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In this article we propose a generalization of the linear factor model, that combines
hidden Markov chain Models (HMM) with latent factor models. The HMM generates
a piece-wise constant state evolution process and the observations are produced from
the state vectors by a factor analysis observation process. This new switching spec-
ification provides an alternative, compact, model to handle intra-frame correlation in
financial data. Furthermore, it allows variable dimension subspaces to be explored.
For maximum likelihood estimation we have proposed an iterative approach based on
the Expectation-Maximisation (EM) algorithm. Extensive Monte Carlo simulations
and preliminary experiments obtained with a foreign exchange rate data set show
promising results, especially for segmentation and tracking tasks.
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1. Introduction

The factor Model, also called Index Model, is one of the basic models in fi-
nance to analyze and describe the return generation process and the risk/reward
relationships of a large number of assets. It has been used extensively in finance
for measuring co-movement in and forecasting financial time series. The moti-
vation underlying these models is that there are a few common factors that drive
fluctuations in large cross sections of financial and economic time series. Appli-
cations of factor model include portfolio construction and sensitivity analysis. Be-
sides, theories, such as Capital Asset Pricing Model (CAPM) and Arbitrage Pricing
Theory (APT), are built upon factor models. The Asset Pricing Model developed
by Sharpe (1964), Lintner (1965) and Ross (1976) derived the Arbitrage Pricing
Theory which characterizes the expected return on a security as an approximate
linear function of the risk premiums on systematic factors in the economy (see
Connor and Korajczyk, 1995 for a review).
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In asset pricing, since the inception of the arbitrage pricing theory by Ross
(1976), there is a growing evidence that high returns are driven by a multifactor
model rather than the one factor capital asset pricing model1). For example, Fama
and French (1996) argues that the market anomalies2) largely disappear in a three-
factor model. Connor and Korajczyk (1993) finds evidence for one to six latent fac-
tors in the cross-section of stock returns. The appeal and premise of factor analysis
extends to a vast literature on forecasting macroeconomic activity and understand-
ing the dynamics of international business cycles. Gregory et al. (1997)3) finds that
the world common factor is statistically and quantitatively significant. Their results
suggest the existence of a single common cycle influencing the countries’ business
cycles. Stock and Watson (1993) adresses the performance of inflation and indus-
trial production forecasts using a small number of indexes extracted from a large
number of predictors. The resulting forecasts outperformed many leading predic-
tion procedures. The term structure literature also benefited from the parsimony
of factor representation. Knez et al. (1994) and Dai and Singleton (1999) char-
acterizes the term structure of interest rate as driven by three unobserved factors
called “level”, “slop” and “curvature”. Ang and Piazzesi (2003) estimates a three
factors model for the term structure with “mean reverting”, “persistent” and “less
persistent” as latent factors.

The main assumption of these models is that the relationships between vari-
ables has not changed over time, but in recent years, empirical works have shown
that the assumption of structural stability is invalid for many financial and eco-
nomic data sets (e.g., Hamilton, 1990). Many economic time series occasionally
exhibit dramatic breaks in their behavior, associated with events such as finan-
cial crises (Jeanne and Masson, 2000; Cerra and Saxena, 2005; Hamilton, 2005)
or abrupt changes in government policy (Hamilton, 1988; Sims and Zha, 2004;
Davig, 2004). Of particular interest to economists is the apparent tendency of many
economic variables to behave quite differently during economic downturns, when
underutilization of factors of production rather than their long-run tendency to grow
governs economic dynamics (Hamilton, 1989; Chauvet and Hamilton, 2005).
Abrupt changes are also a prevalent feature of financial data (Ang and Bekaert,
2002; Garcia et al., 2003; Dai et al., 2003).

In this paper, a natural generalization of the standard factor model to a multi-
state model is achieved by allowing for model transitions that are governed by a
hidden Markov chain (HMM) on a set of possible models that describe the dif-
ferent states of volatility. This new specification can be regarded as a dynamic
state-space generalization of a multiple component factor analysis system. In this
framework, the k-dimensional state vectors are generated by a standard diagonal

1) CAPM uses only one factor (regressor), the risk premium of the market as a whole, to explain excess
returns.
2) Patterns in average returns not explained by the one factor CAPM.
3) In this paper, the authors show that the world cycle is statistically significant and persistent in the
growth rates of output, consumption and investment for the G7 countries.
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covariance Gaussian HMM and the q-dimensional observation vectors are gener-
ated by a multiple noise component factor analysis observation process.

The proposed model is presented in Section 2, followed by a description of
a maximum likelihood estimation procedure, which constitutes the major contri-
bution of this paper, based on the Expectation-Maximisation (EM) principle, the
empirical results in Section 4, and a summary in Section 5.

2. Switching Factor Models

Valuation models for assets are based upon the theory of economic behavior
in the situation of uncertainty. Valuation models for most kinds of assets rely in
almost all cases solely on the first two moments of the return series, that is the
means, variances and covariances. It is therefore necessary to model these moments
in order to apply the asset pricing models. If one considers q assets and does not
impose any restrictions on the model, one has to estimate 1

2 (q2+3q) parameters, i.e.
q expected returns, q variances and 1

2 (q2 − q) covariances. Therefore, one tries to
introduce a restrictive structure such that the number of parameters to be estimated
is significantly reduced without lowering the explanatory power of the model too
much.

It is well known that the return series of different assets are correlated with each
other, i.e. the assets follow common influences on their returns. This can be used to
reduce the number of parameters to be estimated. Various forms of factor models
such as the CAPM and the APT are often used. The CAPM treats the correlation
of individual assets with the market portfolio, i.e. the portfolio consisting of all
stocks in the market with the weights according to the share of the assets in the
whole market, as a measure for risk. The APT allows several factors to influence
the return series of the assets.

