Detailed L Emission Spectra and Satellites of 74W

Aurel-Mihai Vlaicu, Tatsunori Tochio, Takashi Ishizuka,
Daisuke Ohsawa, Yoshiaki Ito, and Takeshi Mukoyama

The Lα and Lβ spectra of tungsten were measured using a high resolution single crystal x-ray spectrometer and were fitted into Lorentzians. The fit residuals of the Lα and Lβ spectra indicate satellites in the vicinity of each spectrum, which are originated from Coster-Kronig transitions. Linewidths, energies, and intensities were estimated for each diagram line.

Keywords: Lαβ satellite lines/ Coster-Kronig transition / spectator hole / natural linewidth / multiplet fitting/

It is generally difficult to analyse L x-ray emission spectra induced by electron impact because all the three L subshells can be ionized and the redistribution of initial vacancies due to Coster-Kronig transitions produce additional inner-shell vacancies. The existence of two or more holes in atomic inner shells gives rise to satellite lines with energies which are shifted from the diagram lines. The study of L x-ray satellites in high-Z elements has not been performed by many workers. There have been reported only a few papers on tungsten 74W \cite{1,2,3} for the last 20 years. The widths of some L x-ray lines of W were measured as part of a program for compiling the L series linewidths in heavy elements \cite{4,5,6}. They suggested that the disagreement between theory and experiment without the analysis of hidden satellites was due to the large values of \(M\) - and \(N\)- subshells partial widths reported in the work of McGuire \cite{7}.

In the present study, we investigated the line width, energies and intensities including satellites of 74W Lαβ emission lines generated by electron bombardment using a single-crystal high resolution x-ray spectrometer for the evaluation on the correctness of the theoretical calculation of different types of transition rates. The tungsten L spectral lines were excited by electron bombardment in a rotating anode at tube voltage of 49 kV and 150-180 mA. The spectral measurements were carried out with a single-crystal spectrometer with symmetrical Si(440), Si(444) and Ge (444) perfect crystals in which x-ray topography showed no dislocation. A double slit collimator of 100 mm length and the vertical width of 10 or 20 mm was used for the measurement.

The natural linewidths \(\Gamma_{\text{nat}}\) of the emission spectra were evaluated from the measured spectral linewidths \(\Gamma_{\text{obs}}\) including the energy dispersion due to the slit \(\delta E_{\text{slit}}\) and the crystal \(\delta E_{\text{crystal}}\), as follows:

\[
\Gamma_{\text{nat}} = \Gamma_{\text{obs}} - \delta E_{\text{slit}} - \delta E_{\text{crystal}}
\]

where \(n\) is the correction parameter, which was determined for each spectral line by numerically solving the above equations using two different experimental conditions of collimator slit or Bragg reflection. The obtained correction parameter \(n\) values between 1.4 < \(n\) < 1.6 were considered as reasonable in our experiment.
The natural width of an x-ray line originated from a transition from an atomic level (A) to a level (B) is represented as the sum of the width of the initial and final levels: \(\Gamma(A \rightarrow B) = \Gamma(A) + \Gamma(B) \).

Theoretical values of natural width of atomic vacancy states were reported for L-shell [8], and M-shell [9] using the relativistic calculations, and for N-shell with nonrelativistic calculations [9].

The relative intensities of Coster-Kronig satellite transitions are calculated assuming that the radiative transition rate \(\omega_{i \rightarrow j} \) has the same value for single vacancy states and multiple vacancy states. For the transitions to the initial vacancy state \(L_i \), the relative intensities of the spectator hole satellite lines to the diagram line can be calculated as follows:

\[
\text{Is}(L_i) = \frac{\sigma_i / \sigma_x}{\text{f}_{i,2} (L_i L_x)}
\]

where \(\sigma_{i+1,2,3} \) is the ionization cross section by electrons for the \(L_i \) subshell: \(\text{f}_{i,2} \) is the partial Coster-Kronig transition probability from \(L_i \) to \(L_x \) level; \(P(L_i L_x) \) is the probability of the radiative transition \(L_i \rightarrow L_x \), for which the double vacancy state \(L_i \) is created, where \(X \) is either \(M \) or \(N \) shell. In the transitions to the initial vacancy state \(L_i \), there are two possible Coster-Kronig transitions: \(L_i \rightarrow L_x \) and \(L_i \rightarrow L_y \).

