Title
How Does the Polymer Chain Expand by Intramolecular Electrostatic Repulsion (FUNDAMENTAL MATERIAL PROPERTIES-Polymer Materials Science)

Author(s)
Nishida, K.; Kaji, K.; Kanaya, T.

Citation
ICR annual report (1997), 3: 26-27

Issue Date
1997-03

URL
http://hdl.handle.net/2433/65113

Type
Article

Textversion
publisher

Kyoto University
It is well-known that in salt-free solutions the polymer chains having flexible backbones will behave as half-rigid rods when they have high charge density. The driving force of the expansion is, of course, the intramolecular electrostatic repulsion between dissociation groups attached to the backbone. On the other hand, without charges they will behave as coils. So it is natural to consider that the low charge density polyions in salt-free solutions should have an intermediate conformation, something between a half-rigid rod and a spherical coil. But, how? The mechanism of chain expansion by charges is one of the most interesting problems in the field of polyelectrolyte solutions.

As the charge density α decreases, however, the flexibility of polyion chains does not continuously increase, but they collapse into blobs below a critical value of the charge density. This type of conformation has been modeled as a chain of blobs by de Gennes et al.[1], Pfeuty[2], and Khokhlov[3-4]. A single blob chain consists of a sequence of blobs inside which the chain conformation is approximated as Gaussian. The effective contour length of this blob chain is defined by the sum of blob diameters. As α decreases, the blob diameter increases proportionally to the square root of the molecular weight M_b of a blob while the number of blobs in a chain decreases proportionally to M_b. The contour length therefore decreases with decreasing α. Further, since the interchain correlation length in the semidilute region is related to the electrostatic correlation lengths ξ in salt-free polyelectrolyte solutions have been measured as functions of charge density and polymer concentration using a small-angle X-ray scattering (SAXS) technique. Water soluble poly(vinyl alcohol) (PVA) was employed as a parent polymer to avoid increasing hydrophobic interactions with decreasing the charge density; partially sulfuric-acid esterified PVA’s were used as samples. The charge density was changed from 0.008 to 0.499 in degree of esterification α. It was found that the maximum position q_m of a characteristic SAXS peak, which is attributable to the electrostatic interchain correlation, is proportional to the square root of polymer concentration C at any charge density. This supports that the isotropic model of de Gennes et al. is valid. The α dependence of q_m agrees with the theoretical prediction from the blob chain model for weakly charged polyelectrolytes proposed by Pfeuty and Khokhlov. This is the first and important experimental data which tells how the polymer chain expands by intramolecular electrostatic repulsion.

Keywords: Polyelectrolytes / Correlation length / Blob chain model / Isotropic model / SAXS
to the density of the effective contour length, i.e., density of skeletal lines, the interchain correlation length ξ also increases with decreasing α under the constant C condition. Thus, based on this model the α dependence of the correlation length can be derived. When the correlation length $\xi \sim C^{-\alpha}$ was derived in the isotropic model[1], the overlap concentration in rod limit was taken as N/L, where $L = a_o N$ is contour length, a_o and N being the length of monomer and the degree of polymerization, respectively. For a chain consisting of blobs, replacing L by effective contour length L', the interchain correlation length becomes

$$\xi \sim (CL/N)^{-\alpha}.$$ \hspace{1cm} (1)

According to the blob model[2-4]

$$L' \sim a_o^N,$$ \hspace{1cm} (2)

and so

$$\xi \sim a_o^{1/2} C^{-\alpha}$$ \hspace{1cm} (3)

or

$$q_m \sim a_o^{3/2} C^{-\alpha},$$ \hspace{1cm} (4)

where q is the length of scattering vector $q = 4\pi \sin \theta \lambda$, 2θ and λ being scattering angle and X-ray wavelength, respectively. Equations 3 and 4 are basic relations in the semidilute region for understanding the α dependence of the correlation length ξ and the peak position q_m respectively. Here, it should be noted that these equations are valid only for $\alpha \leq a_o/l_0$ because of the Oosawa-Manning counterion condensation theory[5-7] where l_0 is the Bjerrum length defined by $e^2/4\pi \varepsilon kT$, e, ε, k and T being elementary charge unit, dielectric constant of solvent, Boltzmann constant and temperature, respectively. For $\alpha > a_o/l_0$, ξ and q_m become independent of α.

The SAXS measurements were carried out using a 6-m point focusing SAXS camera at the High-Intensity X-ray Laboratory of Kyoto University. In Figure 1, q_m is plotted against C for various αs. For $\alpha \geq 0.107$, the relationship in equation 4 is satisfied in respect to the C-dependence. This behavior of q_m for $\alpha \geq 0.107$ in Figure 1 is essentially the same as in the previous experiments[8-9] for the salt-free semidilute solution of NaPSS with $\alpha = 1.0$. It is therefore expected that the present systems with $\alpha \geq 0.107$ also assume the 'isotropic structure'. For $\alpha \leq 0.054$, the exponent of C is rather small compared with 1/2. Considering this phenomenon and the crossover concentration $C^* = 0.1$ mol/l for the coil limit, these systems may no longer be regarded as semidilute in the whole range observed, especially at $C < 0.1$ mol/l, but they may be somewhere in the crossover region.

Figure 2 shows logarithmic plots of q_m against α for various concentrations. For $\alpha < 0.3$, the relationship in equation 4 is satisfied in respect to the α-dependence. The decrease of the correlation length with increasing α means that polony blob chains expand with increasing α.

The leveling-off of q_m for $\alpha > 0.3$ is attributable to a phenomenon of counterion condensation. According to the condensation theory of Oosawa[5-6]-Manning[7], the counterion condensation occurs when the distance between the neighboring dissociation groups on the backbone chain is within the Bjerrum length l_0 as above described. Since l_0 is 7.16Å in water at 25°C and a_o = 2.52 Å for a vinyl type of polymers, the critical charge density $\alpha = a_o/l_0$, at which the counterion condensation begins to occur, is 0.35. This almost corresponds to the observed value of 0.3. The structural change by electrostatic interaction is therefore no longer expected for $\alpha > 0.35$.

These results indicate that the structure of semidilute solutions of weakly charged polyelectrolytes can also be understood within a frame work of the 'isotropic model'[1], and the mechanism of chain expansion by charge obeys the 'blob chain model'[1-4].

References