In general, factor models postulate that the return of an asset is composed as
the sum of an expected and an unexpected part. The unexpected part of the return
is assumed to consist of a systematic portion which cannot be diversified and an
unsystematic portion which is specific to the single asset.

Economic theory states that there are common influences such as macroeco-
nomic data which drive the returns of different assets. These are known factors.
The systematic unexpected part of the return yit (i ∈ {1, ..., q}) is assumed to follow
a factor structure. To take into account the possibility of regime switching in stock
market returns, we propose a model that combines:

- an HMM structure in order to take into account different states of the world
that can affect the evolution of the time series, and

- a linear factor model with constant regime parameters for excess returns.

2.1. Introduction and Notation

Let yt denote the q-vector of excess asset returns and ft denote the k-vector of
latent factor shocks in period t. In order to achieve reduction of the number of
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parameters the number of factors k should be much smaller than the number of
assets q. The general structure of our switching factor model is given by:

S t ∼ P(S t = j|S t−1 = i)

for t = 1, ..., n and i, j = 1, ...,m

yt = Xst ft + εt with
{
εt ∼ N (

θst ,Ψst

)
ft ∼ N (

0 ,Hst

)
where S t ∼ P(S t = j|S t−1 = i) is an homogenous hidden Markov chain indicating
the state or the regime at the date t. The HMM state transition probabilities from
state i to state j are represented by pi j. In an unspecified state S t = j ( j = 1, ...,m),
0 and H j are, respectively, the (k×1) mean vectors and (k×k) diagonal and definite-
positive covariance matrices of the latent common factors ft; θ j and Ψ j are, respec-
tively, the (q×1) mean vectors and (q×q) diagonal and definite-positive covariance
matrices of the (q × 1) vectors of idiosyncratic noises εt; X j are the (q × k) factor
loadings matrices, with q ≥ k and rank(X j) = k ∀ j. Here we suppose that the
common and specific (idiosyncratic) factors are uncorrelated. We suppose also that
ft and εt′ are mutually independent for all t, t′.

Different ways of identifying the factors are discussed in the literature. Some
approaches use prespecified factors which base upon macroeconomic data such as
the inflation rate. Other lines of research build factors which are linear combina-
tions of the time series considered with prespecified weights derived from economic
theory or by using principal component analysis. This paper presents a solution
which is based upon the EM algorithm and model selection criteria.

Figure 1 Dynamic Bayesian network representing a Factorial HMM. Zt’s are eventual exogenous
variables that can be introduced in the model as explanatory variables.
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A dynamic bayesian network describing a Factorial HMM is shown in Figure 1.
The square nodes represent discrete random variables such as the HMM state {S t}.
Continuous random variables such as the state vectors, ft, are represented by round
nodes. Shaded nodes depict observable variables, yt, leaving all the other Fac-
torial HMM’s variables hidden. A conditional independence assumption is made
between variables that are not connected by directed arcs. The state conditional
independence assumption between the output densities of a standard HMM is also
used in a Factorial HMMs.

So, our generative model can be expressed by the two following Gaussian dis-
tributions:

p(ft |S t = j) = N
(
0,H j

)
p(yt |ft, S t = j) = N

(
θ j + X jft,Ψ j

)
(1)

The likelihood of an observation yt given the state S t = j can be obtained by
integrating the state vector ft out of the product of the above Gaussians. The re-
sulting likelihood is also a Gaussian and can be written as: b j(yt) = p(yt |S t = j) =
N

(
θ j,Σ j

)
, where Σ j = X jH jX′j +Ψ j.

2.2. Identification

As it is well known in the literature, the k-factor model must be further con-
strained to define a unique model free from identification problems. A first con-
straint is that Xt be of full rank k, ∀ t to avoid identification problems arising
through invariance of the model under location shifts of the factor loading matrix
(e.g., Geweke and Singleton, 1980). Second, we must further constrain the factor
loading matrix to avoid overparametrization - simply ensuring that the number of
free parameters at time t in the factor representation does not exceed the q(q+ 1)/2
parameters in an unrestricted Σt. Finally, we need to ensure invariance under invert-
ible linear transformations of the factor vectors (Press, 1985, chapter 10). On this
latter issue, our work follows Geweke and Zhou (1996), among others, in adopting
the “hierarchical” structural constraint in which the loadings matrix has the form:

X j =



x11 j 0 0 . . . 0
x21 j x22 j 0 . . . 0
x31 j x32 j x33 j . . . 0
...

...
...

. . .
...

xk1 j xk2 j xk3 j . . . xkk j

xk+1,1 j xk+1,2 j xk+1,3 j . . . xk+1,k j
...

...
...

...
...

xq1 j xq2 j xq3 j . . . xqk j


where xi,i j > 0 for i = 1, ..., k; j = 1, ...,m and xi,l j = 0 for i < l, i, l = 1, ..., k. This
form immediately ensures that X j is of full rank k.
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3. Maximum Likelihood Estimation

The empirical premise and tractability of factor models raised a great interest
in the estimation and statistical properties of the estimated structure. In the latent
factors literature, the common sources of systematic variation are not observable.
These common factors are estimated from sample covariance matrices using sta-
tistical techniques like factor analysis and principal components. The maximum
likelihood solution was first given by Lawley (1940) and was further developed
in two papers by him (Lawley, 1942, 1943). A more condensed derivation of the
method appears in a book by Lawley and Maxwell (1963). Rao (1955) related
the maximum likelihood method to canonical correlation analysis, and Bargmann
(1957) related it to the problem of testing partial independence in multivariate sta-
tistical analysis. The estimates obtained by Rao and Bargmann, though derived
from principles other than the maximum likelihood principle, satisfy Lawley’s like-
lihood equations, thus constituting another set of maximum likelihood estimates. If
identification conditions are imposed, these estimates all become identical.

