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Up: The dependence of Uy on the mass m of a molecule is better to be
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Uo — mao
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e p.502-505 and 508 (This item is not corrections, but gives alternative ex-
pressions convenient to the discussion in Section 1.5, where the nondimensional
form of the Boltzmann equation for an finite-range intermolecular potential is
discussed.):

The parameter Uy expressing the strength of the intermolecular potential is
introduced in Eq. (A.51) and on the first line of p.503. The dependence of Uy on
the mass m of a molecule is better to be explicit (see Sections 1.5.2 and 1.5.3).
That is,

Uy — mﬁo
Correspondingly, the following replacements with the new parameter Uy should

be made:
Up/mV? — Uy/V? (the 2rd and 4th lines and the 7th line from below

in p.503),

Up/m — Uy (the 3rd line from below in p.503 and the 4th, 5th, and
7th lines in p. 504),

mRTy/Uy — RTy/Uy (the 12th and 14th—16th lines in p. 508).

e p. 503, the 13th line from below:
solid angle elements — solid-angle elements

e p. 504, the first line in Footnote 24:
damin — domain



e p. 505, Eq. (A.60):

1 9Jsin?6, 1 dsin%6,
sinf, 006, sinf, dé,.

1 ov? 1 dp?
sin @, 06, sin 6. df,

e p.506, the 13th line [The line next to Eq. (A.63)]:
with respect to . — with respect to 6,

e p. 617, the right-hand side of Eq. (C.2b):
In order to avoid misunderstanding, %W is better expressed as

2n(n + 1)!
g

e p. 628, Reference [110]:
Reference [110] should be placed after Reference [112].

e p.639, the 3rd line in Reference [262]:
gs — gas

Supplementary Notes

In the present supplementary notes, the letter M is attached to the labels
of sections, equations, etc. in the book Molecular Gas Dynamics and the letter
K is attached to those in Y. Sone, Kinetic Theory and Fluid Dynamics (Sone
[2002]) to avoid confusion. The two books, Molecular Gas Dynamics and Kinetic
Theory and Fluid Dynamics, themselves are, respectively, referred to as MGD
and KF.

1 Chapter M-1

1.1 Background of the Boltzmann equation (Sections M-
1.1 and M-1.2)

The situation of a monatomic gas the description of which is the purpose of the
Boltzmann equation is explained in more detail in Section 1.5.3 (the second half
part of Section 1.5.2 before Version 13-00). This will serve as the supplement
to Sections M-1.1 and M-1.2, though it is prepared for the discussion of the
parameters in the nondimensional Boltzmann equation.

(Section 1.1: Version 9-00 and 13-00)



1.2 Supplement to Footnote M-9 in Section M-1.3

We will explicitly show the process of derivation of the conservation equations
(M-1.12)—(M-1.14) by taking into account the discontinuity of the velocity dis-
tribution function f(X,§&,t) for a typical case.

Let S(X) be a continuous and sectionally smooth function of X, and let the
surface in the X space consisting of the points X that satisfy S(Xg) = 0 be
indicated by So.! The surface Sy may be an infinite surface or a bounded surface
separating the space X into two regions. The velocity distribution function f at
time tg is assumed to be discontinuous across the surface Sy and to be smooth
except on Sy. The discontinuity propagates along the characteristics of the
Boltzmann equation (M-1.5), i.e., X; — &(t — tg) = Xg;, for each £.2 Take a
point (X, ¢) in the space and time, where ¢ > ty. At this point or at (X,t), the
discontinuity of f lies on the surface S)(X,t) in the & space that consists of
the points £, satisfying

S(Xi —&pi(t —to)) =0, or X; —&pi(t —to) = Xos- (1)

The point &€, is determined by X, ¢, and Xy, i.e., £5(X,¢; X(). Let the side
of the domain in the & space that satisfies S(X; — &;(t — to)) > 0 be indicated
by V,., and the other side of the domain by V_; let the outward unit normal to
the surface S€)(X,t) with respect to V. be indicated by np;(&€p; X,t). Then,

| 9S(X — &0t 10))/0%,
|85(X - £(t - tO))/a§j| &=¢p
where |a;| = (a?)!/? and the subscript D to 9S(Y)/9dY; indicates Y = X —

&p(t —tp). The variations of €, with respect to X or ¢ for a given Xy, i.e.,
0€p/0X,; and 0&/0t, are determined from Eq. (1) as

P6n, o 8s(Y)| (o, N
D<5“" gt —t)) =0 oy, D( Gt 46, =0

95(Y)/9Y;

npi(€p; X, t) = B W

(2)

)
D

aS(Y)
o,

Thus, with the aid of Eq. (2),

O¢p; np; 9p; _  npilp; 3)

"Digx, T ity "o t—ty

The integral of such a discontinuous function with respect to £ over its whole
space is split into two parts as

/ B(E) fdE = /V RO /V RIGIES

where ¥(€) is a smooth function of & Then, the integrand is smooth in each
of V4 and V_. According to Lemma in page M-492, the following derivatives of

Tt is assumed that (8S/0X;)% # 0 on Sp. The normal to the surface Sp is defined except
at special points.
2For simplicity of explanation, we consider the case where F; = 0 here.



integrals over the domain V, are transformed as®

9 of 9p; 2
i [, versae= [ w@gracs [ v@r T
o, [, w@rae= [ ev@graer [ avergemnae

where the integral over the surface S of the second term on the right-hand
side of each equation is due to the variation of the domain V, with ¢t or Xj.
Summing the above two derivatives and noting Eq. (3), we have

: e e
o ], Go@sae= [ w@Facs [ e g as

where the surface integrals over S&) are canceled. Similarly,

o [ verae= [ v Taet [ e iae
Thus, we have

5 [v@rae+ o [av@rae= [vioFae+ [eue

It may be noted that the interchange of differentiation and integration is pos-
sible only for the above combination of the integrals. With this formula, the
conservation equations are derived by choosing 1, &;, and &2 as ().

When the surface Sp, i.e., S(X) = 0, is a finite surface or semi-infinite
surface which does not divide the & space into V, and V_, we can take it as a
special case where some part of Sy joins to its other part and V_ degenerates
empty. When there is a body in a gas, the discontinuity as shown in Section
M-3.1.6 generally exists. The analysis can be carried out in a similar way; that
is, determine the position of the discontinuity in the & space first, carry out the
differentiations in each region where the velocity distribution function is smooth
with the aid of the lemma in page M-492, and sum up the results.

(Section 1.2: Version 6-00)

ot

(4)

1.3 Bulk viscosity (Section M-1.3)

The assumptions (M-1.15) and (M-1.16) for the stress tensor and heat-flow
vector in classical gas dynamics are what is to be studied by kinetic theory (see
Chapter M-3). For a monatomic gas, consisting of identical molecules whose

3The correspondence of the variables here and those in the lemma is as follows: &€ < X, t
or X;e 9, np; & N, d€ & dX, d2¢ « 42X, Vi & D), S© « aD().



intermolecular potential is spherically symmetric, which is discussed in MGD,
the bulk viscosity is easily seen to vanish. From Eqs. (M-1.2d) and (M-1.2f),*

Dis = 3p. (5)

On the other hand, the trace of the first relation of Eq. (M-1.16) is

81},‘
i =3p— 3 .
p L e
Thus, from the two relations, we have
pup =0. (6)

(Section 1.3: Version 7-00)

1.4 Note on the equality condition of Eq. (M-1.38)

The statement of the equality condition of Eq. (M-1.38), i.e., “The equality in
Eq. (1.38) holds when and only when f is the Maxwellian that satisfies the
boundary condition (1.26)... 7, needs supplementary explanation. Some condi-
tion is required of the scattering kernel Kp in the boundary condition (M-1.26)
for f to be limited to the Maxwellian. For some Kpg, the equality holds in
Eq. (M-1.38) for f other than the Maxwellian. See Section 8.4.1 for more de-
tailed discussion.

(Section 1.4: Version 5-00)

1.5 Nondimensional form of the Boltzmann equation for
an infinite-range potential (Sections M-1.9 and M-
A.2.4)

1.5.1 Preliminary

As explained in page M-505, the Boltzmann equation for an infinite-range inter-
molecular potential is conventionally introduced by taking the limit d,, — oo
with the impact parameter b fixed. For this B, the mean collision frequency

4For molecules with internal degree of freedom (e.g., rotational and vibrational freedoms),
this freedom contributes to the integrands of Eqs. (M-1.2¢)—(M-1.2g). Thus, Eq. (5) does not
generally hold. (More precisely, the velocity distribution function f depends also on the
variables of the internal degree of freedom of a molecule. The integration with respect to
these variables in Eqs. (M-1.2a)-(M-1.2g) has to be carried out. The angular momentum due
to the rotation of molecules of infinitesimal size per unit mass is negligible even when the
energy of rotation is not negligible.) The density p and the specific internal energy e can be
clearly defined whether the gas is in an equilibrium state or not. The specific internal energy
e/iy per unit freedom of a molecule is taken as RT'/2, i.e., e = iy RT'/2, where i is the degree
of freedom of a molecule; thus, the relation between e and T is independent of the state of
the gas (equilibrium or nonequilibrium). The pressure is defined by the equation of state,
i.e., the perfect gas relation p = pRT'; thus, except for a monatomic gas without internal
degree of freedom, the pressure differs generally from the isotropic part of stress tensor in a
nonequilibrium state.



U. and the reference quantity By in Eq. (M-1.48d) become infinite. Thus, the
mean free path ¢, defined by Eq. (M-1.20), and the nondimensional form B of
B, introduced in Eq. (M-1.48c), are useless. Thus, the proper nondimensional
form of the Boltzmann equation for an infinite-range potential is not presented
yvet. We will give it here.

In the collision term (M-1.6), the change of the variables of integration is
introduced from « or (6., ) to (b, »), where b is the impact parameter (Section
M-A.2.4). Noting the relations (M-A.59) and (M-A.60) and the range (0, c0) of
b for an infinite-range potential, we obtain the collision term for an infinite-range
potential in the following form:

1 2m 00 , ,
=g [ ] e e - oo, @

where
g=E+o (€ —8la, & =€ —[o (€ &) (8)
The unit vector a is determined by (b, ¢) with the aid of the relation between
0. and b:®
Ye 1 4U(b/y
ec=/ S S o g L G 9)
0 (1—C—y?) m(€, — &)
where vy, is the smallest solution of the equation
4U(b/y) 2
———5 -y =0 (0<y<b/dk). 10
g =0 (0<y < b/dy) (10)

The potential U(r) is assumed here to tend to zero as r — oo and to increase
indefinitely as r — dg (> 0).5 In Eq. (7), the function B disappears, but in turn
its effect enters the relation between (¢',¢.) and b through the relation (9).

1.5.2 General Case

Let the potential U(r) be given. Choosing the characteristic extent dj; of the
potential (or the size of a molecule) properly, we can express the potential U(r)
in the form }

U(T) :mZ/{OU(T/dM), (11)
where U(z) is a nondimensional function of a nondimensional variable z that
takes the value unity at x = 1, tends to zero as * — oo, and increases indefinitely
as x — dg (= dg/dy < 1); Up is a constant of the order of RTy.” Introducing
the nondimensional impact parameter b by

5As explained in Section M-A.2.4, (6, ¢) is & or —a. The relation between (6¢,¢) and
(6o, @) under the convention o - (€, — &) > 0 introduced there, where a = (0a, ), is given in
the second paragraph of page M-503.

6The case where U approaches a finite value as r — dx ‘and an infinitely high potential
barrier lies at r = d is included. A similar note applies to U(z) in Eq. (11).

7(i) The symbols Uy and U are chosen to avoid the confusion with Up and U introduced
in Eq. (M-A.51).



b=b/dy, (12)

we rewrite the collision-term formulas (7)-(10) in terms of the nondimensional
variables U and b, those introduced in Eq.(M-1.43), and the corresponding
reference quantities.® The result is

I f) =B [ e = CFCOFC) — FOFClbdbdpdc,, (13)

~ 2RTym oseso
all ¢,
where

The unit vector « is determined by IA), @, and ¢, — ¢ with the aid of 0. (see
Footnote 5):

Ye 1
0. = ———dy, 15
/0 (1-C—p2)"" ’ 1
where .
~  2UU(b/y)
C=RnE -0 (16)

and . is the smallest positive solution of the equation for 7:
1-C—4*=0 (O<y<i§/dK>. (17)

Then, . is a function of b and Uy/RTH(¢, —€)?; the integrand in Eq. (15) is also
a function of the same variables. Thus, 6. is a function of b and Uy /RTo(¢, —¢)?,

(it) From U(r) and dyy, the function U(x) and the constant Up are determined as U(x) =
U(dpz)/U(dpr) and Uy = U(dag)/m. If we choose dps in such a way that U(dar)/m is of
the order of RTp, the required properties of U(a:) and Uy are satisfied. Such a choice of dy; is
possible owing to the behavior of U(r).

(iii) The size dj; of a molecule is an important factor of k defined by Eq.(21), which
is chosen to indicate the magnitude of the collision term. Depending on the choice of dy;,
the nondimentional collision integral (the integral part of the collision term) in Eq.(20) or
(22) can be too large or too small. This happens when Uy/2RT, in Eq.(16) is too large or
too small (note that the case §. = /2, which occurs for C' = 0, corresponds to the case
without interaction between molecules). Then, E is not a good indicator of the magnitude of
the collision term. Thus, djs should be chosen so as for Uy /2RTp to be of the order of unity
(say, Up/2RTy = apot). For a given U(r) and Ty, the size dps is determined with an apet (for
example, apoy = 1); then Uy = U(dpr)/m = 2apot RTp. For another reference temperature
T§, dar is kept unchanged, and Uy, accordingly, remains unchanged. Then, Up/2RT; =
(To/T§ )apot. This factor, Uy /2RI, enters the collision integral through C in Eq. (15). For
the reference state (po,T( ), the collision term is determined by the two parameters Tj; /Tp
and k based on dy; determined by To as explained above though there is ambiguity due to Ty
or apot. The dependence of the collision term on T /Tp is not widely mentioned.

(iv) The ambiguity of the size dp; due to the choice of Tp or apot is of the same kind as
that of a reference length and the thickness of shock wave or Knudsen layer, etc.

8The present way to obtain the nondimensional equation can be applied to a finite-range
potential.



ie.,

O = fo.(b, Uo/RTo(¢, — €)%). (18a)
or R

b= f;(0c, Uo/RTH (<, — €)?), (18b)
where the functional forms of fs, and f; are determined only by U(z).

The transport term (or the left-hand side) of the Boltzmann equation (M-
1.5) is rewritten as

0
A e

= 19
Comparing the two expressions (13) and (19), we obtain the following nondi-
mensional form of the Boltzmann equation for an intermolecular potential of
infinite range:

of _af  oEf 1 o
vt S 2 [ 16 = A ~ HOF(C.)lidbdgdc..

of L OES _ s < of o of aﬁif)

0<p<2m
all ¢,
(20)
where R
F=1/(po/m)d3 L. (21)

Changing the variables of integration from (b, ¢) to e, we have another form of
Eq. (20) with the B function in the collision term:

f of (9Ff 1

S A OB 2)

+Gi

where?

B(lee: (¢, — O/, = O 1C, — €|, Uo/2RTy)

1 =Ll fy 9f3(e, Uo/RTH(C, — €)?)
o 2 sin 6, 00, '

(23)

The nondimensional form of the collision term contains the two parameters k
and Uy /2RTy,'° which consist of macroscopic and molecular variables. For the
correct handling of the molecular variables, some discussions are required, which
will be given in Section 1.5.3.'!

9(i) See Footnote 5.

(ii) The range of integration with respect to a in the integral on the right-hand side of
Eq. (22), which is originally e - (¢, — ¢) > 0, is extended to the whole range of a by putting
the absolute-value sign on o - (¢, — C) in the argument of B. Thus, B is multiplied by 1/2 in
Eq. (23).

10Tt should be noted that the parameter Uy/2RTp enters Eq.(20) through the relation
between (b, p) and o [see Eq. (18a)].

1114, is generally said that the limit where the parameters m, dys, and U(dys) [note: Uy =
U(dar)/m| tend to zero is taken in the derivation of the Boltzmann equation. Without paying
attention to their relative speeds of approach to zero and putting them zero simply in the
Boltzmann equation (20) or (22), we have a trouble. We have to review the background of
the derivation of the Boltzmann equation.

10



1.5.3 Background of the Boltzmann equation and its parameters

Before discussing the parameters in the Boltzmann equation (20) or (22), it may
be in order to review the situation of a monatomic gas the description of which is
the purpose of the Boltzmann equation. A gas consists of very many molecules
in a reference volume of our interest in discussing its behavior (and even in a
very small volume in the scale of the reference volume), and its variables, such
as density, flow velocity, and temperature, as a group of so many molecules
are defined at a point (in the scale of our interest) in space and time. The
reference quantities are set from the situation of our interest. Our interest is
the behavior of a monatomic gas. The reference quantities are properly chosen
for the description or analysis of it. Hereafter, the expression “G-reference” is
used for this when the distinction with molecular quantities is preferable. In the
situation of the present interest, the molecular size d; and the molecular mass
m are, respectively, very small compared with the G-reference length L and the
mass poL> in the G-reference volume L3, i.e.,

dy/L < 1, (24a)
m/poL® < 1, (24b)

where pg is the reference density. Thus, very many molecules are in volume L3
(in a unit volume),'? i.e.,

noL® > 1 (ng = po/m). (25)

The mean value of the molecular velocities is the flow velocity of the gas, and
their standard deviation is the sound speed or (RTp)'/? except for a constant
factor. We are interested in the situation where the flow speed is expressed in its
Mach number or its scale is at the level of (RTy)'/2. Therefore, flow velocity and
molecular velocity are expressed with (RTp)'/? as their unit, or the G-reference
scale and the molecular scale for velocity are commonly (RTp)/? in contrast to
the mass and the linear dimension.!?

Here, we are interested in the behavior of the above-mentioned gas in the
case where the gas is in a state with (po/m)dZ,L being at a nonzero finite
value,'? i.e.,

0 < (po/m)di, L < oo. (26)

Put it be Cp, i.e.,
Cr = (po/m)djr L, (27)

12When we mention that the dimensional quantity ng is large, it is implicitly assumed that
the unit volume is of the G-reference size. This kind of expression is common. For example,
the mean free path is small. In this case, we compare it with the length under consideration or
of our daily life. Adequate care is required when dealing with reference quantities of different
scales.

131n the discussion of intermolecular collisions, only the relative velocity &, — £ is important.
Its characteristic size is at the level of (RTp)!/2, irrespective of the flow velocity of the gas.

14The m(po/m)dZ, L is the number of molecules of a gas with density po in a circular cylinder
with radius djps and length L. Thus, it is roughly the frequency of collision while a molecule
travels distance L, or 1/m(po/m)dZ; is roughly the mean free path, which is about 0.06 pum
for air at the atmospheric condition (see Table M-C.1 in Section M-C.2).

11



where C, is a nonzero finite value. In this situation, (po/m)d3; < 1 because of
Eq. (24a). The scale of velocity being common to the G-reference and the molec-
ular reference scales, the time scales in the two view points are different. The
time for a molecule to interact with another is of the order of dy;/(RTp)'/?, but
the time to travel with speed (RT)'/? for the G-reference length L or the mean
free path 1/(po/m)dZ, is of the order of L/(RTy)'/? or 1/(po/m)d3,(RTy)"/?,
the latter of which is the mean free time, i.e., the average time between two
successive collisions of a molecule, and of the same order as the former because
Cy, is a nonzero finite value [note:1/(po/m)d3,(RTy)'/? = L/CL(RT,)'/?]. The
molecular-time scale [say, tmel (= dar/(RTp)'/?)] is very much smaller than the
G-time scale [say, t, (= L/(RTp)'/?] because of Eq. (24a), i.e.,

tmol/tr < 1. (28)

In the above discussion, another length scale Ls and another time scale ¢
are implicitly introduced, which has the following conditions:

dM/L5 < 1, L5/L < 1, (29&)
m/poLi < 1 (noLi > 1), (29b)
tmol/ts < 1, t5/tp < 1, (29c¢)

where t5 is the time to travel with speed (RTO)l/2 for distance Ly, i.e., t5 =
Ls/(RT,)"/?. This definition of ¢ is consistent with Eq. (29¢c) because of Eqs. (26)
and (29a). By the introduction of Ls and t¢5, we can define the local gas dy-
namic variables in space and time.'® The length and time scales of variation of
these variables are, respectively, L and ¢;, by their definition. Equation (29b)
means that the average volume of the gas in which one molecule lies is much
smaller than L3; that is, the distance dg, between two neighboring molecules is
much small than Ls (dsp/Ls < 1). From Eq. (27) with nonzero finite C'j, and
Eq. (29a), we have
Ls

Vlpomyaz, < 2
That is, Ls is much smaller than the mean free path 1/ngd?,. In the time
scale of s, the molecules in a volume L} stay in it and do not make collision
because of the second relation of Eq. (29c), and none of them is in the process
of interaction with another molecule because of the first relation of Eq. (29c).
The molecules keep their velocity unchanged. Thus, the state in the volume Lg’
remains unchanged in that time scale. That is, the state at a point in space

15(i) Condition (29b) is essential to this.

(ii) A point X and its neighborhood of the order of L; are taken as the point X in a gas (or
in G scale). A time ¢ and its neighborhood of the order of ¢5 are taken as the time ¢ in G scale.
Accordingly, a molecular velocity & and its neighborhood of the order of (RTp)!/2Ls/L are the
molecular velocity € in G scale because all motions between two space-time points (X(O)7 t(o))
and (X ¢()) in G scale with the above-mentioned allowance of the neighborhood are taken
to have the same velocity in G scale. Local gas dynamic variables (G scale) are defined with
the data over the above-mentioned neighborhood of the point under interest.

12



and time of the Ls scale is well defined. For the convenience of the following
discussion, we here introduce the notation:

dve = dpr/Ls, Ls = Ls/L, 1hwe =m/poL3. (31)

To describe the behavior of the gas (or in the derivation of the Boltzmann
equation), the limiting case where dye (= das/Ls) — 0, Ls (= Ls/L) — 0, and
e (= m/poL3) — 0 with (po/m)d3 L fixed at a nonzero finite value is consid-
ered (the Grad-Boltzmann limit), and the equation that determines the G-scale
behavior of the limiting system is established.'® First, the velocity distribution
function that expresses the state of the gas (G-scale state) is introduced, and
then the equation (the Boltzmann equation) that describes the variation of the
velocity distribution function is derived. Obviously by definition, the velocity
distribution function or the Boltzmann equation neither discriminates positions
with difference of molecular size, nor describes the variation over that size. The
transport term of the Boltzmann equation, the left-hand side of Eq. (M-1.5), is
derived only by the discussion of the G-reference level. On the other hand, the
collision term, the right-hand side of Eq.(M-1.5), is discussed by magnifying
the scales of molecular parameters (mass, radius, position, intermolecular po-
tential), and the frequency of intermolecular collision and the shift of molecular
velocities by collision are calculated.'” Thus, some quantities of molecular level
are apparently included in the collision term. In Eq. (20) or (22), m and dps ap-
pear in k as the combination (po/m)d3; L, which is fixed in the limiting process;
thus, the real molecular data can be put in m and dj;. In addition to l~c, the
collision term depends on the parameter Uy /2RTp,*® which will be shown to be
invariant in the limiting process in the next paragraph. Thus, the nondimen-
sional Boltzmann equation (20) or (22) is expressed with the quantities invariant
in the limiting process.

