
Kyoto University 21st Century COE Program

Open development of open font — Revaluation and ap-

plication of Wada-lab Font Kit

Kazuhiko1) and Kanou Hiroki2)

Abstract
As the importance of free desktop environment by open source softwares getting larger, the importance

of open fonts also become larger. We first describe the condition of open fonts in Japan and then explore
the effective way of making huge amount of Kanji glyphs.

Keywords: open font, font development, font composition, Wadalab Font Kit

1 Introduction

1.1 Open Font Definition

There are many fonts that we can use free-of-
charge. But what we need is not free as in ‘free
beer’ but as in ‘free speech’, i.e. what we call ‘Open
Font’ in this article.

The definition of ‘Open Font’ should be just like
‘Open Source Definition??’.

• free redistribution

• source code

• derived works

• no discrimination against persons/groups

• no discrimination against fields of endeavour

• distribution of license

• license must not be specific to a product

• license must not restrict other software

1.2 Why is Open Font needed?

Under the licence mentioned above, the freedom
of modification is guaranteed. We need to modify
fonts to follow the changes, eg. CCS/CES (Shift-
JIS ⇒ Unicode ⇒ ?), format (TTF ⇒ OpenType),
design trends (line-oriented ⇒ curve-oriented) etc.

The freedom of usage is also guaranteed by open
fonts. Of course we need the freedom of usage for
our freedom of speech.

And the freedom of distribution is also important
to exchange documents. When we can distribute
fonts with documents, we can achieve yet another
WISIWYG — What I See Is What You Get.

1)http://www.fdiary.net/ mailto:kazuhiko@fdiary.net
2)http://khdd.net/kanou/ mailto:kanou@khdd.net

1.3 Open Font Today

We have many open fonts for Latin (eg. URW,
Bitstream Vera). And we have some open fonts for
Chinese and Korean (eg. Arphic, Wang, Baekmuk).
But we have few open fonts for Japanese.

We formerly had quality open fonts whose names
were Kochi fonts. Kochi fonts based on a free True-
Type font that was auto-converted from a 32dot
bitmap font that was knows as ‘free’ at the time.
And the author of Kochi fonts released them as pub-
lic domain fonts.

But on June 15th 2003, it was revealed that the
32dot bitmap font that is a origin of Kochi fonts
is illegally stolen. So we asked to cancel distribu-
tion of these fonts and then we negotiated with its
copyright holders for several times. As the result of
negotiation, they offered a ‘free-of-charge’ license.
But the author of Kochi fonts rejected their offer,
and the development was cancelled.

1.4 Next Generation Font Development

Since we have lost quality Japanese open fonts,
we need their ‘alternatives’ soon. Therefore develop-
ment speed is a first priority. But quality is second of
course. For the rapid and efficient development, we
tried revaluation and application of Wadalab Font
Kit that was the automated glyph composer.

2 Revaluation of Wadalab Font Kit

2.1 Overview of Wadalab Font Project

Wadalab (‘Wada-ken’ in Japanese) Font is a one of
the most successful attempt in the automated kanji
(CJK ideographs) glyph generation. It was devel-
oped from April 1990 until March 1994 by Kanji
Development Branch of Wada Laboratory, Faculty



of Engineering, the University of Tokyo. Original
distribution of the font have four typefaces of JIS X
0208-1990 (includes 6355 kanjis) and two of JIS X
0212-1990 (includes 5801 supplementary kanjis) and
total number of kanji glyphs exceeds 37,000.

At the time they published the result of the re-
search, a set of generated font was released. The
Wadalab Font was the only available open Japanese
font in the late 1990s and they are widely used on
non-commercial operationg systems and commercial
Unices together with TeX and Ghostscript, even
though the font was a demonstration of the experi-
ment and not tuned nor fixed by hand at all.

2.2 Technical Overview

Developers of Wadalab Font had an anbitious goal
that a user, who adds a character by describing
the combination of predefined parts, need no aes-
thetic judgment and all issues on balancing com-
ponents are processed automatically by the system.
The same policy is adopted in the realization of the
outlines from the skeletons of glyphs. Only func-
tion to calculate outlines is defined for each type of
elemtents of strokes and one function handles dif-
ferent sizes, aspect ratios, and slopes consistently.
A set of function can also be tunable in the stroke
width but different style of typefaces have differ-
ent sets of rendering functions. Currently three
styles—‘mincho’ (serifed), ‘kaku-gothic’ (sans serif
with square strokes) and ‘maru-gothic’ (sans with
rounded strokes)—are defined.