All the above-mentioned derivations show that the maximum likelihood esti-
mates are determined as the solution of two matrix equations. These equations
cannot be solved algebraically; instead some iterative procedure has to be used,
such as the procedures proposed by Lawley (1942), Rao (1955), and Bargmann
(1957). In carrying out these iterative procedures, certain difficulties have been
involved.

A new computational method for the maximum likelihood solution in factor
models was proposed by Rubin and Thayer (1982). In this paper the maximum like-
lihood factor analysis has been conceptualized as maximum likelihood estimation
in a multivariate normal model with missing data (Dempster et al., 1977, section
4.7). Consequently, they demonstrated the existence of a corresponding EM algo-
rithm to find maximum likelihood estimates. This algorithm is iterative, and each
cycle, which consists of an E step followed by an M step, increases the likelihood
of the parameters. The general theory of EM algorithms given in Dempster et al.,
(1977) proves not only that each iteration of EM increases the likelihood, even if
starting from a point where the likelihood is not convex, but also that if an instance
of the algorithm converges, it converges to a (local) maximum of the likelihood.
Experience with EM algorithms suggests that, although the rate of convergence
measured by number of steps can be slow, they reliably converge in a wide range of
examples. Another advantage of EM algorithms, such as those for factor models, is
that each iteration is simple to program and computationally inexpensive. Even for
confirmatory factor analysis with correlations among factors to be estimated and a
priori zeros in the factor loadings, each iteration of EM involves only simple matrix
manipulations with the most difficult task being the inversion of a k × k symmetric
index, where k is the number of factors. A final advantage of EM algorithms is
that they climb the hill of likelihood on which the starting point is located without
leaping over valleys in the likelihood; that is, there is a continuous path in the
parameter space from the starting point to the stopping point along which the
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likelihood monotonically increases.

3.1. The EM Algorithm

A discriminative training scheme such as minimum classification error (e.g.,
Saul and Rahim, 2000) may be used to optimize the parameters of our model.
However, in the present work only maximum likelihood training is considered. We
here explicitly define the E and M steps of the algorithm. Thereafter, we present
the Forward-Backward algorithm for carrying out the computations.

For a sequence of observation vectors Y = {y1, y2, ..., yn}, a sequence of con-
tinuous state vectors F = {f1, f2, ..., fn} and a sequence of discrete HMM states
S = {S 1, S 2, ..., S n}, the complete likelihood function can be written as:

p(Y,F ,S|Θ) = p(S 1)
n∏

t=2

p(S t |S t−1)
n∏

t=1

p(ft|S t;Θ)p(yt |ft, S t;Θ) (2)

where p(S 1) = πs1 is initial state probability, p(S t |S t−1) = pst−1 st are the discrete
state transition probabilities and Θ =

{
π, pi j, θ j,X j,H j,Ψ j

}
. The auxiliary function

that will be maximized is given by:

Q(Θ,Θ(i)) =
∑
∀S

∫
p(F |Y,S,Θ)p(S|Y,Θ) log p(Y,F ,S|Θ(i)) dF (3)

here the set of current model parameters is represented byΘ(i). A set of parameters,
Θ̂, that maximize the auxiliary function is found during the maximization step:
Θ̂ = arg max

Θ

Q(Θ, Θ̂). These parameters will be used as the set of old parameters

in the following iteration, Θ̂ −→ Θ(i+1).
The first term in equation (3) is the state vector distribution given the observa-

tion sequence and the discrete state sequence. For the M step, only the first and
second-order statistics are required since the distributions are conditionally Gaus-
sian given the state. Sufficient statistics for the second term can be obtained using
the forward-backward algorithm described below.

3.2. Forward-Backward Algorithm

Using the conditional independence assumption in HMMs, the likelihood of
being in discrete state j and the observations up to time instant t, α j(t), is defined
by the following recursion:

α j(t) = p(S t = j,Y1:t) = p(yt |S t = j)p(S t = j,Y1:t−1)

= p(yt |S t = j)
m∑

i=1

p(S t = j, S t−1 = i,Y1:t−1)

= b j(yt)
m∑

i=1

pi jαi(t − 1) (4)
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This forward variable is initialized as: b1(y1) if j = 1 and 0 otherwise. Using
the same independence assumptions, the likelihood of the observations from t to n
given being in state i at time instant t − 1, βi(t − 1), are defined by the following
recursion:

βi(t − 1) = p(Yt:n|S t−1 = i) =
m∑

j=1

p(S t = j,Yt:n|S t−1 = i)

=

m∑
j=1

p(S t = j|S t−1 = i)p(yt |S t = j)p(Yt+1:n|S t = j)

=

m∑
j=1

pi jb j(yt)β j(t) (5)

This backward variable is initialized as βi(n) = 1 for all i ∈ [1,m]. We define also
the probability of being in state j at time t given the observation sequence that is
needed in the parameter update formulae.

γ j(t) = p(S t = j|Y) =
p(S t = j,Y)

p(Y)

=
p(S t = j,Y1:t)p(Yt+1:n|S t = j)

p(Y)

=
α j(t)β j(t)

m∑
i=1
αi(t)βi(t)

(6)

and the joint probability of being in state i at time instant t− 1 and in state j at time
instant t given the observation sequence which is needed in the transition parameter
update formulae.