We discuss the dependence of U in the potential (11) on the scale factors dre,
Ls, and 7. Let the potential U (r) be given. From the profile, we determine
dpr, which has ambiguity (see Footnote 7), and rewrite U(r) in the form

U = mUU(r/dys), (32)

where Uy has the dimension of RTy. Take a given set of a molecule and a
potential (or a given pair of molecules). Let the molecule be approaching the
potential field with a relative velocity (2RTp)'/?(¢, — ¢) and a relative position

16(1) In this limit, nod$; — 0 (no = po/m), (po/m)d3;Ls — 0, tmo1/ts — 0, and ts/t;, — 0.
The first one shows that the volume of the molecules in a volume of a gas is negligible to the
volume that the gas occupies. .

(ii) The case where (po/m)d]%IL is independent of dye, ﬁg, and Mye is considered here.

(iii) In the gas under consideration, the scale parameters (fre, ﬁg, and Mmye are so small
that its behavior is well approximated by the solution of the equation obtained in the limit.
This is the underlying assumption in the derivation of the Boltzmann equation.

17In the discussion of the collision term of the Boltzmann equation, the collision effect at
each point of the gas is discussed with the binary collision of molecules in a volume of Lg
scale.

18See Footnote 10
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(b, ). Obviously, the reduced trajectory # = fr:(0;b,Us/2RTo(C, — ¢)?) of
the binary collision, where # = r/dy;, is independent of the G-reference scale
L. So is 6.. That is, these results are invariant in the limiting process that
dre — 0, Ls — 0, and M, — 0. We examine the condition that Eq. (M-A.50)
for the trajectory gives a solution that satisfies the above invariant condition,
and easily find that Uy /2RTy must be invariant in the limiting process.!? From
this invariant property of Uy/2RTy, we can choose the real molecular data for
Up; that is, once we have chosen dj; for the real potential U, U is determined
as

Uo = U(dnr)/m, (33)

where the real molecular data of m and dj; are used. Thus, the nondimensional
Boltzmann equation (20) or (22) is expressed with the parameters that are

19(j) With the relations r = #dp; and b = bdy; in Eq. (M-A.50), it is reduced to

b2 di\? L WU (7) b2
(cw) ~ RTo(C.—¢)? 72
Thus, the reduced trajectory # = foy(6; B,MO/ZRTO(C* —¢)?) is required to be independent
of che, i(;, and Mmye. This condition requires that Uy/RTp is invariant in the limiting process.
(ii) The Boltzmann equation is not derived yet for an infinite-range potential which really
extends up to infinity in the G-reference length . What is called the Boltzmann equation for an
infinite-range potential is conventionally obtained as the limiting result of the corresponding
finite-range potential confined in a L volume. The infinity is in the scale of dj; and the effect
of the potential on the molecules outs1de the L3 volume is not counted. For an infinite-range
potential U(r), the corresponding cutoff potentlal Ucut(r) is defined by cutting off the tail of
U(r) for r > dm, ie., Uy = U for r < dp, and Ucuy = 0 for » > dp,. Let the B function
for the finite-range potentlal Ucut be B““t Then, the limit of B‘“f as dm /dpr — oo is taken
under the condition that b/dps is fixed at a finite value in the limiting process. Let the result
be B . The Boltzmann equation in which this B} is adopted as B is conventionally called
the Boltzmann equation for the infinite-range potential U(r). The term “conventionally” is
used by the reason that the contribution of the case where limg, /4, o0 b/dm > 0 is not
precisely estimated but is neglected, in addition to the note mentioned at the beginning. Let
the potential for infinite range be given in the form

U(T‘) = ml/{olj'(r/dM).
Then, the potential Ucyt is expressed as
Ucut = mly Ucut(r/dj\{)v

where Ucut( ) = ~( ) for < dyn/dps and Ucut( ) =0 for © > dm/dps. The Up is common
to the infinite-range potentlal and all the cutoff potentials. For each dm/dpr, Uo/2RTp is
invariant with respect to dle, L5, and Mmye from the trajectory discussion. Thus, Uy /2RTy in
Eq. (20) or (22) is invariant in the limiting process (see Footnote 10).

(iii) In the nondimensional form B given in Eq. (M-A.71) for a finite-range potential, Uy
corresponds to mlo here. The Up in Section M-A.2.4 is better replaced by mlp because
Uo/RTy is free from the scale factors dre, L,;, and mre. The symbol Uq different from Uy is
used because of difference of the behavior of the nondimensional functions U(z) in Section
M-A.2.4 and U(z) here. As the result, the argument (2mRTo/Uo)'/2|¢, — ¢| of B there is
rewritten as (2RTy/Uo)'/?|¢, — ¢|. Owing to its invariance in the limiting process, Uo is
determined from the real molecular data of U. The Uy (or mido) and U(zx) in the potential
U(r) = UOU(f/dm)] are determined as follows: First, dys, Uo, and U(x) are determined from
U(r) [= mUoU(r/dpr)] in the same way as for an infinite-range potential described in Footnote
7 (iif). From the result, o and U(z) are determined as Uy = Up and U(z) = U(dmz/das).
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invariant in the limiting process. Finally, it should be noted that the potential
or the molecule changes in the limiting process unless U is invariant.

1.5.4 Inverse-power potential

The collision term for the inverse-power potential is given by Eq. (M-A.64) as

1 [(dag\ 7 o nss
100 =0 ()" [ozeey U= 1006~ 6 T odgagac., Gy
all €,

where the intermolecular potential U(r) [Eq. (M-A.49a)] is given by

ag
Y

U(r)= (a0 >0, n>1), (35)
and @ or (0., ¢) in f" and f/ is determined only by g, ¢, and n [see Eq. (M-A.62a)
and (M-A.62b)].2° With the use of the nondimensional variables introduced in
Eq. (M-1.43), the collision term (34) is rewritten in the form

4ay T p?) ” p n=t
(fu f) ( > 1. 2 oL 0o (f f*)|C* - C' nilgdgd(pdC*'
m\m /) (2RT,)'* 0<£227r
all ¢,

(36)
The variables ¢’ and ¢’ in f and f! are given by Eq. (14) with the aid of 6,:

yc(g) n—1 _1/2
6, — / ll - (y> —yQ] dy, (37)
0 g

where y.(g) is the positive solution, which is unique, of the equation

1—(y/g)" ' —9y*=0 (0<y<o0). (38)

The transport term (or the left-hand side) of the Boltzmann equation (M-1.5)
is expressed as

Y e

(39)

of [ OFf _ o f e of aﬁif
aX o0& — 2RTHL " Ox; c?cz- '

From the two expressions (36) and (39), we have the following nondimen-
sional form of the Boltzmann equation:

@0 of oRf _ 1 pE =
f Cz f 8 f a _7/0§9<oo (f *)|C*7C TLflgdgdSOdC*’ (40)
Cz kinv 0§gp<27r
all ¢,

20The variable b (the impact parameter) of integration is replaced by the nondimensional
variable g defined by g = (m/4ag)'/ "~V g, — ¢]2/("=Dp [see Eq. (M-A61)].
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where
_ 1 1

kinv = 2 1
(po/m)(2a0/mRTy) =1 L

The integral on the right-hand side of Eq. (40), including the relation (37) be-
tween (¢’,¢) and (g, ¢), expressed in nondimensional variables does not contain
parameters except n.>' It is finite when n > 3 for a smooth f (Section M-
A.2.4). Thus, 1/kiny is the only parameter in the collision term and expresses

the weight of the collision term in the Boltzmann equation (40). The constant
(2ag/mRTp)Y (=1 has the dimension of length. Let it be indicated by diyy, i.e.

(41)

1
9 w1
dinv == ( ?;T) . (42)
Then,
. 1
kipy = ———————. 43
oo/, L )

For a finite Kiny, diny/L tends to zero in the limit pgL?/m— oco.
In order to examine the invariance of ki, in the limiting process, we rewrite
Eq. (35) in the form (11) as
mZ/Io

where UO/(RT0)1/2 is independent of the scale factors ozre, ﬁg, and Mye.22 From
Egs. (35) and (44),

ag = muod;[_l. (45)
With this ag in Eq. (41), kiny is expressed as

_ 1 k
kinv — ) - 3 -
(2Uo/RTy)™ 7 (po/m)di L (2Uo/RTp) ™

(46)

In the limiting process, both k and 2Uy/RTy are invariant. So is ki, from
Eq. (46). From the invariance of Einy in the limiting process, ki can be cal-
culated by Eq.(41) with the real molecular data of m and ag. The result is
independent of the choice of dy;. For an inverse-power potential, the effects of
the two parameters k and 2U, /RT, on the collision term are combined in the
single parameter ki,,. In view of Egs. (20), (21), (40), (41), and (43), the pa-
rameters ki, and dipy may be called, respectively, a reduced Knudsen number
and a reduced molecular size.

(Up to Section 1.5.4 in Section 1.5: Version 9-00)

21The parameters ap and Ty do not enter « in f’ and ﬂ They enter ki, combined in the
form 2ag/mRTy.

22The choice of dy is arbitrary for the homogeneous potential, U(br) = b= (*~DU(r), with
a single parameter. The result will be seen to be independent of dj;.
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1.6 Supplement to Footnote M-26 in Chapter M-1

Footnote M-26 is supplemented with more explicit mathematical expressions for
the process given there. Take the non-dimensional form of the equation for the
H function, i.e., Eq. (M-1.72):

G, (47)
where

AGaD = [fn(ijeac, i = [Gfm/aac,
S AN
1 i_ " In — BdQd *d Soa
/ (Fi - i) ( 7 ) ¢.d¢

*

(48)

with ¢g = co(2RTy)3/?/po. The perturbed form of the velocity distribution func-
tion f is defined by .
f=E(1+9), (49)
where )
ey exp(—¢?).
Let € be a small quantity. Here, we take the case in which ¢ is of the order of
¢, and examine the terms of the order of €2 of Eq. (47). The perturbed function

¢ is expressed as
b= pre+ pac® + -+ . (50)

Corresponding to the expansion, the macroscopic variables, i.e., w, u;, P, etc.,
H, H;, and G are also expressed as

h = hie+hoe? + -+, (51a)
H=~Hy+ He+Ho® +---, (51b)
Hi = Hio+ Hie + Hppe? + -+, (51c)
G=Go+Gie+ Go® +---, (51d)

where h represents the perturbed macroscopic variables, w, u;, P, etc., and the
quantities ¢n, hn, Hp, Hin, and G, are of the order of unity. Then, with the
aid of the expanded forms of Eqs. (M-1.78a)-(M-1.78f), H,,, H;,, and G,, are
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expressed as

f{o = 7; - 11’17‘(’3/260, (52&)

= (1 - Inr®/) / E¢1d¢ — / CEé1d¢
=(1—In7%2¢)w; — %Pl, (52b)

Hy, = (1 —1n7r3/260)/E¢2dC — /C2E¢2dc+ %/Eg;fdc
=(1—In72¢)wy — <2P2 + u$1> + % /Egzﬁdc, (52c)

Hip =0, (53a)

Hyp=(1- 1H7T3/260)/CiE¢1dC - /CiC2E¢1dC
=(1-In 773/260)1&1‘1 - (Qn + Zuﬂ) ) (53b)
Hi=(1 —1n7r3/2éo)/§iE¢2dC — /QC2E¢2dC+ %/gw%dg

) 5 3
= (1 — In7¥2¢) (us + wius) — (Qm + suie + uj1 Pijn + Uilpl)

2 2
1
+5 [ apotac, (53¢)
Go =0, (54a)
Gy =0, (54b)
Go= 1 [BE(6 + 6. — 61— 6.,Band¢.d¢ <o, (540)

With the aid of these expressions, the ¢ and e2-order expressions of Eq (47) are
given as

8f[1 aflﬂ . B 3/2 4 Owy Ousn
Sh 5 oz, (I =In7°"¢) | S o+ on,
3. 0P o0 (5
— {28101? + Bz <2Uz’1 JFQil)] ) (55a)
OH, OHj 379~ Owy | O(uie +wiug)
2 —(1-1 /2 - e Tl
Sh Py + oz, ( nm/“¢y) <Sh 5 + B
0 (3 0 5 3
- Sh{?f <2P2 + ufl) ~ o (Qi2 + Ui+ uj1 Py + ZUi1P1>
45 (2 [matac+ - [ amstac (55b)
2 ot ! Ox; o '
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Substituting the series expansion (51a) into the conservation equation (M-1.87),
we have

8w1 8ui1

2 om 0, (56a)
3185); + 8(“%;11”1) = 0. (56b)

Similarly, from the conservation equation (M-1.89), we have
gﬂl% + Oii (guu + Q¢1> =0, (57a)
Sha% <2P2 + ufl) + aii (2u2 + Qiz + uj1 Pij1 + ;’uﬂPl) =0. (57b)

With the aid of the expanded forms (56a)—(57b) of the conservation equations
(M-1.87) and (M-1.89), Egs. (55a) and (55b) are reduced to, for the solution of
the Boltzmann equation (M-1.47) or (M-1.75a),

8}}1 8Hil _

Do T e (58)
87[;’2 ALl _ (g2 2 9 g

W o T 2 <Sh(i—)£/E‘Z§1dC+ oz, /CzE¢1dC : (58b)

Thus, the o(¢?) terms being neglected in Eq. (47), it is reduced to
0 0
S— [ E¢id¢+ —— [ GiE¢id
o [Btac+ - [ argac
1 ~
— g [ BB+ 6L — 01— o1, Baac.dc <0. (9

This expression does not contain ¢s.
(Section 1.6: Version 4-00)

2 Chapter M-2

2.1 Section M-2.5
2.1.1 Section M-2.5.1

The following form:
a=-2/ £¥1,m, £(X. E)dEdO),
0<€<00, l;in; <0

is more appropriate as Eq.(M-2.39b) than the one in the book. Then, the
explanation of dQ2(1), i.e.,
dQ(1) is the solid-angle element in the direction of I,
has to be inserted between ‘where’ and ‘T,,’ just after Eq. (M-2.39c).
(Section 2.1.1: Version 6-00)
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3 Chapter M-3

3.1 Processes of solution of the systems in Section M-3.7.2
(July 2007)

The processes of solutions of the fluid-dynamic-type equations derived in Section
M-3.7.1 are straightforward and may not need explanation. For the equations
in Section M-3.7.2, some explanation may be better to be given. The discussion
will be made on the basis of the boundary conditions in Section M-3.7.3 for a
simple boundary where the shape of the boundary is invariant and its velocity
component normal to it is zero.

3.1.1 “Incompressible Navier—Stokes set”

Consider the initial and boundary-value problem of Egs. (M-3.265)—(M-3.268),
i.e.,

0Ps
=0 60
6xi ’ ( )
Ouist
=0 61
s, (612
Ouist Ouist 10Psy 7 O%uis
= ; = —— — 61b
ot +ujs1 0z 2 Oz, + 2 8933 ’ (61b)
5 87‘31 8P51 5 8T51 5’}/2 827'51
- = — ——= — U5 _ = — 5 61
200 ot 29 or;, T 1 oa? (61¢)
Ou;s2 Ows1  Owsiuist
_ _Ows1 _ 62
B, i o, (622)
Quisy ,  ~_ Ouis2 S Ouist
85 3st 8.73 j 52 81‘j
_ 1 (0Pss _ " 0Ps: L 0 (Ouisa  Oujsa gaukszd__
2\ Ox; 51 (')xi 2 83:] O0x; ox; 3 Oxyg
_ nws 87 uis1 uis1 | Qujsi\] 3 9 9P1si
0 . (62b
2 o 37 z; {TSI ( oz; | ox; 3 0m; 0a2 " (%)
30Ps> 43 3 0Ps: § OPsiujsz  Owss  O(wsaujsi + wsiu;s2)
2 ot 2 ]Sl Ox; 2 z; ot o
972 0?72 57 0 57'51 7 [ Ouis 5%’51 ¥
_5» 55 9 , 62
1 02 T4 og "2 o, T o (62¢)
where
Ps1 = wg1 + 751, Psy=wg2 +wsiTs1 + Ts2. (63)
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From Eq. (60), Ps; is a function of £, i.e.,

Ps1 = fi(t). (64)

In an unbounded-domain problem where the pressure at infinity is specified
(or the pressure is specified at some point), Ps; = fi(f) is known, but in a
bounded-domain problem consisting of simple boundaries, f;(f) is unknown at
this moment and is determined later. Let u;s1 and 741 as well as fl(f) be given
at time 7 in such a way that wu;s; satisfies Eq. (61a). Taking the divergence of

Eq. (61b) and using Eq. (61a), we have

K2

O*P, Oujs1 Ou,

On a simple boundary, the derivative of Pgo normal to it is found to be ex-
pressed with wu;s1 and its space derivatives by multiplying Eq.(61b) by the
normal vector to the boundary.?®> In the unbounded-domain problem, where
f1(t) is known, Pss is determined by Eq. (65). In the bounded-domain problem,
Pss is determined by Eq. (65) except for an additive function of ¢ [say, f2(?)]-
Anyway, 0Ps2/0z; is independent of this ambiguity. From Eq. (61b), du;s; /0t
at  is determined, irrespective of f»(%), in such a way that 9(Ou;s1/0x;)/0t = 0
for the above choice of Pgy. Thus, the solution u;s1 of Egs. (61a) and (61b)
is determined by Eq.(61b) with the supplementary condition (65) instead of
Eq. (61a). From Eq. (61c), (5/2)07s1/0t — OPs1/0t or (5/2)07s1/0t—d f1(t)/dt
is determined, i.e.,

(5/2)07s1/0t — dfi(8)/dE = G4, 1), (66)

where 5 e
- 5 Ts1 |, 92 0°Ts1
Gz t) = ——ujg1——+—— .
(@i,t) 2%51 Ox; 4 &T?

(67)

Thus, 751 is determined in the unbounded-domain problem, but 75; has ambigu-
ity owing to f1(f) in the bounded-domain problem. The undetermined function
f1(t) is determined in the following way.

In the bounded-domain problem where the boundary consists of simple
boundaries, the mass of the gas in the domain is invariant with respect to
t. The condition at the leading order is

d
— dz =0 68
a2 Vw51 T > ( )

where V' indicates the domain (or its volume in the later). With the aid of

Eq. (63), we have
dfi(f) d /
—V - — dz =0. 69

di az J, e (69)

23The time-derivative term vanishes owing to the boundary condition mentioned in the first
paragraph of Section 3.1.
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On the other hand, from Eq. (66),

dfi(t) 5d
Ay 22
a o,

rerda — / Glzi, P)d. (70)
\%

From Egs. (69) and (70), we obtain dfy(¢)/df and d [, rs1dex/df as
Afd 2 / )
) _ 2 . Ddz. 1
i WV VG(I )dz (71)

This is the equation for f;(¢) in the bounded-domain problem. Thus, 751 and
f1(#) in the bounded-domain problem are determined together by Eqs. (61c) and
(71).

The analysis of the higher-order equations is similar; for example, from
Eqgs. (62a)—(62c), u;s2, Ts2, and Pgs are determined in the unbounded-domain
problem, but f»(f), uis2, Ts2, and Pss, except for an additive function of # in
Ps3, are determined in the bounded-domain problem.?* Let u;g2, T2, and fo(%)
be given at ¢ in such a way that Eq. (62a) is satisfied.?® Taking the divergence
of Eq. (62b) and using Eq. (62a) and the results obtained above, we find that

Ps3 is governed by the Poisson equation

0% Pgs
0x?

K2

= Inhomogeneous term, (72)

where the inhomogeneous term consists of wu;s2, Pso, and the functions deter-
mined in the preceding analysis. On a simple boundary, the derivative of Pgj
normal to it being known,?® Pgs is determined by this equation, except for an
additive function of # [say, f3(f)] in the bounded-domain problem. Then, from
Eq. (62b), Ou;s2/0t at t is determined irrespective of f3(f). From Eq. (62c),
O(3Psy — 5wga) /0t [or O(57s2 — 2Ps2)/0t] at t is determined. Thus, u;se and
Ts2 (except for the additive function 2f5/5 in the bounded-domain problem)
[thus, wga (except for the additive function 3f5/5)] are determined. In the
bounded-domain problem, where the boundary consists of simple boundaries,
the condition of invariance of the mass of the gas in the domain at the corre-
sponding order is?”

d
dt/vm z (73)

With the aid of Eq. (63), dfy(f)/df at ¢ is determined as df; (£)/df is done.

To summarize, the solution (u;s1, Ps1,7s1, Ps2) of the initial and boundary-
value problem of Eqs. (60)—(61c) is determined, with an additive arbitrary func-
tion f(f) in Pss in a bounded-domain problem consisting of simple boundaries,

24Note that, with the aid of Eq.(63), the time-derivative term %BPSQ/Bf— gaws2/a£ in
Eq. (62¢) is transformed into %87’52/85— OPgo /0t + gawsﬂm/aﬂ

25The time derivative dwg /Ot is known from 971 /0%, df1(f)/di, and Eq. (63).

265hift the discussion of the boundary condition for Pgs to the next order.

27The contribution of the Knudsen-layer correction to the mass in the domain is of a higher
order, though it is required to wgo.
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when the initial data of w;s1, Ps1, Ts1, and Pso satisfy Egs. (61a) and (65).
The additive function f»(f) does not affect the other variables. The function
fo(t) is determined in the next-order analysis. In other words, the solution
(uis1, Ps1,7s1) of Egs. (60)—(61c) is determined consistently by Egs. (60), (61b),
and (61c) with the supplementary condition (65), instead of Eq. (61a), when the
initial data of u;s1, Ps1, and Ts1 satisfy Eq. (61a). Naturally, the initial Pgs is
required to satisfy Eq. (65). This process is natural for numerical computation.

