Obooo0o0oOooooO 13510 20040 49-62

Term Structure Modelling
and
Monetary Policy

Toshihiro Yoshida*

Financial Markets Department
and
Institute For Monetary and Economic Studies

Bank of Japan

November, 2003

1 Introduction

Since March 2001, the Bank of Japan’s main operating target of monetary
policy is the outstanding balance of current account deposits at the Bank.
Under this quantitative easing scheme, the present monetary policy in Japan
goes beyond the so-called zero interest rate policy (hereafter ZIRP). Under
the ZIRP, particularly the short-term and mid-term interest rates are so low
that we have difficulty applying traditional yield curve models such as Vasicek
model to them. We examine Japan’s financial markets, especially the bond
markets, and discuss the market structure.

Marumo, Nakayama, Nishioka, and Yoshida [2003] constructs a term struc-
ture model with the following properties to take “policy duration effect” into
consideration.

1. Instantaneous spot rate follows the traditional Vasicek augmented by
incorporating the probability of policy duration as one of the risk factors.

2. Long-term interest rate zone is mainly determined by risk prices per-
ceived in markets.

Meanwhile, in many countries, short rates are used as major instruments
by monetary authorities for realization of their monetary policies. In Japan,
the Bank of Japan uses the overnight call rate. Consequently, the possibility to
take interaction between the interest rate controlled by the monetary policy
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and market rates into models explicitly seems to be one of advantages in
modelling term structure by short rate models.

Along this line, Otaka and Yoshida [2000] and Yoshida [2003] propose the
term structure model in the framework of Forward Backward Stochastic Dif-
ferential Equations (hereafter FBSDE’s). Additional advantage of this short
rate modelling is the possibility that the theoretical discussion of determining
the level of the target short rate can be embedded in the mechanism of gener-
ating whole term structure explicitly by using the theory of monetary policy
reaction functions (hereafter MPRF’s).

In this paper we try to explain term structure models, which explicitly
capture the relation between a short rate and the monetary authority based
on the above three papers.

2 Overview of Recent Monetary Policy in Japan

2.1 Zero Interest Rate Policy ; February 12, 1999 - August 11, 2000

In February 12, 1999, the BOJ decided that the BOJ would encourage the
uncollateralized overnight call rate to move as low as possible by providing
ample liquidity. In April 13, 1999, the Governor of the Bank of Japan stated
that that the policy would be maintained until such time as when deflationary
fears are removed, which is the concept of “policy duration effect.”

In August 11, 2000, the BOJ decided to encourage the uncollateralized
overnight call rate to move on average around 0.25% because that the BOJ
felt confident that Japan’s economy has reached the stage where deflationary
concern has been dispelled, the condition for lifting the zero interest rate
policy.

2.2 New Monetary Policy - Quantitative Easing - ; March 19,
2001 -

Although the policy was once abandoned in August 2000, in March 19, 2001,
the BOJ decided to reactivate the policy in the following enhanced manner:

1. the BOJ changed the main operating target of monetary policy operation
from the uncollateralized overnight call rate to the outstanding balance
of current account deposits and increase the average from ¥ 4 trillion
to ¥ 5 trillion.

2. the BOJ committed that it will continue to pursue the new monetary
policy framework “until the Consumer Price Index registers stably a zero
percent or an increase year on year.”

3. the BOJ increases the BOJ s outright purchases of long-term government
bonds.
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3 A Term Structure Model under ZIRP

- Marumo, Nakayama, Nishioka, and Yoshida [2003] -

3.1 Dynamics of Instantaneous Spot Rate

We fix the probability space (0, F, P; {F:})!. Q is the equivalent martingale
measure with respect to the original measure P. We assume that an instanta-
neous spot rate is zero in the period of the ZIRP and follows the OU process
once the policy is abandoned. Let T be the stopping time until the BOJ ends
the ZIRP under Q. Therefore, under @, an instantaneous spot rate r] at time
t given 7 satisfies

dr] = 1gr<oy (K — r7)dt + 0dW} ), m

where W* is the Wiener proéess and 7 and W™ are assumed to be independent
under Q. From the theory of change of measures,

/‘l':m_%A,

where m is the mean-reverting level under the original measure P and X is
the market price of risk. Furthermore, we assume that 7 obeys the standard
Gamma distribution under Q2 i.e.,

Prir <t} =¥(t) = %T(%Z, a >0,

where Ty(a) = [fu®le *du and ['(a) = [ u*le *du.
0 0

If we regard N¢ = {l(;<4}} as the F-adapted non-negative process, the
hazard rate l; of IV, is given by

)
1-9(t)

From the theory of Doob — Meyer decomposition, My = Ny — fg’ Is(1— N;)ds
becomes a martingale under the EMM Q.

