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Abstract- In identification via channels the sum of two types of error probabilities of
identification goes to one as the block length of transmission tends to infinity at rates
above capacity when channels satisfy some stochastic properties. This is well known as a
strong converse theorem for the identification via channels. In this paper we prove that
the sum of two error probabilities tends to one exponentially and derive an explicit lower
bound of this exponent function.

1 Introduction
In 1989, Ahlswede and Dueck [1] proposed a new framework of communication system
using noisy channels. Their proposed framework called the identification via channels
(or briefly say the ID channel) has opened a new and fertile area in the Shannon
theory.

In some class of noisy channels the sum of two types of error probabilities of
identification goes to one as the block length $n$ of transm itted codes tends to infinity
at rates above capacity. This is well known as a strong converse theorem for the
ID channel. Han and Verdii [2] established the strong converse theorem for the ID
channel in the case of stationary discrete memoryless channels (DMC). An extension
of the above result to more general class of noisy channels was studied by Han and
Verdu’[3]. They introduced a new coding problem of approximation of output random
variables through noisy channels. They call it the channel resolvability problem. They
have established the direct and converse coding theorem for the channel resolvability
problem. Furthermore, they derived an upper bound of the capacity for the ID channel
by using some interesting relation between the direct coding theorem of the channel
resolvability problem and the converse coding theorem of the ID channel. Using the
fact that the upper bound coincides with the lower bound in the class of noisy channels
having what they call the strong converse property, they determined the capacity
and established the strong converse theorem for the ID channel in this class of noisy
channels. The results of Han and Verdii [2] was sharpened by Steinberg [4]. He
introduced a new notion called partial resolvability. Based on this notion he $\mathrm{f}\mathrm{o}$ rmulated
a new resolvability problem, which is an extension of that posed by Han and Verdu’[3].
By investigating this problem, he determined the capacity of the ID channel for general
noisy channels with finite input and output alphabets.

In this paper we deal with the ID channel for general noisy channels. For trans-
mission rates above capacity we derive some function which serves as a lower bound of
the sum of two error probabilities. In particular, in the case of the stationary DMC,
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we show that the sum of two error probabilities tends to one exponentially as $n$ goes
to infinity at tr ansmission rates above capacity, deriving an explicit form of the lower
bound of this exponent. For the derivation of the result, we consider the channel
resolvability problem formulated by Steinberg [4]. We first establish a stronger result
on the direct coding theorem for this problem by deriving an exponential lower bound
for the approximation error of channel outputs to tend to zero as $n$ goes to infinity.
Next, we derive the converse coding theorem for the ID channel based on an idea of
converting the direct coding theore$\mathrm{m}$ for the channel resolvability problem into the
converse coding theorem of the ID channel. This idea is similar to that of Han and
Verdii [3] and Steinberg [4] used for deriving a relation between the converse coding
theorem for the ID channel and the direct coding theorem for the channel resolvability
problem.

2 Identification via Channels
Let $\mathcal{X}$ and ) be finite sets. Let $P(\mathcal{X}^{n})$ and $P(\mathcal{Y}^{n})$ be sets of probability distributions
on $\mathcal{X}^{n}$ and $)^{n}$ , respectively. A source $\mathrm{X}$ with alphabet $\mathcal{X}$ is the $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}.\{P_{X^{n}}$ :
$P_{X^{n}}\in P(\mathcal{X}^{n})\}_{n=1}^{\infty}$ . Similarly, a noisy channel $\mathrm{W}$ with input alphabet $\mathcal{X}$ and output
alphabet $\mathcal{Y}$ is a sequence of conditional distributions $\{W^{n}(\cdot|\cdot)\}_{n=1}^{\infty}$ , where $W^{n}(\cdot|\cdot)=$ $\{$

$W^{n}(\cdot|\mathrm{x})\in 7$ $(\mathrm{C}^{7^{n}})$ $\}_{\mathrm{x}\in \mathcal{X}^{n}}$ .
Next, for $P\in P(\mathcal{X}^{n})$ and $\mathrm{y}\in J\mathit{7}^{n}$ , set

$PW^{n}( \mathrm{y})=\sum_{\mathrm{x}\in \mathcal{X}^{n}}P(\mathrm{x})W^{n}(\mathrm{y}|\mathrm{x})$
, (1)

which becomes a probability distribution on $\mathcal{Y}^{n}$ . We denote it by $PW^{n}=\{PWn(y)$
$\}_{\mathrm{y}\in \mathcal{Y}^{n}}$ . Set $Q=PW^{n}$ and call $Q$ the response of $P$ through noisy channel $W^{n}$ (or
briefly the response of $P$)

An $(n, N_{n}, \mu_{n}, \lambda_{n})$ ID code for $W^{n}$ is a collection $\{(P_{i}, \mathrm{D}_{i}), i=1,2, \cdots, N_{n}\}$ such
that

1) $P_{i}\in P(\mathcal{X}^{n})$ , $D_{\mathrm{i}}\subseteq \mathcal{Y}^{n}$ ,
2) $Q_{i}$ is the response of $P_{i}$ ,
3) $\mu_{n}^{(i)}=Q_{i}(D_{i}^{c})$ , $\mu_{n}=\max_{i1\leq\leq N_{n}}\mu_{n}^{(i)}$ ,

