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Numeration systems, fractals and
stochastic processes
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1 Numeration systems

By a numeration system, we mean a compact metrizable space ©
with at least 2 elements as follows:

1. There exists a nontrivial closed multiplicative subgroup G of
R, such that (R,G) acts numerically to © in the sense that there
exist continuous mappings x; : © X R —» © and x2 : © x G — O,
where we denote w + ¢ := x1(w, ), Aw = xa(w, A), satisfying that

wH0=w, WHt)+s=w+(t+s)
lw = w, n(dw) = (NA\)w
AMw+t)=dw+ At

forany w € ©, t,s € Rand \,n € G.

2. The additive action of R to © is minimal and uniquely ergodic
having 0-topological entropy.

3. The multiplicative action of A(€ G) to © has |log A|-topological
entropy. Moreover, the unique invariant probability measure under
the additive action is invariant under the G-action and is the unique
probability measure attaining the topological entropy of the multi-
plication by A # 1. ‘

Note that if © is a numeration system, then © is a connected space
with the continuum cardinality. Also, note that the multiplicative
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group G as above is either R, or {A\"; n € Z} for some X > 1.
Moreover, the additive action is faithful, that is w + ¢ = w implies
t = 0 for any w € © and £ € R. This is because if there exist
w; € © and t; # 0 such that w; +¢; = w;. Let A\, € G tends to
0 as n — oo. Take a limit point ws, of A\,w. Then, w,, becomes a
fix point with respect to the additive action by the distributive law
and the continuity of the additive action, which contrdicts with the
minimality of the additive action together with §© > 2.

We construct © as above as a colored tiling space corresponding to
a weighted substitution. Then, we study a-homogeneous cocycles on
it with respect to the addition. They are interesting from the point
of views of fractal functions or sets as well as self-similar processes.
We obtain the zeta-functions of © with respect to the multiplication.

Let ¥ be a nonempty finite set. An element in ¥ is called a color.
A rectangle (a, b] x [c, d) in R? is called an admissible tile if d—c = e™®
is satisfied. A colored tiling w is a mapping from dom(w) to X, where
dom(w) consists of admissible tiles which are disjoint each other and
the union of which is R?. For S € dom(w), w(S) is considered as the
color painted on the admissible tile S. In another word, a colored
tiling is a partition of R? by admissible tiles with colors in .

A topology is introduced on 2(X) so that a net {wy}ner C Q%)
converges to w € Q(X) if for every S € dom(w), there exist S, €
dom(w,) (n € I) such that

w(S) = wn(S,) for any n € I and lim p(S,S,) =0,

where p is the Hausdorff metric.
For an admissible tile S := (a,d] x [c,d), t € R and XA € R,, we
denote
S+t = (a,b] x[c—t,d—1)
AS = (a—log) b—1logl] X [Ac, Ad).

Note that they are also admissible tiles.
For w € Q(X),t € Rand A € R, we define w +t € Q(X) and
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Aw € Q(X) as follows:

dom(w+t) = {S+¢t; S€dom(w)}
(wW+t)(S+1t) = w(9) for any S € dom(w)
dom(Aw) = {AS; S € dom(w)}

(Aw)(AS) = w(S) for any S € dom(w).

Thus, (R,R,) acts numerically to Q(X). We construct compact
metrizable subspaces of €2(X) corresponding to weighted substitu-
tions which are numeration systems.

2 Weighted substitutions

A weighted substitution (p,n) on ¥ is a mapping ¥ — X x (0,1)%,
where X+ = J;2, 2%, such that |p(0)| = [n(0)| and 3,10y 7(0)i =
1 for any o € X, where | | implies the length of the word. Note
that ¢ is a substitution on ¥ in the usual sense. We define n™ : 3 —
(0,1)* (n=2,3,...) inductively by

1™(0)e = n(0)n™ " (p(0):);
for any ¢ € ¥ and 14, j, k with

0<i<|p(a)l, 0<7 <" (p(@))l, k=D _ 1" p(on) + 3
h<i

Then, (¢™,n") is also a weighted substitution for n = 2,3, -

A substitution ¢ on X is called mizing if there exists a positive
integer n stich that for any 0,0’ € ¥, ¢™(0); = o’ holds for somte 4
with 0 <@ < |¢™(0)|, which we always assume.

