The K x-ray emission spectra of 3d transition elements have been with great interests for a long time because of their asymmetric shapes or the existence of satellite lines. These features indicate that some processes or interactions play an important role besides single electron transition between the levels of the diagram lines. Although multielectron excitations or multiplet splitting, etc. may be considered as origins of satellite lines, the origins of many satellite lines remain not clarified. Therefore, in order to elucidate the mechanism of their origins (especially of Kβ and Kβ' satellite lines), the K x-ray emission spectra of chromium in Cr metal, Cr₂O₃, CoCr₂O₄, FeCr₂O₄, K₂CrO₄, and K₂Cr₂O₇ were measured using a double crystal spectrometer with high resolution.

The Kβ satellite line appears on the low energy side of the Kβ₁,₃ lines which are originated from the single electron transition of 3p→1s. As can be seen from Figure 1, the relative intensity of the Kβ satellite line to the Kβ₁,₃ lines for compound with octahedral symmetry is larger than that for compound with tetrahedral symmetry. Tsutsumi suggested that the Kβ satellite line might be attributed to the exchange interaction between the total spin of 3p electrons s and that of 3d electrons S [1]. The Hamiltonian of this exchange interaction is given by

\[-\frac{J}{2}(1+4S \cdot s) \]

where J is the exchange integral. When one electron in the filled 3p shell moves into the vacancy in the 1s shell, this exchange interaction causes the energy splitting of the final states by the energy of DE which is given by

\[\Delta E=J(2S+1) \]

where S is the magnitude of S. The value of ΔE derived from this theory agrees well with the energy difference between the Kβ₁,₃ lines and the Kβ satellite line in observed spectra.

Keywords: Kβ' and Kβ" satellite lines/ exchange interaction/ number of unpaired electrons/symmetry of ligands/ molecular orbital

Cr-Kβ X-ray Emission Spectra in Several Chromium Compounds

Tatsunori Tochio, A.M. Vlaicu, Takashi Ishizuka, Daisuke Osawa, Yoshiaki Ito and Takeshi Mukoyama

States and Structures

---Atomic and Molecular Physics---

Scope of research

In order to obtain fundamental information on property and the structure of materials, the electronic states of atoms and molecules are investigated in detail using X-ray, synchrotron radiation, ion beam from accelerator and nuclear radiation from radioisotopes. Theoretical analysis of the electronic states and development of new radiation detectors are also performed.

Guest Res Assoc

Turgut Bastug (D Sc)

Students

YAMAGUCHI, Koichiro (DC)
OSAWA, Daisuke (DC)
SHIGEMI, Akio (DC)
SUZUKI, Chikashi (DC)
TOCHIO, Tatsunori (DC)
MASAOKA, Sei (MC)
ISHIZUKA, Takashi (MC)
NAKANISHI, Yoshikazu (RF)
Vlaicu A. Mihai (RS)

Prof

MUKOYAMA, Takeshi (D Eng)

Instr

KATANO, Rintaro (D Eng)

Instr

ITO, Yoshiaki (D Sc)

Instr

NAKAMATSU, Hirohide (D Sc)
spectra. According to this theory, the relative intensity of Kβ satellite lines to the Kβ₂,₅ line is given by \(S/(S+1) \). The number of unpaired electrons is formally three (\(S=3/2 \)) in the compounds with octahedral symmetry, zero (\(S=0 \)) in the compounds with tetrahedral symmetry. Then this theory can account for the larger intensity of the Kβ' lines in the compounds with octahedral symmetry. But it cannot explain the Kβ' satellite line quantitatively and needs some modifications. Some trials to get better agreement by some modifications such as consideration of the effect of spectator hole or plasmon were performed [2][3]. However, some other modifications are still needed to account for the origin of the Kβ satellite line sufficiently.

The Kβ' satellite lines with the Kβ₂,₅ lines of chromium in FeCr₂O₄ (octahedral symmetry) and K₂Cr₂O₇ (tetrahedral symmetry) are shown in figure 2. The Kβ' satellite line appears on the high energy side of the Kβ₂,₅ lines. The Kβ₁ line and the Kβ₂,₅ line are generated by the single electron transition of 4p→1s and 3d→1s respectively. It is easily seen that the relative intensity of Kβ' satellite line to the Kβ₂,₅ lines in K₂Cr₂O₇ (tetrahedral symmetry) is much larger than that in FeCr₂O₄ (octahedral symmetry). This way of appearances of the Kβ' satellite line is opposite to that of the Kβ satellite line. It was reported that the origin of the Kβ' satellite line might be ascribed to the molecular orbital [4]. To investigate these lines more precisely the spectra with high S/N are necessary though it is difficult to get because of the weakness of the Kβ₂,₅ lines and Kβ' satellite line.

Tuning the energy of the incident beam, by which we can control the possibility of occurrence of some special processes, gives us useful informations about the effect of various processes on x-ray emission spectra. Recently the advent of synchrotron radiation facility made this kind of experiment possible. Such experiments will help us to solve many problems of x-ray emission spectra.

References