4) ) $\mathrm{p}$
)

$= \max Q_{j}(D_{i})j\neq i$ ’ $\lambda_{n}=\max_{i1\leq\leq N_{n}}$
)$\mathrm{p}$

)

The rate of an $(n, N_{n}, \mu_{n}, \lambda_{n})$ ID code is defined by

$r_{n}= \frac{1}{n}\log\log N_{n}$ . (2)

Definition 1 A rate $R$ is said to be $(\mu, \lambda)$-achievable ID rate if there exists an $(n,$ $N_{n}$ ,
$\mu_{n}$ , $\lambda_{n})$ code such that

$\lim_{narrow}\sup_{\infty}\mu_{n}\leq\mu$ ,

$\lim_{narrow}\sup_{\infty}\lambda_{n}\leq$
$\lambda$ ,

$\lim_{narrow}\inf_{\infty}$
$\frac{1}{n}\log\log N_{n}\geq R$ .

$\}$ (3)



171

The supremum of the $(\mu, \lambda)$ -achievable ID rates for $\mathrm{W}$ is denoted by $C_{\mathrm{I}\mathrm{D}}$ ( $\mu$ , A $|\mathrm{W}$),
which we call the $(\mu, \lambda)$-ID capacity.

To state results for the identification capacity, we prepare several quantities which
are defined based on the notion of the information spectr um introduced by Han and
Verdii [3].

Definition 2 For $n=1,2$ , $\cdots$ , let $X^{n}$ be an arbitrary prescribed random variable
taking values in 1 $n$ . The probability mass function of $X^{n}$ is $P_{X^{n}}(\mathrm{x})$ , $\mathrm{x}\in \mathcal{X}^{n}$ . Let
$\mathrm{X}=\{X^{n}\}_{n=1}^{\infty}$ denotes a sequence of those random variables. Let $\mathrm{Y}=\{\mathrm{Y}^{n}\}_{n=1}^{\infty}$ be a
sequence of output random variables when we use $\mathrm{X}$ as a channel input of the noisy
channel W. In this case the joint probability mass function of $(X^{n}, \mathrm{Y}^{n})$ denoted by
$P_{X^{n}Y^{n}}$ $(\mathrm{x}, \mathrm{y})$ , $(\mathrm{x}, \mathrm{y})\in \mathcal{X}^{n}\cross \mathcal{Y}^{n}$ is equal to $P_{X^{\hslash}}(\mathrm{x})W^{n}(\mathrm{y}|\mathrm{x})$ .

Definition 3 Given a joint distribution $P_{X^{n}Y^{n}}(\mathrm{x}, \mathrm{y})=P_{X^{n}}(\mathrm{x})W^{n}(\mathrm{y}|\mathrm{x})$ , the infor-
mation density is the function defined on $\mathcal{X}^{n}\cross \mathcal{Y}^{n}$ :

$i_{X^{n}Y^{n}}( \mathrm{x};\mathrm{y})=\log\frac{W^{n}(\mathrm{y}|\mathrm{x})}{P_{\gamma n}(\mathrm{y})}$ . (4)

Let $\{Z_{n}\}_{n=1}^{\infty}$ be a sequence of arbitrary real-valued random variables. We introduce
the notion of the s0-called probabilistic $\lim\sup\int\inf$ in the following.

Definition 4 (The $\lim\sup/\inf$ in probability)

$\mathrm{p}-\lim_{narrow\infty}\sup 2\mathrm{i}_{n}=\inf\triangle${a : $\lim_{narrow\infty}\mathrm{P}\mathrm{r}\{Z_{n}\geq\alpha\}=0$ } , (5)

$\mathrm{p}-\lim_{narrow}\inf_{\infty}Z_{n}=\sup\{\alpha : \lim_{narrow\infty}\mathrm{P}\mathrm{r}\{Z_{n}\leq\alpha\}=0\}\triangle \mathrm{t}$ (6)

The probabilistic $\lim\sup/\inf$ in the above definitions is considered as an extension
of ordinary (deterministic) $\lim\sup/\inf$. The operation of $\lim\inf/\sup$ has the same
properties as those of the operation of $\lim\inf/\sup$ . For the details see Han and Verdii
[3] and Han [5]. Set

$\overline{I}(\mathrm{X};\mathrm{Y})=\mathrm{p}-\lim\sup\frac{1}{n}i_{X^{n}Y^{n}}(X^{n};Y^{n})\triangle$
: (7)

$\underline{I}(\mathrm{X};\mathrm{Y})=\triangle$ p- lint inf $\frac{1}{n}i_{X^{n}Y^{n}}(X^{n};\mathrm{Y}^{n})$ . (8)

Furthermore, set

$\overline{C}(\mathrm{W})=\sup_{\mathrm{X}}\overline{I}(\mathrm{X};\mathrm{Y})’.\underline{C}(\mathrm{W})=\sup_{\mathrm{X}}\underline{I}(\mathrm{X};\mathrm{Y})1$ (9)

As a special case of noisy channels, we consider the case when $\mathrm{W}=\{W^{n}\}_{n=1}^{\infty}$ is a
stationary discrete memoryless channel (DMC) given by

