaxed to 0 < z, < 1 for
every edge e. He then showed that an iterative rounding process yields a 2-approximation
algorithm. We note that, although Jain’s algorithm has a much stronger theoretical guarantee
than the above primal-dual algorithm, it is of less practical value since it requires to solve

the LP relaxation of SNDP-G, which is a nontrivial computation task.

Jain, Mandoiu, Vazirani and Williamson [JMVW 99] considered the element connectivity
problem (ECP). In that problem, there are two types of vertices: terminals and nontermi-
nals, where nonterminals and edges are called the elements. Only edges have (nonnegative)
weights, and there are connectivity requirements r4; for each pair of terminals s and ¢, which
specifies the least number of element-disjoint paths to be realized. The objective is to find
a minimum weight (spanning) subgraph satisfying the connectivity requirements. Obviously,
SNDP-G is a special case of ECP with empty nonterminal set. Following the basic algo-
rithmic schema established in [GGPSTW 94, WGMV 93], Jain et al. proposed a primal-dual
approximation algorithm for ECP. Verifying that their algorithm satisfies three conditions
proposed in [RW 95], they claimed that it is a 2H(rmax)-approximation algorithm.

We note that, Ravi and Williamson [RW 95] developed a primal-dual method based ap-
proximation algorithm for the minimum k-vertex connected spanning subgraph problem. In
considering the performance, they claimed that, if three conditions are satisfied, then a guar-
antee of 27 (rmax) can be obtained. This is what Jain et al. algorithm based. Unfortunately,
due to a bug in [RW 95], even if the three conditions are satisfied, it is still unclear whether
the desired guarantee can be obtained or not. See [RW 01] for details. In this section, we
will give a complete proof for Jain et al. result. Recently, Fleischer, Jain and Williamson
[FJW 01] have extended the iterative rounding algorithm in [Jain 98] to ECP and have ob-

tained a 2-approximation algorithm.

Let us consider the general SNDP problem. We first show that ECP is a special case of
SNDP, i.e., SNDP-G*. This can be easily seen be replacing each edge by a degree 2 new
nonterminal of the same weight, then inserting a new terminal between each pair of two
adjacent nonterminals. The obtained graph is thus bipartite. Moreover, positive weights are
only given to nonterminals of degree 2. Let ry; = 0 if at least one of s and ¢ is a new terminal.
We thus have reduced ECP to SNDP-G™ in linear time in this way.

Proposition 4.1. ECP = SNDP-G™. O

Clearly, SNDP is also NP-hard even if ry; = 1 holds for any distinct s,¢ € T for a
given T C V. This problem is called the node weighted Steiner tree problem. Using a
greedy heuristic, Klein and Ravi [KR 93] have given a (2In |T'|)-approximation algorithm. The
guarantee is further improved to 1.35In |T'| (for arbitrary weights) and In |T| (for unit weights
— also NP-hard) by Guha and Khuller [GK 99]. Takeshita, Fujito and Watanabe [TFW 99]

76 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

extended the primal-dual approximation algorithm in [GW 92] to 0-1 SNDP (which includes
the node weighted Steiner tree problem). They showed a dmax-approximation algorithm. It
is of further interest to study on the practical performance of algorithms in [KR 93, GK 99]
and [TFW 99].

4.1.3 Preliminary

As noted before, we first consider NDRF (Problem 4.2) as formulated by (IP) with a require-
ment function r. Actually we do not know how to solve it efficiently for arbitrary requirement
functions r. Nevertheless, we will see that, under two conditions, it can be approximated in
polynomial time with reasonable performance guarantee. The first condition is as follows,

whereas the second condition will be stated in Section 4.2.

Condition 1. Function r is weakly supermodular; i.e., for any X, Y CV, it holds that
r(X)+rY) < max{r(XNY)+r(XUY), (X -Y)+r(Y - X)}. (4.4)

Let G = (V,U, E) be a bipartite graph. Let A4(S) 2 A(S)NAfor S CV and A C U.
Notice that we have shown a correspondence between A in bipartite graph and ¢ in the
corresponding hypergraph H (see Section 1.3 in Chapter 1). Hence |A4|: 2V — Z* is also
symmetric and submodular by Proposition 1.4. Therefore, for any A C W and X,Y C V,

we have

|AA(X)] +]A4(Y)] [AA(X NY)[+]Aa(X UY)], (4.5)
|AA(X)] +]2a(Y)] =2 |Aa(X=Y)|+]|Aa(Y =X). (4.6)

v

4.2 Primal-dual approximation algorithm for NDRF

In this section, we present an approximation algorithm for NDRF (IP). It is based on the
primal-dual algorithm established in [GGPSTW 94, WGMYV 93] for SNDP-G. The proof of
the performance guarantee will be given in the next section.

Definition 4.1 (deficiency). The deficiency of a terminal subset S C V' with respect to a
nonterminal subset A C U is r(S) — |Aa(S)] = r(S) —|A(S) N Al

Hence a nonterminal subset A C U is feasible to (IP) if and only if the maximum deficiency
(with respect to A) over all S C V is non-positive, i.e., |A4(S)| = |A(S) N A| > r(S5).

Analogously to [GGPSTW 94, WGMYV 93], our algorithm consists of ry.x phases. It
starts with Uy = (. Let U; C U be the set of nonterminals picked so far before phase i. At
the beginning of the i*" phase, the maximum deficiency (with respect to U; 1) is Tmax — i + 1.
We decrease it by one by adding some A; C U—U;_1. Setting U; = U;—1 U A;, we proceed to

4.2 Primal-dual approximation algorithm for NDRF 77

the next phase until ¢ = rpy,y holds. Finally, we get the output U, It must be feasible to

max ®

(IP), since the algorithm ensures that the maximum deficiency with respect to U, is zero.

max

In order to get a solution with small weight, we consider the next integer program (IP);

to find such a set A; in each phase i.

(IP); minimize Z w(w) Ty,
ueU—-U;_1
subject to z(Ap_y,_,(S)) > hi(S) SCV,
.’L‘UE{O,l} uelU—-U;_q,

where function h; : 2V — {0,1} is defined by

hi(S) = br(E) 180 s (S = Tmax =i 41, (4.7)
0 otherwise (i.e., 7(S) — |Ay,_, (S)| < rmax — %)-
Notice that (IP) has feasible solution if and only if (IP); has feasible solution for all i =
1,...,"max- In general, (IP); is still NP-hard. Nevertheless, later we will see that it can be
approximated by a primal-dual approximation algorithm given in Figure 4.2. We first give
the resulting algorithm for (IP), called ALGO-IP, in Figure 4.1.

Up + 0
for i = 1 to rmax
A; < the output of the algorithm in Figure 4.2 for (IP);
U; + U;_1 UA;
end /* for */
Output U,

S O W N

max *

Figure 4.1: ALGO-IP approximation algorithm for (IP).

Given an i, we now consider to approximate (IP);. We need more notations.

Definition 4.2 (violated set). A terminal subset S C 'V is violated with respect to a non-
terminal subset A CU—U;_1 if hi(S) =1 and A4(S) =0 hold.

Obviously, a set A C U—U,_; is feasible to (IP); if and only if there is no violated set. Under

the assumption of Condition 1, violated sets enjoy the following property.

Lemma 4.1. Let X,Y CV be two violated sets with respect to A C U—U;_1. Then either
sets XNY and X UY, or sets X —Y and Y — X, are violated with respect to A.

Proof. By definitions of violated set and function h;, we see that r(X) — |Ap, ,(X)| =
r(Y) = |Ay,_,(Y)] = Tmax — 2+ 1 and Ay (X) = A4(Y) = 0 hold.

78 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

By (4.5) and (4.6), we have

|[AA(X NY)][+[Aa(X UY))| [AA(X)] +|Aa(Y)] =0,
|A4(X =Y)|[+[AaY - X)| < |Ax(X)[+]Aa(Y)] =0.

IN

Hence,
AA(XﬂY) = AA(XUY) = AA(X—Y) = AA(Y—X) = 0.

On the other hand, since function r is weakly supermodular (Condition 1), we see that
function r — |Ay,_,| is also weakly supermodular by Proposition 1.1 (recall that function

|Ay;_, | is submodular). Therefore, we have

2rmax —i+1) = r(X) = [Ay,_, (X)[+7(Y) = |Ay,_, (V)]

< max{r(X NY) - |Ay_, (X NY)|+7(X UY) - [Ay,_, (X UY)],
r(X-Y) = | A, (X=Y)| + (Y =X) = [Ay,_, (Y- X)|}.
However, 7(S) —|Ay,_, (S)| < rmax—i+1 holds for all S C V, since rpax—i+1 is the maximum
deficiency. Thus the above inequality implies at least one of the next two equalities.
r(XNY)—|Ay, ,(XNY)| = r(XUY)—|Ay, ,(XUY)| = rmax —1+1,
r(X-Y)—-|Ay,_,(X-Y) = r(Y-X)—|Apy,_,Y=X)| = rmax — 7+ 1.

Hence either X NY and X UY, or X —Y and Y — X, are violated with respect to A. O

Two sets X and Y are said to intersect if XNY #0, X —Y #0 and Y — X # () hold. An

immediate conclusion from Lemma 4.1 is the next corollary, where we omit the words “with

respect to A” for simplicity.

Corollary 4.1. Let X be a minimal violated set. Any violated set Y does not intersect X;
i.e., either X CY or X NY = 0 holds. In particular, if Y is also a minimal violated set,
then X NY =0 holds. O

Let V(A) denote the family of minimal violated sets with respect to A C U —U;_1.
Obviously, A is feasible to (IP); if and only if V(A) = (). We introduce another condition
that needs to be satisfied for our algorithm to be polynomial time.

Condition 2. The family V(A) of minimum violated sets of any set A C U — U;—1 can be

obtained in polynomial time.

We now describe the algorithm for (IP);. For this, relax each constraint z, € {0,1} to
%y > 0 in (IP);. The dual of this LP relaxation of (IP); is given by

(D); maximize > oscy hi(S)ys
subject to Z ys < w(u) uveU—Uq,
SCVweA(S)

ys >0 SCV.