3.2 Discount Bond Price Formula

Nekt, we derive a yield curve model in the period of the ZIRP. Let P(t,T) be
a discount bond price with maturity T, i.e.,

P(t,T) = E° [e~ I fId'm] ©)

r

= E9 [1{r<t}€— I r:d'S\ft] +E@ [1{t5r5T}6— f‘Tr’d"‘:Ft] +E9 [1{T<T}L7:t] )

1See Schénbucher [1999] for details.
2See Marumo et al. [2003] for details
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where EQ[.] denotes an expectation operator under the EMM Q.

Under the condition T > t,
E° [1{1«}6_ ftT’”"lft] =0,

E? [Lr<r}|F] = Lir<g B [Lir<r}|F2] + Liary EQ [Lir<r} | i)
= l{t<r} PriT < 7|t < 7]
_1 Pr[T < 7]
{t<r} Pr[t <7

Y(T)
1{t<r} 9@

On the other hand, the second part of the righthand side (2) can be written
as

B [Lpgramye K HHIR] = BR [Lygren BR [ FO| R ] ]
= B?lpcreny Z:|F

where Z; = P!(t,T) is a discount bond price given stopping time t.

Using 1(s<,<1}Zr = [, ZsdN,, we can obtain that

T
Eq[l{tSTST}ZT|-7'-t] = E° [,/:. Z,dN,IJ-}]
T
= EQ[ Zsl,(l—N,,)dslft]
t

T
= / Zl,E®[1 — N,|F:)ds
t

T
- ZstsEQu{m}mlds

_ — ¥(s)
= 1{t<r}/ Zl s \I’(t)d
— ¥(s)

Y(s) 1
—_ 8
- 1{t<T},/t‘ P (S,T)l—\I/(s) 1‘—‘I’(t)ds’

Pt(t’T) = HI(T - t),

(Ha(t) —)(Pu = 0%/2) _ o?HJ(2)
Hl(t) = €xp { 2 - 4:
1—e

Hy(t) = —

Hence, under the condition 7 > ¢,
1-¥(T)

P(t,T) = /tT T f(s) Hy(T - s)ds +

(D) 1-2(@) 3)

b



3.3 Empirical Analysis

The daily instantaneous spot rates data are estimated from the Japanese Gov-

ernment Bond market using the Vasicek and Fong method, which is globally
fitted to yield curves.
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Figure 1: Estimated Instantaneous Spot Rates
(Cited from Marumo et al. [2003])

Parameters of the SDE (1) are estimated using the ordinary least-squares
(OLS) method.

Table 1: Estimated Parameters of the Vasicek Model

K m (74
1992/1/6 ~1999/1/29  0.7131 _ 0.006476  0.01017
(1.974) ** (0.8477)  (89.40) ***

The figures in the parentheses denote t-value. *** denotes 99%, ** 95% and * 90%
confidence level, respectively.

(Cited from Marumo et al. [2003])

Our model has still two parameters to be estimated: the shape parameter
in the standard gamma distribution o and the market price of risk A\. We
estimate these parameters daily by fitting the model to an actually yield curve
using the OLS method.

Fig.2 compares between the yield curves estimated by our model and the
Vasicek model. Fig.3 shows the time series of residual between the predicted
value of our model and the market interest rates. The fitting of our model is
satisfactory across any remaining maturity.

Fig.4 shows examples of the estimated distribution. In the period before
August 2000, when the ZIRP was abandoned by the BOJ, the peak of the
probability density function shifts leftward toward the end of the ZIRP. In the
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Figure 2: Estimated Yield Curves
(Cited from Marumo et al. {2003])
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Figure 3: Residual of the model
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period after March 2001, when the quantitative monetary easing policy was
adopted, the peak shifts rightward as time goes by.

0.50 0.30
0.45 ceen 1909/2/28 025 —2001/3/30
0.40 — 1999/4/13 - ——2001/12/28
0.35 e 2000/2/28 020 \ o 2002/4/30
030 e 2000/8/10 ) TN\ v 2002/10/31
0.25 0.15 | v“-«\,
0.20 | f’ S

f - AY
015 o.10 jf ~,

N

0.10 oos Fff / .
0.05 ! L

E / o
0.00 0.00 .

0 1+ 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 8 10

Figure 4: Probability Distribution of the Policy Duration Effect
(Cited from Marumo et al. [2003])

4 A Term Structure Model with MPRF
- Otaka and Yoshida [2000], Yoshida [2003] -

4.1 Forward Backward Stochastic Differential Equations

The Forward and Backward SDE’s are described as the following system.
¢ t
X: = :z:+/ b(s,X,,Y_.,,Z,)ds—i—/ 0(3, X5, Ys)* -dWF, Xo=1z, (4)
0 0

T T
Y = g(Xr)+ / h(s, Xy, Yo, Zs)ds — f Z* . dwP. 5)
t t

Theorem 4.1 Solvability of FBSDE’s Under the following assumptions 1-3,
FBSDE'’s (4)-(5) have a unique solution (X,Y, Z).