3.1.2 Ghost-effect equations (M-3.275)—(M-3.278b):
Consider the initial and boundary-value problem of Eqgs. (M-3.275)—-(M-3.278b),

i.e.,

Pso = po(t), (74)

Psp1 = P1(t), (75)

Opspo | 9pspolispi

ot ox; =0 (762)

0pspolis1  0psBoVjsB1VisB1

8t 61‘]‘
10p%p, 1 0 A Obisp1~ OVjsp1 2 Olspi
== = 2T _z 5
2 Ox; * 2 0x; 1(Tspo) Ox;j * 0x; 3 0wy 7
. . . 2
1 9 - 0Tspo 0Tspo 1 ( 0Tspo
. D7 (T: - . — 3 il ¢ b
2po Ox; 7(Tso) Ox; Oz, 3\ Oz i (76b)
30pspoTspo . 5 Opspovispilspo 5 0 « Tspo
= SPeBo 2 =2 % ry(h
2 of 2 om 100, (I 5, | (76c)

where py and p; depend only on £, and

bspo = pspolspo, Psp1 = pspiTspo + pspoTspi,

. R R (77)
Dsp2 = psp2Tspo + PsB1Tsp1 + psol'sp2,
. R 2 0 S GTSBO
tne = ——— | I'3(T . 78
Pspa = Psp2 + 3ps Os < 3(Tspo) D, (78)

Let p, 0;, and T (thus, p = ﬁT) at time ¢ be given; thus, pspo, Visp1, Tspo
(ﬁSBO); etc., including ]35'32, are given. Then aﬁSBo/af, (9,5530’01'531/8{7 and
dTspo /Ot at T are given by Eqgs. (76a)—(76c); thus, the future pspo, Disp1, and
TSBO (also pspo) are determined. However, the future pgpo, as well as pgpo
at £, is required to be independent of z; owing to Eq. (74). Taking this point
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into account, we discuss how the solution is determined. For convenience of the
discussion, transform Eq. (76¢) in the form

0psso
— =P, 79
ot ( )
where A
_ 50pspotisr | 5 O . 0Tsgo
P=- 3 Oz * 6 Ox; T2(Tspo) oz, |-

First, consider the case where p (thus, pspo, psp1, etc.) is specified at some
point, e.g., at infinity. Then, from Eq. (74), po(f) is a given function of £, and
pspo is determined. The initial value of pggo is uniform, i.e., psgo = Po(0).
On the other hand, from Eq. (79), the variation of dpspg /0t is also determined
by the data of pgpo, TSBO, ;581, and their space derivatives at t. This must
coincide with the corresponding data given by Eq. (74), i.e., 9pspo/0t =dpo/dt.
Substituting this relation into Eq. (79), we have

0
al’i

(80)

I's(Tspo) 9Tspo __3dpo
2 0x; 5 dt’

(ﬁSBo@ism -

which requires a relation among pspo, TSBO, and 0;g5; for all £, because dpy / di
is given. This condition is equivalently replaced by the following two conditions:
The initial data of psgo, Tspo, and d;s51 are required to satisfy Eq. (80), and
the time derivative of Eq. (80) has to be satisfied for all Z, i.e.,

82
(92?8.731

Ty (Tspo) 6TSBO> ~ 3d% (81)

(pS’BO'UiSBl - 5 oz, )~ 5ap
With the aid of Eqgs. (76a)—(76c) and (79), the left-hand side of Eq. (81) is ex-
pressed in the form without the time-derivative terms, i.e., Opspo/0t, I1'spo /0L,
and 09;sp1/0t, as follows:

r<T>6T> - R

2 8951 - _§p53087xi ﬁSBO axl

82

(ﬁSBO@ism -

where fn; is a given function of pspo, VisB1, TSBO, and their space derivatives.
Thus, the condition (81) is reduced to an equation for pig,, i.e.,

0 1 0Opeps
Oz; (ﬁSBo Ox; n7 (82)

2 A
Fn = Az (fn1 —&—3d?0> .
Po 5 dtQ

The boundary condition for p§z, in Eq. (82) on a simple boundary is derived
by multiplying Eq. (76b) by the normal n; to the boundary. In this process, the

where
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contribution of its time-derivative terms vanishes.?® Thus, Dépo (Or Pspa2) is

determined in the present case, where p (thus, psp2) is specified at some point.
The solution pip, of Eq. (82) being substituted into Eq. (76b), Eqgs. (76a)—(76c)
with the first relation in Eq. (77) are reduced to the equations for pspo, Tspo, and
disp1 which naturally determine dpspo/0t, aTSBO/aE, and O9;sp1/0t. Further,
if the initial data of pgpo, Tsgo, and ;551 being chosen in such a way that
pspoT’sso(= Pspo) = po and that Eq. (80) is satisfied, the variation dpgpo /Ot of
Pspo(= ﬁSBoTSBo) given by these equations is consistent with Eq. (74), because
Eq. (82) or (81) with the condition (80) at the initial state guarantees Eq. (80),
i.e., Opspo/Ot =dpy/dt, for all t.

Equations (74) and (76a)—(76¢) with Eqs. (77) and (78) determine pgpo,
Tspo, PsBo, Vis1, and pspo consistently for appropriately chosen initial data.
However, these equations are the leading-order set of equations derived by the
asymptotic analysis of the Boltzmann equation. In the above system, pgpo is
determined. On the other hand, the variation dpgps /0t is determined indepen-
dently by the counterpart of Eq. (79) at the order after next. The situation is
similar to that at the leading order, where Eqgs. (74), with a given py, and (79)
determine pgpo independently. The analysis can be carried out in a similar
way. Let pspo determined by Eq. (82) be indicated by (psp2)o and the equation
for Opsp2/0t, or the counterpart of Eq. (79) at the order after next, be put in
the form

Opsp2
ot
where Ps is a given function of pspm, VisBm+1 Tsgm (m < 2), and their space
derivatives. For the consistency, d(psp2)o/0t is substituted for Opspa/Ot in
Eq. (83), i.e.,

= Po, (83)

Py — 6(135552)07

ot
where 9(psp2)o/0t is known. This requires a relation among psgm, 9isBm+1
Tsgm (m < 2), and their space derivatives. This condition is equivalently re-
placed by the following two conditions: Equation (84) is applied only for the
initial state, and the time derivative of Eq. (84), i.e.,

OPy _ P(Psp2)o
o7 o2

has to be satisfied for all . The 0psm/0t, OVisBmi1/0L, 8T53m/8f (m<2)in
0P, /0t being replaced by the counterparts of Eqs. (76a)—(76¢c) and (79) at the
corresponding order, an equation for pgp, for all £ is derived.?? The conclusion
is that an additional initial condition and the condition for pgg4 are introduced
and, instead, that the condition (82) for pgps is required only for the initial
data. The higher-order consideration does not affect the determination of the
solution pspo, Tspo, and D;sp1 (thus also pspo)-

(84)

28The discussion is similar to that in Footnote 23.
29The conditions on the odd-order PsBan+1’s are derived by the analysis starting from the
condition (75) that pgpy is independent of ;.
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In this way, the solution of Eqgs. (74), (76a)—(78) is determined consistently
by Egs. (76a)—(78) with the aid of the supplementary condition (82), instead of
Eq. (74), when the initial data of pgpo, Tspo, and 9,551 satisfy Egs. (74) and
(80), where pg(#) is a known function of ¢ from the boundary condition.

Secondly, consider a bounded-domain problem where the boundary consists
of simple boundaries. In contrast to the first case, dpy/dt is unknown because
no condition is imposed on pggg on a simple boundary. However, in a bounded-
domain problem consisting of simple boundaries, the mass of the gas in the
domain is invariant with respect to Z, i.e., at the leading order,

d/ pspodx
dt

where V' indicates the domain under consideration. Using the first relation of
Eq.(77), i.e., pspo = po/Tspo, in Eq. (85), we have

3 1 1 0T
dpo / —~dz = j / 1 OTsmo g, (86)

Using Eq. (76¢) for ?ngg/af in Eq. (86), we find that the variation dpg/df is
expressed with pg, Tsgo, and ;551 as follows:

dpo -
— = P(t), 87
dt ®) (87)
where
o 1 5 0 . 9Tspo 5. 0Tspo
P(t) = / — N Ty (T Y dz
( ) bo v TgBO 6psBo ox; ( 2< SBO) ox; > 3 551 0x;

« ( /V T:Bodw)l. (88)

With this expression of dpy/df, we can carry out the analysis in a similar way
to that in the first case.

The variation dpy/dt or Opspo/0t is also determined by Eq. (79). The two
Opspo/Ot’s given by Eq. (87) with Eq. (88) and Eq. (79) have to be consistent.
Thus, substituting Eq. (87) with Eq. (88) into dpspo/9t in Eq. (79), we have

0

0 Ty (Tspo) T smo
8%1'

) 0] (59)

(ﬁSBo@ism -
where P(t) is given by Eq. (88). This must hold for all ¢ for consistency. This
condition is equivalently replaced by the following two conditions: The initial

data of pspo, Tspo, Visp1 are required to satisfy Eq. (89), and the time derivative
of Eq. (89) has to be satisfied for all ¢, i.e.,

To(Tspo) aTSBO> _3dP()

32
2 Oz 5 df (90)

(ﬁSBo@z’SBl -
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Using Egs. (76a), (76b), and (79) for the time derivatives 0pspo/0t, 0v;s81/01,
and 9pspo/0t in Eq. (90), we find that pig, at £ is determined by the equation

9 (1 3A§32> (3%32)
- + E = F‘IL 9].
ox; (pSBO Ox; Ox; (1)
where Fn is a given functional of pspo, UisB1, TSBO, and their space derivatives,
and L£(0pg,/0x;) is a given linear functional of 0pg,/0x;, ie.,

r (3sm> _ L[ 1 T Opkss (/ 1 dm)f
Oz; Do Jv Tspo Or; Ox; v TsBo

On a simple boundary, the derivative of p§gz, normal to the boundary is
specified. Thus, pip, is determined except for an additive function of t. The
solution pEp, of Eq. (91) being substituted into Eq. (76b), the result is indepen-
dent of the additive function. Thus, Eqs. (76a)—(76c) with the first relation in
Eq. (77) and the above pfp, substituted are reduced to those for pspo, TsBo,
and ©;551, which naturally determine dpgpo/0t, dTspo/dt, and d;sp1 /0. Fur-
ther, if the initial data of psgo, TSBO, and ;551 being chosen in such a way that
ﬁSBOTSBo (= pspo) = Po and that Eq. (89) is satisfied, the variation 9pspg /0t of
Pspo(= ﬁSBOTSBo) given by these equations is consistent with Eq. (74), because
Eq. (91) or (90) with the condition (89) at the initial state guarantees Eq. (89),
i.e., (9]5330/82? = dﬁo/dﬂ for all t~

Equations (74) and (76a)—(76¢c) with Egs. (77) and (91) determine pgpo,
TsBo, Pspo, Vise1, and pspa, except for an additive function of ¢ in pgra, con-
sistently for appropriately chosen initial data. However, these equations are the
leading-order set of equations derived by the asymptotic analysis of the Boltz-
mann equation. The analysis of the higher-order equations not shown here is
carried out in a similar way. First, the undetermined additive function in pggs
is determined by the condition of invariance of the mass of the gas in the domain
at the order after next as dpg/ dt is determined.?® The dpspo / Ot or pspo deter-
mined in this way is indicated by 9(pspz2)o/0f or (Psp2)o. On the other hand, the
variation Opspo/0t is determined independently by Eq. (83) or the counterpart
of Eq. (79) at the order after next. The two results must coincide. The discus-
sion from here is the same as that given from the sentence starting from Eq. (83)
to the end of the paragraph. The results are that an additional initial condition
and the condition for pgpy are introduced, and that the condition (91) for pspa
is required only for the initial data. The higher-order consideration does not
affect the determination of the solution pspg, Tspo, and ;551 (thus also pspo).

In this way, the solution of Egs. (74), (76a)—(76c) is determined consistently
by Egs. (76a)—(76¢c) with the aid of the supplementary condition (91), instead
of Eq. (74), when the initial data of pgpo, Tspo, and ;551 satisfy Eqs. (74) and
(89).

30The Knudsen-layer correction to psp1, already determined (see Footnote 29), contributes
to the mass at this order.
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3.2 Notes on basic equations in classical fluid dynamics
3.2.1 Euler and Navier—Stokes sets

For the convenience of discussions, the basic equations in the classical fluid
dynamics are summarized here.

The mass, momentum, and energy-conservation equations of fluid flow are
given by

0 0

o+ 5y () =0, (92)

0 0

a(pvi) + ﬁ(pﬂiv‘j +pij) =0, (93)
J

0 1 2 0 1 2 —
a [p <€+ 2Ui>:| + TX} [,0113 (e"‘r 2%‘) + Vi pij +QJ:| =0, (94)

where p is the density, v; is the flow velocity, e is the internal energy per unit
mass, p;;, which is symmetric with respect to ¢ and j, is the stress tenor, and g;
is the heat-flow vector. The pressure p and the internal energy e are given by

the equations of state as functions of T and p, i.e.,*!
p=p(T.p), e=e(T,p). (95)
Especially, for a perfect gas,
p=RpT, e=¢e(T). (96)

Equations (93) and (94) are rewritten with the aid of Eq. (92) in the form

Ovi o Ovi Opij
Pt TP8x; T ax,;

=0, (97)
0 1, 0 1, 0 B

P (e + 2@-) + pvja—Xj (e + 2vi) + B—Xj(vlpw +q;) = 0. (98)
The operator 9/0t+v;0/0x;, which expresses the time variation along the fluid
particle, is denoted by D/Dt, i.e.,

D_o., 0
Dt ot ox;

Multiplying Eq. (97) by v; we obtain the equation for the variation of kinetic

energy as
D 1 2\ 8pl-j
"Dt (2”1‘) - X (99)

31The case where the first equation p = p(T, p) cannot be solved with respect to p, or p is
independent of p and T is called incompressible. The incompressible condition is a special
case of the equation of state. In a system consisting of a single incompressible substance, the
density is a constant.
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Another form of Eq. (94), where Eq. (99) is subtracted from Eq. (98), is given as

De 8vi 8(]]'

De _, Ovi 94 1
Ppe ~ Pigx; T ax, (100)

Noting the thermodynamic relation

De Ds p Dp

o2 2202 101

Dt Dt + p2 Dt’ (101)
where s is the entropy per unit mass, and Eq. (92), Eq. (100) is rewritten as

Ds 1 8117; 3(]]'

= = —— |(pij — PO : 102
Poe = 7 | Pu p(s])an IX; (102)

Equation (102) expresses the variation of the entropy of a fluid particle.
Equations (92)—(95) contain more variables than the number of equations.
Thus, in the classical fluid dynamics, the stress tensor p;; and the heat-flow
vector ¢; are assumed in some ways. The Navier—Stokes set of equations (or the
Navier—Stokes equations) is Eqs. (92)-(95) where p;; and ¢; are given by

B ov; ov; 2 Ouy vy,
o =3~ (G 5%~ saxte) “heggte (009
or
L 104

where p, pp, and A\ are, respectively, called the viscosity, bulk viscosity, and
thermal conductivity of the fluid. They are functions of T" and p. The FEuler
set of equations (or the Euler equations) is Eqgs. (92)—(95) where p;; and ¢; are
given by

pij = Pdij, ¢ =0, (105)

or the Navier-Stokes equations with = pup = A =0.
For the Navier-Stokes equations, in view of the relations (103) and (104),
the entropy variation is expressed in the form?3?

w( Ov; 0v; 2 Ovy, 2 ovg, . 0 oT
a 20 A
2 <axj Tox, 3ox,.07) T \ax, ) Tax, \Mox,

(106)

Ds 1

PDi T T

32Note the following transformation:

ov; ov; Ov; 2 Ovg
+ - 8ij
0X; \0X; 0X; 30Xy

_ 1 (8’% 8U]' 2 3’Uk B 2 8’Uk 5) (8’Ui 8'0]'
= 5 ij

2 Ovg
aX; ' 8X; 30Xy " + 30X, aX; | 8X; 30Xy ”)

2 Ovg

3

_l(avi v 7281% ”)2 lavl ”(avi v
T 2\9X;  9X; 390Xy ” 30X, Y \oX; ' 90X,

00X ij) '

The second term in the last expression is easily seen to vanish.

29



For the Euler equations, for which p;; and ¢; are given by Eq(105), the entropy
of a fluid particle is invariant, i.e.,

Ds
— =0. 1
PDi (107)
The incompressible condition in Footnote 31 can be expressed as®?
Dp Jdp Op
- _ - ) 1
Di 0 or 9 +; X, 0 (108)
Thus, from Egs. (92) and (108),
81)1'
= 0. 109
OxX, (109)
Equation (103) for the Navier—Stokes-stress tensor reduces to
ov; v,

The first term on the right-hand side of Eq. (100) reduces to
o Ov 5 8vi+8vj ov;
Pigx, =~ |P% ~F\ax, " ax, )| ox,

B avi+8vj2
- 2\0X;  o0x;)°

Thus, Eq. (100) reduces to

De u ([ Ov; 0v; 2 0 aT
2e_ K A=), 111
"Dt~ 2 (an * axi) Tax, \Max, (1)
To summarize, the Navier—Stokes equations for incompressible fluid are
8%‘
= 112
=0, (1122)
ov; ov; Op 0 ov; 0v;
; =— 112b
Par TPiax, T Tox, | ox, {’“‘ (an * 8Xi)] ’ (112b)
de de  p0v; ;¥ 0 or
= —— =L — (A= 112
Por Tigx, T 2 (an * 8Xi> Tax, \Max; ) (112¢)
with the incompressible condition (108) being supplemented, i.e.,*
dp op
hdd . =0. 11
2 TVig X, 0 (113)

33(i) The density is invariant along fluid-particle paths. If p is of uniform value pg initially,
it is a constant, i.e.,
P = po-
In a time-independent (or steady) problem, the density is constant along streamlines.
(ii) This condition is useful in the system consisting of non-mixing different incompressible
substances (e.g., oil and water). Needless to say, e, u, and A depend on substances.
34The energy equation (112c) for incompressible fluid contains the heat-production term
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3.2.2 Boundary condition for the Euler set

In Section M-3.5, we discussed the asymptotic behavior for small Knudsen num-
bers of a gas around its condensed phase where evaporation or condensation with
a finite Mach number is taking place, and derived the Euler equations and their
boundary conditions that describe the overall behavior of the gas in the limit
that the Knudsen number tends to zero. The number of boundary conditions
on the evaporating condensed phase is different from that on the condensing
one. We will try to understand the structure of the Euler equations giving the
non-symmetric feature of the boundary conditions by a simple but nontrivial
case.

Consider, as a simple case, the two-dimensional boundary-value problem
of the time-independent Euler equations in a bounded domain for an incom-
pressible ideal fluid of uniform density. The mass and momentum-conservation
equations of the Euler set are

ou Ov

ou  ov _ 114
8x+8y 0, (114)
UQJFU@:_E@’ (115)

U F VU — = —— (116)

where p is the density, which is uniform, (u,v) is the flow velocity, and p is the
pressure. Owing to Eq. (114), the stream function ¥ can be introduced as

ov ov
Eliminating p from Egs. (115) and (116), we have3®
o0 o0

due to the work done by viscous stress [the first term on its right-hand side] if we literally
put Eq. (103) in the energy equation (100). The incompressible Navier-Stokes set of equations
is generally used for the case where the flow velocity is not so large. That is, it is used for
the case where the dynamic energy v3/2 per unit mass is negligibly small compared with the
internal energy e per unit mass (%2 < e). The Mach number is a common reference scale
of flow speed, but it is not useful for incompressible fluid because the speed of sound is not
well defined. Let eg be e of the reference state. We take the speed (2e9)!/2 as the reference
speed, which is comparable to the sound speed for perfect gas. Let the typical flow speed of
the flow under consideration be Up. With the nondimensiol small parameter Up/(2e0)!/2, we
compare the size of the terms in the energy equation (112c¢). The first term on the right-hand
side of Eq. (112c) is seen to be of higher-order of smallness compared with the convection and
conduction terms when the Reynolds number based on Uy and the Prandtl number are of the
order of unity. Thus, the neglected form is often given in literature, with the condition being
implicitly assumed.
35The following equation is formed from them:

0Eq. (115) /0y — OEq. (116)/0z = 0.
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where 2 is the vorticity, i.e.,

ou v 9*W  0*V

e . 119
Oy Ox  Ox2 * oy? (119)
From Egs. (117) and (118),
ov o2 0¥ 9N
2 120
Jdy 0xr Oz Oy (120)
This equation shows that ) is a function of ¥,3% i.e.,
Q= F(D), (121)

This functional relation between Q and ¥ is a local relation, and therefore F'
may be a multivalued function of ¥. From Egs. (119) and (121),

2w v

5 T g F(W). (122)

Consider a boundary-value problem in a simply-connected bounded domain,
where U is given on the boundary (¥ = ¥ ). Introduce a coordinate s (0 < s <

36This can be seen with the aid of theorems on implicit functions (see References M-[47, 48,
267]). The proof is outlined here. The ©Q and ¥ are functions of z and y :

Q=0Q(z,y), ¥="VU(y). (*)
Solving the second equation with respect to x, we have
z = (1, y). (%)
With this relation into Eq. (),
Q= Q@(¥,y),y) = AV, y), (#a)
U= V(&(T,y),y) = V(L y). (#b)

That is, Q is expressed as a function of ¥ and y. From Egs. (fa) and (fb),

oY, y) _ ALY, y),y) _ 0w, y) 05(Y,y) | 0w, y)

oy - oy ox oy oy (k82)
oW (W,
(a 2R (D)
Y
On the other hand,
OV(V,y) _ OV(&(V,y),y) _ OV(z,y) 9E(V,y) 4 9¥(=y)
oy oy ox y oy
Thus,
0¥(z,y) 0z(7, oY (z,
(2,y) 02(¥,y) | O%(z,y) _ )

ox oy oy
From Egs. (120), (#tia) and (1), we have
00V, y)

oy =0, or Q=Q¥).
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S) along the boundary in the direction encircling the domain counterclockwise.
Then, the fluid flows into the domain on the boundary where 0¥ 5/0s < 0, and
the fluid flows out from the domain on the boundary where 0¥ 5/ds > 0. When
F' is given, the problem is a standard boundary-value problem. In the present
problem, we have a freedom to choose F' on the part where 0¥ pg/ds < 0 or
0V p/0s > 0. For example, take the case where 0Up/0s < 0 for 0 < s < Sy,
and 0¥ p/ds > 0 for S, < s < S, and choose the distribution Qp(s) of Q along
the boundary for the part 0 < s < S,,,. By the choice of Qp, the function F(¥)
is determined in the following way. Inverting the relation ¥ = ¥Ug(s) between
U and s on the part 0 < s < S,,, i.e., s(¥), and noting the relation (121), we
find that F' is given by

F(¥) = Qp(s(1)). (123)
Then, the boundary-value problem is fixed. That is, Eq. (122) is fixed as®”
v 9w
—F+ —=—==0 v 124
o2 + y2 B(S< ))7 ( )

and the boundary condition is given as ¥ = Wg(s). This system is a standard
from the point of counting of the number of boundary conditions. Obviously,
from Eq. (119), the solution of the above system automatically satisfies condi-
tion Q = Qp(s) along the boundary for 0 < s < Sy,,. We cannot choose the
distribution of 2 on the boundary for 5,, < s < S.
The energy-conservation equation of the incompressible Euler set is given by
Eq. (111) with p =X =0, i.e.,
Oe Oe o¥ de OV Je
— v =0 - ——— =0 125
“ax“L”ay o Oy 0x  Ox Oy ’ (125)
where e is the internal energy. Thus, e is a function of ¥, i.e.,
e = Fi (). (126)

In the above boundary-value problem, therefore, e can be specified on the the
part (0 < s < S,) of the boundary, but no condition can be specified on other
part (S, < s < S) and vice versa.3®

To summarize, we can specify three conditions for ¥, €2, and e on the part
OV p/0s <0 (0¥p/ds > 0) of boundary but one condition for ¥ on the other
part 0¥p/ds > 0 (0¥p/ds < 0). The number of the boundary conditions is
not, symmetric and consistent with that derived by the asymptotic theory.

