Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation / Distribution of trace bioelements in the subarctic North Pacific Ocean and the Bering Sea (the R/V Hakuho-Maru Cruise KH-97-2)

Title

SOHRIN, Yoshiki; UMETANI, Shigeo; SASAKI, Yoshihiro; OKAMURA, Kei; NORISUYE, Kazuhiro

Citation

ICR annual report (2002), 8: 14-15

Issue Date

2002-03

URL

http://hdl.handle.net/2433/65325

Type

Article

Textversion

publisher

Kyoto University
Scope of Research

Research activities are concerned with geochemistry, oceanography, limnology and analytical chemistry, which are important basic sciences in order to realize the sustainable society. Major research subjects are as follows: (i) Biogeochemistry of trace elements in the hydrosphere. (ii) Hydrothermal activity and deep biosphere on the ocean floor. (iii) Fe-uptake mechanism of phytoplankton. (iv) Ion recognition. (v) Simulation of non-linear chemical reaction.

Research Activities (Year 2001)

Presentations

Determination of trace metals in the ocean by MAF-8HQ column extraction-ICP-MS, Sohrin Y, Kinugasa M, Okamura K, et al., International Congress on Analytical Sciences 2001, 8 August.

Determination of 240Pu/239Pu ratio in the ocean by using HR-ICP-MS, Norisuye K, Okamura K, Sohrin Y, et al., International Congress on Analytical Sciences 2001, 8 August.

Separation of transition metals with poly(pyrazolyl)borates by solvent extraction technique, Kitano T, Wada H (Kanazawa U.), Mukai H (Kyoto U. Educ.), et al., International Congress on Analytical Sciences 2001, 8 August.

Grants

Sohrin Y, Dynamics of trace bioelements in the ocean and its effect on ecosystem, Grant-in-Aid for Scientific Research (B) (1), 1 April 2001 - 31 March 2004.

Umetani S, Design of highly selective recognition and separation system of metal ions, Grant-in-Aid for Scientific Research (C) (1), 1 April 2001 - 31 March 2003.

Okamura K, Development of *in situ* measurement system of CO$_2$ related matter in seawater for global warming control, NEDO Grant, 1 April 2001 - 31 March 2004.
Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation

This paper [1] presents the first in situ flow-through chemical analyzer using a chemiluminescence (CL) method in the deep sea to a depth of 5,200 m. The analyzer, called GAMOS (Geochemical Anomalies MOnitoring System), successfully determines concentration of dissolved manganese continuously in situ using a H$_2$O$_2$-luminol CL method. A detection limit of 0.23 nM was obtained. Continuous measurements of manganese performed in situ with the GAMOS in a hydrothermal vent plume yielded high-resolution chemical data in near real time. This detection capability will provide a more representative sampling of hydrothermal plumes over larger concentration ranges than have been possible using most previous methods and instrumentation.

Distribution of trace bioelements in the subarctic North Pacific Ocean and the Bering Sea (the R/V Hakuho-Maru Cruise KH-97-2)

A column concentration-high resolution ICP-MS determination was applied to measuring the total dissolved concentrations of Fe, Co, Ni, Cu and Zn in seawater collected from the subarctic North Pacific (~45°N) and the Bering Sea in July–September [2]. The vertical profiles for Fe, Ni and Zn were nutrient-like. The deep water concentration of Fe was ~0.5 nM in the northeast Pacific and increased to ~1 nM in the northwest Pacific and ~2 nM in the Bering Sea. The deep water concentrations for Ni and Zn in the Bering Sea were also 1.3–2 times higher than in the North Pacific. Fe and Zn were depleted in surface water of the subarctic North Pacific. The relationship between these trace elements and nutrients suggests that these elements could be a limiting factor of phytoplankton productivity. In the Bering Sea, surface water contained ~0.3 nM of Fe. The Zn concentration, which was less than the detection limit in surface water, increased at shallower depths (~30 m) compared with the subarctic North Pacific. These results imply a higher flux of Fe and Zn to surface water in the Bering Sea. This in turn may cause the Bering ecosystem characterized by a dominance of diatoms and high regenerated production.

Award

Okamura K, The ICR Award for Young Scientists.