Title

Probing Active-site Environment of Fluoroacetate Dehalogenase by Catalysis-Linked Inactivation with Ammonia / Functional characterization of Alanine racemase from Schizosaccharomyces pombe (MOLECULAR BIOFUNCTION - Molecular Microbial Science)

Author(s)

ESAKI, Nobuyoshi; YOSHIMURA, Tohru; KURIHARA, Tatsuo; MIHARA, Hisaaki

Citation

ICR annual report (2002), 8: 46-47

Issue Date

2002-03

URL

http://hdl.handle.net/2433/65309

Type

Article

Textversion

publisher

Kyoto University
Molecular Biofunction -Molecular Microbial Science-

Technicians (pt)
TANAKA, Yumi
UTSUNOMIYA, Machiko

Guest Res Assoc
Deligeer (D Sc)

Students
KATO, Shin-ichiro (D3)
NAKAYAMA, Daisuke (D2)
WEI, Yun-Lin (D2)
YOW, Geok-Yong (D2)
KURIHARA, Tatsuo (D Eng)
OGAWA, Shin-ichiro (M1)
KUWANA, Eriko (M1)

Visitors
Dr Marinus Pilon
Colorado State University, USA, 20 May 2001 - 15 Jun 2001

Dr Eriabeth Pilon-Smits
Colorado State University, USA, 20 May 2001 - 15 Jun 2001

Mr Valdez Michael Corpus
University of Santo Tomas, Philippines, 7 November 2001 - 30 November 2001

Scope of Research

Structure and function of biocatalysts, in particular, pyridoxal enzymes and enzymes acting on xenobiotic compounds, are studied to elucidate the dynamic aspects of the fine mechanism for their catalysis in the light of recent advances in gene technology, protein engineering and crystallography. In addition, the metabolism and biofunction of sulfur, selenium, and some other trace elements are investigated. Development and application of new biomolecular functions of microorganisms are also studied to open the door to new fields of biotechnology. For example, molecular structures and functions of psychrophilic enzymes and their application are under investigation.

Research Activities (Year 2001)

Presentations

Grants

- Kurihara T, Structures, functions and physiological roles of enzymes catalyzing formation of sulfur- and selenium-containing biofactors, Grant-in-Aid for Encouragement of Young Scientists, 1 April 2000 - 31 March 2002.
- Yoshimura T, Development of new methods for recovery and elimination of trace amount of substances in water by phage display system, Grant-in-Aid for Exploratory Research, 1 April 2000 - 31 March 2002.
- Esaki N, Structural biology and biosynthesis of selenium-containing proteins, Grant-in-Aid for Scientific Research (B), 1 April 2001 - 31 March 2002.
- Esaki N, Determination of whole genome sequence of psychrophilic bacteria, analysis of genes involved in their adaptation to cold environments, and exploitation of cold-active enzymes, Grant-in-Aid for Scientific Re-
Functional characterization of Alanine racemase from *Schizosaccharomyces pombe*

Recent discovery of the physiological importance of D-amino acids has attracted much interest in the study of metabolism of D-amino acids in eucaryotic cells. We found that fission yeast, *Schizosaccharomyces pombe*, has several enzymes acting on D-amino acids (Scheme 2). We here describe one of these enzymes, alanine racemase, encoded by the alr1+ gene. We cloned the alr1+ gene in *E. coli* and purified the gene product (Alr1p) with an Mr of 41,590 to homogeneity. Alr1p contains pyridoxal 5'-phosphate as a coenzyme and catalyzes racemization of alanine. The enzyme is almost specific to alanine, but L-serine are racemized slowly at rate of 3.7% of that of L-alanine.

S. pombe uses D-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. *Saccharomyces cerevisiae* differs markedly from *S. pombe*: *S. cerevisiae* uses L-alanine but not D-alanine as a sole nitrogen source. Moreover, D-alanine is toxic to *S. cerevisiae*. However, heterologous expression of the alr1+ gene enabled *S. cerevisiae* to grow efficiently on D-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of D-alanine.