4.2 Primal-dual approximation algorithm for NDRF 79

We use y, A, 7 and w to denote the dual solution, primal solution, index of iteration and
reduced weight (i.e., w(u) £ w(u) — >_sCviuea(s) Ys), respectively. The algorithm maintains
a feasible dual solution y and a primal solution A. Note that y is feasible if and only if
w(u) > 0 for all uw € U—U;_1. We list the algorithm, called PRIMAL-DUAL, in Figure 4.2.

1 y<0, A«0, j+0, w+w

2 while A is not feasible

3 J<J+1

4 V; < the family V(A) of minimal violated sets

5 if exists S € V; such that Ay_y, ,—a(S) =0 then

6 halt. (IP);, hence (IP), has no feasible solution.

7 end /* if */

8 uj<—argmin{|{S€vqu(:j)€ A(S)}‘ uEU—Ui_l—A}
9 € Se V]u\}(;j)e AB ys < ys +¢; forall S €V
10 w(u) < wlu) — 6j|{S €eVj|uce A(S)}‘ foralueU—-U;_1 - A
11 A — AU {u;}

12 end /* while */

13 for / = j down to 1

14 if A— {u} is feasible then A + A — {u,}

15 end /* for */

16 Output A (as 4;).

Figure 4.2: PRIMAL-DUAL: primal-dual approximation algorithm for (IP);

It starts with a feasible dual solution y = 0 and a primal solution A = (). If A is not
feasible to (IP);, then V(A) is computed. The dual variables for minimal violated sets in
V(A) are then increased uniformly, until some dual constraint becomes tight (i.e., becomes
equality, or equivalently, the corresponding reduced weight is zero). After that, the reduced
weights are renewed. One nonterminal of which the dual constraint is tight is included into
A. This process is repeated until A becomes feasible, or we can determine the nonexistence
of feasible solution. Finally, if a feasible A is obtained, a reverse delete step tries to remove
“unnecessary” nonterminals from A, in the reverse order as they were included. Note that y

is always feasible to D;, and €¢; > 0 holds for all j.

Let us consider the running time of algorithm PRIMAL-DUAL. We store only those
positive dual variables yg. Thus Line 1 takes O(|U|) time. Since |A| increases by one after
each while iteration, there are at most |U —U;_1| < |U| while iterations. Let 6 be the

time complexity to compute V(A). Then Lines 2, 4 and 14 can be done in 6 time, since

80 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

A is feasible if and only if V(A) = 0. It is not hard to see that Line 6 can be done in
O(|V||U]) time, since |[V(A)| < |V| by Corollary 4.1, and this dominates other lines. Hence
algorithm PRIMAL-DUAL takes O(|U|(0+ |V||U]|)) time to compute A;. Therefore, the time
complexity of algorithm ALGO-IP for (IP) is O(rmax|U|(@ + [V||U|)). This is polynomial.

4.3 Proof of performance guarantee

We follow the proof of [GGPSTW 94, WGMYV 93] for SNDP-G. Suppose that (IP) has fea-
sible solution. Then A; and y obtained by PRIMAL-DUAL are feasible to (IP); and (D),

respectively. Given next is the main lemma.

Lemma 4.2. Let A; and y be the output and the corresponding dual solution obtained at the
end of algorithm PRIMAL-DUAL, respectively. It holds that

Do w(u) < dia Y hi(S)ys. O

u€A; SCv

Before proving the lemma, let us see that it implies the claimed guarantee df, H(rmax)-

Theorem 4.1. Let optip be the optimal value of (IP). Let U,

rmax = Ui A; be the output of
algorithm ALGO-IP. It holds that

Z w(u) < df, H(rmax)optie. (4.8)

ueUTmax

Proof. This can be shown analogously to [GGPSTW 94]. We give for completeness.
Relax the constraints z,, € {0,1} in (IP) to 0 < z,, < 1 for all u € U. The dual of this
LP relaxation of (IP) is given by

(D) maximize ZSQV T(S)yS - ZuEU Zu

subject to Z ys <w(u)+ 2z, weU,
SCV:wueA(S)
ys >0, 2z, >0 SCVuel.

Let optp be the optimal value of (D). By the weak duality theorem of linear programming,
optp < optp holds. Consider the i phase. Let y be the dual solution of (D); as used in
Lemma 4.2. Let

Z ys ifueU;_q,
Zy = § SCV:wueA(S)

0 otherwise (u € U — U;_1).

4.3 Proof of performance guarantee 81

It is easy to verify that (y, z) is feasible to (D). Thus

optrp > oplp 2 ZT(S)yS—ZZu

SCv uelU
= Y rSys— >, D> ws
SCvV ueU;—1 S:ueA(S)
= D r(Sys— > 1A (S)lys
SCV SCV
= > (S~ 1Au,()ys = (rmax—i+1) Y hi(S)ys:
SCV SCV

The last equality follows because ys = 0 holds for all S with h;(S) = 0, whereas h;(S) =1
holds if and only if r(S) — |Ay,_, (S)| = "max — ¢ + 1. Therefore, by Lemma 4.2, we have

df . .opt
Z w(u) < dr—lr—lax Z hZ(S)yS < Ma
Tmax — ¢+ 1
u€EA; SCvV
Tmax
=) w = > w
UEUr max i=1 u€A;

T
max d;;axoptlp +
<X () = dhutlrmopt

This completes the proof for the theorem. O
We give the proof for Lemma 4.2 in the following, which ends at the end of this section.
Proof. First suppose w(u) > 0 for allu € U, i.e., df,,, is the maximum degree of nonterminals.
The case in which w(u) = 0 holds for some u will be treated at the end of this proof.
Let L be the number of while iterations. Notice that, for any £ =1,2,..., L, we have
L
w(w) = Z Yys = ZHS €V | Uy € A(S)}|6]
SCV:u e A(S) j=1

Therefore, it holds that

Yow =Y Y [seviluca®g = X 3 184 (S).

u€A; u€A; 1<5<L 1<j<L SeV;

On the other hand, since ys = };.g¢y, €j, we have
2 hiSws = D us =3, D g = 3,)=), Vi
SCv scv SCV j:SeV; 1<j<L S€V; 1<5<L

Thus to prove Lemma 4.2, it suffices to show

Y1848 < dhulVil, i=1,...,L (4.9)
SeV;

82 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

Actually, we can prove a stronger fact that is stated as follows. A set B C U—U;_1 is minimal
augmentation of set A C U—U,;_1, where A is infeasible to (IP);, if A C B and B is feasible
o (IP); but the removal of any w € B— A violates the feasibility. We here claim that, for
any A C U—U;_; and any minimal augmentation B of A, it holds that

> 1ABS)| < dialV(A)- (4.10)
SeV(A)

Notice that (4.9) can be obtained from (4.10), by letting A = {w1,...,w;_1} and B = AU A4,
for j =1,...,L (note |Ag(S)| > |A4,(S)|, and B is a minimal augmentation of A due to the
reverse delete step in Lines 13 — 15 of algorithm PRIMAL-DUAL).

Thus we conclude with the proof of (4.10). In the following, we fix A and B, and use
“violated set” instead of “violated set with respect to A” for simplicity. We first introduce
the notation of witness set. Let B, £ Useva) AB(S) = Usepa) A(S) N B C B—A.

Definition 4.3 (witness set). A terminal subset C C V is witness set of a nonterminal
u € By if (i) hi(C) =1, and (ii) Ap(C) = A(C)N B = {u} hold.

Notice that a witness set is a violated set (note u ¢ A). Moreover, there must exist a witness
set for any u € By, since B is feasible and the removal of u violates the feasibility. Let us
call {Cy | u € By} witness set family, where for each u € By, exactly one witness set C,, of

u is included. Hence in a witness set family, we have
Co#Cp = a ¢ Ap(Ch), b A(Cy) = a & A(Ch), b A(C,).
Lemma 4.3. There ezists a laminar (i.e., intersect-free) witness set family.

Proof. Given a witness set family, we construct a laminar witness set family.

Let C, and Cp be two intersecting witness sets with respect to a,b € By, respectively.
Since they are violated, we see that either sets C, N Cy and C, U Cy, or sets C, — Cp and
Cy — C, are also violated (by Lemma 4.1). Suppose that C, N Cy and C, U Cj, are violated.
We show that C, and C} can be replaced by C, N Cy and C, U Cj in the witness set family.

First, by the definition of violated set, C, N Cy and C, U Cy must satisfy condition (i) in
the definition of witness set. We show that condition (ii) is also satisfied. By the feasibility
of B, |Ap(CaNCh)| > 1 and |Ap(C, U Cy)| > 1 hold. However, by submodularity, we have

|Ap(CaNCp)| + |Ap(Co U Cy)| < |Ap(Cu)| + [AB(Ch)| = 2.
Hence it must be the case of

IAB(CaNCy)| = |AB(C,UCH)| = 1. (4.11)

4.3 Proof of performance guarantee 83

~

4 N\
o :
a

- J

\ = /:\\ J
. _/

Figure 4.3: It holds that a € Ag(C, N Cy) U Ag(C, U Cy).

On the other hand, C, # Cj implies a ¢ A(C}). Hence either I'(a) C Cy or T'(a) N C = 0
holds. By a € A(C,) we see that, if T'(a) C Cj then a € Ag(CyNCh); otherwise if I'(a)NCj = 0
then a € Ap(C, U Cyp). This is illustrated in Figure 4.3.

For the same reason, b € Ag(C, N Cy) U Ap(C, U Cp) holds. Combining with (4.11), we
see that Ag(C, NCy) = {a'} and Ap(C, U Cp) = {b'} hold for {a’,b'} = {a,b}. Thus we can
replace C, and Cp by C, N Cy and Cy U Cp in the witness set family.

Similarly, if C, — C, and Cy — C, are violated sets, we can use them to replace C, and
Cp. In both cases, this process decreases the total number of pairs of intersecting sets. Thus

it halts after a finite number of steps, and we then obtain a laminar witness set family. [

Let F = {V}U{C, | u € By} be the family obtained by adding {V'} to a laminar witness
set family. Let us construct a rooted tree 7 from F by the set inclusion relationship. To
avoid confusion, we use “node” in tree 7, and use “vertex” in graph G.