The process of outline generation is divided in
three stages:

• exapnding abstract definition to the concrete
coordinates of the skeleton

• calculating center lines from skeleton and ex-
tending to the stroke

• processing joins of elements and generating ser-
ifs at the end of elements.

Balancing of components with different complex-
ity is handled by two strategies:

• displacing stems uniformly as far as possible

• ensuring the minimum distances of strokes for
each pair of type of elements.

This algorithm make possible automatic kerning
of components for vertical and horizontal combina-
tion of the components. For a nested combination,
the initial position of the bounding boxes of sur-
rounded components are defined in the surround-
ing component by the designer. Balancing engine
performs repetitive computation to maximize inner
components around the initial positions. The com-
ponents are scaled by liniar transform after their
relative sizes are settled. Detailed processes are de-
scribed in two papers [2] and [3].

2.3 Outline of the Wadalab Font Kit

Wadalab Font Kit?? is the glyph generator of
Wadalab Font and written in UtiLisp, a dialect of
Lisp widely used through 1980s in Japan. Renderers
have about 7,500 lines (comments and empty lines
not included) and graphical skeleton editor have
6,700 lines. Additionally, 12,700 glyph definitions
and 2,600 master skeletons of primitive components
(including non-kanji) is needed to build the Font.

The Kit was not publicly available because it was
thought that very few people have interest in design-
ing fonts and the system was not so user-friendly.
But the retraction of Kochi Font raised public inter-
est in digital typography, so Dr. Tetsurou Tanaka,
who built the core of Wadalab Font Kit decided to
release it just after the incident.

Nonetheless the design quality of machine gener-
ated glyphs are not so good, the basic algorithms
they developed have a large generality and the sys-
tem have very high flexibility enough to implement
additional ideas. The quality of specific glyphs is
essential for the quality of generated skeletons and
concrete shape of strokes can easily spoil the bal-
anced skeleton. That was partly because GUI of
the glyph editor was too slow to use them interac-
tively and they had no advisor of professional typog-
rapher. We believe if they had better enviroment,
they accomplished much better glyph designs.

2.4 Past Development

At June 15th 2003, we need to supply a pair of
provisional font which substitute the original two
typefaces of Kochi Font. Priority was given to (1)
clearness of the source of the glyphs, (2) rapid re-
lease, (3) compatibility. In this time, the Font

106



Kit was not referred and commonly used glyphs of
Wadalab Font in past was used. The tasks were
shared by many peaple. Compilation of glyphs by
Mr. Akagaki (Momonga Project), preparation of
script to replace the glyphs depending on 32dot
bitmaps by Kanou, registration to sourceforge.jp
and other coordination by Kazuhiko, and so on.
First version of substitute font was released at
evening of June 18th. Scripting language of PfaEdit
font editor?? was used to replace glyphs to clarify
the operations what we applied to the original Kochi
Font and to make the operation repeatable by ev-
eryone.

The second stage was porting of the Kit to current
environment for revaluation and compilation. X11
interface code in UtiLisp/C was modified to oper-
ate the skeleton editor. Then several miscomposed
glyphs were redefined and a few bugs in rendering
code were fixed. Most of the bugs were in geomet-
rical construction of outlines. For example, in case
two auxilary lines are aligned nearly parallel direc-
tions, the crossing points go far unexpedtedly and
the resulting glyph is totally broken. Procedures for
anomalistic cases are added to make acceptable ar-
bitrary combination of glyph sets, stroke styles and
width parameters.

2.5 Development in Current Plan

Analisys of source code for porting, bug fix and
revaluation gave us some lessens that helps to plan
our development in near future. The emphasis are
put on:

• stimulating potential developers

• making collabration between programmers and
designers easier

• postponing labor-intensive jobs as long as pos-
sible.

To encourage developers, we are porting these
codes to Common Lisp and allow casual trial on
user’s favorite Lisp compilers. We should attract
not only programmers, but people who can con-
tribute through their aesthetical senses. For such
people, programmers should prepare much rooms for
cutomization without customizing the glyph. We
should abondon some policies to calculate every-
thing that programs can do and introduce example-

oriented approach more extensively. On this point,
we must have many things to learn from the teaching
approach used in KAGE. Improvement of skeleton
editor is also anticipated. This is not necessarily
porting of original implementation. Alternatively,
it is possible to add a feature to edit skeleton to an
existing font editor.

