Synthetic Organic Chemistry - Synthetic Design -

Prof
TAMAO, Kohei
(D Eng)

Assoc Prof
TOSHIMITSU, Akio
(D Eng)

Instr
KAWACHI, Atsushi
(D Eng)

Instr
YAMAGUCHI, Shigehiro
(D Eng)

Res
XU, Caihong
(D Sc)

PD (JSPS)
MAEDA, Hirofumi
(D Eng)

Students
ITAMI, Yujiro (D3)
SAEKI, Tomoyuki (D2)
KANETA, Yasuhiro (M2)
FUJIMURA, Hirokazu (M1)
FUKAZAWA, Aiko (U4)

 Visitor
FORSSIER, Kareen
Ecole Polytechnique, France, 3 July 2001–23 August 2001

Scope of Research

Our research is concerned with some new aspects in the elemento-organic chemistry, including (1) the design and synthesis of novel \(\pi \)-conjugated systems containing main group elements such as boron and silicon for electronic and photonic applications, (2) the synthesis, structural studies, and synthetic applications of organosilicon compounds, such as pentacoordinate silicon compounds and functionalized silyl anions, (3) the elucidation of the \(\sigma \)-conjugation in the polysilane framework using the configuration-constrained oligosilane model systems, (4) the old but new chemistry of the disilapropellane and related compounds, and (5) the development of new efficient reactions using main group element reagents and transition metal complex catalysts.

Research Activities (Year 2001)

Presentations

Grants

Yamaguchi S, Elemento-Organic \(\pi \)-Electron Systems
Properties Control of Main Group Element π-Electron Systems Based on Coordination Number Change

The incorporation of main group elements into π-conjugated framework enables access to new π-electron systems with intriguing photophysical and electronic properties and functions. We have explored a new possibility of controlling the properties of the π-electron systems based on a change in the coordination states of the elements. In a series of trianthryl derivatives of boron, silicon, and phosphorus, the control of the photophysical properties by changing the coordination number of the element has been achieved in various modes dependent on the element. In particular, the silicon and boron derivatives have new functions as the fluorescent and colorimetric fluoride sensors, respectively [1].

Substituent Effect on the Intramolecular Reactions of the [(Allyloxy)silyl]lithiums

Whereas intramolecular reactions of organolithium reagents with olefins have been extensively studied in organic synthesis, less attention has been paid to the intramolecular reactions of silyllithium reagents with olefins despite the potential utility for the regio- and stereoselective Si–C bond formation. We have investigated the substituent effect on the intramolecular reaction of the [(allyloxy)silyl]lithiums and found that the reaction modes are strongly influenced by a substituent on the terminus of the olefins [2]. In the [(allyloxy)silyl]lithiums 1, the trimethylsilyl group and non-substituent as well as the n-hexyl group cause the [2,3]-sila-Wittig rearrangement to afford 2 whereas the phenyl, triphenylsilyl, and thienyl groups cause the cyclopropanation reaction to yield 3. Ab initio molecular orbital calculations revealed that the electronic effect of the substituents on the LUMO determines the reaction modes.

Phosphonium Sila-Ylide: Reaction Pathway Different from Ammonium Sila-Ylide

While a divalent silicon species, silylene, generally has an electrophilic character, we have recently clarified that intramolecularly amine-coordinated silylene 4a behave as a nucleophilic sila-ylide. Thus, 4a reacts with a trapping agent such as diphenylacetylene to afford a silaphenalene derivative 6a via a zwitterionic intermediate 5. In contrast to this, we have now disclosed that its phosphonium analog 4b undergoes a reaction course completely different from that of 4a [3]. Thus, 4b affords a seven-memberd cyclic product 6b, through the incorporation of the acetylene between the silicon atom and the phosphorus atom accompanied by the migration of one phenyl group from phosphorus to silicon. This reaction seems to proceed through a pentavalent phosphorane intermediate or transition state structure.