We define the base set B(p,n) as the closed, multiplicative sub-
group of R, generated by the set

n*(0)i; 0€X, n=0,1,--- and 0 < i < |p"(0)|
such tha,t o*(o)i=0

Let G := B(yp,n). Then, there exists a function g : ¥ — R, such
that g(¢(0)i)G = g(o)n(0);G for any ¢ € ¥ and 0 < 7 < |p(0)|-
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Note that if G = R, then we can take g = 1. In another case, we
can define g by g(oy) = 1 and g(o) := n"™(0y); for some n and ¢ such
that ¢"(00); = o, where oy is any fixed element in X.

Let (¢,7n) be a weighted substitution. Let G = B(p,n). Let g
satisfy the above equality. Let Q(p,7,g)" be the set of all elements
w in 2(X) such that

(I) if (a, ] x [c,d) € dom(w), then e™® € g(w((a,b] X [c, d)))G,
and

(1) if (a,b] X [¢,d) € dom(w) and w((a,b] x [c,d)) = o, then for
i=0,1,---,|¢(0)] — 1, S* € dom(w) and w(S*) = ¢(0);, where

§ = (b, Togn(o)] x [o+ (@~ &) Y-l + (@= ) (o))

A horizontal line v := (—o00,00) x {y} is called a separating line
of w € Qp,n,g) if for any S € dom(w), S° N~y = O, where S°
denotes the set of inner points of S. Let Q(p,7,g)"” be the set of all
w € Q(p,7n,9) which do not have a separating line and (¢, 7, g) be
the closure of (¢, 7, g)". Then, (R, G) acts to (¢, n, g) numerically.
We usually denote (p,n, 1) simply by Q(p,n).

Theorem 1. The space (¢, 7, g) is a numeration system with G =
B(p,n).

Example 1. Let ¥ = {+,—} and (¢, 7n) be a weighted substitution
such that

+

(+,4/9)(—,1/9)(+,4/9)
(_’ 4/9)(+7 1/9)(—7 4/9)7

where we express a weighted substitution (¢, 7) by

—
—

o = (p(0)o,(0)o)((0)1, (o)1) -+ (0 € X).

Then, 4/9 € B(p,n) since p(+)o = + and n(+)o = 4/9. More-
over, 1/81 € B(yp,n) since p*(+)s = + and n?(+)s = 1/81. Since
4/9 and 1/81 do not have a common multiplicative base, we have
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Figure 1: a colored tiling in in Example 1
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B(p,n) = R,. Therefore with ¢ = 1, we can define a numeration
system Q(¢,n). A colored tiling belonging to this space is shown in
Figure 1. The vertical size of tiles are proportional to the weights
and the horizontal sizes are the minus of the logarithm of the weights.
This example is discussed later.
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3 (-function

Let Q := Q(¢p,7,9). For a € C, we define the associated matrices on
the suffix set ¥ x ¥ as follows:

M, = Ma(p,n) = ( > n(ff)?) (1)
g,a0'el

ip(0);i=0’
Ma,+ = Ma,+(907 UE g) = (1""(0)0:0’ U(U)g)a,a'ez
Ma,— = Ma,— (905 77,9) = (1go(a)|¢(a)|._1=0' n(a)ﬁp(")"l)oa'ez .

Let CO(Q) be the set of closed orbits of ) with respect to the
action of G. That is, CO(Q) is the family of subsets £ of {2 such
that ¢ = Guw for some w € Q with A\w = w for some A € G with
A > 1. We call )\ as above a multiplicative cycle of £&. The minimum
multiplicative cycle of £ is denoted by cy(€).