$W^{n}(\mathrm{y}|\mathrm{x})$ $= \prod_{t=1}^{n}W(y_{t}|x_{t})$ . (10)
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The stationary DMC is specified with $W=\{W(y|x)\}_{(x,y)\in \mathcal{X}\cross \mathcal{Y}}$ . Let $(X, \mathrm{Y})$ be a pair
of random variables taking values in $\mathcal{X}\cross \mathcal{Y}$ whose joint distribution $P_{XY}=\{Pxy\{\%,$ $y)$

$\}_{(x,y)\in \mathcal{X}\mathrm{x}}\mathcal{Y}$ is $P_{X}Y(x, y)=P_{X}(x)W(y|x)$
$\mathrm{t}$ Set

$C(W)= \max_{P_{X}\in P(X)}I(X;\mathrm{Y})$ [ (11)

In the above stationary DMC, we have

$\overline{C}(\mathrm{W})=\underline{C}(\mathrm{W})=C(W)$ . 12)

It is well known that $C(W)$ is the channel capacity of the stationary DMC.
Identification via channels was first posed and investigated by Ahlswede and Dueck

[1] for the stationary DMC. They have established the direct coding theorem by proving
that the channel capacity $C(W)$ of the stationary DMC serves as a lower bound of
the identification capacity $C_{\mathrm{I}\mathrm{D}}(\mu, \lambda|\mathrm{W})$ . However, they could not obtain a satisfactory
result on the converse coding theorem. Subsequently, Han and Verdii [2] established
the following strong converse theorem for the stationary DMC.

Theorem 1 (Han and Verd\’u [2]) Suppose that $\mathrm{W}$ is the stationary $DMC$ given by
(10). Then, if $\mu+\lambda<1,$ we have

$C_{\mathrm{I}\mathrm{D}}(\mu, \lambda|\mathrm{W})=C(W)$ . (13)

The strong converse property stated in Theorem 1 implies that if

$\lim_{\mathrm{n}arrow}\inf_{\infty}r_{n}=\lim\inf\log\log N_{n}>\underline{1}$ C{W) , (14)
$narrow\infty n$

then the sum $\mu_{n}+\lambda_{n}$ of two types of error probabilities of $(n, N_{n}, \mu_{n}, \lambda_{n})$ code with
$\mu_{n}+\lambda_{n}<1$ necessarily converges to one as $n$ tends to infinity. However, the rate of
convergence has not been discussed so far. In this paper we shall prove that the rate
of convergence for $\mu_{n}+\lambda_{n}$ to tend to one has at least an exponential order of the code
length $n$ and derive an explicit lower bound of this exponent.

The characterization of the ID capacity for general noisy channels was studied by
Han and Verdii $[2],[3]$ and Han [5] and Steinberg [4], According to Han and Verd\’u
$[2],[3]$ , $C_{\mathrm{I}\mathrm{D}}(\mu, \lambda|\mathrm{W})$ has the following lower bound.

Theorem 2 (Han and Verdti $[2],[3]$ ) For any A $\geq 0,$ $\mu\geq 0$ and any noisy channel
$\mathrm{W}$ , we have

$\underline{C}(\mathrm{W})$ $\leq C_{\mathrm{I}\mathrm{D}}(\mu, \lambda|\mathrm{W})$ . (15)

An upper bound of $C_{\mathrm{I}\mathrm{D}}(\mu, \lambda|\mathrm{W})$ was studied by Han and Verdii [3] and Han [5]. The
derivation of the upper bound has some close connection with the channel resolvability
problem posed and investigated by Han and Verd\’u [3].

The results of Han and Verdii [3] was sharpened by Steinberg[4]. He generalized the
notion of resolvability introduced by Han and Verdii. The generalized notion is called
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the partial resolvability. Steinberg posed a new extended channel resolvability problem
based on the partial resolvability. Using a connection between the extended channel
resolvability problem and the ID channel, he proved that the capacity $C_{\mathrm{I}\mathrm{D}},(0, \mathrm{O}|\mathrm{W})$ is
equal to the transmission capacity $\underline{C}(\mathrm{W})$ of the general noisy channel. In this paper
we derive a stronger result on upper bound of $1-\mu_{n}-\lambda_{n}$ for general noisy channels.
The result of Steinberg immediately follows from our result.

3 Results

3.1 Definitions of Functions and their Properties
In this subsection, we define several functions to describe our results and state their
basic properties.

