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The Effect of Crystal Dispersion on the X-ray Emission

Spectrum Observed using a Double Crystal Spectrometer

Tatsunori Tochio, Yoshiaki Ito and Kazuhiko Omote

The effect of the rocking curve on the x-ray emission spectrum observed using a double-crystal spec-
trometer was discussed. The results for Si (220) crystal at 1.54056A (Cu Ka,) show that the x-ray of
wavelength A -AL (AA=0.00007A ) is much more reflected by the double crystal put in the (++) position
of 0, than the x-ray of wavelength A which exactly satisfies the Bragg condition. In the last we men-

tioned what we observe in our measurement with a double-crystal spectrometer.
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X-ray emission spectroscopy is known as a valuable
tool for estimating the level width and the probabilities
of various multi-electron transitions. In spite of its use-
fulness the instrumental function which is specific for the
spectrometer used makes a precise analysis difficult. The
instrumental function for a double-crystal spectrometer
is relatively small compared with that for a single crystal
spectrometer because the first crystal plays the same role
as a narrow slit. But even for a double crystal spectrom-
eter the instrumental function cannot be neglected. The
aim of our work is to evaluate the effect of the crystal
dispersion on the x-ray emission spectrum observed by
means of a double-crystal spectrometer and to establish
the way to analyze it. The crystal dispersion is consid-
ered to be a main component of the instrumental function

in a double-crystal spectrometer and we may assume that
the contributions from other components are almost neg-
ligible.

First we consider the monochromatic x-ray which has
the wavelength A satisfying the Bragg condition with
the Bragg angle &, determined by the positions of two
crystals. As can be seen from the Figurel, the beam re-
flected on the first crystal by the angle of 6= 6, +d@makes
an incidence angle of 8’=0-d 0 with the surface of the
second crystal. This gives us the expression for the rock-
ing curve for double crystal (R D( HB;}LO; =R D( 6’3;10;2 495
-0)) as follows.

R, (HBQ/%;H') =R (QB;AO;HV)X Ry (93;10; 20, - ‘9')' (1)

Here, R (6) expresses the rocking curve for single crys-
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First Crystal

Figurel. Schematic diagram of the reflections by double-
crystal with (++) position

tal which we define as the average of the rocking curve
for the normal polarization and that for the parallel polar-
ization. In the normal polarization the electric vector E,
at the moment when the x-ray is reflected, is normal to
the plane containing the wave vector for the incident beam
k, and that for the diffracted beam &, while in the paral-
lel polarization the electric vector E lies in that plane.
The curves of R, (0")= R (26,-0) for Si(220) at Cu Ka,
energy are shown in the Figure 2- (a).

Now we consider the beam having the wavelength 4’
which is very close to A,. The Bragg angle for this beam
0, is given by

=0, +(Zz)}%(a'—%)=98+’l;j‘) tang,  (2)

This leads to the expression for the rocking curve in a
double-crystal (The attention should be paid to the fact
that the positions of the two crystals are not for ¢, "but for
0,.) at the wavelength of 4" as follows.

R,(0,:150") = Re(0,;1;60")x Ry(6,:4';20,, —0")
A

= RS(HB;AO;H'—TA"tanHB)
(9,,,% 20, -0+ =0 4 tan 9,,) (3)

A
We can easily check that R D( 6’3,'1’;49) corresponds to
equation (1) when A’ is equal to 4. For A’ =4 -41, A, +44
(42=0.00007 A ), the curve of R, (x;6) is shown in the
Figure 2-(b),(c) respectively. Figure 2- (a),(b),(c) show
that the x-ray of wavelength A -41 is reflected most
strongly compared with the others. In fact S(a) : S(b) :
S(c), the ratio of the area under the curve, is approximately
4:67 : 1. When the intensity distribution of the incident

beam on the wavelength A4 is /, (4), the intensity distribu-
tion of the diffracted beam becomes

1, 0434) = [1,(A)R, (6,:2:0')d0" . (4)
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Figure 2. R (6, A°;0") for Si (220) at (a) A= 4, (4,
=1.540564), (b) 1’ = A,-42 (47=0.00007 A),
(c) A= A,+44 (44=0.00007 A )

Inversely, the the intensity distribution of the diffracted
beam in the direction 8’ is expressed as follows .

Ly (05:0)= [1, ()R, 0,:2:0)dr. (5)

The range of angle or wavelength having a significant
intensity is so small that the detector can count all the
photons in this range. Then the expression for what we
observe is written as

10)= 102

The observed spectrum is considered to be the trace of

R (6,:1,0)dAdo"  (6)

I (6,) at each point of &, which we change during the
scan.



