States and Structures - Polymer Condensed States -

Prof
KOHJIYA, Shinzo
(D Eng)

Assoc Prof
TSUJI, Masaki
(D Eng)

Instr
URAYAMA, Kenji
(D Eng)

Instr
TOSAKA, Masatoshi
(D Eng)

RF
MURAKAMI, Takeshi
(D Eng)

Students
BEDIA, Elinor (D3)
NAKAO, Toshio (D3)
KOJIMA, Masaki (D1)
YOSHIOKA, Taiyo (D1)
OKUNO, Yuko (M2)
UEDA, Masahiro (M2)
NAKATANI, Yuichi (M1)
TANI, Kenji (M1)
TOGAMI, Tadahiro (UG)
MIKI, Takashi (UG)
OKADA, Yumi (UG)

Visitors
Dr HASHIM S Azanam University Sains Malaysia, Malaysia, February 25-March 5, 2001
Dr LOTZ Bernard Institut Charles Sadron, France, April 5-7, 2001

Scope of Research
Attempts have been made to elucidate the molecular arrangement and the mechanism of structural formation/change in crystalline polymer solids, polymer gels and elastomers, polymer liquid crystals, and polymer composites, mainly by electron microscopy and/or X-ray diffraction/scattering. The major subjects are: synthesis and structural analysis of polymer composite materials, preparation and characterization of polymer gels and elastomeric materials, structural analysis of crystalline polymer solids by direct observation at molecular level resolution, and in situ studies on structural formation/change in crystalline polymer solids.

Research Activities (Year 2001)

Presentations

Grants
Kohjiya S, Urayama K, Murakami S, Ikeda Y, Role of polymers in all solid-state ionic devices, Grant-in-Aid for Scientific Research, Priority Area (B), 1 April 1999 - 31 March 2004
Kohjiya S, Tsuji M, Urayama K, Direct observation of amorphous polymer network structures by TEM, Grant-in-Aid for Scientific Research, (B)(2), 1 April 2001 - 31 March 2003
Urayama K, Dynamics of guest polymers in host polymer networks, Grant-in-Aid for Scientific Research, Encouragement of Young Scientists, 1 April 2001 - 31 March 2003
Lamellar and Crystalline-Core Thicknesses of Poly(3-oxotrimethylene) (POK) Crystallized Epitaxially on Alkali Halides

Edge-on lamellar crystals of POK were isothermally grown from a dilute solution in nitrobenzene epitaxially onto KI at various temperatures ($T_c = 150–190 °C$). The resulting crystals were observed by transmission electron microscopy (TEM) in bright-field (BF) and dark-field (DF) modes and by high-resolution (HR) TEM. The DF images obtained by conventional TEM and the (110) lattice images obtained by HR-TEM showed that the crystalline-core thickness of each lamella is inevitably smaller than the corresponding lamellar thickness. Figure 1 shows the T_c-dependence of the crystalline-core thickness obtained by DF- (circle) and HR-TEM (triangle), and also that of the lamellar thickness obtained by BF-TEM of the edge-on lamellae (square) and by small-angle X-ray scattering of the “single crystal” mats (+). Both of the thicknesses increase with increasing T_c. For the crystals grown at any T_c, the crystalline-core thickness is 50–60 % of the corresponding lamellar thickness. Thus the POK lamella has a surface layer (20–25 % of the lamellar thickness) containing folds on each basal side of the lamella.

Multi-Axial Deformations of End-linked Polydimethylsiloxane Model Networks

Molecular interpretation of rubber elasticity of cross-linked amorphous polymer networks still remains incomplete due to the complicated network topology, especially, entanglement couplings of different network chains. A large number of theoretical models with different treatments of entanglement effects have been proposed. We have prepared a model polydimethylsiloxane network which has a well-characterized network chain length and junction functionality via end-linking method. Using this model network, we have carried out the biaxial deformation experiment which achieves all accessible pure homogeneous strains [1,2]. The data obtained enable us to identify the models which account for the entanglement effects most successfully and correctly [2]. Among the five molecular theories tested, the Edwards-Vilgis slip-link model [3] shows the most successful reproducibility over large portions of the experimental data, as shown in Figure 2.

Figure 1.

Figure 2. Comparisons of the experimental reduced principal stresses $(a) \sigma / G$ and $(b) \sigma / G$ - principal elongations $(\lambda_1$ and λ_2) relations with the predictions of the slip-link model (solid lines). The inset of part b shows the comparisons for uniaxial compression.