Define the (-function of G-action to {2 by

@)= [] @-cw©®=™ (2)

£€CO(Q)

where the infinite product converges for any a € C with R(a) > 1.
It is extended to the whole complex plane by the analytic extension.

Theorem 2. We have

 det(I — M,,)det(I — M, _)
al@) = oI = 1)

Csro(@) (@),

where

Csro(a)(a) == H (1—cy(€)™)*

£€C0o(Q2)

is a finite product with respect to & € CO(Y) which has a separating
line.
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4 [(-expansion system

Let 3 be an algebraic integer with 3 > 1 such that 1 has the following
periodic (-expansion

1= (5077 5,070 - b0 )™

bi,bo, -+ ,br € {1,2,---,|B]}

i17i21"' aik € {1)27'”})
where () implies the infinite time repetition of ( ). Let n :=
11 +1%2 4+ -+ 1%, > 1 and assume that n is the minimum period of the
above sequence. Since the above sequence is the expansion of 1, we

have the solution of the following equation in a;,as, - , agr1 with
a1 =arr1=1land0<a; <1 (j=2,--- ,k):

a; =b;07" +U»j+1ﬂ_ij (1=1,2,--- k).
Let ¥ :={1,2,--- ,k} and define a weighted substitution (p,7) by
i—= 1, (1/a;)871)% (5 +1, (aj41/a;)879)
(j:]-)z)”':k—_]') '
k— (1, (1/ax)B71)% (1, (axs1/ax)B)
Then, ¢ is mixing and B(yp,n) = {8" n € Z}. Define g : ¥ — R,
by g(j) = a;. Then, Q(p,n,g) is a numeration system by Theorem

1. We denote ©(5) := Q(y,n,9) and ©(03) is called the 3-ezpansion
system.

Theorem 3. We have
1—-38«
Tt e

Example 2. Let us consider the B-expansion system with 8 > 1
such that 8% — 32 — 3 —1 = 0. Then the expansion of 1 is (110)®

and the corresponding weighted substitution is

1 = (1, 7)(2, p2+87%)
—2 3-3
Z,‘:QE;F)(L zg_—er—ﬁ_s)

Co ) (o) = -

2 — (1,
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By Theorem 3, we have

1— g
C@(ﬂ) (a) = 1 — ﬁ—a- — 5)6—201 _ ﬁ-—3a )

We will discuss this example in the next section.

5 homogeneous cocycles and fractals

Let Q := Q(p,7,9). A continuous function F' : X R — C is called
a cocycle on () if

F(w,t+8) = F(w,t) + F(w +t, s) (3)

holds for any w €  and s,t € R. A cocycle F' on €} is called o-
homogeneous if

F(w, M) = A*F(w, 1)

for any w € O, A € G and t € R, where « is a given complex rnumber.
A cocycle F(w t) on 1 is called adapted if there exists a function
: X X Ry — € such that

F(w,d) — F(w,c) = E(w(S),d —¢) (4)

for any tile S := (a,b] X [c,d) € dom(w).
In [1], nonzero adapted a-homogeneous cocycles on Q with 0 <
a < 1 is characterized. In fact, we have

Theorem 4. A nonzero adapted a-homogeneous cocycle on Q) is char-
acterized by (4) with o and Z satisfying that R(a) > 0 and there ez-

ists a nonzero vector £ = (£,),ex such that Mo& = & and E(w(S),d—

¢) = (d— ¢)*.s). for any tile S := (a,b] x [c,d) € dom(w). Hence, a
nonzero adapted a-homogeneous cocycle exists if and only if R(a) > 0

and a 1s a pole of (a(c).

Let Q;,; be the set of w € 2 such that there exists (a,b] X [¢,d) €
dom(w) satisfying that ¢ =0 and ¢ < 0 < b. An element w € Qyy; is
called an integer in 2. Let

Q'int = {(w,t) € Qint X R; w+te Qint}-
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A continuous function F : Q,,,, — C is called a cocycle on €2, if
(3) is satisfied for any w € §,; and ¢, s € R such that (w,t) € Qi
and (w,t + s) € Qupe.