Tree T consists of |F| nodes: uc for C € F. The root is uy. The parent of each non-
root node u¢ is the node ucr for the minimum C’ € F satisfying C C C’. See Figure 4.4.
We associate each minimum violated set S € V(A) with the node u¢ for the minimum

uy

Vv
2@

Figure 4.4: Construct a tree from a laminar set family by the set inclusion relationship.

uc

C € F satisfying S C C. Let u(S) denote the node with which S is associated. Let
nc = |{8 € V(A) | u(S) = uc}| denote the number of minimal violated sets that are

84 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

associated with node uc. Let @ = {u¢ | n¢ > 1} be the subset of nodes with which at least

one minimal violated set is associated. Clearly we have

V() = > ne. (4.12)
uc€Q
For a non-root node uc, C is a witness set, hence violated. This implies that, if node u¢
has degree one, then C' = u(.S) holds for some S € V(A). In other words, all non-root nodes
of degree one must belong to Q). Let d(uc) denote the degree of node uc. This observation
shows that

> dluc) > 2(F| - Q) — 1.

uc#Q
On the other hand, }, . d(uc) = 2(|F| — 1) holds since 7 is a tree. Thus we have
Y dluc) =) d(uc) =) dluc) < 2Q| 1. (4.13)
uc€Q uc uc#Q
Let us next show that
Y min{dh, — 1Lncld(uc) < dhae Y ne. (4.14)
uc€Q UCEQR
For this, let X = {uc € Q|nc >dt -1} Y ={uc €Qnc=1}—-Xand Z=Q—-X -Y.

The left-hand side of (4.14) is then at most

(dhax = 1) D d(uc) + Y d(uc) + (dhax —2) Y d(uc)

uc€X uc€Y uc€Z
< (e = D(20XI+ Y] +12) = 1= Y dluc) = Y dluc))
uc€Y uc€Z
+ Y dlue) + (A —2) Y d(uc)
uc€Y uc€Z

by (4.13) and |@Q| = |X| + |Y| + |Z]. On the other hand, the right-hand side of (4.14) is at
least df,. ((df. — 1)|X| + [Y] 4+ 2|Z]). By a simple calculation, we see that (4.14) holds.

Finally, let us show that, for each u¢ € Q, it holds that
Y. 1Ap(S) < min{df., — 1,nc}d(uc). (4.15)
SeV(A)u(S)=uc

This implies (4.10), hence the lemma by combining with (4.12) and (4.14). For this, consider
an arbitrary S € V(A) and an arbitrary v € Ap(S). Let C, be the witness set of v in family

F. By the definitions of witness set and witness set family, we have the next observation.

Observation 4.1. For any set C' € F — {C,}, either C' C C, or C, C C' holds. Moreover,
C' C C, implies T'(v) N C" = 0, whereas C, C C' implies T'(v) C C". O

4.4 Implementation for SNDP 85

Since witness set is also violated set, we see that either S C C, or SN C, = () must hold.

Case 1: S C C,. Notice that there is no C' € F satisfying S C C' C C, (otherwise
T'(v) NS CT'(v) NC" = B holds by Observation 4.1, a contradiction). Hence S is associated
with Cy, ie., u(S) = uc,. Let uc be the parent of uc, in tree 7 (such uc must exist since
Cy # V). Again by Observation 4.1, we have I'(v) C C. We use an upward directed edge
(ue,,uc) (tail uc, and head uc) to represent this case for an S € V(A) and a v € Ag(S)
satisfying u(S) = uc,, where uc is the parent node of uc,.

Notice that, edge (uc,,uc) may not be unique, since there may exists other S’ € V(A)
satisfying v € Ap(S’) and u(S’) = uc,. Multiple directed edges (uc,,uc) are allowed, but
only one edge is assigned for a single set S’. By Corollary 4.1, such sets (S and all S’) must
be pairwise-disjoint subsets of C,. Hence the total number of directed edges (uc,,uc) is
bounded by min{|T'(v)|—1,n¢,} < min{d} . —1,n¢c,} (notice that |T'(v) — Cy| > 1 holds).

maXx

Case 2: SNC, = (). Similarly, we see that u(S) = uc¢ holds for the parent uc of uc,. We use
a downward directed edge (uc,uc,) to represent this case for an S € V(A) and a v € Ap(S5)
satisfying u(S) = uc, where uc is the parent node of uc,. The total number of these edges

(uc,uc,) is at most min{d}, . —1,n¢c}.

For a fixed uc € @), these two cases may be possible simultaneously. But we have seen
that, for each undirected edge {uc,uc'} in tree T, there are at most min{d;,, — 1,nc}

directed edges (uc,ucr). Thus there are at most min{d},. —1,nc}d(uc) directed edges with
tail uc. On the other hand, the way that directed edges are produced implies that the total
number of directed edges with tail uc (over all S € V(A) and all v € Apg(S)) is nothing
but ZSEV(A):u(S):uC |Ap(S)|- Hence (4.15) is shown. Therefore we have proved Lemma 4.2

under the assumption w(u) > 0 for all u € U.

It is easy to see that Lemma 4.2 also holds when there is a nonterminal u € U satisfying
w(u) = 0. To see this, notice that, we only need to show (4.9) for indices j satisfying €; > 0.
However, this implies that w(u) > @(u) > 0 for all u € Ugey, Aa;—a(S). Thus [['(u)| < dfax

holds for all u € |J sev; Ba— A(S), and the proof can be done in a straightforward manner. [

4.4 Implementation for SNDP

It is SNDP that motivated the study on NDRF. In this section, we consider to implement
algorithm ALGO-IP for SNDP.

Let G = (V,U, E) be a bipartite graph with a terminal set V' and a nonterminal set U.
We first show that SNDP can be formulated as NDRF (IP) with a requirement function r
defined by

r(S) = max{ry |s€ S, teV-S}, SCV (4.16)

86 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

A useful idea when considering nonterminal disjoint paths in bipartite graph is the fol-
lowing transformation D, which is illustrated in Figure 4.5. (A directed graph can be viewed
as a graph with edge orientation. An edge in a directed graph is denoted by (u,v) from tail

u to head v. A path in directed graph follows the edge orientation.)

Definition 4.4 (Transformation D : G — E’) Make a copy u® and add a directed edge
(u,u®) of capacity one for each nonterminal u. Replace each undirected edge {v,u} by directed

edges (v,u) and (u®,v) of capacity +oo.

VANRETR
Ul N
u
Uz
U9 i

Figure 4.5: D transforms a bipartite graph into a directed graph, where

edges (u,u®) have capacity one, and other edges have capacity oo.

Let X¢ £ {u|lu € X} for X C U. In the following, a vertex in G is also treated as a
vertex in ﬁ, whereas notations I' and A are used only with respect to G. Given an X C U,
let us consider the digraph G[Vﬁj . Let C be a set satisfying) # C C TUX U X°. We call
the set of directed edges from a vertex in C to a vertex not in C (directed) cut, and denote
it by 67(C). The capacity of cut §*(C) is the sum of capacities of edges in 67 (C).

Observation 4.2. If the capacity of a cut 61 (C) is finite, then Tx(S) £ T(S)NX C C and
(Ax(S))*NC = 0 must hold for S = CNV. Hence the capacity of (any) cut §7(C) is at
least |[Ax(C NV)|.

Observation 4.3. For any set S C V, there is a cut §1(C) that has capacity |Ax(S)| and
satisfies S = C N'V. More precisely, we can choose C = SUTx(S)U (I'x(S)—Ax(S5))°.

Now we are ready to show that SNDP can be formulated as NDRF with function r defined
by (4.16). For two terminals s,¢ € V, any k nonterminal disjoint s, ¢-paths in G[V U X] can
be viewed as an integer s, t-flow of value £ in m , and vice versa. Thus X is feasible to
SNDP (in G) if and only if the maximum s, t-flow in Cm has value at least r4; for each
pair of distinct s,¢ € V. By maxflow-mincut theorem, this equals to that, any s, t-cut §1(C)

4.4 Implementation for SNDP 87

in G[V U X] (i-e., a cut satisfying s € C and t ¢ C) has capacity at least ry;. By the above
observations, this is equivalent to that |Ax(S)| > max{ry|s € S,t € V-S} forall S C V.
Thus SNDP is equivalent to NDRF with function r defined by (4.16).

We next show that Conditions 1 and 2 are satisfied. Condition 1 can be verified in a
straightforward manner. Let us show Condition 2; i.e., the minimum violated sets with
respect to any set A C U — U; 1 (in the i"® phase) can be found in polynomial time. Again,

we use “violated set” instead of “violated set with respect to A” for simplicity.

Lemma 4.4. Let A =U;_1 UA. Let S be a minimal violated set, where r(S) = s holds for

se€eSandteV—-S. Then S = Cy3 NV holds for a minimal minimum s,t-cut 67 (Cy) in
S ——

directed graph G[V U A].

Proof. Let C = SUT 3(S)U (I ;(S) — A5(5))¢. We show C' = Cj4, which implies the lemma.
Clearly 61 (C) is an s,t-cut. Let us next show that it is a minimum s, t-cut. The capacity of
67(C) is |A ;(S)|, whereas the capacity of 67 (Cy) is at least |A ;(S")| for ' = Cyx N V. Let
us show A 5(S)] < [A4(5")] (hence [A4(S)] = A 4(5")]):

Notice that S is a violated set, implying h;(S) = 1 and A4(S) = @. Thus r(S) —
|Ay,_,(S)| = Tmax — ¢ + 1 and A4(S) = 0 hold. Hence we have

1A;(S)] = |Ap,_, ()| +]Aa(S)| = 7st — Tmax + i — 1. (4.17)
Similarly, if S’ is also a violated set, then we have
IA(8)] = 7(S") —Tmax +i—1 > Tst— rmax +i— 1. (4.18)

(Note that s € §" and ¢t € V — S’ hold.) Otherwise S’ is not violated, we then have h;(S") =1
and Ay(S") #0, or hi(S") =0 (hence 7(S") — Ay, ,(S)| < rmax — 7). In both cases, it holds
that

|AA(S')| > r(S") — rmax +1 > Te — Tmax + i (4.19)

Thus we have |A ;(S)| < |A4(S")|, which implies that §7(C) is a minimum s,¢-cut. The
above proof shows that S’ must be a violated set. Hence S C S’ by Corollary 4.1, which
implies C' C Cy. Since Cs; is minimal, we have C' = Cy. O

Lemma 4.4 shows that, we can identify the minimal violated sets by computing a minimal
minimum s, t-cut in G[V U A] for each pair of s,¢ € V, and checking if they are violated and
minimal among these O(|V'|?) cuts. Tt is well known that the (unique) minimal minimum s, ¢-
cut can be found by one maxflow computation in O(p?) time for a p-vertices directed graph
([GT 88]). Thus the time for finding minimal violated sets is dominated by O(|V|?) maxflow
computations. Hence algorithm ALGO-IP can have O(rmax|U||V|2(|V|+|U])?) running time.