1. (), h(-), o(:), and ¢(-) are smooth functions whose first derivatives
are bounded by some constant L. Furthermore, g € C2**(R") for some
a € (0,1).

2. There exist some positive function u(-) and positive constant v such
that

ﬂ'(lyl)I < U(t,l‘, y)a(t,:c,y)* <vl.
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3. Forall (¢,z,2) € [0, T] x R® x R™*4, there exist some positive constant
v such that

|b(¢, z,0,0)| + |h(t, z,0,2)| < v.

Proof See Ma and Yong [1999] Chapter 4 Theorem 2.2.

The Backward SDE’s are thought as a special case of the FBSDE’s, in which
the forward processes are independent of the backward processes.

I

T T
§=Y;+/ h(s,Y_.,,Z,)ds—-/ Zr - dw?k, Yr=¢. (6)
t t

Theorem 4.2 Solvability of BSDE BSDE(6) has an unique solution (Y, Z),
given the standard parameters (£, h) which satisfy the following conditions.

1. £€e€LZ4(R™): Let LL(R™) be the space of all F-measurable random
variables satisfying E(]X|?) < oo.

2. h(-,0,0) € H&(R™): Let H%(R™) be the space of the all predictable
processes 9 : €2 x [0,7] — R™ such that E [T |y|?dt < co and h is
uniformly Lipschitz.

Proof See Pardoux and Peng (1990) Theorem 3.1.

4.2 Term Structure Models in the FBSDE’s Framework

In this subsection a short rate model with the instrument (e.g., the overnight
call rate in Japan) is developed. We fix the probability space (2, F, P; {F: }t>0)3
satisfying the usual conditions. Let {r*"*!(t),t > 0} denote the instrument
process and {r(t),t > 0} denote the prospective instantaneous spot rate pro-
cess in the JGB market, respectively. A price process of the T-maturity dis-
count bond {P(¢,T),0 <t < T} is given by the expected discounted formula

Pt,T)=E [exp(— ftT rudu)j]-}].

We consider term structure models in the FBSDE’s framework as follows?.
Let {W(t),t > 0} and {W?(t),t > 0} be two independent Wiener process.

3See Duffie, Ma and Yong (1995) for the discussion about the probability measure.
“See Yoshida [2003] for details.



Suppose that state variables X; = (X}, X?) satisfies

dX; = b(t, Xe, P(t, T))dt + o (t, X,) - AW, 1)

dP(t,T) = —h(t, X, P(t,T))dt — Z; - dW,, (8)

Xo=z5, Xo=uaz, PTT)=gXT)=1 (9

h(t,X(t), P(t,T)) = —U(X})P(t,T) = —rP(¢,T), (10)

o(t, X) = ( 7l X Z;zg §3 ) (11)
0’11(’),0’12(*),0’22(~) : positive functions,

Zy = (Ztlath)*’ W, = (thvuftz)*‘ (12)

Remarks In this model setting, we assume that

K 2~ ;
b, X P XE) = (o 8OO ey ) @9

Then,

1. Vasicek Model :
Xt =1, 62(-) = 0, (X}) = X}, on1 is a positive constant, and 0
otherwise.

2. Coz, Ingersoll, and Ross model :
Same as the Vasicek model, except o11(t, X¢) = ow/XtI.

3. Hull - White model :
k1(t, Xe) = ka(t), k2(t, Xe)¥(t, Xe, P(t,T)) = ¥(t), 022(-) = 0 in the
Vasicek Model setting.

4. Black - Karasinski model :
I(X}) = exp(X}) in the Hull - White model setting.

5. Duffie - Kan model :
Set h(t, X¢, P(t,T)) as a function of P(t,T)'s with various maturities.
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4.3 Term Structure Model with MPRF

The state variables X (t) = (X1(t), X2(t)) = (Inr(¢),In7"%(t)) are assumed
to satisfy the stochastic differential equation of the form
dX(t) =0b(t,X(t),P(tT))dt+ o dW(t),
dP(t,T) = —h(X(t),P(t,T))dt+ Z(t)* - dW(t),
h(t,X(t), P(t,T)) = —exp(X})P(t,T) = —r:P(t,T),
X1(0) =lnr(0) =Inry, X3(0) = Inr"*(0) = Inri"*,
P(T,T) = g(X(T)) =1,

where

K1 (Xa(t) — X1(2)) )
t,X(t),P(t,X(t)) = ’
b(t, X (t), P(t, X (£)) ( ra(w(t, X (£), P2, T)) - Xa(t))
K1, K2 : constants,
o= ( g11 012 ), 011,012,022 : positive constants,
0 o2

Z(t) = (Z1(2), Za(1))* , W (t) = (W(t), W2(t))" .