Definition 5 Let $S$ be an arbitrary subset of Xn $\mathrm{x}\mathcal{Y}^{n}$ and $1_{S}(\mathrm{x}, \mathrm{y})$ be an indicator
function which takes value one on $S$ and zero outside $S$ . Set

$(_{n,S}=\zeta_{n,S}(R, P_{X^{n}}, W^{n})=\mathrm{E}[2^{-n\lfloor R-\frac{1}{n}i_{X}n\gamma n(X^{n};Y^{n})]}1_{S}(X^{n}, \mathrm{Y}^{n})]$

Definition 6 Set

$T_{\gamma}=$ $\{ (\mathrm{x},\mathrm{y})\in \mathcal{X}^{n}\cross \mathcal{Y}^{n} : \frac{1}{n}iXnY^{n}(\mathrm{x};\mathrm{y})\leq R-\gamma, \}$ (16)

Furthermore, set

$\Omega \mathit{5}\mathit{4}$ $(R, P_{X^{n}}, W^{n})$ $= \mathrm{P}\mathrm{r}[\frac{1}{n}i_{X^{n}Y^{n}}(X^{n}; \mathrm{Y}^{n})>R$ -
$\mathrm{y}$ (17)

$\Omega_{n,\gamma}^{(2)}(R, P_{X^{n}}, W^{n})=\zeta_{n,T_{\gamma}}(R, P_{X^{n}}, W^{n})$

$l_{n},’(R, P_{X^{n}}, W^{n})=$ $Xn,\gamma(1)(R, P_{X^{n}}, W^{n})+t$ $\sqrt{\Omega_{n,\gamma}^{(2)}(R,P_{X^{n}},W^{n})}$ . (18)

Finally, set
$\Omega_{n,\gamma}(R, W^{n})=\max_{P_{X^{n}}\in P(\mathcal{X}^{n})}\Omega_{n,\gamma}(R, P_{X^{n}}, W^{n})$ . (19)

We can easily prove that $\Omega_{n,\gamma}(R, W^{n})$ and $\Omega_{n,\gamma}(R, X^{n}, Wn)$ satisfies the following
two properties.

Property 1

a) For any $0\leq\gamma<\tau$ ,

$\Omega_{n,\gamma}^{(1)}(R, P_{X^{n}}, W^{n})=\Omega_{n,0}^{(1)}(R-\gamma, P_{X^{n}}, W^{n})$ ,
$l_{n,\gamma}^{(2)}(R, P_{X^{n}}, W^{n})=2^{-n\gamma}\Omega_{n,0}^{(2)}(R-\gamma, P_{X^{n}}, W^{n})$ ,

$\Omega_{n,\gamma}^{(2)}(R, P_{X^{n}}, W^{n})\leq 2^{-n\gamma}$ ,
$\Omega_{n,\gamma}^{(2)}$ $(R, P_{X^{n}}, W^{n})\leq 2^{-n\tau}+\Omega_{n,\tau}^{(1)}(R, P_{X^{n}}, W^{n})-\Omega_{n,\gamma}^{(1)}(R, P_{X^{n}}, W^{n})$
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b) For any $\gamma\geq 0$ and $R\geq 0$ , $\Omega_{n}^{(}\mathrm{J}_{\gamma}^{)}(R, P_{X^{n}}, lV^{n})$ satisfies
$0\leq\Omega_{n,\gamma}^{(1)}(R, P_{X^{n}}, W^{n})\leq 1$

and is a monotone decreasing function of $R$ .

c) For any $\mathrm{X}$ , any $\gamma\geq 0$ and any $R\geq 0,$

$0 \leq\Omega_{n,\gamma}(R, P_{X^{n}}, W^{n})\leq\frac{5}{4}$

Property 2

a) For any $\gamma\geq 0$ and $R\geq 0,$

$0 \leq\Omega_{n,\gamma}(R, W^{n})\leq\frac{5}{4}$

b) If $R<\mathrm{C}(\mathrm{W})$ , then, for any $\gamma>0,$

$\lim_{narrow\infty}\Omega_{n,\gamma}(R, W^{n})=1$ ,

and for $\gamma=0,$

$\lim \mathrm{i}_{1}\mathrm{f}\Omega_{n,0}narrow\infty$ ( $R$ , Il $n$ ) $\geq 1\tau$

c) If $R>\overline{C}(\mathrm{W})$ , then, for any $0\leq\gamma<R-\overline{C}(\mathrm{W})$ ,

$\lim_{narrow\infty}\Omega_{n,\gamma}(R, W^{n})=0$ .

Next, we examine an asymptotic behavior of $\Omega_{n}(R, W^{n})$ for $\underline{C}(W)<R<\overline{C}(\mathrm{W})$ ,
as $n$ tends to infinity. To this end, for $0\leq\alpha$ , fl $\leq 1,$ define

$\underline{C}$X $( \alpha|\mathrm{W})=\sup\{R$ : $\lim_{narrow}\sup_{\infty}\mathrm{P}\mathrm{r}[\frac{1}{n}i_{X^{n}Y^{n}}(X^{n};Y^{n})\leq R]\leq\alpha\}$

$\overline{C}\mathrm{x}(\beta|\mathrm{W})=\inf\{R$ : $\lim_{narrow}\sup_{\infty}\mathrm{P}\mathrm{r}[\frac{1}{n}i_{X^{n}Y^{n}}(X^{n};Y^{n})\geq R]\leq\beta\}$ (20)

and set
$\underline{C}(\alpha|\mathrm{W})$

$= \sup_{\mathrm{X}}\underline{C}_{)}$
((a $|\mathrm{W}$), $\overline{C}(\beta|\mathrm{W})=\sup_{\mathrm{X}}\overline{C}_{\mathrm{X}}(\beta|\mathrm{W})$ (21)

From the definition it is obvious that

$\underline{I}(\mathrm{X};\mathrm{Y})=$ $7)((\mathrm{O}\mathrm{I}\mathrm{W})$ $\leq\underline{C}$X $(\alpha|\mathrm{W})$ ,
$\}$ (22)

$\underline{C}(\mathrm{W})$ $=\underline{C}(0|\mathrm{W})\leq\underline{C}$(a $|\mathrm{W}$)
$\overline{C}_{)}$((d $|\mathrm{V}\mathrm{V}$ ) $\leq\overline{C}$x(o $|\mathrm{V}\mathrm{V}$ ) $=\overline{I}(\mathrm{X};\mathrm{Y})$ ,

(23)
$a\overline{C}(\beta|\mathrm{W})\leq\overline{C}(0|\mathrm{W})=\overline{C}(\mathrm{V})$ .