We summary the arguments so far as the next theorem.

88 CHAPTER 4 PRIMAL-DUAL ALGORITHM FOR SNDP

Theorem 4.2. The SNDP problem can be approzimated within a factor of d . H(Tmax) in
O(rmaxmn?(n +m)3) time, where df,,. is the mazimum degree of nonterminals with positive
weight, Tmax 18 the mazimum requirement, m and n are the numbers of nonterminals and

terminals, respectively.]

4.5 Remarks

We note that the guarantee df,, in Lemma 4.2 of algorithm PRIMAL-DUAL is essentially
tight (a tight example will be given later). Nevertheless, it can deliver optimal solutions for
some problem classes. For instance, it is easy to see that algorithm PRIMAL-DUAL simulates
Kruskal’s algorithm [Kru 56] for MST (minimum spanning tree problem) in graphs. It also
simulates Dijkstra’s algorithm [Dij 59] for SPP (shortest path problem) in graphs. Thus at
least for MST and SPP in graphs, algorithm PRIMAL-DUAL finds optimal solutions. See
[GW 97] for more details.

Let us consider the shortest path problem in hypergraphs, i.e., SNDP with rg = 1 for
two given terminals s and ¢ (0 for all other pairs of vertices). It can be solved by Dijkstra’s

algorithm in the next manner.

Transform the input bipartite graph into a directed graph by D as defined in
Definition 4.4. Assign each directed edge (u,u®) for a nonterminal v with the
same weight of u, and assign other edges with weight 0. Then apply Dijkstra’s
algorithm to the resulting directed graph. Finally, transform the output (directed)
path to a path in the input bipartite graph in a straightforward manner.

It is easy to see that the above procedure finds an optimal solution. However, it is
nothing but the procedure of algorithm PRIMAL-DUAL. Hence PRIMAL-DUAL can find
an optimal solution for the shortest path problem in hypergraphs. We note that this problem

is equivalent to finding a shortest path in given node-weighted graph.
We now show a tight example for Lemma 4.2. See Figure 4.6.

There are d + p terminals vy, vs,...,v44p. Terminal v; is connected to other terminals
via cost 1 + € nonterminals (hollow triangles) for a small ¢ > 0. Terminals vg,...,vq are
connected to Vg1, ..., V44p via p cost-d degree-d nonterminals (solid triangles), in such a way
that every v;, i = 2,...,d, is a neighbor of all the p nonterminals (thus for any one of these
p nonterminals, there is a unique neighbor v; of it with d +1 < j < d + p). The objective is
to find a minimum cost set of nonterminals to connect terminals vo,. .., v44p.

Notice that, at the beginning of the algorithm PRIMAL-DUAL, the minimal violated set
family is V(0) = {{v2},...,{vd+p}}. Thus the algorithm will assign the dual variables of the

singleton sets {v; } to one, 2 <i < d+p. As a result, all the nonterminals of cost d are picked.

4.5 Remarks 89

terminal
to be connected

(O other terminal
A nonterminal
weight d

nonterminal
weight 1 + €

Figure 4.6: A tight example for Lemma 4.2.

Hence the output has cost dp. However, the optimal solution is the set of nonterminals with

cost 1 + e. Thus the guarantee is as bad as Wj%, which tends to d when p — oo and
e — 0.

We note that, Goemans et al. [GGPSTW 94] have shown that the performance guarantee
2H (rmax) for SNDP-G is tight up to a factor of 2. It is thus interesting to know whether
an algorithm with improved performance guarantee can be developed, e.g., via an iterative
rounding process for SNDP-G and SNDP-G™ as used by in [Jain 98, FJW 01]. This question
is still open. But we will see in the next chapter that improved guarantee can be obtained

by a very simple transformation.

90

CHAPTER 4

PRIMAL-DUAL ALGORITHM FOR SNDP

Chapter 5

Another Approach for SNDP

In this chapter, we consider to design approximation algorithms for SNDP (survivable network
design problem) on the basis of algorithm designed for simpler versions, i.e., SNDP-G or
SNDP-G™. The approach is very simple. Given an instance of SNDP, we define an instance
of SNDP (or SNDP-G™") in a graph with only edge weights. After solving it by a known
(approximation) algorithm, we convert the output to a feasible solution of the original problem
of SNDP. Finally, we show that a similar approach is also applicable for NDRF (network

design with requirement function).

5.1 Introduction

Recall that SNDP, SNDP-G and SNDP-G™T are formulated as follows respectively.

Problem 5.1 (SNDP). Given a bipartite graph G = (V,U, E) with a nonterminal weight
function w : U — R™T and connectivity requirements rg for each pair of distinct terminals
s,t €'V, find a minimum weight subset U* C U such that there are at least rs nonterminal
disjoint paths between each pair of s,t € V in the subgraph G* = G[V UU*] of G.

Problem 5.2 (SNDP-G). Given a graph G = (V,E) with an edge weight function w :
E — R™ and connectivity requirements rg for each pair of distinct vertices s,t € V, find a

minimum weight subset E* C E such that there are at least g edge disjoint paths between
each pair of s,t € V in the subgraph G* = (V, E*) of G.

Problem 5.3 (SNDP-G*). Given a bipartite graph G = (V,U, E) with a terminal set V,
a nonterminal set U, an edge weight function w : E — R™ and connectivity requirements rg
for each pair of distinct terminals s,t € V, find a minimum weight edge E* C E such that

there are at least rs; nonterminal disjoint paths between each pair of s,t € V in the subgraph

G* = (VUU,E*) of G.

Notice that the original definition of SNDP-G™ is slightly different (see Section 4.1).

92 CHAPTER 5 ANOTHER APPROACH FOR SNDP

5.2 Algorithms for SNDP

Given an instance Iyg = (G=(V,U, E),w,r) of SNDP, in order to employ an approximation
algorithms for SNDP-G (or for SNDP-G ™), we first define an edge weight function w according
to the nonterminal weight function w, which is illustrated in Figure 5.1.

Definition 5.1 (weight function w). Given an instance Iyq = (G = (V,U, E),w,r) of
SNDP, assign each edge e € 6(u) with weight w(e) = %:) for each uw € U with degree d,,.

>

Figure 5.1: Construction of the edge weight function @ from nonterminal weight function w.

5.2.1 Approximating SNDP by employing algorithm for SNDP-G

Given an instance Iyg = (G = (V,U, E), w,r) of SNDP, we define an instance Iz = (G' =
(VUU, E),w,r") of SNDP-G, where graph G’ is actually the same as G, and the edge weight
function @ is defined in Definition 5.1. The connectivity requirement r’ is given by
. rst if 8,1 E.V, (5.1)
0 otherwise.
Suppose that I is solved (or approximated) by a known algorithm. We construct from the
output to a feasible solution of Iyg. The resulting algorithm, called SNDP-G-TO-SNDP, is
given in Figure 5.2.
Clearly, algorithm SNDP-G-TO-SNDP runs in polynomial time if so does the algorithm
used in Step 2. Let us now prove the correctness and derive its performance guarantee. Again,
given a bipartite graph, we use dpyax and df. . to denote the maximum degree of nonterminals

max

and of nonterminals with positive weights, respectively. We have the next theorem.

Theorem 5.1. Algorithm SNDP-G-TO-SNDP finds a feasible solution U’ of the given in-
stance Igg of SNDP if dmax < 3. If an a-approzimation algorithm is used in the second step,

+
then the weight of U' is at most d"‘%a times of the optimum.

5.2 Algorithms for SNDP 93

Input: An instance Iyg = (G=(V,U, E),w,r) of SNDP.
Output: A feasible solution U’ C U.

1 Construct the instance I = (G'=(V UU, E),w,r") of SNDP-G.
2 Apply an approximation algorithm (for SNDP-G) to Ig.

Let E' C E be the output subset of edges.
3 Output U’ = {u €U | |E'N§(u) > 2}.

Figure 5.2: Algorithm SNDP-G-TO-SNDP.

Proof. Consider two distinct terminals s,¢ € V. Since E' is feasible to I, there are at least
rst edge disjoint paths in graph G' = (V U U, E') (i.e., graph G) between s and ¢. Notice
that, for any nonterminal 4 € U in an s, ¢t-path, there are exactly two edges in the path that
are incident to u (i.e., in 6(u)). Since each nonterminal has degree at most three, this implies
that edge disjoint s, t-paths are also nonterminal disjoint. Therefore, by the definition of U’,
there exist at least r5; nonterminal disjoint paths in graph G[V UU’] between s and ¢, showing
the first part of theorem.
Now let U* C U be an optimal solution of the original instance Igg of SNDP. Let

E* = {e€ E|enW"* #0}.

Notice that @w(E*) = w(U*) holds by the definition of w. Since graph is bipartite, we see
that nonterminal disjoint paths are also edge disjoint. Thus edge subset E* is feasible to the
instance I of SNDP-G. Since we use an q-approximation algorithm in the second step, the

weight of E’ is thus at most « times the weight of E*; i.e.,
W(E) < aw(E*) = aw(U*).

By the definition of U’, a nonterminal u (of weight w(u)) is included in U’ if and only if there

are at least two edges (with weight %:)) in E' N §(u). Thus we have

d dt
’LU(UI) S max,u—](El) S IIZIan(U*)

(Note that nonterminals with zero weights can be omitted in the weight of U’). O

In particular, since there is a 2-approximation algorithm for SNDP-G ([Jain 98]), The-
orem 5.1 shows that SNDP with dy,,x < 3 can be approximated within a factor of dj;m in
polynomial time. In the next subsection, we will show that, this result can be extended to

the general SNDP without restriction on dpmax.