ξi j(t) = p(S t−1 = i, S t = j|Y)

=
p(S t−1 = i,Y1:t−1)p(S t = j|S t−1 = i)p(yt|S t = j)p(Yt+1:n|S t = j)

p(Y)

=
αi(t − 1)pi jb j(yt)β j(t)

m∑
i=1
αi(t)βi(t)

(7)

3.3. Continuous State Posterior Statistics

Given the current discrete state, S t = j, and using the conditional independence
assumptions made in the model, the joint likelihood of the current observation and
continuous state vector is Gaussian

(
yt

ft

)
| S t = j ∼ N

[(
θ j

0

)
,

(
X jH jX′j +Ψ j X jH j

H jX′j H j

)]
(8)

The posterior distribution is also Gaussian and can be written as:
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(ft|yt, S t = j) ∼ N
[
K j(yt − θ j),H j −K jX jH j

]
(9)

where K j = H jX′j
[
X jH jX′j +Ψ j

]−1
. For parameter update formulae, the statistics

f̃ jt = K j

(
yt − θ j

)
and R̃ j = H j −K jX jH j are also needed.

3.4. Parameter Update Formulae

The parameter optimization scheme based on the expectation maximization
(EM) algorithm is presented in this section. All the sufficient statistics are evaluated
using the parameters from the previous iteration and therefore writing Θ(i) explic-
itly is omitted for clarity. This derivation assumes that the first discrete state is
always the initial state and all states are emitting. It is easy to extend the derivation
for use with explicit initial discrete state probabilities and to include non-emitting
states.

3.4.1. Initial State Probability Update Formulae
Discarding terms independent of the discrete initial state probabilities from

equation (3), the auxiliary function can be written as

Q(Θ,Θ(i)) =
m∑

j=1

γ j(1) log(p(S 1))

Maximizing this function with respect to the discrete initial state probabilities, π j,
can be carried out using the Lagrange multiplier λ together with the sum to unity

constraint
m∑

j=1
π j = 1. It is equivalent to maximizing the following Lagrangian

g(π j) =
m∑

i=1

γi(1) log(π j) + λ
(
1 −

m∑
i=1

πi

)

Differentiating g(π j) yields 
∂g(π j)
∂π j
=

γ j(1)
π j
− λ

∂g(π j)
∂λ
= 1 − m∑

i=1
πi

Setting the derivative to zero together with the sum to unity constraint forms
the following pair of equations and solving for π j, the new discrete initial state
probabilities can be written as

π̂ j =
γ j(1)

m∑
i=1
γi(1)

(10)
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3.4.2. Transition State Probability Update Formulae
Discarding terms independent of the discrete state transition probabilities from

equation (3), the auxiliary function can be written as

Q(Θ,Θ(i)) =
n∑

t=2

m∑
i=1

m∑
j=1

ξi j(t − 1) log(pi j)

Maximizing this function with respect to the discrete state transition probabili-
ties, pi j, can be carried out using the Lagrange multiplier λ together with the sum

to unity constraint
m∑

j=1
pi j = 1. It is equivalent to maximizing

g(pi j) = λ
(
1 −

m∑
j=1

pi j

)
+

n∑
t=2

m∑
i=1

m∑
j=1

ξi j(t − 1) log(pi j)

Differentiating g(pi j) yields

∂g(pi j)
∂pi j

= −λ +
n∑

t=2

ξi j(t − 1)
pi j

Setting the derivative to zero together with the sum to unity constraint forms the
following pair of equations

−λ + n∑
t=2

ξi j(t−1)
pi j
= 0

1 − m∑
j=1

pi j = 0

Solving for pi j, the new discrete state transition probabilities can be written as

p̂i j =

n∑
t=2
ξi j(t − 1)

n∑
t=2
γi(t − 1)

(11)

3.4.3. Factor Loadings Update Formulae
The new factor loadings matrix, X j, has to be optimized row by row as in

Shared factor analysis (e.g., Gopinath et al., 1988). The scheme adopted in this
work closely follows the maximum likelihood linear regression transform matrix
optimization (e.g., Gales, 1998). Let x jl denote the l-th row vector of X j. Maxi-
mizing the Equation (3) is equivalent to maximizing

g(x jl) = −1
2

q∑
l=1

[
x jiG jlx′jl − x jlk jl

]

where the k by k matrices G jl and k-dimensional column vectors k jl are defined as
follows
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
G jl =

1
ψ jl

n∑
t=1
γ j(t)

[
R̃ j + f̃ jt̃f′jt

]
k jl =

1
ψ jl

n∑
t=1
γ j(t)(ytl − θ jl)̃f jt

where ψ jl is the l-th diagonal element of the idiosyncratic covariance matrix Ψ j, ytl

and θ jl are the l-th elements of the current observation and the idiosyncratic noise
mean vectors, respectively. Differentiating g(x jl) yields

∂g(x jl)
∂x jl

= −G jlx′jl + k jl

Setting the derivative to zero and solving for x jl results in the updated row vector
of the factor loading matrix

x̂ jl = k′jlG
−1
jl (12)

3.4.4. Observation Noise Mean Update Formulae
Differentiating the auxiliary function in equation (3) with respect to the obser-

vation noise mean vector, θ j, yields

∂Q(Θ,Θ(i))
∂θ j

= Ψ−1
j

n∑
t=1

γ j(t)
(
yt − X j̃f jt − θ j

)

Equating this to zero and solving for θ j result in the updated observation noise mean
vector

θ̂ j =
1

n∑
t=1
γ j(t)

n∑
t=1

γ j(t)
(
yt − X j̃f jt

)
(13)

3.4.5. Idiosyncratic Variances Update Formulae
Applying some matrix manipulations and discarding terms independent of the

idiosyncratic noise covariance matrix, Ψ j, the auxiliary function in equation (3)
may be rewritten as

Q(Θ,Θ(i)) = −1
2

n∑
t=1

m∑
j=1

γ j(t)

(log |Ψ j| + tr
{
Ψ−1

j (yty′t −
[

X j θ j

] [ f̃ jty′t
y′t

]