3.2.3 Ambiguity of pressure in the incompressible Navier—Stokes
system

It may be better to note ambiguity of the solution of the initial and boundary-
value problem of the incompressible Navier—Stokes equations in a bounded do-
main consisting of simple boundaries.

3TThere is still some ambiguity. The case where there is a region with closed stream lines
U(z,y) = const inside the domain is not excluded.

38From the second relation on e of Eq. (95) and the uniform-density condition, the condition
on e can be replaced by the condition on the temperature 7.
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Consider the Navier—Stokes equations for an incompressible fluid, i.e.,

g;?i =0 (127a)
s = ok + o (% ) (1270)
pgi”“jaa;j:g(g)z +g§(ji>2+£(j(A§)€>7 (127¢)
% + aa_;i =0 (127d)

where e, p, and A are functions of 7" and p.

Consider the initial and boundary-value problem of Egs. (127a)—(127d) in
a bounded domain D on the boundary 0D of which v; and T are specified
as v; = vy and T = T, (v, and T, are, respectively, the surface velocity
and temperature of the boundary satisfying faD Vwin;dS = 0, n; : the unit
normal vector to the boundary) and no condition is imposed on p and p. Let
(vgs),p(s),T(s),p(s)) be a solution of the initial and boundary-value problem.
Let P(®) be an arbitrary function of ¢, independent of x;, that vanishes at initial
time t = 0, i.e., P(*) = f(t) with f(0) = 0. Put

(w,p, T,p) = (U§8)7p(s)7T(s)’p(s) + p(a))_

Then, e, i, and A corresponding to the new (v;, p, T, p) are equal to e 1) and
M) respectively, because they are determined by p and 7. The new (v;, p, T, p)
satisfy the equations (127a)—(127d) and the initial and boundary conditions.

3.2.4 Equations derived from the compressible Navier—Stokes set
when the Mach number and the temperature variation are
small

It is widely said that the set of equations derived from the compressible Navier—Stokes
set when the Mach number and the temperature variation are small is the in-
compressible Navier—Stokes set although the difference is obvious from the set
of equations derived, especially from the equation of state and the energy equa-
tion.?® The difference is explained in the two books KF and MGD in connection
with the set of fluid-dynamic type equations derived by the S expansion from
the Boltzmann equation in Sections K-4.3, M-3.2, and M-3.7. To make differ-
ence clearer and to eliminate the misunderstanding, we will show the process of
analysis from the compressible Navier—Stokes set with the boundary condition
taken into account. Thus, it is made clear how the solution is constructed and
how the behavior of the solution in the two systems is different in the initial
and boundary-value problem. In the time-dependent case, the energy equation

39In a time-dependent case, we here consider the case where the variables vary in the
diffusion time scale. In a shorter time scale, the sound wave propagates.
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contains another time-derivative term, in addition to the difference in the time-
independent case. An ambiguity of solution in the incompressible system in a
bounded domain with the simple boundary is eliminated in the compressible
system.

Take a monatomic perfect gas, for which the internal energy per unit mass
is 3RT/2. The corresponding Navier—Stokes set of equations is written in the
nondimensional variables introduced by Eq. (M-1.74) in Section M-1.10 as fol-
lows:

ow Il +wu,

’ — 12
Shat + 0z, 0, (128)
(1 4+ w)u; 0 . 1 O\
Sha% [(1 +w) (2(1 +r) +u§>}
9 3 )
+ o (14 w)u, §(I+T)+ui +ui(dij + Pij) + Q| = 0. (130)
J

The nondimensional stress tensor Pj;, and heat-flow vector ); are expressed
40
as

P;; = P§;; —

1/2 , .
wo(2RTy) 1+ ) (6% Ou; 2 Ouy, 5@) 7 (131a)

ol oz, " 9z, 30z
)\()TO - 0T

I 2RI (1+X) e

Qi = (131b)

Here, i and X are, respectively, the nondimensional perturbed viscosity and
thermal conductivity defined by

where po and \g are, respectively, the values of the viscosity p and the thermal
conductivity A at the reference state. The g and A are functions of 7 and w.
The first relation of the equation of state [Eq. (96)] is expressed as

P=w+7+wr (132)

Take a small parameter ¢, and consider the case where

u; =0(e), w=0(e), 1T=0(g), Sh=0(e), (133a)
po(2RTH)/? AoTo _ 9
pOL =M€, LpO(QRTO)l/Q - 47267 (133b)

where v; and ~» are constants of the order of unity. Thus,

P=0(), p=0(), X=0O0().

40For a monatomic gas, the bulk viscosity vanishes, i.e., ug =0 (see Section 1.3).
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Some notes on the conditions (133a) and (133b) may be in order.

(i-a) The first three relations in Eq.(133a) are the condition on the size of
perturbation of gas dynamic variables from the background state (v; = 0, p = pg
and T = T,) with respect to their reference values [v; = (2RTy)Y?, p = po,
and T = Tp]. The last relation is the condition of the time ¢, of appreciable
variation of the perturbed quantities. This condition shows that the time scale
to of variation of the variables is chosen as

L

(2RT)1/2¢ (134)

to =

which is the time that the typical gas flow proceeds over the distance L. In other
words, we are interested in the behavior of the gas, the perturbed quantities of
which vary appreciably in time ¢o. Naturally, the variation of boundary data is
to be consistent with the above time scale.

(i-b) The discussion in this section (Section 3.2.4) is based on the Navier-Stokes
equation, which is assumed to be valid without the restriction on the size of the
parameters. We are going to derive the set of equations for small ¢ under
the conditions (133a) and (133b) for the two kinds of fluid (perfect gas and
incompressible fluid), and compare the difference between their results. Here
we are interested in the leading nontrivial set. The equations at the higher-
orders are obviously within the framework of the Navier-Stokes equations. This
applies to the boundary condition. Nonslip or non-jump condition is used on
the simple boundary irrespective of the size of . The boundary condition on the
interface is borrowed from the leading-order results of the asymptotic analysis
for small Knudsen numbers of the Boltzmann system for the case in (iii).

(ii) In the Navier-Stokes system, the viscosity p and the thermal conductivity
A characterize the property of the fluid. The relation (133b) is the condition
between these transport coefficients and the typical size € of the perturbations.
Form these relations, we have

Ho/ o N 220 _ 72

e(2RTy)Y2L ~ 2'  B5Ruy  m

(135)

The quantities on the left-hand sides of the two relations consist of the pa-
rameters?! of the flow under consideration. Thus, we are considering the case
where the two combinations of the parameters are finite because ; and o are
constants.

(ili-a) In the S expansion in Chapter K-4 or in Section M-3.2, the parameter
k characterizes the degree of rarefaction of the gas under consideration. The
analysis there is carried out under the condition that

e =k, (136)

41Note that (a) e(2RTp) /2 is the typical flow speed, and e(2RTo)Y2L/(uo/po) is the
Reynolds number based on that flow speed and that (b) 3R/2 is the heat capacity at constant
volume because the internal energy per unit mass is 3R7p/2 for the gas under consideration
(perfect gas).
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where ¢ is the size of perturbation ¢ of the velocity distribution function from the
background equilibrium state fj at rest with the density pg and the temperature
Ty corresponding to Eq. (133a), with the time-independent condition imposed.
The time-dependent case is discussed for the two cases, to = O[L/(2RTp)"/?]
and to = O[L/(2RT)"/%¢], in Section K-4.9 and K-4.10.3 and Sections M-3.7.1
and M-3.7.2.

(iii-b) This is one of the several cases where the behavior of a gas for small
Knudsen numbers (or k£ < 1) is discussed on the basis of the Boltzmann system
(Boltzmann equation and its boundary condition), and the fluid-dynamic type
equation and its boundary condition are derived for various limiting processes
(see the two books KF and MGD). The nontrivial leading-order results of the
case (136) corresponds to the set of equations of the case with Eqs. (133a) and
(133b) of the Navier—Stokes equation for perfect gas. We will use the boundary
condition on the interface obtained by the analysis of the Boltzmann system to
the discussion in this section (Section 3.2.4). The higher-order results include
higher-order effects of the Knudsen number, which is not covered by the Navier-
Stokes system. The higher-order boundary condition does not contribute to the
comparison. Thus, the leading-order boundary condition is used with adjust-
ments as the higher one if necessary.

(iv) The expansion parameter € can be chosen rather freely by a finite factor.
So are the reference quantities. If we use a different reference velocity, e.g.,
(2e0)'/?, instead of (2RTp)'/?, with the same ¢, the coefficients of the resulting
equations are obviously different.

According to the definition of w; in Eq.(M-1.74), € is of the order of the
Mach number of typical flow speed Uy of the flow field. Here, we take ¢ as
e = Uy/(2RTy)"/?. The relation (133b) between & and viscosity po or thermal
conductivity Ag is taken from the result of analysis in Section M-3.2, where
the situation that the Knudsen number and the perturbation scale is of the
same of order of smallness, i.e., k = ¢, is discussed. According to Eq. (M-
1.48a), the condition Sh= O(e) in Eq. (133a) means that the time scale ¢y of the
variation of variables is of the order of L/(2RTp)'/?e, which is of the order of
time scale of viscous or thermal diffusion owing to the relation (133b). We can
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take to = L/(2RTp)"/?¢ without loss of generality.*> Then,
S =e. (137)
The new symbol ¢ , instead of £ is introduced to make this time scale explicit:
t=+t. (138)

Corresponding to the above situation, u;, w, P, and 7 are expanded in power
series of ¢, i.e.,

2
U; = U;1E + U€” + -,

~~ A~
= =
g
o o

w:w15+w252+-~-,

P=Pe+Pe?+---,

S~
— =
288
o & o
Nt N N NS> NN N

T=TiE+ToE% 411,

fo=fne+ fie® + -

X=X+ X2+,

Pij = Pidije + Pijoe® + -+ -,

Qi = Qi+ .
Substituting Eqs. (139a)—(139h) with Egs. (133b) and (137) into Eqgs. (128)—(130

with Eqgs. (131a) and (131b), and arranging the same-order terms of e, we have

8ui1 —0 8P1 0 auil

|
|
—~~
—_
9
Nej
—

—
L W
Nl
= 0R

=

8$i ’ 61‘1 ’ 81‘1 ’

42This time scale, to = L/(2RTp)'/2¢, is called diffusion time scale in view of the following
situation. The viscous diffusion of the parallel flow in X; direction with nonuniform velocity
v is given by
ov1 Mo 8%vy
ot po 0X3’
where the variation with respect to x3 is assumed to be absent. Let the length scale and the
time scale of variation of v; be L and tg respectively. Putting ¢ = ttgp and X2 = x2L, we have

Ovi _ poto 9%y

ot polL? Bmg

71t0(2RT0)1/2€ 82111
2L Bm% ’

where the first relation of Eq. (133b) is used in the final step. When to = L/(2RTp)'/?¢, the
coefficient is of the order of unity because v2/2 is so. Then, the time derivative dvy /9t and
the space derivative 821)1/636% are of the same order O(v1). Thus, in the diffusion process,
the time scale of variation is to = L/(2RTp)/2e when the length scale of variation is L.

The diffusion of heat can be discussed in the same way, with pg being replaced by apoRTo
(o = 3/2 or 5/2 depending on the diffusion under constant volume or constant pressure), uo
by Ao, and the velocity v1 by temperature 7. With the aid of the second relation of Eq. (133b),

T _ 5yato(2RTy)Y/ 2e 02T
ot 4ol 895%'

The remaining discussion is the same because v2 is a constant of the order of unity.
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Owy | Owiun | Ougp
ot ox; ox;
6’&1‘1 + 6U¢1Uj1 + 18P2 71 8 <3u11 + 8uj1 2 8uk16 > _ O,

:07

ot dr; 20w, 2 9x; \ dx;  Or; 3wy
2 97 om, \2"2 T2 M T g ) T

and so on. At the leading order, the equations derived from Egs. (128) and (130)
degenerate into the same equation Ou,;/0z; = 0. Owing to this degeneracy, in
order to solve the variables from the lowest order successively, the equations
should be rearranged by combination of equations of staggered orders. Thus,
we rearrange the equations as follows:

oP,
oo, (140)
Ouiy
Z 141
il (141a)
Oou;n Oou;n 10P, Y1 a2“1’1
i , - n 141b
ot + s oz 2 Ox; * 2 (’“)x? ’ ( )
5 87’1 8P1 5 67'1 5 827'1
°20n _Jn1 9,9 _2 0T 141
B {)t 8t + 2u7,1 a(]}',b 472 aﬁf?’ ( C)
aUﬂ &ul 8w1ui1
__ow 142
dx; ot dx; (1422)
3u,2 ] 8u,-2 Tu 8u,1
ot M ox; oy

_1 8P3 _ 8P2 ﬂi (91,61‘2 Bujg . zaqu(S”
o\ 0w, o, ) T2 0x; \Ox; T Ox; 3 0wy

Y1iw1 82u7;1 Y1 0 _ 8u,;1 anl

— —_— 142

2 023 ) o [’ul (8xj + or; )|’ (142b)

30P, 3 0P, 5 (P a’Lng B % B 8(&)1’11,]‘2 +WQUj1))

20f T2y, Yo\, T ai oz,
5’}/2 0 87'2 S (97'1 Y1 81/@1 8Uj1 2
22 24 = 142
where
P1 = w1 +7’1, PQZWQ+T2+W1T1. (143)

These equations are very similar to Eqgs. (M-3.265)—(M-3.268) obtained by the
S expansion of the Boltzmann equation in Section M-3.7.2.43

43(i) Equations (140)—(142a) and (143) are of the same form as Eqs. (M-3.265)-(M-3.267a)
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In order to compare Eqgs. (140)—(141c) and the first relation of Eq.(143)
with the incompressible Navier—Stokes equations (112a)—(113), we will rewrite
the latter equations for the situation [Egs. (133a) and (133b)] where the former
equations are derived. The starting equations are Eqs. (128)—(131b)#* and the
nondimensional form of Eq. (108), i.e.,

Ow Ow

instead of Eq.(132). The analysis is carried out in a similar way*® and the
equations corresponding to Egs. (140)—(141c) are*®

P
6$i

and (M-3.268). Thus, the following discussion in this section (Section 3.2.4) applies to the
two systems. Naturally, it applies to the S solution in Sections K-4.9 and K-4.10.3.

(ii) It may be noted that the second-order velocity u;s is not solenoidal from Eq. (142a).

44 A5 the internal energy e, 3RT/2 [= 3RTp(1 + 7)/2] is chosen for consistency.

45(1) For incompressible fluid, the sound speed is not well defined. Thus, the speed (2e9)/?
defined by the internal energy ep per unit mass is taken as the reference speed, which is
comparable to the sound speed for perfect gas. Thus, the condition that the Mach number
is small can be replaced by the condition that the flow speed |v;|/(2e0)'/? divided by that
reference speed is small. This is the case where the work done by the viscous force is negligible
in Eq. (112¢) (see Footnote 34).

(ii) Different equation of state corresponds to different substance. Thus, various parameters
differ in different systems. However, we are interested in the difference of solutions due to the
change of the equation of state among the pressure, temperature and density (perfect gas or
incompressible fluid). Thus, we take a state at rest (v; = 0) with pressure pg and temperature
To. Thus, the density po = po/RTy for perfect gas. We imagine the incompressible fluid
at rest with density po and the other properties (internal energy eg, viscosity po, thermal
conductivity Ao) of the two kinds of fluid are taken to be the same. (This is not so real
because the density differs much for gas and liquid, the latter of which is much closer to
incompressible fluid. Here, we put aside the reality for the present purpose avoiding the
similarity discussion. Incompressible fluid is not gas according to the classification of gas and
liquid.) Taking the state at rest with pressure pp and temperature Tp as the background state
(thus, the density po = po/RTp; this relation holds only at the background state; the relation
without subscript 0 applies only to perfect gas but not to incompressible fluid), we discuss
the behavior of two kinds of fluid for the case where (a) the typical flow velocity, say Up, is
small compared with the reference speed (2e9)/2, i.e., Up/(2e0)*/2 < 1, and (b) the relative
variations P and 7 of pressure and temperature is of the order of Ug/(2e0)'/2. In the main
text, (2RTp)'/2 is used instead of (2e9)!/2[= (3RTp)/?] to define the expansion [note the
definition u; = v;/(2RTp)'/? and the discussion in the paragraph with Eq. (133a)].

(iif) In the preceding analysis, the equation of state, Eq. (132), is partially used in the middle
of analysis. It is already used in Eq. (141c). Thus, the results, e.g., Eq. (141c), cannot directly
be transferred to the case of incompressible fluid. The expansion, with P not related to w and
7, should be done independently and apply the incompressible condition when necessary. It
is much simpler to start with w, = 0 for all n.

46(i) From Eqs. (128) and (144), we have Ou;/0x; = 0. Obviously, one of Eqs.(128) and
(144) can be replaced by du;/0z; = 0, but both cannot be replaced by it. Some confusion
about the incompressibility is due to the misunderstanding of the statement.

(ii) It should be noted that Eqs.(141a) and (146a) are derived from Eq.(128) under the
condition (133a) without the help of the equation of state. Incompressibility cannot be judged
only by Eq.(141a) or (146a).

=0, (145)
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= 14
B 0, (146a)
8u,~1 8u,~1 1 8P2 Y1 821141'1
i _ 1 n 14
ot t U oz 20x; 2 895? ’ (146b)
2
387’1 3 87’1 _5 67'1 (146C)

300 T 2"10s, 1202

and the equation corresponding to the first relation of Eq. (143) is obtained from
the incompressible condition (144) as*’
% + uﬂg—‘:z =0. (147)
Now the basic equations, the behavior of solutions of which we are going
to compare, are prepared [Egs.(140)—(141c), and (143) for perfect gas and
Eqgs. (145)-(147) for incompressible fluid]. For the comparison, the initial and
boundary condition have to be chosen commonly. The diffusion time scale being
natural time scale of the solution of the incompressible Navier—Stokes equation,
this scale solution is the subject of comparison. Incidentally, the boundary data
must be consistent with the diffusion time scale. The form of the two sets of
equations requires two conditions on the initial data. That is, the initial val-
ues of u;; and P; must be solenoidal and uniform respectively in the domain
under consideration, i.e., Egs. (141a) and (140) for perfect gas and Egs. (146a)
and (145) for incompressible fluid). The initial condition common to perfect gas
and incompressible fluid is determined in the following way: From the request of
incompressible fluid, the density is uniform, i.e., w; = 0; from common request
of uniformity of pressure, i.e., P, = 0; on the plane w; = 0, the temperature
71 = 0 from Eq. (143) for perfect gas*® (see also Footnote 45). Only the uniform
state with respect to density, pressure and temperature can be the common
initial condition to perfect gas and incompressible fluid. The velocity can be
chosen freely under the solenoidal condition. When comparing solutions in the
two kinds of fluid, we have to choose their initial condition that satisfies the
above condition. In this case, the time-variation of the boundary data make the
difference clear. An example of comparison of this kind is shown in K-4.10.3,
where nontrivial difference of their temperature fields are shown.*® Next, we
examine the two sets of equations (perfect gas and incompressible fluid) and
make clear the effect or mechanism that makes the time development of the two

47From the choice of the background state in Footnote 45, w = 0 and Ou;/Ox; = 0o0r wp, =0
and Ou;,/0x; = 0 for any n.

48(1) On the surface w; = 0, the pressure P; and temperature 71 can be chosen freely for
incompressible fluid.

(ii) We have chosen zero for the constant values for wq, P1, and 71 without loss of generality.

It is a problem of choosing the background state.

49The example in Section K-4.10.3 is a simple problem with the simple boundary and the
interface. In the example, the S solution of the Boltzmann equation (note Footnote 43) and
the corresponding one of the incompressible fluid are shown. In the former, the density varies
with time, and further, the temperature field is quite different from that of the latter owing
to the time-dependent boundary condition on Pgy, corresponding to P; here.
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sets different. Then, we discuss the process of solution (or how the solution is
constructed) for each set with its boundary condition taken into account and
show an important difference between them.

Equations (145), (146a), and (146b) are, respectively, of the same form as
Egs. (140), (141a), and (141b). Equation (141c) is rewritten with the aid of
Egs. (140) and (143) as

3 871 3 (97'1 8w1 (9(4)1 5 627'1
SO P S (B ) =2, 148
2 0t +2u18mi <6t +u18xi> 472833? (148)
The difference of Eq. (141c) or (148) from Eq. (146¢) is
8&11 8(,«}1
Ly 149
or " o, (149)

which vanishes for an incompressible fluid. The work W done per unit time on
unit volume of fluid by pressure, given by —po(2RT)/2L~10(1 + P)u;/0x;, is
transformed with the aid of Egs. (140), (141a), and (142a) in the following way:

w o1+ P)u;

po(2RTp)V2 L1 Ox;
s, (0 0

8$i 83% Tt 8.%‘1 81‘,
p— 8’“/12 62 ..
81‘,‘

_ (O, 0 o
_(8E +u“c‘):c) +-e (150)

?

The work vanishes up to the order considered here for incompressible fluid,
because du;/0x; = 0 and 0P, /0x; = 0 [see Footnotes 46 and Eq. (145)]. That
is, Eq. (141c) differs from Eq. (146¢) by the amount of the work done by pressure.
Thus, naturally, the temperature 7 fields in the two cases are different owing
to this difference. Thus, naturally, the temperature 77 fields in the two cases
are different owing to this difference.

The variation (149) of the density w; along a fluid-particle path is expressed
with w;1, 71, and P;. That is, w; in Eq. (149) is replaced by P; — 71 with the
aide of Eq. (143), and Egs. (140) and (141c) are applied to the result successively.
Then, we have

8&11 8w1 o 8P1 (97'1 87'1
of "“or, T ot of  “ou,
3 8P1 1 827'1
“5of 270a (151
Therefore, the density w; generally varies along a fluid-particle path.

