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Preparation, Structure, and Reactivity of
Functionalized Organosilicon Compounds

Kohei Tamao and Atsushi Kawachi

Preparation, structure, and reactivity of (alkoxysilyl)lithium, (alkoxy)oligosilanes, and pentacoordinate
alkoxydisilane have been investigated. These functionalized organosilicon compounds containing a-
heteroatom substituents exhibit remarkable reactivities compared to ordinary organosilicon compounds.
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(1) The Chemistry of Silylenoids: Preparation and
Reactivity of (Alkoxysilyl)lithium [1]

We report the first results of silylenoid chem-
istry, analogous to carbenoid chemistry. (¢-
ButoxysilyDlithium (¢-BuO)PhgSiLi (1) prepared from
(t-butoxysilyl)stannane with n-BuLi in THF is stable
at -78 “C. In the presence of 12-crown-4, 1 is stable as
silyl anion even at 0 ‘C and reacts with electrophiles
only. In contrast to this, 1 exhibits the ambiphilic
reactivity and undergoes at 0 ‘C self-condensation
smoothly to form (¢-BuO)PhySiPhySiLi or butylation
in the presence of an excess amount of n-Buli and
TMEDA to form n-BuPhgSiLi. The ambiphilic reac-
tivities of 1 could be accounted for by contribution of
two extreme structures, that is, a nucleophilic silyl
anionic structure and an electrophilic silylenoid
structure. In the latter, the electropositive lithium
atom bound to silicon ionizes and activates the sili-
con-oxygen bond so that the silicon becomes suscepti-
ble to the nucleophilic attack.
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(2) Palladium-Catalyzed Skeletal Rearrangement
of (Alkoxy)oligosilanes via Silylene-Transfer [2]

Poly(alkoxy)trisilanes and tetrasilanes have been
found to undergo clean skeletal rearrangement in the
presence of Pd(PPhs)y as a catalyst at 80 - 140 C in
the fashion that the internal silylene moiety is trans-
ferred to the terminal positions. Ten substrates have
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been examined. Typically, 1,2,2,3-(MeQO)4Me4Sig,
1,1,2,3-(Me0)4Me4Sis, 1,2,3-(MeO)sMesSiz, and 1,2-
(MeO)yMegSis, are converted into the 1,1,1,3-, 1,1,3,3-,
1,1,3-, and 1,1-isomers, respectively, in quantitative
yields: the reactivity decreases roughly in this order.
In a deuterium-labeled study, 1,1,2,3-(Me0)4-3,3-
(CDg)oMesoSis gives 1,1,3,3-(Me0)4-2,2-(CDg)o-MeoSis
exclusively, no CDg/CHs random exchange being
observed. A tetrasilane 1,2,3,4-(MeQO)4MegSiy is also
transformed into the 1,1,4,4-isomer. A proposed
mechanism involves silylene-transfer from the inter-
nal position to the terminal position(s) through the
following key steps: oxidative addition of the Si-Si
bond to Pd(0) and subsequent a-elimination to a
bis(silyl)(silylene)Pd complex, stabilized by the
intramolecular coordination of alkoxy group(s) to the
silylene center. The novel skeletal rearrangement
may be useful for the structural modification of poly-
functionalized polysilanes of much current interest.
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(3) Remarkably Facile Thermal Generation of
Silylene from a Pentacoordinate Alkoxydisilane and
Its Trapping as a Pentacoordinate 1,2-Disilacyclobut-
3-ene [3]

Pentacoordinate ethoxydisilane 2, which contains
the 8-dimethylamino-1-naphthly group and the
ethoxy group on the same silicon atom, and the tetra-
coordinate counterpart 3 have been prepared. The X-
ray structure analysis of 2 reveals that the geometry
of the particular silicon atom is deformed from tetra-
hedral to pseudo-trigonal bipyramidal with the
ethoxy group and the amino group at two pseudo-api-
cal positions, having the N1.--Sil distance 2.969(3) A
and the N1-.-Si1-O1 angle 171.36(9)°. This compound
has a normal Sil-Si2 distance 2.368(1) A, a slightly

long Si-O bond 1.665(2) A and a small O-Si-Si bond
angle 97.35(8)° . The two methyl groups on nitrogen
in 2 appear as diastereotopic two separate singlets in
1H and !3C NMR spectra at room temperature. 2
undergoes thermal degradation readily at 90°C in
DMF or 110 C in toluene to form EtOSiPhyMe (4) in
high yields, while 2 is stable under similar condi-
tions. The silylene species 5 is trapped efficiently
with 2,3-dimethyl-1,3-butadiene and diphenylacety-
lene to form the corresponding adducts 6 and 7,
respectively. The X-ray structure analysis reveals
that 7 is the first example of a pentacoordinate 1,2-
disilacyclobut-3-ene and involves two different confor-
mations of the 8-dimethylamino-1-naphthyl groups as
shown below. The Sil is highly pentacoordinated,
with the N1.-Sil distance 2.789 (3) A, while the
N2:---Si2 is long 3.039(3) A, causing the 1,2-disilacy-
clobutene ring unsymmetrical with different bond
lengths Sil-C1 1.932(3) A and Si2-C2 1.891(3) A.
Compound 7 is oxygen-stable.
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