Then, we have the following.
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Property 3

a) For any $\gamma>0.$ if
$\lim_{narrow}\inf_{\infty}\Omega_{n,\gamma}(R, W^{n})\geq 1-$ a , (24)

then
$R\leq\underline{C}(\mathrm{c}\alpha|\mathrm{W})$ $+\gamma$ . (25)

b) For any $\gamma\geq 0.$ if
$\lim_{narrow}\sup_{\infty}I_{n},’(R, W^{n})\leq\beta$ , (26)

then
$R\geq\overline{C}(\beta|\mathrm{W})$ . (27)

With respect to Property 2 part $\mathrm{c}$ ), we are interested in the rate of convergence of
$\Omega_{n}(R, W^{n})$ for $R>\overline{C}(\mathrm{W})$ when $narrow\infty$ . To this end, set

$\sigma(R, \mathrm{W})=\lim_{narrow}\inf_{\infty}$ $(- \frac{1}{n})\log\Omega_{n,0}(R, W^{n})\mathrm{t}$ (28)

The function $\sigma(R, \mathrm{W})$ is a nonnegative function of $R\geq 0.$ Since by Property 3 part
$\mathrm{b})$ , $\sigma(R,\mathrm{W})$ vanishes if $R<\overline{C}(\mathrm{W})$ , the condition $R\geq\overline{C}(\mathrm{W})$ is a necessary condition
for $\sigma(R, \mathrm{W})>0.$

If the channel $\mathrm{W}=\{W^{n}\}_{n=1}^{\infty}$ is the stationary DMC, specified with $W$ , we can
derive an explicit lower bound of $\mathrm{a}(\mathrm{R})\mathrm{W})$ . To state the result, for nonnegative $\lambda$ ,
define

$F(R, W)$ $= \min$ lnin $D$ ( $V||$ I4 $|P$ ) ,
$P\in P(\mathcal{X})V\in P(\mathcal{Y}|\mathcal{X}):I(P_{j}V)\geq R$

$F_{\lambda}(R, W)=P \mathrm{q};)V\in\min_{\mathcal{P}(\mathcal{Y}1\mathcal{X})}\{\lambda[R- \mathrm{I}(\mathrm{P};V)]^{+}+D(V||W|P)\}$ , (29)

where $P(\mathcal{Y}|\mathcal{X})$ is a set of all noisy channels with input $\mathcal{X}$ and output $\mathcal{Y}$ . By an
elementary computation we can show that $F(R, W)$ and $F_{\lambda}(R, W)$ satisfy the following
properties.

Property 4

a): $F(R,$W) and $F_{\lambda}(R,$W) are monotone increasing and convex downward function
of R and are positive if and only if R $>C(W)$ .

$\mathrm{b})$ : Let $(P^{*}, V^{*})$ be a joint probability distribution on $P(\mathcal{X}\cross \mathcal{Y})$ that attains the
minimization stated in the definition of $F$ (R, $W$). Let $(P_{\lambda}, V_{\lambda})=\{P_{\lambda}(x)V_{\lambda}(y|x)$

$\}(x,y)\in \mathcal{X}\mathrm{x}\mathcal{Y}$ be a joint probability distribution that attains the minimum of
$\mathrm{X}(\mathrm{f}\mathrm{f} -I(P;V))+D(V||W|P)$ .

Set $R_{\lambda}=I(P_{\lambda;}V_{\lambda})$ . Then, we have

$F_{\lambda}(R, W)=\{$

$D(V^{*}||W|P^{*})$ for $C(W)\leq R\leq R_{\lambda}$ ,
$\lambda(R-I(P_{\lambda;}V_{\lambda}))+D( t ||W|P_{\lambda})$ for $R>R_{\lambda}$ .

(30)
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Furthemore, $F_{\lambda}(R, W)$ has the following alternative for$m.\cdot$

$F_{\lambda}(R, \mathrm{f}W)$
$= \min_{\tilde{R}\geq 0}\{\lambda[R-\tilde{R}]^{+}+F(\tilde{R}, W)\}$ (31)

$\mathrm{c})$ : For $R$ , $R’>0$
$|F_{\lambda}(R, W)-F_{\lambda}(R’, W)|\leq\lambda|R-R’|$ (32)

Then, we have the following.