94 CHAPTER 5 ANOTHER APPROACH FOR SNDP

5.2.2 Approximating SNDP by employing algorithm for SNDP-G*

Given an instance Iyg = (G = (V,U, E),w,r) of SNDP, we consider to approximate it by
employing an approximation algorithm for SNDP-G ™. The resulting algorithm, called SNDP-
G*-TO-SNDP, is given in Figure 5.3.

Input: An instance Iyg = (G=(V,U, E),w,r) of SNDP.
Output: A feasible solution U” C U.

1 Construct instance Ig+ = (G=(V,U, E),w,r') of SNDP-G™T,

where V is the terminal set and U is the nonterminal set.
Functions @ 7’ are defined by Definition 5.1 and (5.1), respectively.
2 Apply an approximation algorithm (for SNDP-G™) to I;+.

Let E” be the output subset of edges.

3 Output U" = {u eU | |E"NG(u)| > 2}.

Figure 5.3: Algorithm SNDP-GT-TO-SNDP

Theorem 5.2. Algorithm SNDP-G*-TO-SNDP finds a feasible solution U" of the input
instance I'gg of SNDP. If a -approximation algorithm is used in the second step, then the

+
weight of U" is at most % times of the optimum.

Proof. Since E" is feasible to the instance I;+ of SNDP-G*, we see that, there are at least
rs¢ nonterminal disjoint paths in graph (V,U, E”) between each pair of distinct terminals
s,t € V. For any nonterminal u € U in an s, t-path, there are exactly two edges in the path
that are incident to u (i.e., in d(u)). Thus set U” is feasible to Iyq.

Now let U* C U be an optimal solution of Iyg. Define E* = {e € E | eNW* # (}. The
feasibility of U* to Iy implies the feasibility of E* to the instance I;+ of SNDP-G™. It is

then easy to see the rest of the theorem. O

In particular, we can use the 2-approximation algorithm for SNDP-G* ([FJW 01]), and

hence obtain the next corollary.

Corollary 5.1. SNDP can be approzimated within a factor of df,. in polynomial time. O

5.3 Extensions to NDRF

Let us consider to generalize the simple approach in the previous section to NDRF. Let NDRF-
G be the graph restriction of hypergraph-based formulation of NDRF. The formulation of
NDRF and NDRF-G are given in the following.

5.3 Extensions to NDRF 95

Problem 5.4 (NDRF). Given a bipartite graph G = (V,U, E) with a terminal set V, a
nonterminal set U, a set E of edges between V and U, a nonterminal weight function w :
U — R* and a requirement function r : 2¥ — Zt, NDRF is defined as follows.

minimize Z w(w) Ty (5.2)
uelU

subject to z(A(S)) > r(S) VS CV, (5.3)
zy € {0,1} Vu € U. (5.4)

Recall that A(S) = T(S) NT(V —S), where I'(S) = {v € S | Je,v € e,eN S # 0} is the set
of neighbors of S.

Problem 5.5 (NDRF-G). Given a graph G = (V, E) with a vertez set V, an edge set E,
an edge weight function w : E — RT and a requirement function r : 2V — Z*, NDRF-G is
defined as follows.

min Zw(e)we (5.5)
eck

s.t. z(0(S)) > r(S) VS CV, (5.6)
z. € {0,1} Vee€ E. (5.7)

Recall that §(S) = {e | 0 # eN S # e} is the set of edges incident to S.

5.3.1 Approximating NDRF by employing algorithm for NDRF-G

Define a requirement function 7 : 2¥YV — Z+ by
F(S) £ r(SNV) SCVUU. (5.8)

Given an instance Igg = (G = (V,U,E),w,r) of NDRF satisfying dmax < 3, we consider

the next algorithm, called NDRF-G-TO-NDRF, in Figure 5.4. Notice that since there is no
conception of path, the third step is different from SNDP-G-TO-SNDP.

We note that, in order to apply one of the algorithms in [GGW 93, GGPSTW 94, Jain 98,
WGMYV 93] in the second step, certain conditions must be satisfied. As one of such conditions,

it easy to see that if r is weakly supermodular, then so is 7.

Again, algorithm NDRF-G-TO-NDRF runs in polynomial time if and only if so does the

algorithm used in the second step. We have the next theorem.

Theorem 5.3. Algorithm NDRF-G-TO-NDRF finds a feasible solution U’ of the input in-
stance Igg of NDRF if dmax < 3. If an a-approzimation algorithm is used in the second
step, then the weight of U' is at most d, « times of the optimum.

96 CHAPTER 5 ANOTHER APPROACH FOR SNDP

Input: An instance Iy = (G=(V,U, E),w,r) of NDRF.
Output: A feasible solution U’ C U.

1 Construct instance I = (G'=(V UU, E),w,7) of NDRF-G,

where functions @ and 7 are given by Definition 5.1 and (5.8) respectively.
2 Apply an approximation algorithm (for NDRF-G) to Ig.

Let E' C E be the output subset of edges.

3 Output U’ = {u eU| E'Né(u) # (Z)}.

Figure 5.4: Algorithm NDRF-G-TO-NDRF

Proof. We first show that U’ is feasible to Iyg; i.e., |[A(S)NU'| > r(S) holds for all S C V.
For this, let

S = SU{ueA(S) | It ts €S, s.b. t1 # to and {t1,u), {t2,u} € E’}.

It is easy to see that |§(S) N E’| = |A(S)NU’| holds (note that the degree of any nonterminal
is at most 3). Therefore, we obtain |A(S) N U'| = |6(5) N E'| > 7(S) = r(9).
Similarly to the proof of Theorem 5.1, the rest of the theorem can be shown easily. [

5.3.2 Approximating NDRF by employing algorithm for NDRF-G*

It is not hard to see that, NDRF with d;f,, = 2 is a generalization of SNDP-G'. Let us
call it NDRF-G". Given an instance Iyg = (G = (V,U, E),w,r) of NDRF, we consider to
approximate Iyg by employing an algorithm for NDRF-G*.

Figure 5.5: Construction of the weight function w from the weight function w.

For this, we first define a nonterminal weight function @ as follows (see Figure 5.5). For

all nonterminals u € U with weights w(u) > 0 of degree d,, > 3, we replace each edge

5.3 Extensions to NDRF 97

e = {t,u} € E with three edges e; = {t,a.}, e2 = {ac, b} and e3 = {be, u}, introducing a
new nonterminal g, and a new terminal b.. Let the weight of each nonterminal a, be %:),
and the weight of each nonterminal u be zero. Notice that df,,, = 2 holds in the resulting
bipartite graph. Let @ denote the resulting nonterminal weight function, and V, U and E

denote the resulting terminal set, nonterminal set and edge set, respectively.

Define a connectivity requirement function 7 by 7(S) £ r(SNV) for all S C V. Function
7 is weakly supermodular if so is r. In this way, we can convert the instance Iy of NDRF
to an instance Ig+ = (G = (V,U,E),w,7) of NDRF-GT. We consider the next algorithm,
called NDRF-GT-TO-NDRF, in Figure 5.6.

Input: An instance Iyg = (G=(V,U, E),w,r) of NDRF.
Output: A feasible solution U" C U.

1 Construct the instance Ig+ = (G=(V,U, E),w,7) of NDRF-G™.
2 Apply an approximation algorithm on Ig+.

Let U' C U be the output subset of nonterminals.
3 Output U" = {u € U | a, € U holds for some e = {t,u} € E}

Figure 5.6: Algorithm NDRF-G*-TO-NDRF

The correctness and performance guarantee of algorithm NDRF-GT-TO-NDRF are shown
in the next theorem. The proof can be done similarly to the proof of Theorems 5.2 and 5.3,
thus is omitted. We note that there is an approximation algorithm [JMVW 99] developed for
NDRF-G™ (under certain conditions). The approximation algorithm ALGO-IP in Chapter 4
also treats NDRF-G™ as a special case.

Theorem 5.4. Algorithm NDRF-G'-TO-NDRF finds a feasible solution U" to the input
instance Igg of NDRF. If an B-approzimation algorithm is used in the second step, then the
weight of U" is at most df,. 3 times of the optimum. O

98

CHAPTER 5

ANOTHER APPROACH FOR SNDP

Chapter 6

Conclusion

6.1 Approximation algorithms for MPP

In this thesis, we present a simple and unified framework for developing and analyzing ap-
proximation algorithms for various multiway partition problems in submodular systems. We
formulate them as MPP (multiway partition problem), or MPP-NT (multiway partition prob-
lem with no target), and calculate a k-partition by greedily increasing the size of partition one
per phase (algorithms GSA and M-GSA), or two per phase (algorithm GSA2 and M-GSA2).
The approach used in this thesis for proving performance guarantees is unified, efficient and

flexible. We summarize the obtained results in the next two tables.

Table 6.1: Approximation results obtained in this thesis for MPP-NT.

Problems Guarantee Running time Remark
k-PPG 22 O(kn(m + nlogn)) * simpler proof
k-PPG ~2-21 O(kmn3log(n?/m))) improved guarantee
k-PPH-T1 | (1 —)di.. ¥ | O(kn(nlogn + D)) ¥ | fast, simpler and improved
k-PPH-T2 2—-2 O(kn(nlogn + D)) simpler and faster
k-PPH-T3 2 — % O(kn(nlogn + D)) | fast, simpler and improved
k-PPSSS 22 Ok|VPe) 1 simpler proof
k-PPMSS!! 22 O(k|V [20) new
k-PPSS k-1 O(k|V|30) new

“m: number of edges; n: number of vertices.
22 forodd k>3, and2— 3=2 =2 2 4 L for even k > 2.
tqt,.: maximum degree of hyperedges with positive weights.

$D: sum of degrees of hyperedges.

19: time bound of the oracle for function f.
IThe same result holds for submodular system (V, f) satisfying f(0) > 0 and f(V) > f(S),0 #S C V.

100 CHAPTER 6 CONCLUSION

We note that, while algorithm GSA can be done in polynomial time, implementing algo-
rithm GSA2 in polynomial time is still open for most MPP-NTs. Nevertheless, assuming that
polynomial time implementation are available, we have derived the performance guarantees
of GSA2 for some MPP-NTs. We summarize them in Table 6.2.

Table 6.2: Performance guarantees of algorithm GSA2 for MPP-NT (assuming the existence

of polynomial time implementations).

