TITLE:
A Novel Zinc Finger-Based DNA Cutter: Biosynthetic Design and Highly Selective DNA Cleavage (BIOORGANIC CHEMISTRY - Bioactive Chemistry)

AUTHOR(S):
Nagaoka, Makoto; Hagihara, Masaki; Kuwahara, Jun; Sugiura, Yukio

CITATION:

ISSUE DATE:
1995-03

URL:
http://hdl.handle.net/2433/65660

RIGHT:
A Novel Zinc Finger-Based DNA Cutter: Biosynthetic Design and Highly Selective DNA Cleavage

Makoto Nagaoka, Masaki Hagihara, Jun Kuwahara, and Yukio Sugiura

In this communication, we describe the design, synthesis and testing of a novel zinc finger-based DNA cutter. Transcription factor Spl has three tandem repeats of a Cys2His2-type zinc finger motif and specifically binds to GC box DNA. Herein, an Spl derivative with an attached Ni-based DNA cleavage unit (Gly-Gly-His) has been created. In the presence of magnesium monoperoxyphthalate, the Ni (II)-coordinated zinc finger protein, designated Sp1GGH, binds to GC box and cleaves a restriction fragment at essentially a single site near the recognition sequence. This ligand which simultaneously binds in both major and minor grooves appears to bridge across the sugar-phosphate backbone. The result is of special interest because of the potential versatility of zinc finger proteins in recognizing different DNA sequences. This work is pertinent to the design of the novel artificial restriction enzyme based on the zinc finger motif applicable to chromosome mapping and sequencing.

Keywords: Zinc finger/ DNA cleavage/ Nuclease/ Transcription factor/ Sequence specificity

Conversion of a DNA-binding protein to a DNA-cleaving molecule by attachment of a metal-chelating ligand is one of the most versatile methods for affinity cleaving. These chimeric proteins have largely utilized helix-turn-helix or b-zip-type motifs and interacted with DNA as a dimer. Therefore, their target sites are limited to palindromic base sequences with a dyad or a pseudodiyad axis. On the other hand, DNA sequences recognized by Cys2His2-type zinc finger proteins are almost asymmetric because of their monomeric binding mode. We report here the design and function of a new DNA-cleaving metalloprotein consisting of the zinc finger motif.

Primary sequence of the zinc finger-based DNA cutter (designated Sp1GGH) comprising two functional domains is shown in Figure 1. The DNA-binding domain contains the C-terminal region (residues 529–696) of transcription factor Spl bearing three contiguous repeats of the Cys2His2-type zinc finger motif, which recognizes an asymmetric decanucleotide with consensus sequence 5'-GCCTTTGT-3'. Each zinc finger domain coordinates a Zn (II) in a tetrahedral complex. In an effort to give DNA-cleaving activity to zinc finger protein, the tripeptide Gly-Gly-His (GGH) was attached to the N-terminus of the DNA-binding domain because of the availability of a genetic engineering method. The GGH segment originally derived from the copper-binding domain of serum albumin is believed to bind Ni (II) in a 1:1 square-planar complex with coordination from an imidazole nitrogen, two deprotonated peptide nitrogens, and the terminal amino group, referring to the crystal structure of the CuII.

BIOORGANIC CHEMISTRY —Bioactive Chemistry—

Scope of research

The major goal of our laboratory is to elucidate the molecular basis of the activity of various bioactive substances by biochemical, physicohemical, and synthetic approaches. These include studies on the mechanism of sequence-specific DNA cleavage by antitumor or carcinogenic molecules, probing the DNA fine structure by various chemicals, studies on the DNA recognition of Zinc-finger proteins, construction of artificial restriction enzyme, and model study on the cooperative mechanism of DNA binding by dimeric peptides. Also studied are the design and synthesis of functional molecules that effectively regulate the intracellular signal transduction or that applicable to fluorescence detection of DNA.

