<table>
<thead>
<tr>
<th>Title</th>
<th>The First Synthesis of an Optically Active Molecular Bevel with Only Two Cogs on Each Wheel (SYNTHETIC ORGANIC CHEMISTRY-Fine Organic Synthesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fuji, Kaoru; Kawabata, Takeo; Oka, Takahiro</td>
</tr>
<tr>
<td>Citation</td>
<td>ICR annual report (1999), 5: 36-37</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1999-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/65190</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
The First Synthesis of an Optically Active Molecular Bevel Gear with Only Two Cogs on Each Wheel

Kaoru Fuji, Takeo Kawabata, and Takahiro Oka

Both enantiomers of the molecular bevel gear 1 having only two cogs on each wheel consisting of 8,8'-disubstituted 1,1'-binaphthyl ether were synthesized for the first time.

Keywords: Binaphthyl ether/ Molecular gear/ Atropisomer

Bis(9-triptycyl) derivatives, including bis(9-triptycyl)methane and bis(9-triptycyl) ether, have been studied extensively from the viewpoint of physical chemistry. These derivatives are molecular gears possessing three cogs on each wheel. Introduction of a substituent to one of the three benzene rings in each triptycyl unit affords three isomers including d-, l- and a meso-form. Interconversion of one isomer to another occurs through gear slippage. This type of isomerization is known as residual stereoisomerism1 or phase isomerism.2 On the other hand, such a stereoisomerism gives only d- or l-isomer in the simplest molecular bevel gear possessing only two cogs on each wheel, the gear slippage of which results in racemization. Here, we report the first synthesis of an optically active molecular bevel gear with only two cogs consisting of two naphthalene rings.

Derivatives of 1,1'-binaphthyl, especially 2,2'-dihydroxy-1,1'-binaphthyl, have been extensively studied as a basic structure for catalytic asymmetric reactions, a chiral auxiliary in stoichiometric asymmetric reactions, and a chiral unit in asymmetric molecular recognition. Advantages of compounds with axial chirality as a chiral source include that they provide an effective chiral environment produced by two planes consisting of p-electrons, and that the chiral environment is flexible enough to relieve or adjust the steric interaction by changing the dihedral angle between two aromatic planes. Since an optically active molecular bevel gear has two covalent bonds that can be rotated, it must therefore be more flexible than the normal atropisomers in terms of accommodating the steric interactions. Therefore, in addition to its interest for investigations of

SYNTHETIC ORGANIC CHEMISTRY — Fine Organic Synthesis —

Scope of Research

The research interests of the laboratory include the development of new synthetic methodology, molecular recognition, and screening of antitumor natural products. Programs are active in the areas of use of chiral leaving groups for asymmetric induction, desymmetrization of symmetrical compounds, asymmetric alkylation of carbonyl compounds based on "memory of chirality", use of binaphthalenes in the asymmetric Wittig-type reactions, syntheses of molecular switch, and Taxus diterpenoids.

Secretary
IZAWA, Yukako

Guest Research Associate
LAKSHMAIAH, Gingipalli; SHANG, Muhong; YANG, Xiaosheng

Students
WATANABE, Toshiyuki (DC); MOMOSE, Yashima (DC); OHNISHI, Hiroshi (DC); KOYAMA, Naohisa (MC); NAGAE, Yoshikarou (MC); NURUZZAMAN, Mohammad (MC); YAMAMOTO, Kensaku (MC); YOSHIDA, Masato (MC); FUJII, Kunihiko (MC); HAYASHI, Noriyuki (MC); OHTSUBO, Tadamune (MC); MUKOYOSHI, Koiti (UG); SUZUKI, Ryutaro (UG); TANAKA, Hiroaki (UG)

Research Fellow
KINOSHITA, Naozumi

Research Student
YOSHIDA, Hiroshi

Professor
FUJI, Kaoru (D Pharm Sc)

Assoc Prof
KAWABATA, Takeo (D Pharm Sc)

Instructor
TUBAKI, Kzunori (D Pharm Sc)

Technician
TERADA, Tomoko

Technician
TERADA, Tomoko (UG)

Technician
TERADA, Tomoko (MC)

Technician
TERADA, Tomoko (UG)
physicochemical properties, the optically active molecular bevel gear with only two cogs on each wheel deserves to be studied as a chiral source for asymmetric syntheses and molecular recognition. We chose compounds of type 1 with substituents at the 8- and 8’-positions as a basic structure for the bevel gear with two cogs, because the naphthyl ring has a large blade area and because a substituent demanding large steric interaction should be required to prevent the gear slippage. Iwamura et al.3 reported that the gear slippage barrier of bis(9-triprycyl) derivative 2 was highest when two triptycyl groups were connected with the oxygen atom due to the orders of the relevant bond lengths and the stretching and bending force constants. Accordingly, we decided to connect two naphthyl rings with the oxygen atom to synthesize the compounds 1 (X=O), the enantiomers of which were expected to be isolated more easily than those of 1 (X=CH2) and 1 (X=NH).

Introduction of a bulky group at the 8- and 8’-positions was expected to increase the activation energy sufficiently to isolate each enantiomer of the bevel gear with two cogs. The reaction of 6 with phenyllithium gave a diastereomeric mixture of alcohols 9. The Jones oxidation of 9 followed by the reaction with phenyllithium gave diol 10 in 70% yield for two steps. Each enantiomer of 10 was separated by preparative HPLC on a chiral column. The diester 11 was isolated in 7% yield from a mixture obtained by the reaction of 9 with (S)-(+-)-a-methoxy-1-phenylacetic acid. Figure 1A and B shows the crystal structure of 11 and the effective transition moment of the two naphthyl rings, suggesting their negative chirality. An interesting finding of the X-ray analysis is that one of the naphthyl rings is almost planar, while another is slightly distorted (Fig. 2), though both naphthyl rings are expected to be completely identical, even with respect to the substituents at the peri-position. Hydrolysis of 11 gave optically active 12. The CD spectra of 11 and 12 gave rise to exciton-split bands with negative Cotton effects at longer wavelength. Comparison of the CD spectra of (+)- and (-)-10 with those of 11 and 12 led to the conclusion that the sense of chirality of (+)-10 is the same as those of them, and vice versa for (-)-10. The activation energy for gear-slippage (racemization) of optically active 10 was determined to be 126.4 kJ/mol at 111 °C in toluene.

Utilization of this novel chiral source for molecular recognition and asymmetric syntheses is currently underway in our laboratory.

References