Lemma 1 For any $R\geq 0$ and any stationary DMC specified with $W$ , we have

$\sigma(R, \mathrm{W})\geq\frac{1}{2}F_{1}(R, W)$ . (33)

3.2 Statement of the Results
The main result in this paper is the following.

Theorem 3 For any $(n, N_{n}, \mu_{n}, \lambda_{n})$ code with $\mu_{n}+\lambda_{n}<1,$ if the rate $r_{n}= \frac{1}{n}$ $\log$ $\log$

$N_{n}s$atisfies
$r_{n} \geq R_{n}+\frac{1\mathrm{o}\mathrm{g}n}{n}+\frac{1}{n}\log\log|$ a $|$ , (34)

then, for any $\gamma\geq 0_{f}$ the sum $\mu_{n}+\lambda_{n}$ of two error probabilities satisfies the following:

$1-\mu_{n}-\lambda_{n}\leq\Omega_{n,\gamma}(R, W^{n})$ . (35)

Prom Theore ms 2 and 3, the following capacity formula for the identification ca-
pacity due to Steinberg [4] can be obtained as a simple corollary.

Corollary 1 (Steinberg [4]) For any nonnegative numbers $\mu$ , A and $\alpha$ that satisfy
$0\leq$ cz $+$ A $\leq\alpha<1,$ we have

$\underline{C}(\mathrm{W})\leq C_{\mathrm{I}\mathrm{D}}(\mu, \lambda|\mathrm{W})\leq\underline{C}(\alpha|\mathrm{W})$ . (36)

In particular, by letting $\alpha$ be zero, we obtain

$C_{\mathrm{I}\mathrm{D}}(0,0|\mathrm{W})=\mathrm{C}(\mathrm{W})$ . (37)

It immediately follows from Theorem 3 and the second part of Property 2 that the
following strong converse result for the identification channel holds.

Corollary 2 If
$\lim_{narrow}\inf_{\infty}r_{n}>R>\overline{C}(\mathrm{W})$ , (33)

then, the sum of two types of error probabilities $\mu_{n}+\lambda_{n}$ converges to one as $n$ tends
to infinity. In particular, if

$\underline{C}(\mathrm{W})=\overline{C}(\mathrm{W})$ , (39)
then $\mu_{n}+\lambda_{n}$ converges to one as $narrow$ oo at rates above the identification capacity.
This implies that the strong converse property holds with respect to the sum of two
types of error probabilities.
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Next, we discuss the speed of the convergence for the $\mathrm{s}$ un of two types of error
probabilities $\mu_{n}+\lambda_{n}$ to tend to one. We consider the case when in addition to (39),
$R>\mathrm{C}(\mathrm{W})$ is a necessary and sufficient condition for $\sigma(R, \mathrm{W})>0.$ The following is
a direct consequence of Theorem 3 and Lemma 1.

Corollary 3 For any $(n, N_{n}, \ell\iota_{n}, \lambda_{n})$ code with $\mathrm{u}_{n}+\lambda_{n}<1$ , if the code rate $r_{n}$

satisfy lint $\inf_{narrow\infty}r_{n}>R$ , then the sum $\mu_{n}+\lambda_{n}$ of two error probabilities satisfies the
following:

$\lim_{narrow}\inf_{\infty}(-\frac{1}{n})\log(1-\mu_{n}-\lambda_{n})\mathit{2}$ $\sigma(R, \mathrm{W})$ . (40)

In $pa\hslash icular$ , if $\mathrm{W}$ is the stationary $DMC$ specified with $W=W^{1}$ , we have

$\lim_{narrow}\inf_{\infty}(-\frac{1}{n})\log(1-\mu_{n}-\lambda_{n})\geq$ a(R, $\mathrm{W}$ ) $\geq(1/2)F_{1}(R, W)$ . (41)

It follows from Corollary 3 that when $R>\overline{C}(\mathrm{W})$ , for any sequence of codes $\{(n,$ $N_{n}$ ,
$\mu_{n}$ , $\lambda_{n})\}_{n=1}^{\infty}$satisfies $\mu_{n}+\lambda_{n}<1$ and $\lim_{narrow\infty}r_{n}>R$ , the sum of two types of error
probabilities $\mu_{n}+\lambda_{n}$ goes to one exponentially and this exponent is lower bounded by
$\sigma(R, \mathrm{W})$ .

We can expect that for a fairly general class of noisy channels the condition $R>$
$\overline{C}(\mathrm{W})$ is a necessary and sufficient condition for $\sigma(R, \mathrm{W})>0.$ In particular, if $\mathrm{W}$ is
the stationary DMC, $\sigma(R, \mathrm{W})$ has the explicit lower bound given by $(1/2)F_{1}(R, W)$ ,
which is positive if and only if $R>C(W)$ . It is interesting to note that the exponent
function $F_{1}(R, W)$ has the same form as what appears as a reliability function for the
DMC at rate above capacity in Arimoto [6] and Dueck and K\"orner [7].