Guest Research Associate:
KLATT, Martin

Students:
UESUGI, Motonari (DC)
GUAN, Le Luo (DC)
KUSHIDA, Tatsushi (DC)
FUJITA, Mikako (DC)
MATASUMOTO, Takayuki (DC)
NAGAOKA, Makito (DC)
OKUNO, Yasushi (MC)
KUSAKABE, Tetsuya (MC)
SATAKE, Houo (MC)
HAGAHIARA, Masaki (MC)
AJIZAWA, Yasunori (MC)
INOUE, Teruhiko (MC)
EMORI, Takashi (MC)
KUBOTA, Naoki (UG)
SATO, Tetsuo (UG)
FUJITA, Kazutoshi (UG)
GGH complex. The Ni (II) complex of the peptide ligand attached to the DNA-binding protein can successfully cut DNA in the presence of peracide. The amino terminus of the GGH segment must be a primary amine, although all bacterially expressed proteins have methionine residues on their N-termini. This problem can be overcome by incorporation of the recognition sequence IEGR of blood coagulation factor (factor Xa) preceding the GGH segment. Repeated dialysis of Sp1GGH against buffers containing different concentrations of metals enables selective binding of Zn (II) in the finger region and of Ni (II) in the GGH segment, respectively, reflecting inherent metal preference of two functional domains. It has been confirmed that the three-finger region of Sp1 binds three Zn (II) ions. Incorporation of the GGH segment onto the N-terminal region of Sp1 presumably does not affect the binding geometry of the three-finger domain, because extension of 12 amino acid residues from the N-terminus of Sp1 (167*) has shown the exact same methylation interference pattern as that for the shorter form, Sp1 (167*) [1].

In the presence of magnesium monoperoxyphthalate (100 mM), quite specific cleavage of DNA occurred predominantly at two cytosine bases on both strands with single-base specificity. Cutting at the cytosine on the guanine-rich strand (G-strand) was much stronger than that for the other cytosine base on the opposite cytosine-rich strand (C-strand) (Figure 2). Termini at the cleavage sites appear to be 3'-phosphate groups. The remarkably restricted range of cleavage at the single-base position suggests that a nondiffusible oxidant might be generated by the Ni-GGH complex in the minor groove. The facts show that orientation of the peptide backbone in Sp1 is antiparallel to the primarily interacting strand (G-strand). The cleavage center for the above two bases was 4 bp apart from the 3' end of GC box on the G-strand. The 3'-staggered cutting pattern clearly demonstrates that the cleavage event occurs in the minor groove of DNA, and thus the Ni-GGH domain of Sp1GGH appears to be situated in the minor groove. In contrast, previous studies have shown that the three-finger domain of Sp1 contacts with guanine bases in the major groove. The Ni-GGH domain attached to the N-terminal arm of Hin recombinase (139-190) also shows the 3'-staggered cleavage pattern. Indeed, the homeodomains and Hin recombinase make base contacts in both grooves, with the helix-turn-helix region in the major groove of DNA and the N-terminal arm in the adjacent minor groove. Two functional domains of Sp1GGH are spanned by seven amino acid residues (GGHGDPGKKKQHIC). Given that the N-terminal linker region adopts an extended, flexible conformation in a manner similar to the conformation of the N-terminal arm of the homeo-domains, the linker region can bridge across the sugar-phosphate backbone of DNA and permits the Ni-GGH domain to locate at the cleavage center in the minor groove. The finding that the N-terminal finger 1 of Sp1 makes loose contacts with DNA might reinforce our explanation [2].

Tandemly repeated structures of multiple finger modules and asymmetry of the recognition base sequences are notable features of the Cys2His2-type zinc finger proteins. The modular structure revealed by the crystal structure of the three-finger protein Zif268-DNA complex, in which the single finger domain strictly recognizes three base pairs, sheds light on the great versatility of the Cys2His2-type zinc finger proteins in terms of designing DNA-binding protein with novel specificities. It might be possible to recognize any desired sequence by combination of different finger motifs. Our work is pertinent to the design of the novel artificial restriction enzyme based on the zinc finger motif applicable to chromosome mapping and sequencing.

Figure 1. Schematic representation of Sp1GGH. Amino acid residues of Sp1GGH are indicated by one-letter abbreviations and numbered from the amino terminus. The tripeptide GGH, the linker region, and the amino acid relevant to specific base contact are represented as bold, outlined, and shadowed types, respectively.

Figure 2. Histograms of cleavage sites in GC box DNA sequence based on densitometric analysis of the gel autoradiograms. Top and bottom sequences show G- and C-strands, respectively. The box indicates the GC box, and the length of bars represents the extent of cleavage. Relative extent of cleavage was estimated by the intensity of autoradiograms.

References