Here, we will explain the process of solution (how the solution is deter-

mined from the basic equation and boundary condition) for the two systems

42



(perfect gas and incompressible fluid). In the two systems, the difference is
the energy equation among the conservation equations [Egs. (140)—(141c) and
Eqs. (145)—(146¢)] and the equation of state [Eqgs. (143) and (147)].5° When the
pressure P; is independent of Z, the difference of the energy equations (141c)
and (146¢) in the two systems is the ratio of the convection term to the heat-
conduction term. That is, the heat-conduction is of the same form, but the
convection term differs only by numerical factor (5/2 and 3/2). Thus, we can
say the difference is the convection term by the ratio (5 : 3) or the thermal con-
ductivity by the ratio (3 : 5). The source of this difference is due to the work
done by pressure in perfect gas. The pressure P; being constant, the variation
of the flow along a fluid particle path takes place under constant pressure during
its motion, and the work done by pressure can be incorporated into the variation
of enthalpy defined by e+ p/p, which is equal to 5RT/2 for perfect gas.>® Thus,
the change during the motion is expressed by the variation of the enthalpy.
That is, the energy equation expresses that the enthalpy variation along a fluid
particle path is equal to the energy supplied by heat conduction. On the other
hands, when P; depends on , the variation along a fluid particle path is neither
under constant pressure nor under constant volume, and thus, the extra term
0P, /0t enters Eq. (141c) in addition to the above difference of the coefficients.
To find the solution, the boundary condition is required, which depends on the
kind of the boundary. The present discussion is for the Navier-Stokes system
apart from the kinetic theory except that sizes of viscosity and thermal con-
ductivity, compared with the parameter e, are borrowed from its result. The
boundary conditions is the one used in the Navier—Stokes system. That is, we
take the non-slip condition [Eq. (K-4.61a) and (K-4.61b) or Eq. (M-3.113a) and
(M-3.113b)] on the simple boundary and the leading-order result of the kinetic
theory [Eq. (K-4.68a) and (K-4.68c) or Eq. (M-3.119a) and (M-3.119¢)] on the
interface extended up to higher order in .5 The same boundary condition is
used for incompressible fluid. The process of solution of a similar system, the S
solution in Chapter K-4 or Section M-3.2, is given in Section 3.1.1 for the simple
boundary. This discussion applies to the present case.

In an unbounded domain where the pressure at infinity is imposed, Py (f)
is determined, but in a bounded domain with the simple boundary, it is unde-
termined. According to the above mentioned process, the velocity field w;; is

50The difference of the equation of state is often treated carelessly. Equation (141a) or
(146a) is mistaken to be incompressible condition with discarding Egs. (143) and (147).
51(i) The factor 5R/2 is the heat capacity at constant pressure for perfect gas.
(ii) In incompressible fluid, the pressure produces no work as noted just after Eq. (150).
52(i) The formulas for the interface is the leading-order result of S expansion of kinetic
theory analysis. The non-slip condition is also confirmed by it.

(ii) The formulas quoted above are derived for time-independent problems. The results are
shown to be applicable to the time-dependent problem with the time scale under discussion
in Section M-3.7.3.

(iii) In the formulas in the two books, the subscript S is to be neglected. The subscript 1
showing the order is extended to 2,---. The formulas with subscript K is to be discarded.

(iv) Keeping the fundamental form of the condition on the interface, we generalize the
formula formulas allowing the coefficients, C} and dj, to be functions of position and time,
and the discussion is made under the generalized boundary condition.
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determined, which is independent of P, for a simple boundary. On the other
hand, when the boundary is the interface or a part of it is the interface, P; is
determined by the boundary condition, as shown in Footnote 53 below, owing to
the presence of P; in the boundary condition on wu;;n,;.%® From P; determined,
the boundary value of u;1n; on the interface is determined by one of the relations
in Eq. (K-4.68¢c) or Eq. (M-3.119c). From u;1n; just determined, the boundary
value of 71 on the interface is determined by another relation in Eq. (K-4.68¢c) or
Eq. (M-3.119¢).>* Thus, all kinds of boundary data are prepared. The velocity
field wu;; is determined under the boundary data just obtained as in Section 3.1.1
with the aid of Footnote 55 below®®. Then, we can determine the temperature

53(i) For the case of the interface, P(f) enters the boundary condition on the velocity normal
to the boundary. On the other hand, the integral of w;;n; over the boundary vanishes owing
to Eq. (141a), i.e.,

/ winnids = — [ 2Milax — o,
s v Ox;

This determines the relation of P; and the integral of the boundary data Py, i.e.
Pl(f)/(I/CZ)dS—/(Pwl/CZ)dS:/ witnidS, = 0.
S S s

Thus,
Js(Puw1/C3)dS

[s/Cpds
where S is the surface of the boundary [see Eq.(K-4.68c) or Eq.(M-3.119¢)]. It is noted
that C} is a constant in the formula by the kinetic theory where the complete condensation
boundary is considered. Here, C} is allowed to be a given function of z; and ¢ to express more
general condition of the interface (0 < —1/C§ < emi; em = const). Thus, Py is determined.
With this Py (£), the boundary data of u;1n; is specified by Eq. (K-4.68c) or Eq. (M-3.119¢).
Thus, the boundary value of u; is given by this u;1n; and Eq. (K-4.68a) or (M-3.119a).

(ii) When the boundary consists of the two kinds of boundaries, By the same reason, the

integral u;1n; over the boundary vanishes, which is divided into the contributions of the two
kinds of boundaries. That is,

Pi(t) =

/ ui1n;dS +/ u;1n;dS =0,
Ss St

where Sg and St indicate, respectively, the simple boundary and the interface. The first
integral vanishes because u;1m; = 0 on the simple boundary. Thus, the second integral also
vanishes. Then, similarly to note (i), we have

~ st(Pwl/CZ)dS
PO =" qepas

Thus, Pi(t) is determined, from which w;1n; on the interface is given by Eq.(K-4.68c) or
Eq. (M-3.119¢). With this data, the boundary value of w;; is specified on the interface.
Together with the condition on the simple boundary, the boundary value of u;; is determined.

54The constant d}’ in the formula is allowed be a given function of x; and t as C} is allowed
to be so in Footnote 53 (0 < —d} < cma2; cM2 : const).

55In the process solving the velocity field u;g1 in the simple boundary problem in Section
3.1.1, Pgs is required to satisfy the relation

9*Psy _o9Ujs1 Buisy

81132 6171 an ’

7

in order to ensure the subsequent (or future) solenoidal condition of u;g1. According to Section
3.1.1, to determine the boundary value of n;0Pg2/0x;, the time-derivative of the boundary
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71 from Eq. (141c) except for the bounded domain with the simple boundary.
With the determined P; and 71, the density w; is determined as

UJ1:P1—T1 (152)

by the first relation of Eq. (143).

In the exceptional case, Eq. (141c) contains two unknown functions 7 and
P;. We need another condition to determine 7; and P;. When the temperature
of the boundary is time-dependent and nonuniform, so is the solution 7y in the
domain, irrespective of P, /0t . The density w; is given by P; — 71, which is
time-dependent and nonuniform and includes undetermined P;. In a bounded
domain of the simple boundary, the mass of the fluid in the domain is invariant.
This has to be confirmed.?® The condition that the mass in the domain V is
invariant is given by

P (F
i/ widx = d 1~(t)V— i/ mide =0, (153)

where V also indicates its volume. On the other hand, the integral form of
Eq. (141c) is

2
dPi(t),, gd%/ rdz :/ 5, 0m 272‘9 ™) de. (154)
1% 1%

dt 2 " 0z, 836?

From these two equations, the equation for P; is obtained as

dpi(f) 5 o 197

i - o \"am 272

de. (155)

From two equations (141c) and (155), The temperature 7(z;,t) and the pressure

Py (t) are determined. Then, w; is determined by Eq.(152). Thus, we have

data of u;g1n; is required (u;51 and Pgo corresponds to u;1 and P> here). It vanishes because
u;s1m; = 0 on the simple boundary. In the interface problem, the boundary value of u;1n; is
given by the condition (K-4.68c) or (M-3.119¢) and expressed with known data Pj(f) and Py
[see Footnote 53 (i)]. Thus, Ou;1n; /0t on the interface is known. This is used in constructing
the boundary data n;0P>/0xz; as explained in Section 3.1.1. Thus, P> is determined with
an arbitrary additive function fo(f) of . For the combined boundary in (ii) of Footnote 53,
we can obtain P> by the combination of n;0P2/dx; of the two kinds of boundaries, with an
arbitrary additive function of £. From P, thus obtained, we can obtain the solution u;; of
Eq (141b) with the boundary condition on w;; for the cases (i) and (ii) of Footnote 53 in the
same way as Section 3.1.1. This wu;; satisfies the solenoidal condition in subsequent . The
additive function in P> does not influence the solution w;;.

56(i) It has been made clear by the analysis up to now that the condition u;1n; = 0 on
the boundary does not guarantee that mass flow in the diffusion time scale £ = O(1) or
t = O[L/(2RT0)"/?¢] is negligible compared with the quantity of O(e) under concern.

(ii) Here, the order of variation of density by inflow to or outflow from a volume O(L3)
by the higher-order velocity (2RTp)'/?e? in time L/(2RTp)/?¢ is estimated. The inflow or
outflow of the mass of fluid over the surface O(L?) of the volume during the time is of the
order of po x (2RTy)1/2¢2 x L/(2RTp)/2e x L2, which is poeL®. Thus, the density varies by
the order of poe, which is of the same order as the term w; of the expansion of p in e.
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obtained the required information for perfect gas, up to the order of ¢ under
concern.

At the final stage of the discussion of the process of solution, we briefly
describe the process for incompressible fluid, where w = 0. The process up
to the step to obtain the velocity wu;; is the same as for perfect gas. That is,
the velocity field u;; is determined independently of undetermined P;(f) for
a bounded domain with the simple boundary. In the other cases, the velocity
field u;; is determined together with P;(£). The energy equation (146¢) contains

only 71 and determined w;; without Pj(t) term. It is similar to the equation

for perfect gas with difference of numerical coefficient and the absence of P (t)
term. Thus, the solution 7; is determined. The pressure P;(f), however, is left
undetermined for a bounded domain with the simple boundary. This situation
corresponds to the situation described in Section 3.2.3. Obviously, the mass is
invariant in a bounded domain because the density is invariant, which does not

work to determine P (¢). This ambiguity is due to the combination of the two
limiting characters of the incompressible fluid and the simple boundary.?”

57Incompressible fluid is the extreme (or limiting) case of fluid very hard to compress.
Suppose that the equation of state is given by

P—r 2m—+1
w:(l-‘rﬂ') (m:071727)’ (Tl)
where m = 0 corresponds to perfect gas. Then,
wn =0 forn < 2m, (12a)
wamt1 = (Pr —71)?™ (2b)

The equation of state (f1) is reduced to incompressible fluid in the limit m — oo because
w = 0 in the limit irrespective of the perturbations P and 7 of the order of e. For m > 1 (fluid
hard to compress; harder for larger m), the conservation equations are the same as those for
incompressible fluid up to n = 2m, That is, Eqs. (145)—(146¢), where the contribution of work
done by pressure is absent, apply to fluid hard to compress commonly. In a bounded domain
with the simple boundary, the velocity u;; and temperature 7 are determined irrespective
of P1, but P; cannot be specified within the above set of equations, and the mass in V is
invariant up to the level way,. The undetermined pressure P is determined by Eq. (12b) and
the mass conservation at the level wa,,41 in the volume V/ i.e., dfv wgm;_,_ldw/df = 0. From
them, we obtain the condition

/. (P —1)*™ (ﬁ - 87:1) dz = 0.
Jv dt ot

With the aid of Eq. (146¢),

dP; / 9 ( orn 5 82T1> // 9
— = P — " —ujp——+ —y2——= | d P — "dx, 3
a V( 1 —T1) u 18% + 672 89012 T V( 1 —T1) T (13)

where dP; /dt is expressed with the data of the present state (u;i,71, P1). Thus, the future
Py, thus (u41, 71, P1), is determined. In incompressible fluid, the limit m — oo is taken first.
After the limit m — oo, the number n showing the level of expansion of the solution in ¢ is
smaller than 2m + 1 (=o0), and therefore w, = 0 for any n, and P; remains undetermined.
This is the ambiguity mentioned in Section 3.2.3.

To summarize, for any finite positive m (> 1), the solution (u;1, 71, P1) in a bounded domain
with the simple boundary is determined by the conservation equations (145)—(146¢) with the
mass conservation condition (13) in V, and the velocity u;; and temperature 71 are the same
as those of incompressible fluid. This solution is distinct from the solution for perfect gas
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To summarize, the mass and momentum equations (141a) and (141b) of
the set derived from the compressible Navier—Stokes set [Eqs. (128)—(131b) and
(132)] under the situation given by Egs. (133a) and (133b) with small  are of the
same form as the corresponding equations (146a) and (146b) of the set derived
from the incompressible Navier—Stokes set [Eqs. (128)-(131b) and (144)], but
the energy equations (141c) and (146¢) of the two sets differ by the work done
by pressure. The density w; obtained from w;1, 71, and P; by the first relation
of Eq. (143) does not generally satisfy the incompressible condition (144). Both
the density and temperature fields (wy,71) are different in the two sets. The
variation of the density w; along a particle path is given by Eq. (151). Even if
the temperature 7y varies according to Eq. (146¢), the density w; determined by
Eq. (151) does not generally satisfy the incompressible condition. Further, the
two systems have a decisive difference in bounded domain problems with the
simple boundary. That is, the pressure P; is undetermined in the incompressible
fluid system, but no such ambiguity exists in the perfect gas system, where the
pressure Pj is determined.

Finally, it may be repeated that under the situation (133a), the solenoidal
condition for u;1, i.e., Eq. (141a) or (146a), is derived only from the mass con-
servation equation (128) without the help of the equation of state [perfect gas
condition (132) or the incompressible condition (144)]. That is, the mass con-
servation equation at the level of O(g) are common to perfect gas and incom-
pressible fluid, i.e.,

8ui1
6$i

but the equation of state is different for the two kinds of fluid, i.e.,

:O’

w1 =P —7 (perfect gas),

w1 =0 (incompressible fluid).

because the work done by pressure is absent in the energy equation (146¢). The solution for
incompressible fluid is different from both the solutions, perfect gas (m = 0) or fluid hard to
compress (m > 1), on the point of the ambiguity of P;. The solution for perfect gas is totally
different from the solution for incompressible fluid. The solution for fluid hard to compress
partially agrees with the solution for incompressible fluid. In this sense, the solution hard to
compress is on the side of incompressible fluid. The incompressible condition is too strongly
simplified to approximate the solution for fluid hard to compress (note that any fluid is not
exactly incompressible). It sacrifices the determinacy of Pi, which is the qualitative difference
from perfect gas and fluid hard to compress.

This kind of situation is often seen when some small parameter is approximated by its
extreme value. Here, we have two parameters taken to their limits first (incompressible fluid
and the simple boundary, the latter of which can be taken, for example, as the limiting
case with the coefficient 1/C} in the interface condition being taken to zero). Another well-
known example is the approximation of fluid with small viscosity (Navier—Stokes equation
with large Reynolds number) by ideal fluid (Euler equation). The ghost effect of infinitesimal
curvature in References [3]-[5] and Section 7.3 (see also Chapter M-9 and Section 7.2) is
another aspect of this kind of behavior, where we see that a plane wall or straight pipe is
too strong simplification (any plane wall or straight pipe to be discussed is not exactly so).
The ghost effect of infinitesimal curvature is shown by analysis with the limiting processes as
above taken into consideration.

From the above discussion, it is clear that the two systems under consideration (perfect gas
and incompressible fluid) are distinct.
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The solenoidal condition (141a) or (146a), i.e., du;1/0z; = 0, does not guarantee
the invariance of the density w; in the diffusion time scale t = O(1) (see Footnote
56).58

3.2.5 Equations derived from the compressible Euler set when the
Mach number and the temperature variation are small

Take the Euler set of equations, Eqgs. (M-3.250a)—(M-3.250c) and the equation
of state, in the nondimensional form derived from the Boltzmann equation in
the limit k£ — O:

90 9P% (156a)
8t 8xj

opi;  Oposi; 1 9p

5 e taas = (156b)
a ~ ~2 3 A a ~n ~2 5 - o

5 [p <vi + 2T>} + 9z, {pvj (vi + 2T>] =0, (156¢)
p=pT, (156d)

where the subscript HO is eliminated for simpleness of notation. We consider the
situation where the state of the gas deviates slightly from a uniform equilibrium
state at rest. That is,

p=140, p=14+P, T=147%, d; = i, (157)

where the perturbed quantities w, 15, 7, and 4; are small, say of the order of e.
They are expanded as o R
h=hie+hge® -+, (158)
where h = &, P, 7, or 4.
We discuss the two cases with different time scale. The first case is
oh ,
— = 0(h). 159
2 =0l (159)

Substituting the expansions (158) of the variables @, }5, 7, and 4, into the Euler
equations (156a)—(156d) and arranging the same-order terms with Eq. (159) in
mind, we find that the leading-order variables are governed by the following set

58 Note the size € of the variation of quantities, the diffusion time-scale [L/(2RTp)'/2¢] under
consideration, and the nonlinearity in the mass conservation equation (128). Owing to these
situations, the density variation, i.e,

Ow1 " Ow1
= Usq )
ot ! ox;

along the fluid particle path is obtained from w;, 71, and Pi, and is generally finite (# 0),
affecting Ou;2/0z; in Eq. (142a).
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of equations:

6ﬂj1

- =0, 160a
iy 10P,
e ! 160b
5 T25s, 0 (160Db)
oP, 50,
e ! 160
o T30z, (160c)
Pl =& 4 7. (160d)

This set is the well-known acoustic equations (see Section M-3.7.1), which are
explained in a standard textbook of gas dynamics, e.g., M-Liepmann & Roshko
[1957].

The second case is the case where the variables are slowly varying or the
time scale of variation of the variables is long and of the order 1/e :

oh -
=7 =0(h). (161)
Here, we introduce the shrunk time 7.:
t. = et. (162)
Then, R
g;: = O(h) (163)

Substituting the expansion (158) of the variables &, P, 7, and 4; into the Euler
equations (156a)—(156d) and arranging the same-order terms with Eq. (163) in
mind, we obtain the equations that determine the leading-order variables as’®

ZZ 0, (164a)
%ﬁg — o0, (164b)
%f‘f’; + ajlaaﬁ;; + ;lej =0, (164c)
Pyt (164¢)

59Under the assumptions (157) and (161) or (163), the solenoidal condition (164b) for ;7
is derived solely from the mass conservation equation (156a). It should not be confused with
the incompressible condition.
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From Eq. (164a), Py is a function of #. only, and thus is determined by the
boundary condition.®® The relation
op,  ap . 0P
— = — tUj15—,
8t€ 8t€ 6xj

(165)

obvious from Eq. (164a), is conveniently used in the following discussion. The
energy equation (164d) is transformed as

3 (0 . 0On ow; . Ow
—| = 1= | ——— —Gj1=— =0, 166
2 (6%5 M”l@xj) o, 'ou, (166)
by using Eqs. (164e) and (165) for dP; /di.. From Eqs. (166) and (164e), the
variation of @ along the fluid-particle path is expressed as follows:

oo, a3 (0P
atAE 71 8xj N 5

) 0151) 3dP (167

of.  ox; ) T 5l
Egs. (166) and (167) are the linearized forms of the isentropic variations of @y
versus 71 and P; along the fluid-particle path. The energy equation (166) is
conveniently compared with the energy equation of incompressible fluid. For
the latter, the last two terms are absent and the temperature is invariant along
the fluid-particle path. The difference is the work done by pressure, which can
be shown as is done in Section 3.2.4.

The behavior of the gas governed by Eqgs. (164a)-(164e) is summarized as
follows:
(1): Equations (164b) and (164c) for the velocity field are of the same form as
those of incompressible fluid.
(2): Depending on the condition of the boundary, Py can be time dependent
or independent. (i) If Py is time dependent, the density w; varies along the
fluid-particle path owing to Eq. (167). (ii) If Py is time independent, the tem-
perature 77 and the density @&; are invariant along the fluid-particle path owing
to Egs. (164d) and (167).
(Section 3.2.5: Version 8-00)

4 Chapter M-4

4.1 Notes on application of the solution in Section M-4.3

In the application of the quasi-unidirectional solution in Section M-4.3, some
cares are required. For some ranges from the entrance and from the exit of
the pipe, the assumptions made in the first paragraph of Section M-4.3 and
the assumption®! just after Eq. (M-4.64) are not generally satisfied. For a long

60For example, the pressure is specified at infinity in an unbounded problem.
61This condition is consistent with the preceding assumptions.
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pipe,®? it is expected that the three regions, entrance, central, and exit regions,
can be analyzed separately and that the results can be smoothly connected. In
the central region, we try to use the solution of Section M-4.3. This process
being successfully done, and the contributions of the entrance and exit regions
to the pressure and temperature variations being estimated to be much smaller
than the contributions of the central region, the solution in Section M-4.3 gives
the global behavior of flow through a long pipe. It is often applied without
confirmation that the end effects are so small as to be neglected. The solution
of the central region, for which the solution of Section M-4.3 is used, has to
be confirmed that it satisfies the above assumptions made in the analysis. For
example, if the vacuum condition (or the vanishing density condition) is directly
applied to the exit when exit is connected to a large vacuum chamber, one finds
the average flow velocity on the cross section of the exit is infinite owing to
the mass flow conservation through the pipe. This obviously violates the latter
assumption. The solution cannot be applied up to such low density (or pressure)
region. The contribution of the region where the assumption is violated has to
be investigated in more complete formulation.

In a pipe problem, the temperature is controlled locally by the temperature
of the pipe, but the pressure is controlled only at the entrance and the exit.
The local pressure in between is determined by the mass conservation condition
as shown in Section M-4.3. Thus, the nondimensional local pressure gradient
cannot be specified at our disposal. For example, let us examine how the solution
on the basis of the local linear theory breaks down in a straight pipe with a
uniform cross section and a uniform temperature. According to Eq. (M-4.77)
required by the mass flow conservation through the pipe, the quantities at the
cross section A and the cross section B are related as follows:

d - L dp -
(a1 = (G, et

where the subscripts A and B indicate the values at the cross sections A and B
respectively, X is the coordinate along the pipe, and the unnecessary common
factors T, and L are eliminated from the formula (M-4.77). The nondimensional
pressure gradient at the cross section B is expressed with that at A as

(L dp > _ paMp(ka) (L dp )

pdXi/g pBMP(k‘B) pdXi) .’

where the ratio Mp(ka)/Mp(kg) is bounded from below by a positive constant
when kg > ks and becomes infinite as ky — 0 (see, for example, Table M-5.3,

M-Sone & Yamamoto [1968]).5% Thus, |(L/pg)(dp/dX1)g| becomes very large
or infinite even when |[(L/pa)(dp/dX;)a| is small if pa/pp > 1 or ks < 1,

62This means that the length of the pipe is much larger than the linear dimension of its
cross section.