Problems Guarantee
k-PPH-T1 | ~ (1 — &) min{k, df,,} *
k-PPH-T2 ~2-21
k-PPH-T3 | =~2-32ifd},, =21}
k-PPH-T3 2—-2ifdf, >3
k-PPSSS 2-2
k-PPMSS} 2-3
k-PPSS 1%
“(1 — 5%) min{k, df} for an odd k > 3, and (1 — 524=5y) min{k, dia} for an even k > 2.
f2 — 2 for an odd k > 3, and 2 — 2%=1 =2— 2 4 L for an even k > 2.
j;2—%foranoddk23, and2—2§:; =2—%+k;—_kforanevenk22.

$The same result holds for submodular system (V, f) satisfying f(@) > 0 and (V) > f(S),0 #S C V.

It seems difficult to show the performance guarantee for higher order greedy algorithms
that increase the size of partition by three or more per phase. This is because analogous

properties of those in Lemmas 2.1, 3.1 and 3.2 no longer hold even for k-PPG.

On the other hand, we have seen that, the performance guarantee 2 — % of algorithm
GSA for k-PPSSSis the best possible for the greedy splitting approach. That is, for any fixed
j > 1, there is an instance of k-PPSSS for which one cannot get a performance guarantee
better than 2 — %, even by greedily increasing the size of partition j per phase. This seems
quite different from k-PPG.

We also note that it is still open to solve k-PPSS in polynomial time for k£ > 3. It is of
further interest to consider k-PPSS and the extensions of greedy splitting approach.

Algorithms GSA and GSA2 can be modified to apply to general MPP. We have shown that
the modified GSA (M-GSA) can be implemented in polynomial time, whereas the modified
GSA2 (M-GSA2) do not have polynomial running time in general unless P=NP. For the
problem of k-TPG, using algorithm M-GSA, we give a simple proof for the result of [MNI 93].
For other MPP problems except for k-MCP and k-TPH-T1 with |T'| = k, we have shown new
results by algorithm M-GSA. We summarize these results in Table 6.1.

6.2 Approximation algorithms for SNDP 101

Table 6.3: Approximation results obtained in this thesis for general MPP.

Problems Guarantee Remark
k-TPG 2-2/k simpler proof
k-TPH-T1 (1 —1/k) min{k,df, .} new
k-TPH-T2, k-TPH-T3, k-TPMSS?, k-TPSSS 2-2/k new
k-TPSS k-1 new

“The same result holds for submodular system (V, f) satisfying f(#) > 0 and f(V) > f(S),0 S C V.

6.2 Approximation algorithms for SNDP

We have designed an approximation algorithm for SNDP (survivable network design prob-
lem). It is based on the primal-dual algorithm for SNDP-G (SNDP in graphs) established
in [GGPSTW 94, WGMYV 93]. As a result, we have shown that a performance guarantee of

d .« H(rmax) can be obtained, where d}

o ax 18 the maximum degree of hyperedges with positive

weights, rmax is the maximum connectivity requirement, and H(k) = 1 + % + -+ % Like
the algorithms in [GGPSTW 94, WGMYV 93], our algorithm is applicable to a more general
problem NDRF (network design problem with requirement function), provided that certain

conditions are satisfied.

We have also shown how to utilize an approximation algorithm for SNDP-G or SNDP-
G* (SNDP with d,

maXx

= 2) to approximate SNDP. In particular, we have shown that SNDP

can be approximated within a factor of d

T ax 10 polynomial time. This is a much stronger

performance guarantee than the primal-dual method based approximation algorithm, but
may be of less practical value since it requires to solve the LP relaxation of SNDP.

102 CHAPTER 6 CONCLUSION

Bibliography

[AKR 95]

[AMO 93]

[Bar 00]

[Bel 57]

[Ben 95]

[BTV 99]

[BG 97]

[CCPS 98]

[CKR 98]

[CGKLS 97]

[CO 96]

A. Agrawal, P. Klein, and R. Ravi, “When Trees Collide: An Approximation
Algorithm for the Generalized Steiner Tree Problem in Networks,” SIAM
J. Comput., vol. 24, no. 3, pp. 440-456, 1995.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows. Prentice-Hall,
1993.

F. Barahona, “On the k-cut Problem,” Oper. Res. Lett., vol. 26, pp. 99-105,
2000.

R. E. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.

A. A. Benczur, “Counterexamples for Directed and Node Capacitated Cut-
Trees,” SIAM J. Comput., vol. 24, no. 3, pp. 505-510, 1995.

D. Bertsimas, C. P. Teo, and R. Vohra, “Analysis of LP Relaxations for
Multiway and Multicut Problems,” Networks, vol. 34, pp. 102-114, 1999.

M. Burlet and O. Goldschmidt, “A New and Improved Algorithm for the
3-cut Problem,” Oper. Res. Lett., vol. 21, pp. 225-227, 1997.

W. J. Cook, W. H.Cunningham, W. R. Pulleyblank, and A. Schrijver, Com-
binatorial Optimization. New York, Wiley, 1998.

G. Calinescu, H. Karloff, and Y. Rabani, “An Improved Approximation Al-
gorithm for Multiway Cut,” in Proc. STOC 1998. Full paper in J. Comput.
System Sci. 60, no. 3, pp. 504-574, 2000.

C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein,
“Experimental Study of Minimum Cut Algorithms,” in Proc. SODA 1997,
pp- 324-333.

S. Chopra and J. H. Owen, “Extended Formulations for the A-cut Problem,”
Math. Program., vol. 73, no. 1, Ser. A, pp. 7-30, 1996.

104

BIBLIOGRAPHY

[CO 99]

[CR 91]

[Col 87]

[Cun 85]

[Cun 91]

[CT 99]

[DIPSY 83]

[DMM 97]

[Dij 59]

[Don 88]

[DSR 00]

[EFS 99]

[ES 94]

[ET 75|

S. Chopra and J. H. Owen, “A note on Formulations for the A-Partition
Problem on Hypergraphs,” Discrete Appl. Math., vol. 90, pp. 115-133, 1999.

S. Chopra and M. R. Rao, “On the Multiway Cut Polyhedron,” Networks,
vol. 21, pp. 51-89, 1991.

C. J. Colbourn, The Combinatorics of Network Reliability. Oxford Univ.
Press, 1987.

W. H. Cunningham, “Optimal Attack and Reinforcement of a Network,”
J. Assoc. Comput. Mach., vol. 32, no. 3, pp. 549-561, 1985.

W. H. Cunningham, The Optimal Multiterminal Cut Problem, in DIMACS
Series in Disc. Math. and Theor. Comput. Sci. vol. 5, pp. 105-120, 1991.

W. H. Cunningham and L. Tang, “Optimal 3-Terminal Cuts and Linear
Programming,” in Proc. IPCO 1999, LNCS 1610, pp. 114-125.

E. Dalhaus, D. S. Johnson, C. H. Papadimitriou, P. Seymour, and M. Yan-
nakakis, “The Complexity of Multiway Cuts,” extended abstract, 1983. “The
Complexity of the Multiterminal Cuts,” SIAM J. Comput., vol. 23, no. 4,
pp- 864-894, 1994.

M. Dell’Amico, F. Maffioli, and S. Martello (eds.), Annotated Bibliographies
in Combinatorial Optimization. Wiley, 1997.

E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959.

W. E. Donath, “Logic Partitioning,” in B. T. Preas and M. J. Lorenzetti
(eds.), Physical Design Automation of VLSI Systems, Benjamin Cummings,
Menlo Park, CA, pp. 65-86, 1988.

D. Z. Du, J. M. Smith, and J. H. Rubinstein (eds.), Advances in Steiner
Trees. Kluwer Academic Pub. 2000.

P. Erdos, A. Frank, and L. A. Székely, “Minimum Multiway Cuts in Trees,”
Discrete Appl. Math., vol. 87, pp. 67-75, 1998.

P. Erdos and L. A. Székely, “On Weighted Multiway Cuts in Trees,” Math.
Program., 65, pp. 93—105, 1994.

S. Even and R. E. Tarjan, “Network Flow and Testing Graph Connectivity,”
SIAM J. Comput., 4, pp. 507-518, 1975.

BIBLIOGRAPHY 105

[Fer 98]

[Fra 97]

[Fuj 91]

[FF 56]

[FIW 01]

[FK 00]

[FT 87]

[Gab 95]

[GGPSTW 94]

[GGU 72]

[GGW 93]

[GH 61]

[GH 88]

C. G. Fernandes, “A Better Approximation Ratio for the Minimum Size k-
Edge-Connected Spanning Subgraph Problem,” J. Algorithms, vol. 28, no. 1,
pp. 105-124, 1998.

A. Frank, Matroids and Submodular Functions, in [DMM 97], pp. 65-80.

S. Fujishige, Submodular Functions and Optimization (Annals of discrete
mathematics 47). Elsevier, North-Holland, 1991.

L. R. Ford and D. R. Fulkerson, “Maximal Flow through a Network,” Canad.
J. Math., no. 8, pp. 399-404, 1956.

L. Fleischer, K. Jain, and D. P. Williamson, “An Iterative Rounding 2-
Approximation Algorithms for the Element Connectivity Problem,” in Proc.
FOCS, 2001 (to appear).

A. Freund and H. Karlof, “A Lower Bound of 8/(7+ %) on the Integrality Ra-
tio of the Caalinescu-Karloff-Rabani Relaxation for Multiway Cut,” Inform.
Process. Lett., 75, pp. 43-50, 2000.

M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in Im-
proved Network Optimization Problems,” J. Assoc. Comput. Mach., vol. 34,
no. 3, pp- 596-615, 1987.

H. N. Gabow, “A Matroid Approach to Finding Edge Connectivity and Pack-
ing Arborescences,” J. Compu. System Sci., vol. 50, no. 2, pp- 259-273, 1995.

M. X. Goemans, A. V. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and
D. P. Williamson, “Improved Approximation Algorithms for Network Design
Problems,” in Proc. SODA 1994, pp. 223-232.

M. R. Garey, R. L. Graham, and J. D. Ullman, “Worst Case Analysis of
Memory Allocation Algorithms,” in Proc. STOC 1972, pp. 143-150.

H. N. Gabow, M. X. Goemans, and D. P. Williamson, “An Efficient Approxi-
mation Algorithm for the Survivable Network Design Problem,” in Proc. 8rd
MPS Conf. on IPCO 1993. Full paper in Math. Program., vol. 82, no. 1-2,
Ser. B, pp. 12-40, 1998.