The relative intensities of the spectator hole satellite lines to the diagram line has two terms:

\[
\text{Is}(L_i) = \left(\frac{\sigma_i / \sigma_x}{\text{f}_{i,2} (L_i L_x)} \right) P(L_i L_x)
\]

We used for \(\omega \) the values reported by Krause [10], for \(\sigma_x \) the values reported by Reusch [11] for Ta at 50 kV, and for \(P(L_i L_x) \) the values reported by Chen et al. [12].

In Table 1 we compare our results with the previous experimental values by Salem et al. [4,5]. The values derived from theoretical linewidth as the sum of the two levels involved in the transition are shown for a comparison with the experimental values obtained with the multiplet fitting method by Deutsch et al. [13] by considering the satellite structure: the relative intensities and the relative energy position of the satellite lines to the diagram lines were fixed in the fitting. The energies of the satellites were taken from the table by Parente [14].

In the transitions involving L-shell levels and M-shell levels, such as \(\lambda X_1, \lambda X_2, \lambda X_3, \lambda X_4 \), and \(\lambda X_5 \), we have a good agreement between the values obtained by multiplet fitting and the theoretical values which are obtained using the relativistic calculations. On the other hand, for the transitions involving L-shell levels and N-shell levels, such as \(\lambda X_6, \lambda X_7, \lambda X_8, \), the widths obtained from theoretical calculations are all larger than those from the experiments, the difference being between 2.7 eV and 3.3 eV. This disagreement between theory and experiment for \(L_i \rightarrow N \) transitions can be attributed to the values for the \(N \) shell vacancy states obtained from nonrelativistic calculations. Although Gokhale et al. [6] and Salem & Lee [4] also suggested this, they did not considered the satellite structure for each spectra.

The relative intensities derived from the radiative transition probabilities published by Scofield [15] are shown in Table 1 together with the experimental values reported by Salem et al. and our experimental values obtained by single Lorentzian fitting. The structure left in the residue of fitting by using single Lorentzians may be attributed to the presence of the hidden satellites. Even after considering the satellite structure, by using the multiplet fitting, there still remains some structure in the residue. This situation has appeared for all analysed spectra, excluding \(\lambda X_9 \), when the residue was completely solved. This can be due to the fact that we could not include the multiplet fitting model the contribution of the: \(P \) and \(O \) shell spectator hole, and the shake-off processes.

References

Table 1

<table>
<thead>
<tr>
<th>Line</th>
<th>Transition</th>
<th>Linewidth</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experimental</td>
<td>Theoretical</td>
<td>Scofield</td>
</tr>
<tr>
<td></td>
<td>[eV]</td>
<td>[eV]</td>
<td>[eV]</td>
</tr>
<tr>
<td></td>
<td>Present work</td>
<td>f_1,2</td>
<td>IT</td>
</tr>
<tr>
<td>WL_{L1}</td>
<td>L3-M5</td>
<td>7.84</td>
<td>7.022 (1.33)</td>
</tr>
<tr>
<td>WL_{L2}</td>
<td>L3-M4</td>
<td>5.27</td>
<td>7.22 (2.25)</td>
</tr>
<tr>
<td>WL_{L3}</td>
<td>L3-N5</td>
<td>9.26</td>
<td>10.572 (1.603)</td>
</tr>
<tr>
<td>WL_{L4}</td>
<td>L3-N4</td>
<td>-</td>
<td>7.71 (1.65)*</td>
</tr>
<tr>
<td>WL_{L5}</td>
<td>L3-N1</td>
<td>-</td>
<td>11.65</td>
</tr>
<tr>
<td>WL_{L6}</td>
<td>L2-M4</td>
<td>7.82</td>
<td>6.941 (1.54)</td>
</tr>
<tr>
<td>WL_{L7}</td>
<td>L2-N4</td>
<td>10.20</td>
<td>10.626 (1.96)</td>
</tr>
<tr>
<td>WL_{L8}</td>
<td>L1-M3</td>
<td>12.6</td>
<td>12.72 (1.52)</td>
</tr>
<tr>
<td>WL_{L9}</td>
<td>L1-M2</td>
<td>13.20</td>
<td>14.66 (1.22)</td>
</tr>
</tbody>
</table>

5