63Generally, Mp(k:) first decreases from infinity as k increases from zero, reaching the min-
imum value at some k (around k = /7 or Kn = 2 in Table M-5.3) (Knudsen minimum) and
increases to the finite value at k = oo.
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and the slowly varying assumption |(L/p)(dp/dX;)| < 1 is violated at the cross
section B. Thus, the solution in Section M-4.3 is generally no longer valid there,
and more complete analysis is required. In practical applications, the quantities
that are assumed to be small may be small but are not very small. Thus, they
may easily reach non-small values in another cross section.

(Section 4.1: Version 8-00)

4.2 Gas over a plane interface: Supplement to M-4.4

Here, the discussion of the half-space problem under the boundary condition
(M-1.26) for a simple boundary in Section M-4.4 is extended to that under the
boundary condition (M-1.30) or (285) for an interface of a gas and its condensed
phase. That is, a plane simple boundary is replaced by a plane condensed phase
of the gas, and the possible solution including the possible state at infinity is
discussed in the situation when no evaporation or condensation is taking place
on the condensed phase. This is the problem first discussed by Golse under the
complete condensation condition (M-Bardos, Golse & Sone [2006]), which is a
special case of the boundary condition (M-1.30). The analysis goes parallel to
that in Section M-4.4. The full explanation is given with the difference being
shown with footnotes, though it may be redundant.

Consider a semi-infinite expanse of a gas (X; > 0) bounded by its stationary
plane condensed phase with a uniform temperature T, at X; = 0. There is no
external force acting on the gas. The state of the gas is time-independent and
uniform with respect to Xy and X3, ie., f = f(X1,£), and it approaches an
equilibrium state as X; — oo, i.e.,

Poo & — Vioo)?
f — Wexp <_(2_RT'OO)> as X1 — 00, (168)

where poo, Viso, and T, are bounded. The boundary condition on the interface
is given by Eq. (285) with the conditions (286a)—(286¢) and (289), i.e.,

£0,6) = gr + /{ KGE£)10.€)dE. (62> 0) (169)

Here, we are interested in the case where no evaporation or condensation is

taking place on the condensed phase,® i.e.,

pUv1 = /flde =0 at X;=0. (170)
We will show that the solution of the Boltzmann equation (M-1.5), i.e.,

of

&5 = U0, ()

64No mass flux across the boundary irrespective of a situation is the definition of a simple
boundary.
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describing the above situation exists only when
Vioo = 0, Poo = Pw Too = Tw7

where p,, is the saturation gas density at temperature T,, and that the solution
is uniquely given by the Maxwellian

fo (-8 (172)
= @rRT, )2 P\ TaRT, )

From the integral of the Boltzmann equation (171) over the whole space of
£ [or the conservation equation (M-1.12)], i.e.,

d
e </§1fd£) 0,

and Eq. (170), we find that the mass flux vanishes for X; > 0, i.e.,

/£1fd€ =0 (0<X; <o0). (173)

With this result in the condition (168) at infinity, we have
/ £167fd€ =0 at infinity. (174)

The integral of the Boltzmann equation (171) multiplied by &7 over the whole
space of &€ [or the conservation equation (M-1.14)] gives

d
i ( / £1£§fd£) =0. (175)

Thus, from Egs. (174) and (175), we have

/ SEFAE=0 (0< X, < o0). (176)

For the boundary condition (285) with the conditions (286a)—(286¢) and
(289), the following inequality holds at X; = 0 [Eq. (308) with pv; = 0, vy = 0,
ng = (17 0, 0)]:65

/ €1/ In(f/ fu)dE <0, (177)

where f,, is the Maxwellian with the temperature T, and velocity v,,; (= 0) of
the condensed phase and the saturation gas density p,, at temperature Ty,, i.e.,

S R—— & (178)
v~ rRT, 2 P\ 2RT, )

65The same equality holds for a simple boundary except that py, in f, is a free parameter
for this case (see Section M-4.4).
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With the aid of Egs. (173) and (176),
[armis/ende < [ & fimr/ends

1
= s /glgffdg =0 atX;=0,  (179)

where ¢ is a constant to make the argument of the logarithmic function dimen-
sionless, whose choice does not influence the result.

On the other hand, from the H theorem, i.e., Eq.(M-1.36), in a time-
independent one-dimensional case,

- / €17 In(f Jco)dé

+ / €1/ In(f /co)de

- / GdX; <0, (180)
X1=0 Xi=00 0

where ) Iy
G:_4m/(f’fi—ff*)ln(ff:>Bde£*d£§0.

From Egs. (168), (173), and (174), the second term on the left-hand side of
Eq. (180) vanishes, that is,

- /ﬁlfln(f/co)dﬁ :/ GdX; <0. (181)
X;=0 JO
Combining the two inequalities (179) and (181), we have
0<— /§1f1n(f/c0)d£ :/ GdX; <0.
X;=0 J0
Therefore, we have
/ GdX; =0, thus, G=0, (182)
0
and
/glfln(f/co)dé =0.
X1=0

From Eq. (182), f is Maxwellian in 0 < X; < oo, and Eq. (171) is reduced to
£0f/0X; = 0. That is, f is a uniform Maxwellian. From the condition (168)
at infinity and Eq. (173), the solution is to be in the form

_ Poo £+ (& — v200)? + (&3 — V300)?
1= Griryr O (_ 9RTw

) (0 < X; < ).

(183)
From the uniqueness condition of Eq. (286¢), the Maxwellian that satisfies the
boundary condition (286¢) is given by Eq.(178). Thus, the parameters in
Eq. (183) have to be®

V2o = V300 = 0, pPoc = puw, Too = Tw,

66For a simple boundary, we can choose ps at our disposal, because p in Eq. (M-1.27c) is
arbitrary.
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and the solution is given by Eq. (172).

The same statement holds for the linearized Boltzmann equation with the
corresponding general boundary condition (M-1.112) on an interface of the gas
and its condensed phase. The temperature T, of the condensed phase and the
saturation gas density p,, at temperature T), are, respectively, taken here as the
reference temperature Ty or 7, = 0 and the reference density py or w, = 0.57
The linearized Boltzmann equation is given in the form

G52 = £(9) (0<n < o0). (184)
n
The boundary condition on the interface is given by Eq.(M-1.112) with the
supplementary conditions (i), (ii-a), and (ii-b) as

E(Q)é(n.¢) = /C _ Enf€.C)0m CIBCIAC, (6> 0) atn=0. (189

The condition at infinity is

601.0) = w2+ (= 3 ) e wsmvoo (180

where weo, Ui and 7o, are some constants and 7 = 1 /k (= 2X1/v/7y). Then,
the solution of the boundary-value problem (184)-(186) exists when and only
when

Woo =0, Ujso =0, Too =0, (187)

and the unique solution is given by
¢ =0. (188)

The proof can be given in the same way as the preceding proof for the
nonlinear case. From the conservation equation (M-1.99), i.e., Qu;/9n = 0, and
the condition of absence of evaporation or condensation on the condensed phase
(u1 = [G1¢Ed¢ = 0 at n = 0%%), we have

"y = /§1¢Edcj —0 (0<n<o0). (189)

Thus,
Ujoo = 0. (190)

From Egs. (186) and (190),

/ (1¢°Ed¢ =0 at infinity. (191)

67We take the reference density p,, in contrast with the case of a simple boundary. This is
only for convenience of explanation. For this choice, wy, term disappears in Eq. (185) but weo
term appears in Eq. (186)

68The boundary where this equality holds irrespective of a situation is the definition of a
simple boundary.
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According to the second part of Section M-A.10,%°

[awpac<o a0 (192)

The linearized-Boltzmann-equation version of the equation for the H function
given by Eq. (M-1.115) is expressed as

0 9 B
%/Cl¢ Ed¢ = LG, (193)

where )
LG=—1 / EE.(¢/ + ¢, — ¢ — 6,)2BdQd¢,d¢ < 0. (194)

From Egs. (191), (192), and (193) with Eq. (194), we find that LG is to be zero
and that ¢ is a summational invariant or the linearized form of a Maxwellian,
ie.,

¢ =w + 2(Couz + (3uz) + <C22 - 2) T,

where Eq. (189) is used. Then, Eq. (184) reduces to (19¢/9n = 0, and therefore,
w, ug, uz, and 7 are constant. In view of Eq. (186), the constants w, us, us, 7,
and ¢ are given as

W= Woo, U2 = U200, U3 = U3co;, T = Too,

¢ = Woo + 2(CoUaco + (3U300) + ((;2 — 2) Too-

Owing to the supplementary condition (ii-b) to the boundary condition (M-
1.112) together with Eq. (190), we have™

Woo = Oa Uloo = 07 U200 = 07 U3oo = Oa Too = 07
$»=0.
(Section 4.2: Version 5-00)

4.3 Onsager relation (Section M-4.5)

In the last paragraph of Section M-4.5, a short comment on the Onsager relation
for the solution of the Boltzmann equation is given. Recently, comprehensive
discussion of the symmetry of solutions of the linearized Boltzmann system and
the Onsager relation in the system were given by Takata [2009a,b]. Making

69This is the linearized-Boltzmann-equation version of the inequality (308) and valid for
both types of boundaries, a simple boundary and an interface. For the case of an interface,
an additional condition (M-A.271), which corresponds to Eq.(289) in the nonlinear case, is
imposed on the kernel K (see also Footnote 108 in Section 8.4.2).

00wing to the difference of the supplementary condition (ii-b) of Eq.(M-1.112) [or
Eq. (185)] for an interface from the condition (iii) of Eq.(M-1.107) for a simple boundary,
w is determined for an interface. For a simple boundary, woo can be chosen at our disposal.
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use of the property of the linearized kinetic boundary condition (see Sections
M-1.11 and M-A.9), Takata considered three kinds of the Green function of the
time-independent linearized Boltzmann equation, and showed symmetric rela-
tions among them. On the basis of this symmetric property, various symmetric
relations of solutions of the time-independent linearized Boltzmann system were
derived. Then, he proceeded to the discussion of the Onsager relation of the
Boltzmann system. The incompleteness of M-Sharipov [1994a,b] was also men-
tioned there. Further, he tried to extend his works to time-dependent problems
(Takata [2010]).

(Section 4.3: Version 10-00)

5 Chapter M-5

5.1 Flows induced by temperature fields and video files of
their experiments

The addresses of the videos of the experiments on flows induced by temper-
ature fields in Kyoto University Research Information Repository, which are
permanent, are listed here.
Thermal creep flow
The Web address in Footnote M-5 in Section M-5.11 should be made by
https: //hdl.handle.net /2433 /120983,
which is the video file of a part of the experiments in Sone [1991].
(Section 5.1: Version 11-02)
The thermal creep flow [see Eq. (M-5.1)], i.e.,

o 7TRTO 1/2 £0 dTw
U1K1< 9 ) TOE’ (195)

vanishes in the limit that the mean free path tends to zero (¢p — 0).7! At
the standard state, the mean free path is small but finite, and therefore, the
thermal creep flow does not vanish. The mean free path is related to the thermal
conductivity A by Eq. (M-3.71), i.e.,

_ 4(2RTy)'/?
5v/my2Rpo

The above-mentioned formula of the thermal creep flow where the mean free
path £y replaced by the thermal conductivity A with the above relation, i.e.,

0 (196)

4K\ dT,
v = — et 197
' 5y2p0 dX1 (197)

makes the thermal creep flow more accessible. This kind of replacement can be
made between mean free path and viscosity [see Eq. (M-3.71)].

" Except in the thin layer adjacent to the boundary, Y7 is negligible.
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Thermal edge flow
The Web address in Footnote M-13 in Section M-5.14 should be replaced by
https: //hdl.handle.net/2433/122357,
which is the video file of a part of the experiments in Sone & Yoshimoto [1997].
(Section 5.1: Version 11-02)

6 Chapter M-7

6.1 New reference

A mathematical work related to the subject in Chapter M-7 was published
recently:
Liu, T.-P. and S.-H. Yu (2013), Invariant manifolds for steady Boltzmann
flows and applications, Arch. Rational Mech. Anal. 209, 869-997.
(Version 12-00)

7 Chapter M-9

7.1 Processes of solution of the equations with the ghost
effect of infinitesimal curvature (July 2007)

The way in which Eqs. (M-9.33)—(M-9.39b) or Eqgs. (M-9.49a)—(M-9.50e), includ-
ing the time-dependent case with the additional time-derivative terms given
by Eq.(M-9.42) or the mathematical expressions next to Eq. (M-9.59), contain
the pressure terms, (Ppso,Ps2) or (Poi, Poz, Pao), is different from the way in
which the Navier—Stokes equations (M-3.265)—(M-3.266¢) do the pressure terms,
(Ps1, Ps2). In Section M-9.4, we consider the time-independent solution of
Eqgs. (M-9.49a)—(M-9.50¢e) [Egs. (M-9.56)-(M-9.57d)] that is uniform with re-
spect to . Here, it may be better to explain how a solution of Egs. (M-9.33)—(M-
9.39b) or Egs. (M-9.49a)—-(M-9.50¢e) in a general case or a time-dependent solu-
tion that depends on x or Y is obtained. Incidentally, the boundary conditions
for the time-dependent case are derived in the same way as in Section M-3.7.3.
Naturally from the derivation of the equations, the domain of a gas is in a
straight pipe or channel of infinite length whose axis is in the x or x direction.

7.1.1 Equations (M-9.33)—(M-9.39b):

Take Eqgs. (M-9.33)-(M-9.39b) with the additional time-derivative terms given
by Eq. (M-9.42), i.e.,”?

O0Peo _ Opeo
Jy 0z

=0, (198)

?Equation (M-9.33) is replaced by its equivalent form (198).
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ot ox oy 0z (199)
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5pe0 0o 5 . <A Mso . OTso . 8TGO>

9 of 5[’60 UxGOTX + UyGlTy + UZGIW
_ Obeo 05]560
ot v ox
59 (, Tso) 50 [ dTeo dvpe0 [ Dizso
43y<2 Dy >+432<2 RE >+ 1[( Dy )+ 2: )|
(203)
and the subsidiary relations
Peo(x ) = peoTeo, (204a)

L2 L2
I 21 (O0ze0 | Olye1 | Obe1 Iz | 0Tso s
p62_p62+3(8x * oy + 3z)+3ﬁ60<3y>+<82>
2 [0 (. 0Ts0) 0 (. 0Tso
19 (s L 2
+3]560 [32/( 3 oy >+8z< 370z >

2Ig dipso | dipso |
— 204
3hso [( Oy ) + ( 0z ) ’ (204D)

where T'y, I'y, T's, I'7, I's, and T'g are short forms of the functions Fl(Tgo),
I'y(Tso0), - -, T9(Teo) of Teo defined in Section M-A.2.9.

Consider the solution of the initial and boundary-value problem of Eqs. (198)—(204b).
Let p, 9;, and T (thus, p = pT') at time ¢ be given; thus, peo, dze0, Vys1,

v.e1, Teo (Pso), etc., including pee, are given. Then dpeso/0t, diueo0/0t,

Dtye1/0t, 0i.s1/0t, and 3T60/8f at t are given by Egs. (199)-(204b); thus,
the future pso, Vze0, Uys1, Uze1, and Teo (also Peo) are determined. However,

the future peo is required to be independent of y and z, as well as pso at i,
owing to Eq. (198). Taking this into account, we will discuss how the solution
is obtained by this system consistently.

First, transform Eq. (203) with the aid of Eqgs. (199) and (204a) in the fol-

lowing form:

Opso

where

— =P, 205
Y (205)
_ 5. [(0Olzs0 | Olye1r | OUze1) .  Obeo
P= 3P0 ( ox + dy + 0z ) Veo ox
510 [, 0Teo), @ (. 0Tso 2 | dtweo | (Diseo
- |=— (T — | =T .
+6 8y<28y>+8z<282> +31[( 8y)+( 82)
(206)
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For peo to be independent of y and z [see Eq. (198)], P as well as the initial data
of pso is required to be independent of y and z. Noting that psg is independent
of y and z, and taking the average of Eq. (206) over the cross section S of the
pipe or channel,” we have another expression B of P, explicitly uniform with

respect to y and z, i.e.,

T = 5 90ze0 . 5 31760 0 3T®0 L 9 r Ts0
3 oy Pso = taso Ox 6 8y > 0y 0z\"? oz
+ gpl K (%xco 8cho 1 (207)

3 oy
A/Adydz// dydz.
S S

The expression (207) is noted to be independent of U1 and ¥,s1. The two
expressions (206) and (207) must give the same result, i.e.,

where

P =%,
or
5. (Oigeo  Ovys1  Olze1) .  Opso
32760 ( Dy + oy + Ep ) Uz&0 Oy
5(0 (. 0Tso) , 0 [, 9Teo 2 |(90ue0Y | (Dtueo )
+6 8y<r2 8y>+3z<r2 82) +3F1K dy >+ 0z
=P, (208)

when Eq. (198) holds, and vice versa. The condition (208) for all # is equivalently
replaced by the two conditions that the initial data of pgo, Teo, U260, Vya1,
and 9,1 satisfy Eqgs. (198) and (208) and that the time derivative of Eq. (208)
holds for all ¢, i.e.,

oP 0P

ot ot
Using Egs. (199)—(202) and (205) for dpeo/0t, Otueo/0t, Oiye1/0t, Di.e1/0t,
and 9peo/0t (psodTs0/dt = dpso/dt — Teodpeo/dt) in P/t derived from
Eq. (206), we find that 9P /01 is expressed with peo, Dzs0, Uye1, U261, Pso, and
Do in the form

(209)

oP 5. [0 (1 8}5%2) ) ( 1 ap;gQ)]

- |\ +=|— +Fn 210

o — 6" {831 <peo dy 9z \ peo 02 b (210)
73(i) In a channel, where the gas extends from z = —co to z = oo, the integral [ Adydz per

unit length in z, per a period in z, etc. should be considered. Otherwise, it can be infinite.
(ii) Note that 9ys1ny + 9,6112 = 0 on a simple boundary where n; = (0,ny,n,) is the
normal to the boundary.
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where Fn; is a given function of peo, Uzs0, Vys1, U261, Deo, and their space
derivatives. The expression (207) of P being independent of 0ys; and 0.1,
its time derivative O9/0% does not contain 99,e1/0t and dv,e1/0t. Therefore,
with the aid of Eqgs. (199), (200), and (203), & /0t is expressed with peo, V20,
Uyes1, U261, Peo, and their space derivatives, i.e.,

0
6—? = Fns(ps0, U260, Uye1, U261, Pso, and their space derivatives),  (211)
where Fny is a given functional of its arguments. From Egs. (209), (210), and
(211), we have
1 0p¢ 1 0p¢
2 <Aap62> + 2 (A8p62) = Fn, (212)
0y \ peso Oy 0z \ pso Oz

where Fn = 6(Fns— Fny)/5peso, and therefore, Fn is a given functional of pep,
U280, Uys1, U261, Peo, and their space derivatives. This is the equation for pg,
over a cross section of the pipe or channel.

The boundary condition for p&, on a simple boundary is obtained by mul-
tiplying Egs. (200)-(202) by the normal n; = (0,n,,n;) to the boundary; In
this process, the contribution of their time-derivative terms vanishes because
Uys1My + U.g1n; = 0; Then, the ny0p%,/0y + n.0p%,/0z is imposed as the
boundary condition. Thus, pg, is determined by Eq. (212) except for an addi-
tive function of ¢ and y. With this p%&, substituted into Egs. (201) and (202),
8[3@0/87?, 609060/8& 8’1A}y61/8£, a@zGl/af, and 8]360/81? are determined by
Eqs. (199)-(204b) independently of the additive function in p&, in such a way
that 9(0pso2/0y) /0t = 0(0pso/0z)/0t = 0 and (AP /0y) /ot = O(OP/0z)/0t =
0. That is, the solution (pso, Vze0, Uys1, U261, T@o) of Egs. (198)—(204b) is deter-
mined by Eqgs. (199)—(204b) with the aid of the supplementary condition (212),
instead of Eq. (198), when the initial condition for pso, Uzs0, Uys1, U-e1, and
Teo is given in such a way that peso (= ﬁ@oT@o) and P are independent of y
and z.

Equations (198)—(204b) are the leading-order set of equations derived by
the asymptotic analysis of the Boltzmann equation. The analysis of the higher-
order equations not shown here is carried out in a similar way. The equation for
Opes2/0t, corresponding to Eq. (205), is derived at the order after next. However,
owing to the consistency of pgo, pe2 is already determined by Eq. (212) except
for an additive function of y and #. The situation is similar to that at the
leading order. That is, pgo and peso are, respectively, determined by Egs. (198)
and (212), each with an additive function of y and # and also by Egs. (205)
and the counterpart of Eq. (205) at the order after next. Thus, the higher-order
analysis can be carried out in a similar way. The results are that an additional
initial condition and an equation for pe,, the counter part of Eq.(212), are
introduced and that the condition (212) is required only for the initial data.
The higher-order consideration does not affect the determination of the solution
ps0, Te0, zs0, Dys1, and 0,e1 (thus also peo).

To summarize, the solution (ﬁ@o, ’IA)wgo, @y61, @zGla Tgo) of Eqs. (198)*(204}3)
is determined by Eqs. (199)—(204b) with the aid of the supplementary condition
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(212), instead of Eq. (198), when the initial data of ps0, Uzs0, Oys1, U261, and

Tso are given in such a way that peo (= ﬁeofgg) and P are independent of y
and 2.7 The results are not affected by the higher-order analysis.
7.1.2 Equations (M-9.49a)—(M-9.50e):

Take Egs. (M-9.49a)—(M-9.50e) with the additional time-derivative terms given
in the first mathematical expressions after Eq. (M-9.59), i.e.,

0Py O0Fyn 0Py

ax oy =5, =0, Po=w+r, (213a)
8552 = 8(1;22 =0, (213b)
%l;ﬁ + %y + (?;‘ZZ =0, (214a)
%—&-uz% +uy%+uzgtgz—;a£g2+él(a;;;c+é§;£>, (214b)

(214c)
%+uw%€ +uyaal; +u288u; :_%8{1;50 +% (%2;; +8;;Z), (214d)

o2 T o2 (214e)

ot 5 of

or  20Py or or or 7 0’ 0%t

+u$8>2+uy8y+u282_2< )

The qualitative difference of this set of equations from the set (198)-(204b) is the

absence of the time-derivative term in Eq. (214a) that corresponds to Eq. (199).
Consider the solution of the initial and boundary-value problem of Egs. (213a)—(214e).