A cocycle F on €, is called adapted if there exists a function
= : Y xRy — Csuch that (4) is satisfied for any w € Q;,; and ¢,d € C
such that (w,c) € Qins, (w,d) € Qine and (a,b] x [¢,d) € dom(w) for
some a < b. This forces to imply that a < 0.

Let a € C. A cocycle F on 24, is called a-homogeneous if

F(Aw, At) = A\*F(w, t)

for any (w,t) € Qe and A € G with (Aw, At) € Q;n:. Note that if
(w,t) € Qing, then for any A € G with A > 1, (Aw, M) € Qi holds.

A cocycle F on ), is called a coboundary on ;,, if there exists a
continuous function G : ;,; — R* such that

F(w,t) = G(w +1t) — G(w)

for any (w,t) € Qine.
The following theorem is proved in [3].

Theorem 5. A nonzero adapted a:-homogeneous cocycle on Qin: with
R(a) < 0 is characterized by (4) with Z satisfying that there exists
a nonzero vector § = (§,)sex such that My¢ = € and Z(w(S),d —
c) = (d — c)*us) for any tile S := (a,b] x [c,d) € dom(w) with
a < 0. Hence, a nonzero adapted a-homogeneous cocycle on Qip:
with R(a) < 0 exists if and only if o is a pole of {a(a). Moreover,
any cocycle as this is a coboundary.

Example 3. Let us consider the S-expansion system in Example 2.
Denote Q := ©(f). The associated matrix is

M, =( L (ﬁ_z+ﬂ_3)a)
T\ FEeE 0

Let -y be one of the complex solutions of the equation 23 —22 —2—1 =
0. Then, |y| < 1. Let a € C be such that 7 = 8*. Then, R(a) < 0.
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-1.5

-1.51

Figure 2: G (Qint)

Since M; and M, are algebraically conjugate and

we have . .
w(1)=(1)
Thetefore, there exists an a-homogeneous adapted cocycle F on £,
satisfying that
F(w,d) — F(w,c) = (d —¢)*
if there exists (a,b] X [c,d) € dom(w) with a < 0.
For w € Qe let Sp(w) be the tile (a, b] x [¢,d) € w such that ¢ =0

and a < 0 < b. We will define a continuous function G : Q;,; — C
such that

F(w,t) = Glw+t) — Gw) | (5)
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for any (w,t) € Qins. For i = 0,1,2,---, let S; be the i-th ancestor of
So(w). Let Corner(S;) =: (b;,c;). Let

o

G(w) := Z(Ci — Ciy1)%

=0
Then, we can prove (5). The set G(£;,;) is known as Rauzy fractal
which is shown in Figure 2. .
6 N-process

We consider the Q2 = Q(p,n) defined in Example 1. Since

(2049 (1/9)°
M‘*‘( (1/9)° 2(4/9)&)

i (2)-(4).

we have a (1/2)-homogeneous cocycle F' by Theorem 4 with the above
&. That is, F' is defined by

and that

F(w,d) — F(w,c) = +(d — ¢)*/? (6)

if there is a tile (a,b] X [c,d) € dom(w), where & corresponds to the
color of the tile.

Consider the stochastic process (N, ):cr defined by N;(w) = F(w, 1),
where w comes from the probability space (Q, 1), 1 being the unique
invariant probability measure invariant under the additive action.
This process was called the N-process and studied in [2]. A pre-
diction theory based on the N-process was developed. A process
Y; = H(N,,t), where the function H(z,s) is an unknown function
which is twice continuously differentiable in z and once continuously
differentiable in s and H,(z,s) > 0 is considered. The aim is to
predict the value Y, from the observation Y; := {V;; t € J}, where
J=[a,blanda<b<ec.
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Theorem 6. ([2]) There exists an estimator Y, which is a measur-
able function of the observation Yy such that

E[(Y; - Yo)*] = O((c - b)*)

asclb.
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