−
[

yt̃f′jt yt

] [ X′j
θ′j

]
+

[
X j θ j

]  R j + f̃ jt̃f′jt f̃ jt

f̃′jt 1


[

X′j
θ′j

]
}
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To find the new idiosyncratic noise covariance matrix, the auxiliary function above
is differentiated with respect to its inverse,Ψ−1

j , and equated to zero. Solving forΨ j

and setting the off-diagonal elements to zeroes result in the updated idiosyncratic
noise covariance matrix

Ψ̂ j =

n∑
t=1
γ j(t)diag

[(
yt − X j̃f jt − θ j

) (
yt − X j̃f jt − θ j

)′
+ X jR̃ jX′j

]
n∑

t=1
γ j(t)

(14)

3.4.6. State Noise Covariance Matrix Update Formulae
To find the new state noise covariance matrix, the auxiliary function (3) is dif-

ferentiated with respect to its inverse, H−1
j , as follows

∂Q(Θ,Θ(i))
∂H−1

j

=
1
2

n∑
t=1

γ j(t)
{
H j − E

[
ftf′t |Y,Θ(i)

]}

Equating this to zero, solving for H j and setting the off-diagonal elements to zeroes
results in the updated state noise covariance matrix

Ĥ j =
1

n∑
t=1
γ j(t)

diag


n∑

t=1

γ j(t)
[
R̃ j + f̃ jt̃f′jt

] (15)

3.5. The Viterbi Algorithm

In several applications of HMMs (as in speech recognition and molecular biol-
ogy applications, for example), the hidden state variable is associated with a par-
ticular meaning (e.g., phonemes and words, for speech recognition). In our case,
the hidden state informs as about the the transition from a regime to another as a
reaction to some events. It is therefore useful, given an observed sequence Y, to
infer the most likely state sequence S corresponding to it. It is possible to define
the optimal state sequence according to many criterion of optimality. For exam-
ple, one can maximize the expected number of correct states (S t, S t+1), or triple of
states (S t, S t+1, S t+2), etc. The most widely used criterion is to find the best single
state sequence (path), i.e., to maximize P(S|Y,Θ) which is equivalent to maximize
P(S,Y|Θ). The Viterbi algorithm (Viterbi, 1967; Forney, 1973) finds the above
maximum with a relatively efficient recursive solution. This technique is based on
Bellman’s dynamic programming methods (Bellman, 1957).

Our goal is to find the best sequence,

S∗1:n = arg max
S 1:n

p(S1:n|Y1:n) = arg max
S1:n

p(S1:n,Y1:n)
p(Y1:n)

= arg max
S1:n

p(S1:n,Y1:n)
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where Y1:τ = {y1, y2, ..., yτ} and S1:τ = {S 1, S 2, ..., S τ}. Let us define the following
quantity, which may be calculated recursively,

δt(S t) = arg max
S 1:t−1

p(S1:t,Y1:t)

δ j(t) = arg max
S1:t−1

p(S1:t−1, S t = j,Y1:t)

Note again that we maximize over the complete sequence S1:t−1. Clearly, we have
that,

δ1 = p(S 1, y1) = p(y1|S 1)p(S 1)
δ j(1) = p(y1|S 1 = j)p(S 1 = j) and (16)

max
S1:n

p(S1:n,Y1:n) = max
S1:n

δ1:n = max
j
δ j(n) (17)

We will now derive the recursion for δt, using the Markov structure of the model.

δt+1 = max
S1:t

p(S1:t+1,Y1:t+1)

= max
S1:t

[
p(yt+1|S t+1)p(S t+1|S t)p(S1:t,Y1:t)

]

= p(yt+1|S t+1)max
S t

[
p(S t+1|S t)max

S1:t−1

[p(S1:t,Y1:t)]
]

= p(yt+1|S t+1)max
S t

[
p(S t+1|S t)δt

]
hence

δ j(t + 1) = p(yt+1|S t+1 = j)max
i

[pi j δi(t)] (18)

Thus, to find the maximum of p(S1:n,Y1:n) we initialize the recursion with
(16), then compute δ2, ..., δn through the above recursions, and finally calculate
the overall maximum by (17). Notice that the value of δt shrinks as t grows (we
are multiplying probabilities). To avoid mathematical underflow, we may have to
normalize δt at every iteration, for instance to unit length. Notice, that in the end
we are only interested in the sequence that maximizes the overall probability and
not the maximum probability itself and the renormalizing δt only effects the latter.

The above procedure will provide us with the maximum value, but not with the
sequence that maximizes it. Therefore we define a quantity that stores the values of
S t which maximize the function p(S t+1|S t)δt(S t) in (18) for all values of S t+1, i.e.

�t+1(S t+1) = arg max
S t

[
p(S t+1|S t)δt(S t)

]
� j(t + 1) = arg max

i
pi jδi(t) for t = 1, ..., n − 1

It is now straightforward to find the sequence with highest probability by a
process which is called backtracking,

S ∗n = arg max
j

δ j(n) and

S ∗t = �t+1(S ∗t+1) for t = n − 1, ..., 1
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Table 1 Simulation parameters Θ0

θ X diag(Ψ)

2.0000 1.0000 1.0000 1.0000
2.0000 2.0000 1.0000 2.0000

State 1
2.0000 3.0000 2.0000 1.0000
2.0000 4.0000 2.0000 2.0000
2.0000 5.0000 3.0000 2.0000
2.0000 6.0000 3.0000 1.0000

1.0000 3.0000 2.0000 5.0000
1.0000 3.0000 5.0000 5.0000

State 2
1.0000 5.0000 3.0000 4.0000
1.0000 5.0000 3.0000 4.0000
1.0000 3.0000 2.0000 5.0000
1.0000 3.0000 5.0000 5.0000