R. E. Gomory and T. C. Hu, “Multi-Terminal Network Flows,” J. Soc. Indust.
Appl. Math., vol. 9, no. 4, pp. 551-570, 1961.

0. Goldschmidt and D. S. Hochbaum, “A Polynomial Algorithm for the k-cut
Problem for fixed k,” in Proc. FOCS 1988. Full paper in Math. Oper. Res.,
vol. 19, no. 1, pp. 24-37, 1994.

106

BIBLIOGRAPHY

[GH 90]

[GJ 79]

[GIS 76]

[GK 99

[GLS 88]

[GP 88]

[GR 95]

[GT 88]

[GVY 94]

[GW 92]

[GW 97]

[Gus 83]

[Had 95]

0. Goldschmidt, and D. S. Hochbaum, “Asymptotically Optimal Linear Al-
gorithm for the Minimum k-cut in a Random Graph,” SIAM J. Discrete
Math., vol. 3, no. 1, pp. 58-73, 1990.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some Simplified NP-
complete Graph Problems,” Theoret. Comput. Sci., vol. 1, no. 3, pp. 237-267,
1976.

S. Guha and S. Khuller, “Improved Methods for Approximating Node
Weighted Steiner Trees and Connected Dominating Sets,” Inform. and
Compu., 150, pp. 57-74, 1999.

M. Grotschel, L. Lovasz, and A. Schrijver, Geometric Algorithms and Com-
binatorial Optimization. Springer, Berlin, 1988.

G. Gallo and S. Pallottino, “Shortest Paths Algorithms,” in Annals of Oper-
ations Research 13, pp. 3-79, 1988.

M. X. Goemans and V. S. Ramakrishnan, “Minimizing Submodular Func-

tions over Families of Sets,” Combinatorica 15, pp. 499-513, 1995.

A. V. Goldberg and R. E. Tarjan, “A New Approach to the Maximum Flow
Problem,” J. Assoc. Comput. Mach., vol. 35, no. 4, pp. 921-940, 1988.

N. Garg, V. V. Vazirani, and M. Yannakakis, “Multiway Cuts in Directed
and Node Weighted Graphs (Extended Abstract),” in Proc. ICALP 1994,
LNCS 820, pp. 487-498.

M. X. Goemans and D. P. Williamson, “A General Approximation Technique
for Constrained Forest Problems,” in Proc. SODA 1992. Full paper in SIAM
J. Comput., vol. 24, no. 2, pp. 296-317, 1995.

M. X. Goemans and D. P. Williamson, The Primal-Dual Method for Ap-
proximation Algorithms and its Application to Network Design Problems, in
[Hoc 97], pp. 144-191.

D. Gusfield, “Connectivity and Edge-Disjoint Spanning Trees,” Inform. Pro-
cess. Lett., vol. 16, no. 2, pp. 87-89, 1983.

S. W. Hadley, “Approximation Techniques for Hypergraph Partitioning Prob-
lems,” Discrete Appl. Math., vol. 59, pp. 115-127, 1995.

BIBLIOGRAPHY 107

[Har 93]

[Har 98]

[He 91]

[Hoc 97]

[HO 94]

[HRW 92]

[HS 85]

[Hu 69]

[Tba 87]

[IFF 00]

[Jain 98]

[IMVW 99

[Joh 74]

D. Hartvigsen, “Minimum Path Bases,” J. Algorithms, vol. 15, no. 1, pp. 125—
142, 1993.

D. Hartvigsen, “The Planar Multiterminal Cut Problem,” Discrete Appl.
Math., vol. 85, pp. 203-222, 1998.

X. He, “An Improved Algorithm for the Planar 3-Cut Problem,” J. Algo-
rithms, vol. 12, no. 1, pp. 23-37, 1991.

D. S. Hochbaum (ed.), Approzimation Algorithms for NP-hard Problems.
PWS, 1997.

J. Hao and J. B. Orlin, “A Faster Algorithm for Finding the Minimum Cut
in a Directed Graph,” J. Algorithms, vol. 17, no. 3, pp. 424-446, 1994.

F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem
(Annals of Discrete Mathematics, Vol 53), North Holland, 1992.

D. S. Hochbaum and D. B. Shmoys, “An O(|V|?) Algorithm for the Planar
3-Cut Problem,” STAM J. Algebraic Discrete Methods, vol. 6, no. 4, pp. 707—
712, 1985.

T. C. Hu, Integer Programming and Network Flows. Addison-Welsey Pub-
lishing Co., Reading, MA, 1969.

T. Ibaraki, Enumerative Approaches to Combinatorial Optimization. Annals
of Operations Research, Vol. 10, 11, Baltzer, Basel, 1987.

S. Iwata, L. L. Fleischer, and S. Fujishige, “A Combinatorial, Strongly Poly-
nomial Time Algorithm for Minimizing Submodular Functions,” in Proc.
STOC 2000, pp. 97-106.

K. Jain, “A Factor 2 Approximation Algorithm for the Generalized Steiner
Network Problem,” in Proc. FOCS 1998. Full paper in Combinatorica, vol.
21, no. 1, pp. 39-60, 2001.

K. Jain, I. Mandoiu, V. V. Vazirani, and D. P. Williamson, “A Primal-
dual Schema Based Approximation Algorithm for the Element Connectivity
Problem,” in Proc. SODA 1999, pp. 484-489.

D. S. Johnson, “Approximation Algorithms for Combinatorial Problems,” J.
Comput. System Sci., 9, pp- 256278, 1974.

108

BIBLIOGRAPHY

[JRT 95]

[JRT 00]

[Kap 96]

[Kar 96]

[Karp 72]

[Khu 97]

[KK 98]

[KKSTY 99]

[KR 93]

[KR 97]

[Kru 56]

[KS 96]

[KV 00]

M. Jiinger, G. Reinelt, and S. Thienel, Practical Problem Solving with Cut-
ting Plane Algorithms in Combinatorial Optimization, in W. Cook, L. Lovasz
and P. Seymour (eds.), Combinatorial Optimization. AMS, pp. 111-152, 1995.

M. Jinger, G. Reinelt, and S. Thienel, “Practical Performance of Efficient
Minimum Cut Algorithms,” Algorithmica, vol. 26, no. 1, pp. 172-195, 2000.

S. Kapoor, “On Minimum 3-cuts and Approximating k-cuts Using Cut
Trees,” in Proc. IPCO 1996, LNCS 1084, pp. 132-146.

D. R. Karger, “Minimum Cuts in Near-Linear Time,” in Proc. STOC 1996.
Full paper in J. ACM, vol. 47, no. 1, pp. 46-76. 2000.

R. M. Karp, Reducibility among Combinatorial Problems, in R. E. Miller,
J. W. Thatcher (eds.), Complezity of Computer Computations. Plenum Press,
New York, pp. 85-103, 1972.

S. Khuller, Approximation Algorithms for Finding Highly Connected Sub-
graphs, in [Hoc 97], pp. 236-265.

David R. Kosiur and Dave Kosiur, IP Multicasting: the Complete Guide to
Interactive Corporate Networks. John Wiley & Sons, 1998.

D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young, “Rounding
Algorithms for a Geometric Embedding of Minimum Multiway Cut,” in Proc.
STOC 1999, pp. 668-678.

P. Klein and R. Ravi, “A Nearly Best-Possible Approximation Algorithm
for Node-Weighted Steiner Trees,” in Proc. IPCO 1993. Full paper in J.
Algorithms, vol. 19, no. 1, pp. 104-115, 1995.

S. Khuller and B. Raghavachari, “Improved Approximation Algorithms for
Uniform Connectivity Problems,” J. Algorithms, vol. 21, no. 2, pp. 434-450,
1997.

J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Trav-
eling Salesman Problem,” in Proc. AMS 7, 1956, pp. 48-50.

D. R. Karger and C. Stein, “A New Approach to the Minimum Cut Prob-
lems,” J. ACM, vol. 43, no. 4, pp. 601-640, 1996.

B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms.
Springer-Verlag, 2000.

BIBLIOGRAPHY 109

[KW 96]

[KWY 97]

[KWY 02]

[Law 62]

[Law 73]

[LB 96]

[Len 90]

[Lev 00]

[LKP 90]

[Lov 83]

[Mat 93]

[Men 27]

[MNT 93]

R. Klimmek and F. Wagner, “A Simple Hypergraph Min Cut Algorithm,”
Technical Report b 96-02, Freie Universitat Berlin, 1996.

Y. Kamidoi, S. Wakabayasi, and N. Yoshida, “A New Approach to the Min-

b2l

imum k-way Partition Problem for Weighted Graphs,
IEICE COMP 97-25, pp. 25-32, 1997.

Technical Report of

Y. Kamidoi, S. Wakabayasi, and N. Yoshida, “A Divide-and-Conquer Ap-
proach to the Minimum k -Way Cut Problem,” Algorithmica, vol. 32, no. 2,
pp- 262-276, 2002.

E. L. Lawler, “Electrical Assemblies with a Minimum Number of Intercon-
nections,” IEEE Trans. FElectronic Computers, EC-11, pp. 781-782, 1962.

E. L. Lawler, “Cutsets and Partitions of Hypergraphs,” Networks, vol. 3,
pp- 275-285, 1973.

A. Lucena and J. E. Beasley, Branch and Cut Algorithms, in J. E. Beasley
(ed.), Advances in Linear and Integer Programming. Oxford Univ. Press,
pp- 187-221, 1996.

T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout. Wiley,
New York, 1990.

M. S. Levine, “Fast Randomized Algorithms for Computing Minimum
{3,4,5,6}-Way Cuts,” in Proc. SODA 2000, pp. 735-742.

C. H. Lee, M. Kim, and C. I. Park, “An Efficient k-way Graph Partition-
ing Algorithm for Task Allocation in Parallel Computing Systems,” in Proc.
IEEE Int. Conf. on Computer-Aided Design, 1990, pp. 748-751.

L. Lovasz, Submodular Functions and Convexity, in A. Bachem, M. Grotschel
and B. Korte (eds.), Mathematical Programming: the State of the Art,
Springer, Berlin, pp. 235-257, 1983.

