Evolution of K and L satellites of X-ray emission spectra at BL15XU, SPring-8.
Scope of Research

In order to obtain fundamental information on the property and structure of materials, the electronic states of atoms and molecules are investigated in detail using X-ray, SR. Theoretical analysis of the electronic states and development of new radiation detectors are also performed.

Research Activities (Year 2001)

Presentations

On $K\alpha_{1,2}$ spectra of Copper, Ito Y, 7th International Conference on Applications of Nuclear Techniques, June 17-23, 2001 Crete, Greece, Oct. 19, 2001.

Fabrication and evaluation on Battery in Fluorine compounds, Togashi G (Doshisha University), Ito Y, Yoshikado S (Doshisha University), 27th annual meeting in Solid State Ionics, Tokyo, Nov. 12, 2001.

Evolution of K and L satellites of X-ray emission spectra at BL15XU, SPring-8

The existence of two or more holes in atomic inner shells gives rise to satellite lines with energies that are shifted from the corresponding one-hole (diagram) lines. One of the methods to study the origins of satellite lines is to find the threshold of the excitation energy. For that experiment it is effective to measure emission spectra, tuning excitation energy used by synchrotron radiation.

In $K\alpha$ spectra of $3d$ transition element very weak satellite line appears in the higher energy region for $K\alpha_1$. It is called $K\alpha_{3,4}$, and thought as the transition from multiple hole state. We measured Fe $K\alpha$ spectra at various excitation energy to investigate the origin of the satellite.

The relative intensity of $K\alpha_{3,4}$ looks gentle dependence for the excitation energy. That relative intensity is saturated at the energy higher about 2000 eV than the energy of the threshold. $K\alpha_{3,4}$ satellite is thought the transition from $1s2p$ to $2p^2$. This experiment suggests that shake-off process connects predominantly the creation of the $2p$-spectator hole.

For heavy element we focused on satellite lines of Au $L\beta_3$, which has two satellites in the high-energy side. They are thought to be ascribed to the spectator hole $M_{4,5}$. We measured Au $L\beta_2$ spectra at various excitation energy including L_1 edge.

In the spectra excited at 14390 eV and 15000 eV (above L_1 edge), we can confirm two satellites at high-energy side of $L\beta_2$. On the other hand satellite doesn’t appear in the spectra excited at 14320 eV (below L_1 edge). It is clear that $L\beta_2$ satellite lines grow up with $L\beta_1$, which has initial stage with vacancy at L_1 subshell.

We did energy scan for the peak intensity of $L\beta_2^*$ ($L_iM_{i-1}M_{i}$) which is most far distance from main peak. That intensity (red square) grows up with L_1 absorption spectra (blue line). So that the present experiment suggests that Au $L\beta_2$ satellite lines are caused mainly by $L_{1s}L_{1s}M_{i}$ ($i=4,5$) Coster-Kronig transition.