We think that migration from a calculation-
oriented approach to an example-oriented approach
will derive better appearance of for two reasons.
Giving multiple master patterns allows us to differ-
ent proportions in different aspect ratio. For exam-
ple, while horizontal bar in 十 (ideographic number
ten) is set on optical center (slightly above the ge-
ometrical center), when if it is used in right part
of a glyph (the cases of 汁/什/計/針) the horizontal
bar is appearently raised from the center. When the
part comes in left (協/博), this component has nar-
rower width and higher horizontal bar. Similarly,
algorithms used in outline generation has difficul-
ties to meet all sizes and thickness of the same type.
This makes the customization very difficult other
than a skilled programmer with a excellent sense of
beauty. Designers will prefer to give examples even
the number of strokes to define is a tenfold of explicit
programming.

In some cases that current algorithm gives bad
balance, the glyph must be defined as an inpartible
component to get better appearance. It is waste of
man-power to adjust all glyphs manually because
when the algorithm is improved manual glyphs be-
come unnecessary. We are trying automatic extrac-
tion of outlines from Ayu 20dot bitmap font?? (Fig-
ure 1). This is selected because of the simple line
style and clear provenance—it is derived from a de-
sign by one of the authors.

3 Challenges in Open Font Develop-
ment

The reason that makes open font development dif-
ficult is various. Each of them are not critical, but
the combination of them makes work difficult. If
you don’t require design consistency at all, open de-
velopment can easily provide you a set of glyph by
simply dividing designing task. This type of group
work necessary brings to a gross disunity. Differ-
ences among glyphs designed by different workers

107



BA C
(a) (b) (c) (d)

Figure 1: (a) Result of automatic balancing of
Wadalab Font Kit. (b) Ayu 20 dot bitmap
font. (c) Rendered outline that endpoints
of the skeleton are taken from bitmap. (d)
Rendering outline that endpoints are speci-
fied by human. Results from bitmap is not so
beautiful because the coarseness of the coordinates
but perceptibly better. All glyphs are rendered from
a skeleton to outlines by the Wadalab Font Kit.

are appearent even in the extension of a 16 dot
bitmap font. Authors have no idea to solve this
problem without having intinsive standardization by
daily face-to-face meeting as designers in commer-
cial font developing team is adopting.

We expect that font development gets better
performance out of Harlan Mills’ ‘surgical team’
approach?? than homogeneous sharing of glyph
making. In the most successible case in recent
open font developments??, a designer designs all
glyphs and two experts works with converting issues
(PfaEdit scripting and fixing bugs), and widely in-
vites a opinion from public. These advices, helps to
oversights from the author. This cooperation makes
glyphs of very high quality undoubtedly, but it takes
too much time to design all the glyphs in a character
set with thousands of glyphs. We have to develop
faster way to design glyphs infrequently used. One
way is to supply preliminary glyphs by subsidiary
designer, and the another is use glyph generatior.
The efficiency will highly depends on the quality of
initial glyphs. but in most cases glyph generators
will help designers.

Commercial developers will enjoy benefit of tech-
nologies invented in open developments. Open font
devlopers have lesser merits in most skills needed to
design a typeface. Automatic glyph design will be
exceptional domain that open development have an
advantage, because we have the freely customizable
sources. Japanese font vendors are at disadvantaged
position in labor costs. We hope automatic glyph

design helps commercial font vendors by helping the
decrease of designer’s simple tasks and competiton
in aesthetic sense, not in cost.

Bibliography

[1] http://www.opensource.org/docs/ defini-
tion plain.php

[2] Tanaka, T., Ishii, Y., Takeuchi, M., and
Wada, E., Sharing Skeleton Data by Multiple
Kanji Fonts through Programmable Rendering.
IPSJ Journal 36 177–186 (1995) [in Japanese].

[3] Tanaka, T., Iwasaki, H., Nagasaki, K., and
Wada, E., Making Kanji Skeleton Fonts
through Composing Parts. IPSJ Journal 36
2122–2131 (1995) [in Japanese].

[4] http://gps.tanaka.ecc.u-tokyo.ac.jp/
wadalabfont/cvsweb/cvsweb.cgi/wadalabfont-
kit/

[5] http://fontforge.sourceforge.net/ (PfaEdit is
renamed to FontForge).

[6] http://x-tt.sourceforge.jp/ayu.html

[7] Brooks, F. P., The Mythical Man-Month, 2nd
ed., Chapter 3 (1995).

[8] http://mplus-fonts.sourceforge.jp/mplus-
outline-fonts/

108