Let g, uy, u,, and 7 at £ be given in such a way that Eq.(214a) is sat-

isfied. Integrating Eq.(214a) over the cross section of the channel or pipe

[/ Eq. (214a)dydz] , we find that [ u,dydz depends only on £, i.e.,

/(8um/8)2)dydz =0, (215)
s

where S indicates the cross section. Applying Egs. (213b), (214a), and (215) to
the equation @ [Eq. (214b)dydz/dx, we have 9? Py /0X* as

32P02 1o} 8u2 8211,1 82%
= |9 = 21
e ax{ ax ”1<ay2 M )] (216)

741f P is independent of y and z, P =P by definition.
75See Footnote 73, with 9ye1 and 9,1 being replaced by uy and us.
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where

A/Adydz// dydz.
S S

Thus, 0Py2/0X and Pys are determined if they are specified at a point in the gas.
Here, we consider this case.”® Using Eq. (214a) in the sum of 9[Eq. (214b)]/d¥,
O[Eq. (214¢)] /0y, and J[Eq. (214d)]/0z, we obtain the equation for Py in the
form

0?Pyy 9Py
y? 022

= Fn(ug, uy, us, and their space derivatives), (217)

where Fn is a given functional of the variables in the parentheses, and the time
derivatives are absent owing to Eq. (214a). Thus, the right-hand side of Eq. (217)
is known. This equation is the Poisson equation for Py over the cross section
S. Its boundary condition is obtained in a way similar to how the condition
for pg, in Eq. (212) is derived. Thus, Py over each cross section is determined
except for an additive function of ¢ and y. This ambiguity does not influence
6P20/6y and 8P20/8z.

With Py; and Py prepared above into Egs. (214b)—(214e), the time deriva-
tives Ou,/0t, Ou,/Ot, Ou,/0t, and O7/0t are determined in such a way that
(0uy /0% + Ouy /Oy + Ou,/0z)/0t = 0 owing to the above choice of Pay.””
Thus, the solution (ug,uy,u.,7) of Egs.(213b), (214a)-(214e) is determined
by Egs. (214b)—(214e) with the aid of the supplementary conditions (216) and
(217) for Py and Py, instead of Egs. (213b) and (214a). This process is nat-
ural for numerical computation. The undetermined additive function of x and
t in Py, which does not affect the solution (ug, Uy, us, T), is determined by the
higher-order equation derived from that for dv,e2/0t (see Section 7.1.1), in a
way similar to that in which Py is determined by Eq.(214b). In the higher-
order equation, Py plays the same role as Py in Eq. (214b); Equation (217)
corresponds to Eq. (213b), and Py and Pyy are determined by these equations,
each with an additive function of Y and .

7.2 Notes on the equations with the ghost effect of in-
finitesimal curvature, Eqgs. (M-9.33)—(M-9.39b)

Here, the process of analysis where the curvilinear coordinates x, y, and z in
Egs. (M-9.33)-(M-9.39b)"® are identified with rectangular ones is explained in
more detail.

76(i) Imagine the case of the Poiseuille flow.

(ii) Here, P (thus, Pp1) is specified at some point. Then, Py is a given function of £.

""Note that Pp1 is known (Footnote 76).

"8Equations (M-9.33)-(M-9.39b) are those for time-independent states. The corresponding
equations for time-dependent states are given by adding the time-derivative terms (M-9.42) to
them or by Eqs. (198)—(204b). When Eqgs. (M-9.33)-(M-9.39b) are mentioned in this section,
they mean the equations with the time-dependent terms.
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7.2.1 The curvilinear system (z,y, z)

The coordinate system (z,y,z), introduced in Eq.(M-9.4a), is practically a
cylindrical one, and is related to a rectangular one (x1, z2,x3) as

mlz(ﬁ—ky)sin%, aigz(ﬁ—l—y)cos%—ﬁ, T3 = 2, (218)

where I = La/D. Tt obviously reduces to the rectangular one (21, x2,23) in
the limit L — oo for any finite range of (z,y,2). In Sections M-9.1 and M-9.2,
we studied the asymptotic behavior of the Boltzmann system in the limit that
k— 0and L — oo simultaneously under the condition

Lk? = ¢, (219)

where ¢ (> 0) is a constant. In this process, we consider the range of (z,y, 2)
when the range of 0 satisfies the conditions

— 00 < Lh < o0, (220a)
Lo? -0, (220b)

where R
0=—z/L. (221)

The three conditions (219), (220a), and (220b) are satisfied if we take the range
of 6 to be

0] < 6o, (222)

where 6 tends to zero as k£ — 0 under the two conditions
0p/k* = o0 as k — 0, (223a)
bo=o0(k%) (1<a<?2), (223b)

for some « in the above range. In the limit £ — 0, the variable x covers (—oo, c0)
for the above range of 6, and the system (z,y, z) reduces to the rectangular
system (x1, 22, x3), i.e., (z,y,2) = (z1,72,23).”% In the analysis in Section 7.2,
we further limit the bound 6y of the range of 6 to

b =0(k%) (3/2<a<?2), (224)

instead of Eq. (223b). Under the condition, the system (z,y, z) converges faster
to the rectangular system (x1, zo,23) as will be seen below.
From Eq. (218), we have

Oxr, Ox L+ Yy T .
E 873/ = COSs z Sin E
om o | = | ey B ik (225a)
ax ay —T Sin z COS Z

"When § = +k, y = 0 corresponds to 3 = —c?/2 in the limit k — 0. When 0 = +k?, z
corresponds to £1 = Fc? in the limit. The inequalities (223a) and (223b) are required for the
system (z,y, z) to approach the rectangular system.
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62x1 821'1 821}1 L+y .z 1 x
—=— S

Ox? 0zdy ayQ B 72 7 7 7
Prg  Pxy Py | L+y x 1 . =z . (225b)
0x2  OzOy Oy? - 72 coS 7 _f sin I 0

From Egs. (218), (225a), and (225b), noting the relations (219), (221), (222),
and (224), we obtain the following uniform bounds for small k of the difference
between the two systems (x,y, z) and (21, 22,23) in —co < & < 00 and |y| < ag
(ap : a constant independent of k):80

0 < |z — 1| < o(k%), 0<y—xy < ok, (226a)
Oz O(k2) Dy
I R < |28 < i 226
oG < O 0P o). o)
0< |22 < o(k®) 0<1- 272 o(k2<) (226¢)
~ oz |~ ’ - dy — ’
0?14 o(k?Te) 9?z1 _ O(k?) 0?1y
< < = 226d
’ ox? | = 2 0< dxdy — 2 0y? 0 (2264)
?xy  O(K?) 0214 o(k?Te) 0219
_ < < =0. 22
0< dx2 = 2 ‘axay -2 7 oy? 0 (2260)

7.2.2 Process to identify (z,y,z) in Egs.(M-9.33)—(M-9.39b) with
(1’1,.%'2,1'3)

The flow velocity components (9,g0,0,0) in Section M-9.2 coincide with those
(01, g, 03) of the rectangular system, i.e., (01,02, 03) = (0z&0,0,0) in the limit
k — 0 described in Section 7.2.1. In the higher orders in k, differences between
the two systems, coordinates and velocity components, are introduced. For a
nearly parallel flow considered here, some of the series of the conservation equa-
tions in the expansion in k degenerate. Owing to the degeneracy, the series of
solutions in the expansion is obtained by staggered combinations of equations.
That is, the limiting velocity field (9,s0,0,0) is determined together with the
next-order components Uyg1 and 9.g1 owing to the degeneracy of the momen-
tum conservation equations by the equations (M-9.33)—(M-9.39b), where the
variables (x,y,z) are identified with (z1,22,23). Some notes should be given

80i) Dependence of the bounds on the constant c? in Eq.(219) is made explicit for the
convenience to the discussion in Section M-9.3.
ii) For any finite z, or |z| < Cp, the bound is tighter; for example, 0 < |z — z1] <
CoO(k?)/c?, 0 <y —xp < C2O(K?)/c2.
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to identify (x,y,z) with (z1,22,23).8" The set of Eqgs. (M-9.33)—(M-9.38) is
the combination of the component equations at different levels of expansion
in k of the conservation equations. For the momentum conservation equations
(M-9.33), (M-9.35)—-(M-9.37), equations of three different levels appear: Eq. (M-
9.33) is at the level of the order of unity, Eq. (M-9.35) is at the level of the order
of k, and Egs. (M-9.36) and (M-9.37) are at the level of the order of k2. The
deviation (z,y, z) from (21, zq, z3) for k # 0, including those in the arguments
of functions, introduces residual contributions to equations at higher-order lev-
els. In the mass and energy conservation equations (M-9.34) and (M-9.38), the
variables (z,y, z) can be identified with (z1,z2, x3) because they appear as the
nontrivial leading-order equations. The momentum conservation equations are
vector equations. Their z1, o, and z3 components are related to their z, y,
and z components by the relation

ap \ [ cosf —sinf Qg
( as ) - ( sinf  cosf ) < ay )’ (227a)
as = a, (227b)

where a1, a9, and ag are, respectively, the z1, x2, and x3 components of a vector,
and ag, ay, and a, are its =, y, and z components.

For the further analysis, we prepare the expressions of dpeso(z,y, z)/0y and
Opso(x,y, z)/0z in the rectangular system. Owing to the chain rule of differen-
tiation,

aﬁGO(xvyaz) 6p@0(xi(x,y,z)) a'/I"l 8]360(37»;(35,:1],2)) 8.%‘2
= - —_ 22
dy o oy | s )
8}560(557y7z) o aﬁGO(xi(xayvz))
0z N Oxs ’ (228b)
where
x1 = ka1, (229)

and pgo is the function pgg expressed with the rectangular variables (z1, z2, z3).
In Egs. (228a) and (228b), it should be noted that x; and z are independent
of z, and z3 depends only on z. In view of the bound of dz1/dy in Eq. (226b),
the first term on the right-hand side of Eq.(228a) is bounded by o(k®*1).82

81Equations (M-9.33)—(M-9.39b) are derived from the Boltzmann equation (M-9.5) with
(z,vy, 2) as its independent space variables. In this process, the relation between (z,y, z) and
(z1, 22, z3) is not taken into account until the last step. Their relation depends on k as shown
in Section 7.2.1. With this relation, we have to rewrite the equations expressed with (z,y, z)
into the equations expressed with (z1,z2,x3). After this process, it is seen that (z,y, z) can
be identified with (z1,x2,23) in Eqgs. (M-9.33)—(M-9.39b). This process is explained in more
detail.

82The derivative 0/0x1 agrees with 8/0x at the leading order in k. In fact,

9 _ox 0 9y 9
o1 Oxadx Ox1 0y’
and from Egs. (225a), (226b), and (226c¢), the estimates of 9x/0x1 and dy/Ix1 are obtained
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Thus, it does not contribute to the result up to the level of the order of k2, and
can be neglected in the present discussion, where the momentum conservation
equations up to the level of the order of k2 are considered. For the evaluation
of the second term of Eq. (228a) and Eq. (228b), we put

T :Z‘+X(l‘,y), J,‘g:y—f—Y(l‘,y), (230)

where the bounds of X and Y for small k are given by Eq. (226a). Then, the
derivatives of pgo with respect to zo or x3 at (x,y, z) in Eqgs. (228a) and (228b)
are

Ieo(Ti(r,y,2)) _ Opso(xi)

amQ ax2 r1=x+X,x2=y+Y,x3=2
_ Opso(xi) +(X8+Ya> IPeo(;)
Oz (z1,22,23)=(2,y,2) Oz Oz Oz (z1,22,23)=(2,y,2)

+...7

(z1,22,23)=(2,y,2)

1 0? o? 0%\ Opso(xi)
L (x> Loxy y2 L) GPeolzi)
3 ( 022 T Baiom, ax§> D5

(231a)

Opso(zi(z,y,2))  Obso(zs)

8.133 6])3 r1=x+X,z2=y+Y,x3=2
_ (9}560(1'1) —|—<X8+Ya) 6]560(9’}1)
023 |(a1,0s,00)=(awe) \ OT1 0%2)  OT3 (g, 4y a0)=(a9.2)

4o

(z1,22,23)=(z,y,2)

1 (g 0 5 9\ Opsolwi)
— (X% +2XY Y2 ) =2
T3 ( 0z? * 02101 * 89&3) Dz

(231b)

With the above preparation, we consider the momentum conservation equa-
tions in the (x1,x2,23) system. Let A be an equation, and be rewritten in
the form A = 0 with all the terms on the right-hand side shifted to the left.
With this notation, first, take the zo and x3 components of the momentum

after some manipulation as

dx/0x1 =1+ O0(K*), 0y/ox1=o(k*").
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conservation equations®®

3Eq. (M-9.33), cos 0 + 3Eq. (M-9.23), k cos 6 + Eq. (M-9.35) k sin 6
+ Eq. (M-9.36) k%cos § 4+ Eq. (M-9.35+) k% sinf = 0, (232a)
1Eq. (M-9.33), + $Eq. (M-9.23), k + Eq. (M-9.37) k* = 0. (232b)

Here, Eq. (M-9.33), and Eq.(M-9.33). are, respectively, the two equations of
Eq. (M-9.33), i.e., 9ps0/0y = 0 and 9pso/0z = 0; A similar convention applies
to Eq. (M-9.23), and Eq. (M-9.23); Eq. (M-9.35+) is the equation correspond-
ing to Eq. (M-9.35) to be derived in the next order in k, i.e., Eq. (M-9.22c) for
¥ = (. From Eqgs. (232a) and (232b) at the level of the order of unity, noting
Eqgs. (228a) and (228b) with their note and the relations (231a) and (231b), we
have Eqs. (M-9.33) with (x,y, z) identified with (21, z2,x3), i.e.,

Opeo(ri) _ Opso(xi)
81‘2 6.233

Owing to Egs. (233), (231a), and (231b), the residues of 9pso/dy and Ipeso/dz
in Eqgs. (228a) and (228b) are of the order of o(k?). A similar discussion applies
to the second terms on the left-hand sides of Eqs. (232a) and (232b). The third
term in Eq. (232a) is of the order of o(k'T®) because sin@ = o(k®) [Eq. (224)],
and the last term is of higher order than the third. Therefore, Eqs. (M-9.36)
and (M-9.37) where (x,y, z) are identified with (z1, 22, x3) in the arguments and
derivatives are derived from Eqs. (232a) and (232b) at the order of k2. Next,
take the x; component of the momentum conservation equations

= 0. (233)

—3Eq. (M-9.33),, sin — 3Eq. (M-9.23),, ksin 6+ Eq. (M-9.35) kcos 6 = 0. (234)

The first and second terms on the left-hand side of Eq. (234) are of higher order
than the third owing to the factor sin . Thus, Eq. (M-9.35) with (z,y, z) identi-
fied with (1,22, z3) in the arguments and derivatives is derived from Eqs. (234)
at the order of k. To summarize, Eqgs. (M-9.33)-(M-9.39b) are the equations
in the rectangular coordinate system (z,y,z) that determine the rectangular
velocity (02¢0,0,0) in the limit £ — O together with 9,g1 and ¥,&1, whether
tys1 and U,e1 are rectangular components or not.

83{) Note that Eqgs. (M-9.33)—~(M-9.37) [and Egs. (M-9.23) and (M-9.35+)] are derived from
the solvability conditions (M-9.22a)—-(M-9.22c). The solvability conditions are the expansion
form in k of the conservation equations (M-1.57)—(M-1.59) arranged for the nearly parallel flow
considered in Sections M-9.1 and M-9.2. The equations corresponding to ¥ = (s, ¢y, and (.
are, respectively, the x, y, and z components of the momentum conservation equations. Their
1, 2, and x3 components are derived from them with the aid of Eqs. (227a) and (227b).
In this process, the summation of terms of different orders of k has to be considered because
Egs. (M-9.33), (M-9.35)—-(M-9.37) [and Eqs. (M-9.23) and (M-9.35+)] come from equations at
different orders of k.

ii) It should be noted that Eq.(M-9.33),0r. and Eq.(M-9.23),0r. are, respectively,
the doubles of Egs.(M-9.22a) and (M-9.22b) for ¢ = (y or (.. In fact, the left-hand
sides of Eqgs.(M-9.22a) and (M-9.22b) for ¢ = (y or (, are (1/2)0pso/dy or dz and
(1/2)0ps1/0y or dz. Thus, the factor 1/2 is put in front of Eq. (M-9.33) and Eq. (M-9.23) in
Eqgs. (232a), (232b), and (234).
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7.2.3 Discussion

According to Egs. (227a) and (227b), the z1, x2, and 23 components of the flow
velocity, i.e., 91, Do, and 5 are expressed as®

01 = Ogs0 o8O + - - | (235a)
b2 = (tye1 cosO)k + ze08in0 + - - -, (235b)
b3 = U1k + - . (235¢)

Noting that cos@ = 1 — o(k?*) and sin 0 = o(k®) [Eq. (224)], we have

010 = Dzs0, U20 =0, 030 =0, (236a)
U21 = Uys1, V31 = Vze1- (236b)
where 01= 019+, U9 = Ugg + U21k + -+, and 03 = U39 + g1k + ---. If

we take Eqs. (M-9.33)—(M-9.39b) with (z,y, z) identified with (a1, z2,23) as the
equations in the rectangular system from the above discussion, one easily raise a
question where the term peo92g,/c? on the left-hand side in Eq. (M-9.36) comes
from.®> The conservation equations (M-1.57)—(M-1.59) in a rectangular system
have no such term in the convection term. To understand this, we have to
examine the second term 9,go sin 6 on the right-hand side of Eq. (235b), which
comes from the infinitesimal curvature of the flow (9,s0,0,0), more carefully.

Owing to Egs. (219) and (221), the leading-order term for small & of ¥,g0 sin 6
in Eq. (235b) is expressed in the form

bre0sind = —i,e07/L = —kxizeo0/c?, (237)

where the variable y is used because it is a natural variable, instead of z1, in
the analysis of Eqs. (M-9.33)—(M-9.39b).%6 Then, from Egs. (235a)—(235c¢),%”

(010, 020, U30) = (Uzs0,0,0), (238a)
U921 = Vye1 — c%@xeo, (238b)
V31 = V.01, (238¢)

In the range (224) of  of our interest, the second term on the right-hand side of
Eq. (238b), which comes from the infinitesimal curvature of the flow (9,s0, 0, 0),
is negligibly small, i.e.,

X ~ a—

?UIGO = O(k 1);

84Here, the arguments x, y, and z are identified with the rectangular components x1, z2,
and x3, as noted in the preceding paragraph.

85There is a similar term proportional to vg/r in the convection term of the r component of
the momentum conservation equation in the cylindrical coordinate system [see, e.g., Eq. (M-
9.73b)]. This is due to the curvature of the coordinate line r = const, but not to the curvature
of a flow. The term is not zero even for a straight flow. There is a term proportional to v,vg /7
in the convection term of the # component [see, e.g., Eq. (M-9.73c)]. When a flow is along a
coordinate line » = const, the term v,vg/r vanishes because v, = 0.

86The length scale of variation of the variables 9,s0, Dys1, ete. is of the order of unity in
the variable x but of the order of 1/k in z or z;.

87Note that cos = 1 — k?x2/2c* 4 --- .
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because x = kx = —kLO = o(k®~1). However, its derivative with respect to x
is of the order of unity, i.e.,

gxﬁzGO - 1260 &aﬁIGO
Ox 2 c2 2 Oy

)

where the first term on the right-hand side is of the order of unity and the second
is infinitesimal [o(k*~1)]. If we express Eq. (M-9.36) in the variables 1, 921, and
31 in place of 0,60, Uys1, and 0.1 with the aid of Egs. (238a)-(238c), the term
ps02eo/c? in Eq. (M-9.36) disappears in the equations in the new variables 91,
091, and ¥31, and its convection term (or its left-hand side) reduces to one of the
momentum conservation equations [Eq. (M-1.58)] in the rectangular coordinate
system.

The above somewhat strange relation between a functional value and its
derivative is due to the present situation where an infinitesimal range x =
o(k“~1) is interested in, though it is a straight channel or pipe with infinite
length (in x1). In this range of x, the coordinate system (z,y, z) can be identified
with the rectangular coordinate system (z1,22,23). Equations (M-9.33)—(M-
9.39b), without (x,y, z) identified with (z1,22,z3), are valid for any range of
X, and their process of solution for time-dependent problems is explained in
Section 7.1.1. The corresponding process of solution in the infinitesimal x range
or at the given point xy = 0 is obtained by paraphrasing the process in Section
7.1.1 in the following way.

Let a set consisting of a and its derivatives 0"a/0x"(n =1,2,3,---) on the
cross section (0, y, z) be indicated by {a}, where a is a quantity or an equation or
equations. Prepare the sets of the equations: {Eq.(199)}-{Eq.(203)} and the
initial data of {ps0}, {0280}, {Uye1}, {0261}, and {Pso}. The time derivatives
{0ps0/0t}, {0t,pe0/0t}, {00ys1/0t}, {00.61/0t}, and {Opeo/0t} are expressed
with {ps0}, {Uze0}, {Oys1}, {0261}, {Ps0}, {Ps2} and their derivatives with
respect to y and z by the sets of equations {Eq. (199)}—{Eq. (203)} with the
aid of the supplementary conditions {Eq. (204a)} and {Eq. (204b)}. The sets of
equations {Eq. (198)}® for all # can be replaced by the conditions {Eq. (198)}
and {Eq. (208)} for the initial data and the set of equations {Eq. (212)} of {pe2}
for all £, whose coefficients and inhomogeneous terms are expressed by {peso},
{tze0}, {0ys1}, {0261}, and {Pso} and their derivatives with respect to y and
2.89 The set {pe2} is determined except the set of additive functions {1} of £.%
This {pe2} being substituted into {Eq. (199)}-{Eq. (203)}, the time derivatives
{0ps0/0t}, {0tpe0/0t}, {00ye1/0t}, {00.61/0t}, and {Opeo/0t} are expressed
with {peo}, {0ze0}, {0ys1}, {U:261}, {Ps0}, and their derivatives with respect
to y and 2. Then, the time evolution of {peo}, {tzs0}, {Oys1}, {P:e1}

881Eq. (198)} are the two sets {9pso/0y = 0} and {0pso/0z = 0}.
89See the discussion from Eq. (205) to Eq. (212) in Section 7.1.1.
90(i) Its boundary condition is of the form {n,0pe2/0y+n.0ps2/02} = {known data} [see
the paragraph following that with Eq. (212) in Section 7.1.1].
(ii) Equation (212) and the boundary condition for $&, can be transformed into those for
Pa2 keeping the property required in the discussion. Thus, they can be used interchangeably.
911n this process, {4} does not contribute to {Eq. (199)}-{Eq. (203)}.
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and {Peo} is determined, satisfying the conditions {Eq. (198)} and {Eq. (208)}
throughout.??

The above process of solution is formally consistent. However, we have to
deal with an infinite series of equations. Generally, the series does not end at a
finite order.?® Exceptionally, the solution that is independent of y is easily seen
to be possible. Further, the series of equations cannot be solved successively
from the lowest order with respect to differentiation 9" /9x™.%* Thus, the infinite
series of equations has to be handled simultaneously. The velocity 70,0 at
(X, ¥, ) in the limit & — 0 is expressed as

R R a’ﬁzeo> 1, <32@x60>
Vzs0 = (VzS0),— +X( + x| —— 4o 239
0 ( O)X 0 3X =0 92 axz =0 ( )

where the solution applies to finite x. In the present case, where x is negligibly
small, the velocity field is expressed as

(240)

@IGO($> Y, z, E) = @IGO(X; Y,z tA) x=0"
where 0,0 expressed in the shrunk variable  is indicated as t,e0(X; ¥, 2, t) with
the semicolon after x in order to avoid confusion with 0,e0(z,y, 2, f) expressed
in 2.%° The solution is uniform with respect to z irrespective of the initial data,
but its variation with time depends on them.