In the above formulation, the existence of some deterministic “monetary
policy reaction” function %(-) is assumed, by which the monetary authority
decides the level of the target rate.

As for the function (:), we use the instrument rule as the monetary policy
reaction function. We show some examples of instrument rules.

e Taylor rule
rhae i (t) =1+ m + 0.5(m — ) + 0.5y,
where i is the average of the instrument.
e Henderson-McKibbin rule
rimet ot (t) =1+ 2(m + g — (m+y)).
¢ QPM model (Bank of Canada, Reserve Bank of New Zealand)
rimetes(t) =1t + v(Eqlmyr|Fi) — 7),
where rL(t) is a long nominal rate.

In the context of monetary policy rules, the equation (13) means that the
instrument is given by the weighted average of the process and the target level
in practice.



We assume that
riaret = —I P, T)/(T —t) - BTt =Y (t,T) - 67* (14)

where Y'(¢t,T) is a (T —t) yield function and 87~ is a term premium function.
Based on the observed data, we assume

=Y, T)A - e )
where (3, is a positive constant. Hence,

¢(t1 X(t)’ P(ta T)) =In r:::_;et = lIlY(t, T) - ﬂl (T - t)'

Remark As for the long rate, the sliding bond yield — In P(¢,t+7)/T may
be used instead of the bond yield in (14). But in the JGB market, the yield
of some fixed series with enough liquidity is used to represent the market level
while it exists in some period of time to maturity. Furthermore, in the HIM
framework, the SDE of the sliding bond price D(¢,T) = P(t,t + T') contains
the forward rate explicitly (Rutkowski (1997)), i.e.,

dD(t,T) = D(t, T)((r(t) — f(t,t + T))dt + o(t,t + T) - dW(t))

where f(t,T) is the instantaneous forward rate starting at 7. Hence, it is hard
to derive or solve the corresponding PDE in our approach.

Using the Jensen inequality, we obtain

lnP(t, T) _ 1 —fT r(u)du
TTT % _”T-tlnEQ[e ! l-ﬁ]

< Eo[r*()lA] = C*(rest, T),

Y(@,T)

I

where r*(w) = supyep, (3, w), w € @ and limy_¢ 0 C*(r,t,T) = r. On
the other hand,

1 R
= § =_ ~ (t,T)(T-t)
Ci(r,t,T) 7 (t, T) T3 In [e ]
1

- _ —r(w)(T-t)
——InEg [e |.7-‘t] <Y(t,T),

where r,(w) = infuep r(u,w), w € Qand limr_;0 Cu(re,t, T) = ry.

Assumption Based on the above estimates, we assume that the possibility
that X;(t) and X,(t) are out of some interval [LT,UT] and [LT,U7T] is neg-
ligible, respectively, for some numbers LT, UL, LY and U] which depend on
parameters of processes and T'.
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The base model in the stationary state can be described as

Problem B,

dX(t) =b(t,X(t), P(t,T))dt + o - dW(t),

dP(t,T) = —h(X(t), P(t,T))dt + Z(t)* - dW(2),

h(t, X (t), P(t,T)) = —exp(X})P(t,T) = —r; P(t,T),
X1(0)=Inr(0) =Inrg, X2(0) = Inr*™**(0) = Inri"**,

P(T,T) = g(X(T)) =1,

X(t)eD={XMILT < Xu(t) SUT, Lj < Xa(t) <Uj},

where

B (Xa2(t) — Xa(t))
bt, X (8), P(t, X (¢))) = ( K (my(:,l T) - A(T - t) — Xa(t) ) ’

K1 >0,

011 012
o= , 011,012,022 > 0,
0 a992

Z(t) = (Z1(t), Ze(@®)T , W(t) = (W(t), W(t))" .

To solve this problem B,, we can use the Four Step Scheme. In general,
the Four Step Scheme consists of the four major steps, in this case, they are
reduced to the three steps because the volatility functions are constant5.

1. Solve the PDE

1 1
6 + 5(031 +039)0z210y + 012022025, + 50%29zm + K1(z2(t) — 21(t))0z,
+ r2(ln(—1n8/(T — t)) — Bi(T — t) — 2(t))8z, — B0 = 0,

0z, T) = 1.

2. Using 6 obtained in the previous step to solve the forward SDE
dX1(t) = k(Xa(t) — X1(t))dt + o11dW(t) + 012dW2(2),

dXo(t) = kg (In(—1n8(X(2),t)/(T —1t)) - B1(T —t) — Xo(t))dt
+0'22dW2(t),
X1(0) =lnr(0) =Inrg, X3(0) = Inr"(0) = Inriret,
3. Set

‘ P(t,T) = O(X(t):t)’
Z: =0,(X@),t)T -0

See Ma and Yong (1999) for details.
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