4 Proof of the Results

4.1 Channel Resolvability Problem
Let $\mathrm{W}=\{W^{n}\}_{n=1}^{\infty}$ be an arbitrarily prescribed noisy channel. For a given $\mathrm{X}=$

$\{X^{n}\}_{n=1}^{\infty}$ , let $\mathrm{Y}=\{\mathrm{Y}^{n}\}_{n=1}^{\infty}$ be a channel output when we use $\mathrm{X}$ as a channel input
of the noisy channel W. Let $U_{\mathrm{A}J_{n}}$ be the uniform random variable taking values in
$\mathcal{U}_{M_{n}}=\{1,2, \cdot . , M_{n}\}$ . By the map $\tilde{\varphi}_{n}$ : $\mathcal{U}_{M_{n}}arrow \mathcal{X}^{n}$ , the uniform random variable
$U_{\mathrm{A}I_{n}}$ is transformed into the random variable $\tilde{X}^{n}=\tilde{\varphi}n(U_{M_{n}})$ .

Definition 7 ( $M_{n}$-type) Let $\tilde{P}_{M_{n}}(\mathcal{X}^{n})$ be a set of all probability distributions on
$\mathcal{X}^{n}$ that can be created by the transformation of $U_{M_{n}}$ . Elements of $\tilde{P}_{\mathrm{A}\mathrm{f}_{n}}(\mathcal{X}^{n})$ are
called $M_{n}$-type. Clearly, every random variable $\tilde{X}^{n}=\tilde{\varphi}_{n}(U_{M_{n}})$ created by some
transformation map $\tilde{\varphi}_{n}$ : $\mathcal{U}_{\Lambda 4_{n}}arrow \mathcal{X}^{n}$ and $U_{M_{n}}$ has $M_{n}$-type. Let $\tilde{\mathrm{X}}=\{\tilde{X}^{n}\}_{n=1}^{\infty}$ and
let $\tilde{\mathrm{Y}}=\{\tilde{\mathrm{Y}}^{n}\}_{n=1}^{\infty}$ be a channel output when we use $\tilde{\mathrm{X}}$ as a channel input of the noisy
channel W. We denote the distributions of $\tilde{X}^{n}$ and $\tilde{\mathrm{Y}}^{n}$ by $\tilde{P}=\{\tilde{P}(\mathrm{x})\}_{\mathrm{X}\in \mathcal{X}^{n}}$ and $\tilde{Q}$

$=\{\tilde{Q}(\mathrm{y})\}_{\mathrm{y}\in \mathcal{Y}^{n}}$ , respectively.
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Definition 8 (Partial response) Let S be a subset of Xnx)$)^{n}$ .
Define a measure on $\mathcal{Y}^{n}$ by

$Q_{S}( \mathrm{y})=\sum_{\mathrm{x}\in \mathcal{X}^{n}}W^{n}(\mathrm{y}|\mathrm{x})P_{X^{n}}(\mathrm{x})1_{S}(\mathrm{x}, \mathrm{y})$ (42)

We call the measure $Q_{S}$ the partial response of $P$ on $S$ through noisy channel $W^{n}$ .
By definition of the partial response, it is obvious that

$Q=Q_{S}+Q_{S^{\mathrm{c}}}$ . (43)

Note that $Q_{S}$ is no longer a probability measure.

Definition 9 Let $\Phi_{n}(R)$ be a set of maps $\tilde{\varphi}_{n}$ : $1_{M_{n}}arrow$ )$/n$ that satisfy the rate
constraint $\frac{1}{n}\log M_{n}\leq R$ . and let $\tilde{Q}\tau_{\gamma}$ be a partial response of $\tilde{P}$ on $\tilde{Q}\tau_{t}$.. Let $S$ be an
arbitrary prescribed subset of $\mathcal{X}^{n}\mathrm{x}\mathcal{Y}^{n}$ . For $\varphi_{n}\in$ $n(R) let $\tilde{P}=P_{\varphi_{n}(U_{M_{n}})}$ and let $\tilde{Q}_{\mathit{8}}$

be a partial response of $P_{\tilde{X}^{n}}$ on $S$ .

We consider the situation that $\tilde{Q}_{S}$ is used as an approximation of $Q$ . In this
situation we are interested in the asymptotic behavior of the approximation error
$d(Q,\tilde{Q}s)$ measured by the variational distance. We shall derive an explicit upper
bound of $d(Q,\tilde{Q}_{S})$ . This result is a mathematical core of the converse coding theorem
for the ID channel.

Lemma 2 Let $\Phi_{n}(R)$ be a set of maps $\tilde{\varphi}_{n}$ : $\mathcal{U}_{M_{n}}arrow$l $\mathcal{X}^{n}$ that satisfy the rate constraint
$\frac{1}{n}\log M_{n}\leq R$ . Then, for any $n$ , any $P\in$ $P(\mathcal{X}^{n})f$ and its response $Q=PWn,$ there
exists $\tilde{\varphi}_{n}\in Dn$ (R) such that the variational distance between $Q$ and the partial response
$\tilde{Q}s$ of $M_{n}$ -type $P\sim=P_{\tilde{\varphi}_{n}(U_{M_{n}})}$ on $S$ satisfies the following:

$d(Q,\tilde{Q}_{S})$ $\leq \mathrm{E}[1_{S^{\mathrm{c}}}(X^{n}, Y^{n})]+\sqrt{\zeta_{n,S}}$ . (44)