3.0000 4.0000 3.0000 2.0000
2.0000 4.0000 2.0000 1.0000

State 3
3.0000 1.0000 3.0000 2.0000
2.0000 1.0000 2.0000 1.0000
3.0000 4.0000 3.0000 1.0000
2.0000 4.0000 2.0000 2.0000

4. Experimental Results

In this section, we study the performance of our proposed algorithm using syn-
thetic and financial data. The example used for simulation experiments has q = 6
observable variables and two latent common factors. We consider the case of three
states model with the initial state S 1 = 1 and a transition matrix

P =


0.95 0.05 0
0.05 0.90 0.05

0 0.05 0.95


The hypothesis of changing the state with the stock market’s reaction to events
implies that the properties of the considered hidden chain change over time: as
time increases, the state index increases, decreases or stay the same (S t = i), no
transition are allowed to states whose indices are lower than i − 1 or grater than
i + 1. The initial parameters for the EM algorithm, were obtained by randomly
perturbing the true parameter values (given in Table 1) by up to 40% of their true
value. The iterations of the EM algorithm stop when the relative change in the
likelihood function between two subsequent iterations is smaller than a threshold
value = 10−5.

4.1. Accuracy and Stability of the Estimates

In this experiment we try to estimate the parameters of the model and to study
the behavior of the estimates when the size of the sequence n increases. With this
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Table 2 Averages and standard deviations (.) for the EM parameter estimates

θ X diag(Ψ)

2.0032 (0.0781) 0.9780 1.0110 (0.0507 0.0466) 0.9443 (0.0619)
2.0104 (0.0868) 2.0009 1.0046 (0.0450 0.0349) 1.9392 (0.0649)

State 1
2.0126 (0.0725) 2.9705 2.0061 (0.0498 0.0596) 0.9373 (0.0595)
2.0095 (0.0940) 3.9987 1.9869 (0.0651 0.0559) 1.9660 (0.0635)
2.0144 (0.1057) 4.9670 2.9665 (0.0594 0.0407) 1.9450 (0.0594)
2.0139 (0.1063) 5.9751 2.9815 (0.0489 0.0335) 0.9720 (0.0763)

0.9601 (0.0635) 2.9805 1.9635 (0.0634 0.0536) 4.9367 (0.0753)
0.9996 (0.0746) 2.9555 4.9800 (0.0736 0.0682) 4.9415 (0.0881)

State 2
0.9629 (0.0786) 4.9716 2.9387 (0.0547 0.0592) 3.9248 (0.0707)
0.9893 (0.0874) 4.9584 3.0013 (0.0679 0.0644) 3.9621 (0.0573)
0.9964 (0.0938) 3.0028 1.9587 (0.0528 0.0512) 4.9838 (0.0540)
0.9735 (0.0781) 2.9897 4.8978 (0.0596 0.0440) 4.9581 (0.0610)

2.9731 (0.0859) 4.0077 3.0250 (0.0551 0.0507) 1.9770 (0.0575)
1.9889 (0.0932) 3.9870 2.0002 (0.0542 0.0664) 0.9848 (0.0524)

State 3
2.9900 (0.0860) 1.0399 2.9845 (0.0452 0.0551) 2.0068 (0.0784)
2.0075 (0.0796) 1.0106 2.0046 (0.0323 0.0480) 0.9437 (0.0635)
2.9817 (0.0783) 3.9987 2.9994 (0.0661 0.0558) 0.9714 (0.0541)
1.9755 (0.0903) 3.9878 1.9974 (0.0525 0.0470) 1.9652 (0.0682)

intention, we generated sequences of observations of sizes n = 500, 600, 700 and
800, with a hundred replications for each simulation. We have used the empirical
Kullback-Leibler divergence K̃n(Θ0, Θ̃n) (e.g., Juang and Rabiner, 1985) to measure
the distance of estimators from the true parameters.

Kn(Θ0,Θ)
de f
=

1
n

{
logL(y1, ..., yn;Θ0) − log L(y1, ..., yn;Θ)

}

For each value of n, the estimation procedure was carried out a hundred times,
and the distances K̃n between each of the hundred estimators and the true parameter
were evaluated on a new sequence, independent of the first hundred sequences. As
an illustration Table 2 gives the average and standard deviation of the estimates
with n = 600. In this case the estimated transition matrix P̃ is given by

P̃ =



0.9472 0.0521 0.0007
(0.0037) (0.0046) (0.0017)

0.0654 0.8918 0.0428
(0.0026) (0.0050) (0.0021)

0.0012 0.0441 0.9547
(0.0015) (0.0039) (0.0024)


Values into brackets represent standard deviation of the estimates. The results indi-
cate that the estimation method works well. The sample means are very close to the
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Figure 2 Box plots of K̃n(Θ0, Θ̃n).

true ones, and the standard deviations are small. Box plots of the sets of distances
for the various values of n are presented under a unified scale in Figure 2. The
plots clearly show a general decrease in average and spread of the distances with
increasing n, which imply an increasing accuracy and stability of the estimators as
n increases.

To investigate the asymptotic distribution of the estimates Θ̃, we have used the
Shapiro-Francia (1972) statistic in order to test the univariate normality of each
component of Θ̃. All the results show that, for n ≥ 400, this test fails to reject the
null hypothesis (the Θi are a random sample fromN(µ, σ), with µ and σ unknown)
at the significance level α = 5%.