D. W. Matula, “A Linear Time 2 + ¢ Approximation Algorithm for Edge
Connectivity,” in Proc. SODA 1993, pp. 500-504.

K. Menger, “Zur allgemeinen Kurventheorie,” Fund. Math., 10, pp. 96-115,
1927.

N. Maeda, H. Nagamochi, and T. Ibaraki, “Approximate Algorithms for Mul-
tiway Objective Point Split Problems of Graphs” (in Japanese), Computing
Devices and Algorithms (Kyoto, 1993). Surikaisekikenkyusho Kokyuroku no.
833, pp. 98-109, 1993.

110

BIBLIOGRAPHY

[MSDM 96]

[Nar 91]

[Nar 97]

[NT 92]

[N 98]

[NT 00]

[NKI 00]

[NR 01]

[NRP 96]

[NZ 97]

[NW 61]

[OL 96]

[Pap 94]

M. Mihail, D. Shallcross, N. Dean and M. Mostrel, “A Commercial Applica-
tion of Survivable Network Design: ITP/INPLANS CCS Network Topology
Analyzer,” in Proc. SODA 1996, pp. 279-287.

H. Narayanan, “The Principal Lattice of Partitions of a Submodular Func-
tion,” Linear Algebra Appl., vol. 144, pp. 179-216, 1991.

H. Narayanan, Submodular Functions and Electrical Networks (Annals of
discrete mathematics 54). Elsevier, 1997.

H. Nagamochi and T. Ibaraki, “Computing edge connectivity in multigraphs
and capacitated graphs,” SIAM J. Discrete Math., vol. 5, no. 1, pp. 54-66,
1992.

H. Nagamochi and T. Ibaraki, “A Note on Minimizing Submodular Func-
tions,” Inform. Process. Lett., 67, pp. 239-244, 1998.

H. Nagamochi and T. Ibaraki, “A Fast Algorithm for Computing Minimum
3-way and 4-way Cuts,” Math. Program., 88, no. 3, pp. 507-520, 2000.

H. Nagamochi, S. Katayama, and T. Ibaraki, “A Faster Algorithm for Com-
puting Minimum 5-way and 6-way Cuts in Graphs,” J. Combi. Optim., vol.
4, pp. 35-78, 2000.

J. Naor and Y. Rabani, “Tree Packing and Approximating k-Cuts,” in Proc.
SODA 2001, pp. 26-27.

H. Narayanan, S. Roy, and S. Patkar, “Approximation Algorithms for Min-
k-Overlap Problems Using the Principal Lattice of Partitions Approach,” J.
Algorithms, vol. 21, no. 2, pp. 306-330, 1996.

J. Naor and L. Zosin, “A 2-Approximation Algorithm for the Directed Mul-
tiway Cut Problem,” in Proc. FOCS 1997. Full paper in SIAM J. Comput.,
vol. 31, no. 2, pp. 477-482. 2001.

C. St. J. A. Nash-Williams, “Edge-disjoint Spanning Trees of Finite Graphs,”
J. London Math. Soc., 36, pp. 445-450, 1961.

I. H. Osman and G. Laporte, Meta-heuristics: a bibliography. Ann. Oper.
Res. 63, pp. 513-623, 1996.

C. H. Paradimitriou, Computational Complexity. Addison-Wesley, Reading,
MA, 1994.

BIBLIOGRAPHY 111

[Pul 82]

[Que 93]

[Que 95]

[Que 99]

[Ree 93]

[RW 95]

[RW 01]

[Sch 98]

[Sch 00]

[Ston 77]

[Stoe 92]

[SV 91]

[SW 94]

W. R. Pulleyblank, presentation at STAM Meeting on Optimization, MIT,
Boston, 1982.

M. Queyranne, “A Gomory-Hu Tree for Symmetric Submodular Functions,”

unpublished manuscript, November 1993.

M. Queyranne, “Minimizing Symmetric Submodular Functions,” in Proc.
SODA 1995. Full paper in Math. Program., vol. 82 no. 1-2, Ser. B, pp. 3-12,
1998.

M. Queyranne, “On Optimum Size-Constrained Set Partitions,” AUSSOIS
1999, France, March 8-12, 1999.

C. R. Reeves (ed.), Modern Heuristic Technigues for Combinatorial Problems.
Blackwell Scientific Publications, Oxford, 1993.

R. Ravi and D. P. Williamson, “An Approximation Algorithm for Minimum-
Cost Vertex-Connectivity Problems,” in Proc. SODA 1995. Full paper in
Algorithmica, vol. 18, no. 1, pp. 21-43, 1997.

R. Ravi and D. P. Williamson, “Erratum: An Approximation Algorithm for

Minimum-Cost Vertex-Connectivity Problems,” manuscript, July 2001.

A. Schrijver, Theory of Linear and Integer Programming. John Wiley & Sons,
1998.

A. Schrijver, “A Combinatorial Algorithm Minimizing Submodular Functions
in Strongly Polynomial Time,” J. Combin. Theory B 80, no. 2, pp. 346-355,
2000.

H. S. Stone, “Multiprocessor Scheduling with the Aid of Network Flow Al-
gorithms,” IEEE Trans. on Software Engg., SE-3, pp. 85-93, 1977.

M. Stoer, Design of Survivable Networks. Lecture Notes Math. 1531, Springer,
Heidelberg, 1992.

H. Saran and V. V. Vazirani, “Finding k-cuts within Twice the Optimal,” in
Proc. FOCS 1991. Full paper in SIAM J. Comput., vol. 24, no. 1, pp. 101-108,
1995.

M. Stoer and F. Wagner, “A Simple Min-cut Algorithm,” in Proc. 2nd Annual
European Symposium on Algorithms, 1994. Full paper in J. ACM, vol. 44, no.
4, pp. 585-591, 1997.

112

BIBLIOGRAPHY

[Tit 99]

[TFW 99]

[Tut 61]

[TZ 94]

[War 98]

[Wil 95]

[Wil 01]

[WGMV 93]

[Yeh 01]

[ZNT 99]

[ZNT 01a]

[ZNT 01b]

[ZNT 01c]

P. Tittmann, “Partitions and Network Reliability,” Discrete Appl. Math., vol.
95, pp. 445-453, 1999.

K. Takeshita, T. Fujito, and T. Watanabe, “On Primal-Dual Approximation
Algorithms for Several Hypergraph Problems” (in Japanese). IPSJ Mathe-
matical Modeling and Problem Solving no. 23-3, pp. 13-18, 1999.

W. T. Tutte, “On the Problem of Decomposing a Graph into n Connected
Factors,” J. London Math. Soc., 36, pp. 221-230, 1961.

I. Tomescu and M. Zimand, “Minimum Spanning Hypertrees,” Discrete Appl.
Math., vol. 54, no. 1, pp. 67-76, 1994.

D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner
Trees. PhD Dissertation, Univ. Virginia, Dept. Computer Science, 1998.

D. P. Williamson, Computational Experience, in a minicourse on approxima-
tion algorithms at IBM Almaden, 1995.

D. P. Williamson, “The Primal-Dual Method for Approximation Algo-

rithms,” to appear in Math. Program.

D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani, “A Primal-
dual Approximation Algorithm for Generalized Steiner Network Problems,”
in Proc. STOC 1993. Full paper in Combinatorica 15, pp. 435-454, 1995.

W. C. Yeh, “A Simple Algorithm for the Planar Multiway Cut Problem”. J.
Algorithms, vol. 39, no. 1, pp. 68-77, 2001.

L. Zhao, H. Nagamochi, and T. Ibaraki, “Approximating the Minimum k-
way Cut in a Graph via Minimum 3-way Cuts,” in Proc. ISAAC 1999. Full
paper in J. Comb. Optim., vol. 5, no. 4, pp. 397-410, 2001.

L. Zhao, H. Nagamochi, and T. Ibaraki, “A Primal-Dual Approximation Al-
gorithm for the Survivable Network Design Problem in Hypergraphs,” in
Proc. STACS 2001, LNCS 2010, pp. 478-489. Full paper accepted for publi-
cation in Discrete Appl. Math.

L. Zhao, H. Nagamochi, and T. Ibaraki, “A Note on Approximating the
Survivable Network Design Problem in Hypergraphs,” IEICE Trans. Inf. &
Syst., vol. E85-D, no. 2, 2002 (to appear).

L. Zhao, H. Nagamochi, and T. Ibaraki, “A Unified Framework for Approxi-
mating Multiway Partition Problems (Extended Abstract),” in Proc. ISAAC
2001, LNCS 2223, pp. 682-694.

A 74
0 e 10
) 10
O(G) o 6
GS] e 2
H[S] oo 10
k-partitionol 4
k-PPH-T1 12, 23, 99, 100
k-PPH-T2 12, 22, 99, 100
k-PPH-T3 12, 23, 99, 100
E-PPMSS ...l 22, 99, 100
E-PPSS .. 22, 99, 100
k-PPSSS ... 22, 99, 100
E-TPG o 101
E-TPH-T1 11, 12, 27, 101
E-TPH-T2 12, 27, 101
k-TPH-T3o..... 12, 27, 101
k-TPMSS ... 27, 101
E-TPSS .. 27, 101
kE-TPSSS ... 27, 101
k-way cut ...l 5, 11
k-way cut problem 6

E-PPG Lo 7, 22, 99
WD w v ee e ee e ee e ee e e 18
approximation algorithm 3
CUb oo 10
cut function, 7,12, 19

U = oo wwwme e 7,18
graph i 1

hypergraph 10
monotone i, 3
MPP-NT ...t 21
multicasting problem, 17
multiterminal cut problem 7
E-MCP o 8
multiway partition problem 4, 26
MPP ... 4, 26
network design problem with requirement
function (NDRF) 73
nonterminal disjoint paths 14
path ...l 1, 10
performance guarantee 3
SNDP-Gcoiiiiiiian... 15, 91, 101
SNDP-G™* ..o 73, 91, 101
Steiner tree problem 15
strengthl 6, 32
O(GaW) e 6
subgrapho ol 2,10
induced subgraph 2,10
submodularol 3
supermodularl 3

survivable network design problem 14

SNDP ... 15, 91
target split problem 5
E-TPG oo 7, 27
target-splito iiiiiiilL 4
tree ... 2,18
weakly supermodular 3