Proof of Theorem 9.$\cdot$ Let $P_{i}\in 7$ $(\mathcal{X}^{n})$ , $i\in N_{n}$ , be codewords of $(n, N_{n}, \mu_{n}, \lambda_{n})$

code of the ID channel and $D_{i}\subseteq$ )$)^{n}$ , $i\in N_{n}$ be decoding regions corresponding to the
codewords. For $P_{i}\in$ $P(\mathcal{X}^{n})$ , $i\in N_{n}$ , let the response $P_{i}W^{n}$ of $P_{i}$ be denoted by $Q_{i}$ .
Then, for any $j\neq k,$ we have

$d(Q_{j}, Q_{k})\geq 2[Q_{j}(D_{j})-Q_{k}(D_{j})]\geq 2(1-\mu_{n}-\lambda_{n})$ (45)

We denote the right member of (44) by $\eta_{n}$ . By Lemma 2, for any $P_{i}\in$ $P(\mathcal{X}^{n})$ , $i\in N_{n}$

and its response $Q_{i}$ , their exists $\tilde{P}_{i}\in\tilde{P}_{M_{n}}$ $(\mathcal{X}^{n})$ and its partial response $\tilde{Q}_{}$

, $T_{\gamma}$ on $T_{\gamma}$

such that $d(Q_{i},\tilde{Q}_{i,T_{\gamma}})\leq\eta_{n}$ . Set $2^{nR}=M_{n}$ . Note that the cardinality of $\tilde{P}_{M_{n}}$ $(\mathrm{V}n)$

does not exceed $|\mathcal{X}|^{n2^{nR}}$ Then, if $N_{n}\geq|\mathcal{X}|^{n}2$

”
or equivalent to

$\frac{1}{n}\log\log N_{n}\geq R+\frac{1\mathrm{o}\mathrm{g}n}{n}+\frac{1}{n}\log\log|$ a $|$ , (46)

there exists a pair $(j, k)$ , $j\neq k\in N_{n}$ such that $\tilde{P}_{j}=\tilde{P}_{k}$ . For the above pair of integers,
we have

$d(Q_{j}, Q_{k})\leq d(Q_{j},\tilde{Q}_{j,T_{\gamma}})+d(Q_{k},\tilde{Q}_{j,T_{\gamma}})=d$ ( $Q_{j},\tilde{Q}_{j}$,T$\gamma$

) $+d$ ( $Q_{k},\tilde{Q}_{k}$

,T
$\gamma$

) $\mathrm{S}$ $2\eta_{n}$ , (47)
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which together with (45) yields that $1-\mu_{n}-\lambda_{n}\leq$ Qn. This completes the proof of
Theorem 3. $\square$

Proof of Corollary 1: We assume that $\mu+\lambda\leq\alpha$ and $R$ is $(\mu,, \lambda)$-achievable. Then,
there exists $(n, N_{n}, \mu_{n}, \lambda_{n})$ code such that

$1\mathrm{i}_{\ln}$ inf
$\underline{1}$

$\log$ $\log$ $N_{n}\geq R$ , (48)
$narrow\infty n$

$\lim\sup_{narrow}\lim_{narrow}\sup_{\infty}\mu_{n}\leq\mu\infty\lambda_{n}\leq\lambda\}$ (49)

Since
$\lim_{narrow\infty}\lceil\frac{1\mathrm{o}\mathrm{g}n}{n}+\frac{1}{n}\log\log|\mathcal{X}|]=0$ , (50)

for any $\delta>0,$ there exists $n_{1}=n_{1}$ $(\delta, |1 |)$ such that for any $n\geq n_{1}$

$\frac{1\mathrm{o}\mathrm{g}n}{n}+\frac{1}{n}\log\log|\mathcal{X}|\leq\frac{\delta}{2}$ (51)

On the other hand, by virtue of (48), there exists $n_{2}=n_{2}(\delta)$ such that for any $n\geq n_{2}$

$\frac{1}{n}\log\log N_{n}\geq R-\frac{\delta}{2}$
( (52)

Set $n_{0}=n_{0}(\delta, | 1 |)=1\mathrm{n}\mathrm{a}\mathrm{x}\{n_{1}, n_{2}\}$ . Then, for any $n\geq n_{0}$ , we have

$\frac{1}{n}\log\log N_{n}\geq R-\delta+\frac{1\mathrm{o}\mathrm{g}n}{n}+\frac{1}{n}\log\log|\mathcal{X}|$ . 53)

Applying Theorem 3 with respect to $R-$ ), for $n\geq n_{0}$ , we have

$1-\mu_{n}-\lambda_{n}\leq\Omega_{n,\gamma}(R- \mathit{6}, W^{n})$ . (54)

Taking the limit of both sides of (54) and using (49), we obtain

$\lim_{narrow}\inf_{\infty}\Omega_{n,\gamma}(R-\delta, W^{n})\geq 1-\lim\sup(\mu_{n}+\lambda_{n})\geq 1-(\mu+\lambda)\geq 1-\alpha$ , (55)
$narrow\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}$

which together with Property 3 yields that

$R\leq\underline{C}$(cz $|\mathrm{W}$) $+\delta+\gamma$ . (56)

Since $\gamma>0$ and $\delta>0$ can be taken arbitrary small, we have $R\leq\underline{C}(\alpha|\mathrm{W})$ . 口
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