4.2. Model Selection

To find the number of latent factors and hidden states during a given time
period, we use 2 selection criteria (AIC and BIC) in order to choose between M
models. Thus for each selection criterion we, first, train various model configu-
rations (obtained by varying the number of states and the number of factors from
1 to 3). Second, we use the output of EM to compute the values of the selection
criterion for all configurations and we select the one that yields the lowest value.
Using 1000 replications according to the true model (Table 1), the results reported
in Table 3 show BIC to perform better than AIC. The AIC criterion generally fails
in finding the exact numbers of factors and states. Whereas, the BIC criterion detect
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Table 3 Model selection

Criterion k = 1 k = 2 k = 3

m = 1
AIC 0 0 0
BIC 0 0 0

m = 2

0 2 3.7
0 2 2.1

m = 3

1.3 23.8 69.2
1.3 94.6 0

the exact numbers.
According to the literature, such result is not surprising. On one hand, de-

spite the widespread use of the AIC, some believe that it is too liberal and tends
to select overly complex models (Kass and Raftery, 1995). It has been pointed out
that the AIC neglects the sampling variability of the estimated parameters. When
the likelihood values for these parameters are not highly concentrated around their
maximum value, this can lead to overly optimistic assessments. Furthermore, the
AIC is not consistent. That is, as the number of observations grows very large, the
probability that the AIC recovers a true low dimensional model does not approach
unity. On the other hand, a comparison of BIC to AIC shows that the BIC penalty
term is larger than the AIC penalty term when. The BIC assumes that the true
generation model is in the set of candidate models, and it measures the degree of
belief that a certain model is the true data-generating model. As we assume that the
true model is in the candidate set and that it is relatively low dimensional, we favor
BIC over AIC. Hence, only the BIC criterion will be used in finding the states and
factors numbers.

The mean square error criterion given by ê = 1
n

q∑
i=1

n∑
t=1
‖yit − ŷit‖2 shows also that

k = 2 and m = 3 is strongly favored (Fig. 3).
To illustrate the evolution of the model estimates obtained by the EM method,

Figure 4 shows the HMM hidden states estimates at iteration 1, 3, 5 and 7. Each
figure depicts the regime path process of the correct model. It can be concluded that
a good segmentation is achieved after 7 iterations. Figure 5, reporting the estimated
and simulated trajectories of the three hidden states, shows how the model is capa-
ble of accurately detecting all changes in the time series structure. Our results show
also that the estimation errors based on the true model are not correlated (Fig. 6).
Hence, all the correlation between the observed variables is fully explained by the
common and specific factors.
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Figure 3 Computation of the estimation error for 9 different configurations.

Figure 4 Evolution of the HMM state estimates using the true model: (a) iteration 1, (b) iteration 3,
(c) iteration 5, (c) iteration 7.
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Figure 5 Posterior Probabilities of the three hidden states γ j(t) (solid line) and the simulated trajec-
tories of the three hidden states (dashed line).

Figure 6 Empirical distributions of the estimation errors and their autocorrelation functions based on
the true model.
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Table 4 Estimation results for the chosen factor model with m = 3 and k = 2

Currencies θ X diag(Ψ)

USD 0.0100 0.7709 0.0017 0.0011
CAD −0.0139 0.7279 0.0199 0.0805
FRF −0.0291 0.1451 0.5741 0.0162

State 1 CHF −0.0299 0.0464 0.5891 0.0805
ITL −0.0622 0.1259 0.4904 0.3072
DEM −0.0322 0.0841 0.5994 0.0008
JPY 0.1050 0.4488 0.1644 0.3739
HKD 0.0085 0.7660 −0.0012 0.0014

0.0004 1.0304 0.0132 0.0004
−0.0156 0.9620 0.0195 0.0415

0.0150 −0.0136 0.3990 0.0026
State 2 0.0084 −0.0543 0.3902 0.0734

0.0065 0.0048 0.3923 0.0127
0.0163 −0.0589 0.4049 0.0041
0.0165 0.5294 0.0054 0.1610
0.0024 1.0225 0.0033 0.0032

0.0086 1.5156 −0.0086 0.0032
−0.0104 1.5522 −0.0998 0.1475

0.0113 0.3043 1.2107 0.0739
State 3 −0.0295 0.4027 1.1271 0.3013

−0.1367 0.2025 0.9753 1.4654
0.0007 0.2829 1.2753 0.0037
0.0327 1.3457 0.2620 0.2914
−0.0020 1.5580 −0.0054 0.0278

4.3. An Illustrative Empirical Study

To illustrate the application of our method to learn and analyze co-movements
amongst financial data, we have considered several exchange rate returns during
the financial crisis that the European exchange markets has faced in fall 19924).
The time series considered here are the daily returns of closing spot prices rela-
tive to the British pounds in price notations of the United States Dollar (USD),
Canadian Dollar (CAD), French Franc (FRF), Swiss Franc (CHF), Italian Lira
(ITL), German Marks (DEM), Japanese Yen (JPY), and Hong Kong Dollar (HKD)
from 03/05/1991 to 07/05/1993 (600 observations). We have especially chosen this
dataset to test the ability of this new specification to accurately reproduce observed
patterns and to identify the major dimensions of change over the period from 1991
to 1993, including the impact of the crisis on the common and specific variances
and the correlation structure of the different series. However, we can say that the
empirical part of this paper is an illustration of our methods on real data, and not
a very detailed empirical analysis studying the dynamic behavior of the exchange
rates: our objective here is to investigate the reliability of the model and congruency

4) PACIFIC EXCHANGE RATE SERVICE, Sauder School of Business, http://fx.sauder.ubc.ca/.
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Figure 7 Graphics 2, 3, 4: Filtering probabilities γ j(t) given by the Forward-Backward algorithm.

of parameter estimates.
Our illustrative analysis first explores uncertainty about the number of factors

and hidden states as in the foregoing simulated data analyses. With this intention,
we have considered models with 1, 2 and 3 latent factors within a structure charac-
terized by 1, 2 and 3 latent regimes. The BIC criterion argues that the covariance
structure could be modeled by two common factors and three markovian regimes.
The estimation results of this model are shown in Table 4.

Using this specification, Figure 7 shows how the model is capable of accurately
detecting abrupt changes in the DEM time series structure and, in particular, the
severe disruption by the violent storm which hit the European currency markets
in September and October 1992. This segmentation shows that the third model is
responsible for the high volatility segments, the second model is mainly responsible
for the time period before August 1992, and the first one for the lower volatility
segments after October 1992. This figure shows also that the average duration stay
in the first regime is about 34.6 weeks versus 75 in the second and 10.4 in the third.

Some other interesting points arise from this analysis.

1. From Figure 8, It appears, that the second factor is responsible for time evolv-
ing movements in the variances of the European currencies, FRF, CHF, ITL
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Figure 8 Two factor model: Proportion of the time series variances explained by each of the factors
(common and specific), from 03/05/1991 to 07/05/1993.

and DEM. From this figure it can be observed that the first common factor
explains at least 99% of the USD and HKD currency’s variances at all times
and at least 97% for the CAD before the crisis. This factor explains also 60%
of the Japanese currency variances before August 1992. The contribution of
the second factor in the variance of these currencies is negligible. It can also
be observed that the second factor is responsible for about 98% of the vari-
ances of the FRF and DEM currencies and about 68% of the variance of the
CHF currency before the 1992 crisis. For the CHF, the contribution of the
second factor is about 80% after August 1992.

2. Figure 9 shows that all the correlations between the European currencies
have increased just after August 1992. This is the effect of financial conta-
gion that can be defined as a significant increase in co-movement of financial
prices experienced by a group of countries, after controlling fundamentals
(domestic news, ...) and common shocks, following a crisis elsewhere.
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Figure 9 Two factor model: Time series co-dependence structure from 03/05/1991 to 07/05/1993.

More broadly, we can argue that the first factor represents the value of sterling
relative to a basket of currencies in which the HKD, USD and CAD are dominant.
Results presented in Table 4 show that the USD, CAD and HKD are roughly equally
weighted, which is expected as CAD and HKD rates are heavily determined in
international markets by USD rates. This first factor may be termed the North
American factor. The second factor may be similarly termed the European Union
factor. It represents a restricted basket of currencies dominated by the European
currencies, with a relatively reduced weighting on JPY. USD, HKD and CAD are
practically absent from this factor with x1,2 j, x2,2 j and x8,2 j for j = 1, 2, 3 indicating
very small values. Inferences about idiosyncratic variances strengthen and extend
these conclusions. Those of USD and DEM are very small, indicating that these
two currencies play determining roles in defining their sector factor. FRF and ITL
have larger idiosyncratic variances (during the crisis period), indicative of their
departures from their sector factors.

To check the robustness of our estimated structural change dates to the base
currency used to define the exchange rates, we re-estimated our switching model
using the US dollar as the base currency. We use the posterior probabilities of the
hidden states or the Viterbi algorithm to choose the number of structural breaks as
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Figure 10 Posterior probabilities of the hidden Markov states γ j(t).

described in Sections 3.2 and 3.5, respectively. For all countries the break dates
in the spot prices using the US dollar as the base currency are quite similar to the
breaks found using the British Pound as the base currency (Fig. 10).

We find 33 break dates for all currencies, and, except the 269-th, 426-th and
598-th break dates, these breaks are very similar to those found using the British
Pound as the base currency. However, as shown in Figure 11, the behavior of the
spot prices in terms of the British pound is quite different than the spot prices in
terms of US dollar, but the location of structural break dates are quite similar.

In our illustrative analysis, one critical aspect connected with the use of this
model to analyze and forecast financial data is that the estimates dont take into
account the heteroscedasticity and correlation in the data. An interesting direc-
tion for further research is to allow a dynamic structure for the conditional vari-
ances of the underlying factors in order to investigate possible time-varying latent
processes, and their implications in modeling changes in covariance matrices over
time. This is partly motivated by the fact that financial markets volatility changes
over time (see Engle’s (1982) work on Autoregressive Conditional Heteroscedas-
ticity (ARCH) and Bollerslev’s (1986) Generalized ARCH (GARCH)). Hence, in
this situation, a switching Factor-ARCH framework can provide a plausible and
parsimonious parametrization of the time varying variance-covariance structure of
asset returns. For an exhaustive literature review on Factor-ARCH models with-
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Figure 11 Real daily observed exchange rates from 03/05/1991 to 07/05/1993 (600 observations).
The vertical line represents 31/08/1992.

out regime switching, the interested reader is referred to the works by Engle et
al. (1990); Engle and Ng (1993); Diebold and Nerlove (1989); Engle and Susmel
(1993) and Lin (1992). Engle et al. (1990) apply such structures to model the
pricing of Treasury bills. A similar model is used by Engle and Ng (1993) to
study the dynamic behavior of the term structure of interest rates. Diebold and
Nerlove (1989) use a latent factor ARCH model to describe the dynamics of ex-
change rate volatility. Engle and Susmel (1993) use the factor ARCH to test for
common volatility in international equity markets. Alternative estimation proce-
dures for such models are, also, investigated by Lin (1992) on the basis of Monte
Carlo comparisons.

5. Conclusion

In this paper we proposed a model that combines factor models and HMMs. We
formulated the model and developed maximum likelihood estimates for its parame-
ter. Our preliminary experiments have demonstrated promising results in classifica-
tion of some latent behavior. Using two model selection criteria, we demonstrated
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accurate discrimination between specifications characterized by different hidden
structures. An interesting direction for further research is the generalization of this
model to one where one allows the common and idiosyncratic variances to be time-
varying. The study of such models would provide a further step in the extension of
hidden Markov models to probabilistic factor analysis and allow for further flexibil-
ity in financial applications, where accurate on-line predictions of the time varying
covariance matrices are very useful for dynamic asset allocation.
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