Examples showing the effect of infinitesimal curvature are found in Sone &
Doi [2005, 2007], where the instabilities of the plane Couette and Poiseuille flows
are studied on the basis of Eqs. (M-9.49a)—-(M-9.50e) with the time-derivative
terms [or Egs. (213a)—(214e)|%%, in addition to the example in Section M-9.4 of
the bifurcation of the time-independent plane Couette flow with infinitesimal
curvature. In the papers, the solution that is independent of x, corresponding

92The set {1} in {pe2} is undetermined in this process, but it does not influence {peo},
{tzs0}, {0ys1}; {0261}, and {Pso}. In the higher-order analysis in k, which is unnecessary
for the present purpose, equations for {9pg2/0t}, {004e2/0L}, {8%63/8{}7 {00,s3/0t}, and
{0ps2/0t} are derived, where partially determined {pg2} is in the same situation as {peo}
partially determined by {Eq.(198)}.

9For example, if 0°0ys1/0x° (s = 0,1,--- ,n) is nonzero and nonuniform in a region
of the cross section, 9"F1[Eq. (201)]/0x™*! [or the equation for 9(0"*1o,e1/0x™H1)/04]
contains a nonzero term (9¥ys1/0x)(0" 1 0ys1/0x™0y).  Similarly, the equation for
("1 (00, s1/0y)Ox™ 1) /0t contains a nonzero term (9%dye1/0y0x) (0" 0,s1/0y0X™).
Therefore, 9"t 19,&1/0x™ ! is nonzero and nonuniform.

9For example, O"[Eq.(200)]/0x™ |or the equation for O(0™d,s0/0x™)/0t| contains
D2600" T ipe0/0x™ .

95To present the result of analysis, the variables (z,y, z) are natural for the present problem.
For analysis, the variables (x,y, z) are convenient.

961) Equations (M-9.49a)—(M-9.50e) are the simplified version for small but finite Mach num-
bers and temperature variations of Egs. (M-9.33)-(M-9.39b). They are derived from Egs. (M-
9.33)—(M-9.39b) (see Section M-9.3).

ii) The time-derivative terms are given at the end of page M-465.

iii) The discussion in the preceding two paragraphs can be carried out in a similar way
for these equations. Note the difference of notation owing to the difference of situations in
Sections 7.1.1 and 7.1.2.
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to x in Section 7.1.1, is considered,’”and is found to have the critical point of
stability. Naturally, one can analyze the problems in a rectangular coordinate
system without infinitesimal curvature term [—peo0Zgy/c? in Eq. (M-9.36) or
—u2/C? in Eq.(M-9.50c)]. In this case, one has to take into account of the
dependence on y of the initial and boundary conditions modified according to
the relation

Up = Uy — S5 Us, (241)
corresponding to Eq. (238b).
(Section 7.2: Version 10-00)

7.3 Ghost effect of infinitesimal curvature on the Poiseuille
flow through a pipe

The fluid-dynamics-type equations with the ghost effect of infinitesimal curva-
ture described in Sections M-9.2 and M-9.3 apply not only to flows through a
straight channel between two parallel walls but also to flows through a straight
pipe of uniform cross section. For flows through a channel, the bifurcation of the
time-independent plane Couette flow (Section M-9.4) and the linear stability of
the plane Couette and Poiseuille flows (Sone & Doi [2005, 2007]) are studied.
In this section, we examine the effect of the infinitesimal curvature of the pipe
axis on the Poiseuille flow through a circular pipe.

Here, we take the situation discussed in Section M-9.3, where the Mach
number and the temperature variation are small but finite, and discuss the
Poiseuille flow through a circular pipe. The fluid-dynamics-type equations for
the time-independent case are given by Egs. (M-9.49a)—(M-9.50e), i.e.,

0Py1 0Py 0Py

= — = Py = 242
% 3y 5z 0, Pon=w+r, (242a)
0Py 0Py
= = 242b
oy 0z 0, ( )

97For Egs. (213a)—(214e), the solution in which the variables except Py are all independent
of x but OP/9x is a constant, including OP/0x = 0, is consistent with the equations. The
Poiseuille flow is the case where 9P/0x is a nonzero constant.
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=0, (243a)

2 2
% Ouy Ouy 10Pyy m <5‘ Uy O um> 7 (243b)

Y s 9z 2 ox Jr? Oy 022

Ouy Ouy ou,  u? 10Py 7 (0%u, 0%u,

T A= - A T e — — o - , (24
% Wy T, ot 2oy T2 \ap o) (439
Ou, ou, Ou,  10Pyn m ?u, O%u,

vy Ty T T 2 e Ta \ap a2 ) (243d)
or or or 7 0’  0%r

The boundary condition for these equations is the nonslip condition. The ve-
locity vanishes and the temperature is uniform on the surface (y? + 22 = 1) of
the cylinder, i.e.,

Uy =0, uy=0 u,=0, 7=0 at y? + 22 = 1. (244)

Further, a constant pressure gradient is applied along the axis of the cylinder.
Then, in view of Eq. (242b), dPy2/0X is constant, i.e.,

0Py (3P02)
— = - . 245
% ox ). (245)

Obviously, 7 = 0 is a solution independently of the velocity. From now on,
we are interested only in the velocity field. First, consider the case where the
infinitesimal curvature term u2/C? is absent in Eq.(243c), and look for the
solution with u, = u, = 0.9 We easily find the solution as

f;l P2 (2 a2
w= 2 (52) h-w ). (246)

and Pyg is uniform over the cross section. This is the Poiseuille flow with
parabolic profile in the classical fluid dynamics. What we are interested in here
is the infinitesimal curvature effect on the Poiseuille flow. In the case of flows
through the channel, there are flows that have the same velocity profiles as those
without the infinitesimal curvature term (the Couette and Poiseuille flows), for
which the infinitesimal-curvature affects only Py (see Section M-9.4.1 and Sone
& Doi [2007]). We examine whether this is the case for the Poiseuille flow
through the circular cylinder.

The solution where the variables (ug,uy,u., 0Py2/0X, Pao,T) are indepen-
dent of ¥ (see Footnote 98) is consistent with the equations (242b)-(243e) and

98For the pipe of infinite length in the scale of x, the corresponding range of ¥ is infinites-
imal x (see Section 7.2.1), and the solution of the system (242a)—(243e) is interested in this
infinitesimal X range or at the point x = 0. The way to handle the system at the point x =0
is discussed in Section 7.2.3. The condition uy = u, = 0 is taken to be so in a finite range of x
or to be 0™ uy /OX™ = Oul/OX™ =0 (n=1,2,---) at the point ¥ = 0 as well as uy =u, =0
there.
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boundary condition (244). We discuss this class of solutions. We examine
whether the solution with u, = u. = 0 is consistent as in the Couette and
Poiseuille flows through a channel. Obviously, Eq. (243a) is consistent. From
Eq. (243b), we have

1 (9P Puy | Oug
0=—-(Z2) 41 (28 Che)
2\ ox J, 2\ 0y 022
from which we obtain Eq. (246). From Eq. (243d), P is seen to be independent
of z. Equation (243c) reduces to

u2 - lano

X

C?2 2 9y’

from which we obtain, with the aid of Eq. (246),

1 9P\’ 22 2 3 2y, L5
Py = —— (202 |y, 1— — 2801 — =

where by is a constant. This result contradicts with the result from Eq. (243d)
that Py is independent of z. Thus, the solution with u, = u, = 0 does not
exist. Thus, in the Poiseuille flow through a circular pipe, the flow (u,,0,0)
with parabolic profile (246) is subject to change due to u, and wu, induced
by the infinitesimal curvature of the axis of the cylinder. Generally, in flows
through pipes with various cross section, their velocity profiles without u, and
u, depend on z as well as on y in contrast to the flows in the channel. So does
the infinitesimal curvature term u2/C? in Eq. (243c). This gives the dependence
of Py on z. On the other hand, in the momentum conservation equation (243d)
in the z direction, there is no term of the curvature effect owing to the present
infinitesimal curvature of the pipe. Thus, Py is uniform with respect to z.
Owing to this contradiction, u, and u, cannot be zero in a flow through a pipe.
The infinitesimal flow (u,,u,) disturbs the main flow u,.

Here, we rewrite Egs.(242b)—(243d) for the class of solutions for which
the variables (ug, uy, u.,0Po2/0X, Pag) are independent of x (see Footnote 98).
From Eq. (243a) with du, /0x = 0, we can introduce the stream function ¥ such

that P -

_ov 2o 247
This replaces Eq. (243a). From Egs. (243c) and (243d), we can eliminate Py by
the operation J[Eq. (243d)]/0y—0[Eq. (243c)]/0z. Then, from Eqs. (243b)-(243d)
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and (247), we have

ox
Y1 U?:
EAww—wa zazﬁ,
AV = —w,,
y v oY
L, R oy’
where
2 2
f_ PP
oy? 022
0 0
) —uya—quuZ@,
0
az - %7
b, = = Oy
T 0y 0z

(248a)

(248b)
(248¢)

(2484)

(249a)
(249b)

(249c¢)

(249d)

Here, w, is the axial component of the vorticity. The boundary condition is

that the velocity (us,uy,u,) vanishes on the boundary (y? + 22 = 1).

In order to arrange the parameters scattered in Eqgs. (248a)—(248d), we in-

troduce the following variables:

1 (0Pyp\]7" 2
Uw:uw[(ﬁ oz)] 7 Uy:ﬂ U,

7 \ 9X "’

_ 20 -
g2y g %
st a!

Then, Eqgs. (248a)—(248d) are rewritten as

AU, —DU, =1,
_ 2 9P\
Am—©m=<28?)6wi
11 C Ox 0
AT = —Q,,
ov 0w
D= BTy
where
B B
=Uy+—+U.5,
D=Uig, TV
oU. oU
Qp = —=2 — ¥,
dy 0z

(250a)

(250b)

(251a)

(251b)
(251c)

(251d)

(252a)

(252b)



The boundary condition on the surface of the pipe is given as
U,=0, U,=0, U,=0. (253)

The system (251a)—(251d) contains only one parameter, i.e.,

2 8P02)2
—_ . 254
(7%0 X ), (254)

The variables Uy, U, and 2, are explicitly expressed with U [Egs. (251¢) and
(251d)]. Thus, it is a system for U, and ¥. One of the boundary conditions for
U, and U, can be replaced by

U =0 on the boundary. (255)

Incidentally, this system applies to the corresponding problem for a pipe with
an arbitrary cross section.

For the cylindrical pipe problem, the cylindrical coordinate system (z,r, )
is convenient, which is defined by

r=x, y=rcosh, z=rsinb, (256a)
Uy =U,cos0 —Upsind, U, =U,sinf + Ugcosb. (256b)
Then,
10T ov
U, = TR 0= (257a)
10rUy 10U,
L= e (257b)

The operators A\, D, and 0, are expressed in the variables (z,r,6) and (U,., Uy),
instead of (z,y, z) and (U,,U,), as

10 0 1 92
A=l5 (a) 2 oge (2582)
- 0 Uy 0

. 0 cosf O
6z = S1n aa =+ r % (258C)

Substituting the expressions (258a)-(258c¢) into Egs. (251a)—(251c), and replac-
ing Eq. (251d) by Eq. (257a), we obtain the equations in the cylindrical system.
The boundary condition at » = 1 is given by
- ov
\IJ = O —_— =
T Or
To find the disturbed Poiseuille flow, it is practical to solve the system
(251a)—(251c) and (257a) with Eqs. (258a)—(258¢c) numerically. It is not a so

0. (259a)
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hard problem. Numerical computation of a structurally similar but more com-
plicated system was carried out in the study of a ghost effect in the Bénard
problem (see Section M-8.2). Following the process of solution there, we outline
the method of numerical computation of the present system. The solution is
obtained by iteration. First, choose initial data U,(O) and Ue(o) of U, and Uy,
which vanish on the boundary, and compute the initial data Q(?) of the bound-
ary value of Q by Eq. (257b).%° With these initial data, we start iteration from
n = 1 in the superscript (n) in the following expressions. One iteration consists
of solving three partial differential equations successively.

(i) The first step is to find Ul by solving the following boundary-value problem

of a linear elliptic partial differential equation: The equation for Ué”) is

AUM — =Dy — 1, (260)

where

_ o U™ g
m) _ @ Ug" 0
e Tk

and its boundary condition at » =1 is
U =o. (261)

(ii) The second step is to find Qé") by solving the following boundary-value

problem of a linear elliptic partial differential equation: The equation for Qg")
is

_ 2 9P\’
AQM — =Dl — ( ?2) 0. (UM, 262
and its boundary condition at r =1 is
Q) — =1 _ gy, (263)

where 1 is a constant to be chosen for the iteration to converge. This requires
some explanation, which will be given after the main explanation of the process
is finished.

(iii) The third step is to find ¥ by solving the following boundary-value
problem of a linear elliptic partial differential equation: The equation for (™)
is

AT = ), (264)
and its boundary condition at » =1 is

o = . (265)

991n view of the boundary condition for U, and U, on the boundary (r = 1), Eq. (257b)

reduces to oU.
Qp = 2.
or
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From ¥, compute U™ and Ué”) by Eq. (266):

o= ro00 > ¢ or (266)
These U™ and U(;"), together with the boundary value of Q" in the step (ii),
serve as the initial data of the next iteration.

(iv) Now, we can go to the next iteration (n— n + 1) with the above mentioned
initial data. Start again from the step (i), and continue the iteration until the
solution is considered to have converged enough.

In the present problem, U,, U,, and Uy, or U,, ¥, and O¥/Jr, on the
boundary are specified, but €2, on the boundary is not known until the final
solution is obtained. Thus, it is not obvious what condition is to be chosen as
the boundary condition for Eq. (262). In the process of iteration, the conditions
U™ = 0 and U™ = 0 (or U™ = 0) are given as the boundary conditions
for Eqgs. (260) and (264) respectively. Thus, the information 0¥ /0r = 0 (or
Up = 0) has to be taken in to the boundary condition for Eq.(262). In the
iteration process, the condition §¥(™ /dr = 0 (or Ue(”) = 0) can be replaced
by the weaker condition 9% /dr — 0 (or Ue(n) — 0) as n — co. When the

solution of iteration converges, Q;"'H) — Qg;") — 0 as n — 0. Thus, we put

o) = b g,
where 9 is some constant to be chosen for the iteration process to converge.
Then, Ué(,") converges to zero as the solution converges in the limit of the itera-
tion process. If a vorticity of positive value is put in a flow over the boundary
wall, a flow with positive Uy is induced on the wall. Thus, the constant ¥ should
be positive. If it is positive but too large, the correction is in the correct direc-
tion but in excess, and the iteration may diverge. Proper size of ¥ should be
chosen by examination in practical applications.

Finally, the effect of infinitesimal curvature is discussed for the Navier—Stokes
equations with the nonslip condition of an incompressible fluid in Section M-9.5.
The equations for the velocity field derived from them are of the same form as
Eq. (242b)—(243d) with the nonslip condition. Thus, the results obtained in this
section as well as those in Section M-9.4 and Sone & Doi [2005, 2007] apply to
the Navier—Stokes system.

(Section 7.3: Version 11-00)
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8 Appendix M-A

8.1 Note on the loss term of the collision integral [From
Eq. (M-A.18) to Eq. (M-A.21)]

Consider the following collision term of the Boltzmann equation (M-A.18):100
dp

2m Jan e, all €,

(6. — &) - ell£(§)f(€L) — F(&)f(£.)]dQ(e)dE,, (267)

where
The change (M-A.20) of the variable of integration from e to a, i.e.,
2
(€. — &) -eld(e) = —-Bd(a), (269)

is introduced instead of expressing a in Eq. (268) in terms of e. The part of the
integral of Eq. (267)

d2

2m Jane, an g,

(€. — &) - el f(§) F(£.)d2(e)dE,,

which comes from I_ in Eq.(M-A.8) and corresponds to the loss term (see
Section M-1.2) of the collision integral of the Boltzmann equation (M-1.5) or
(M-A.21), does not contain a, and the change (269) of the variable of integration
is not required.!® Thus, the result is determined uniquely irrespective of the
relation between « and e, that is, the loss term of the collision integral is
independent of the intermolecular potential when d,, is of a finite value. That
is, the loss term of the collision integral is determined only by d2,/2m and f(§),
and is the same as that for the hard-sphere molecule with the same d,,.
(Section 8.1: Version 6-00)

8.2 Note on the loss term of the kernel representation of
the linearized collision integral [Section M-A.2.10]

In Section M-A.2.10, we discussed the kernel representation of the linearized
collision integral £(¢) introduced in Section M-1.10, and gave its explicit form
for a hard-sphere molecule. From the discussion in Section 8.1, the kernel rep-
resentation of the loss term of the linearized collision integral for a hard-sphere
molecule applies to any intermolecular potential with a finite d.,.

100The factor d2,/2m can be rewritten as nd2,/2p, where n is the number of molecules in
unit volume. The numerator nd2, is of the order of the inverse of the mean free path (Section
M-1.5). Note Footnote M-4 in Section M-A.1.

101 ransformation (M-A.20) or (269) is carried out to make the variable of integration to be

the same. Thus, it is simply one of the changes of variable e of integration to some variable.
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In Section M-A.2.10, the linearized collision integral £(¢) is expressed by
Eqgs. (M-137a)—(M-A.139c¢) as

£(p) = / B¢+ 6, — 6 6.)BdR(a)dC,

= L9(¢) - L(¢) = vr(Q)9, (270)
where
£9(0) = [ B0/ + 6B, (271a)
£(9) = [ BoBagadc,
— [ Ka(¢. 0 dc. (271D)
vp(¢) = / E,BdQ(a)d(,. (271c)

The loss term is the sum of Eqs. (271b) and (271c¢) multiplied by ¢, i.e., LX2(¢)+
v1(¢)$.192  The kernel K3(¢,¢,) and the function vp(¢) for a hard-sphere
molecule are given by Eqgs. (M-A.149b) and (M-A.149c) as

K2(C5C*> = gi/;jl €xXp (_Cf) 9 (272&)
¢
(0 =55 [exm—c?) n (2<+ é) / exp(—c,%)dc*] , (272b)

where
¢= ¢l

These formulas apply to any potential with a finite d,,, as well as to a hard-sphere
molecule.
(Section 8.2: Version 6-00)

8.3 Parity of the collision integral: Supplement to Section
M-A.2.7

In Section M-A.2.7, we discussed the parity of the linearized collision integral.
It may be better to explain a similar property of the collision integral defined

1020nly the term v (¢)¢ is often called the loss term, and the rest, i.e., L& (¢) — LL2(¢),
is called the gain term by misunderstanding. This is probably because the loss term of the
original collision integral (267) is often written in the form v.f, where v, is the collision
frequency defined by Eq. (M-1.18) as

ve=m=t [ F(€.)BAQ(a)de, = (d2,/2m) [ (€. — &) - el f(£,)Ae)dE,
all o, all €, all e, all €,

Not to mention, £L2(¢) is derived from v, f.
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by Eq. (M-1.9), i.e.,
.9 =5 [+ £ - Ja. - FBas@ac., @
and a similar notation for g, g., ¢’, and g,
G =G +aViai, ¢, =G —a;Viai, G =V;+ (.

Here, we discuss the relation of the parity of J(f,§) with respect to a com-
ponent (1, 2, or 3) of the variable ¢ to that of f and §. Put the integral (273)
in the sum

ﬂﬂm:%UV+M—H—D, (274)

where
Iz/fgéau®dv, (2752)
sz/fmému@dv, (275b)
]H‘:/Zjédﬁkwdv, (275¢)
]Vz/f%ﬁdﬂ@dv, (275d)

and discuss each term separately.'®® In Eqs. (275a)—(275d), the variable of inte-
gration is changed from ¢, to V (= ¢, — ¢). The following change of the variables

i71 = _V17 ‘7’8 = ‘/57 az1 = —Qq, &S = O (S = 2?3) (276)
is performed in the integrals I, II, III, and IV. Noting that
Ge=Vit G Vil=IVil, @&Vi=a:V, (277)

we can transform the integrals I, II, III, and IV in the following way, where the
subscript s indicates s = 2 and 3:

1616 = [ FVA+ GVt a6, QOB (asVil/ [V, V)R ) 4V
= [FCV+ 6T+ 0066 B (R TITIL V)@ av
(278a)
Interchanging the arguments of f and ¢ in I, we have

(G, ¢) = / F(GL C)I(=Vi + QL Vs + G) B (16 Vil /[Vil, [Vi])dQ(&) AV
(278b)

103The separation is made only for convenience of explanation.
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(G, C.) = / FVi 4 G — ayVia)d(G + ayVyan) B (JasVil/IVil, Vi) dQ(a) dV
= /f(—Vl + G+ &j%&la‘z + (s — aj‘?j&s)

x §(G — a;Vyan, ¢ + a;Va) B (| Vil/|Vil, Vi) dQ(a) AV,

(278¢)
Interchanging the arguments of f and § in III, we have
W66 = [ £(6 - &V +a,Ta)
X g(=Vi + G +a;Vid, Vi + G — &, V;ds)
x B (|a:Vi|/|Vil, [Vi))dQ(&) AV (278d)

Now we examine the parity of the integrals I, II, III, and IV with respect to
¢1 on the basis of Eqgs. (278a)—(278d). Here, we introduce the notation: (i) the
parity of f (or §) is indicated by the subscript attached to it, i.e., the subscript
E is attached when it is even and the subscript O when it is odd; (ii) the first
subscript of I, II, III, and IV indicates the parity of f in them and the second
indicates the parity of §. First, when f and g are even functions of (3.

Ipe((1,¢s) = /fE(_Vl + G, Ve + C)in (G Cs)
x B (|&:Vil/|Vil, [Vi])dQy(&) dV
= /fE(Vl — 1, Vi 4 C)dm (=1, Cs)
x B (|a;V;|/|Vi], Vi) du(&) dV
=Ipp(—C(1, ), (279a)

where the last relation holds owing to the first relation of Eq. (278a); Inter-
changing the arguments of fg and g in Igg, we have

IgE(6,¢) = Oprp(—(1,C); (279b)

M pE(G,(s) = /fE(*‘/}l + G 4 &;V;a0, Ve + o — @, Vi)
x §r(C1 — @;Van, G + a;Vias) B(@Vil/|Vil, [Vi))dQ(a) aV
= /fE(‘71 — (1 — & Vi, Vs + ¢ — 65 V;a,)
X gp(—C1 + &;Vian, G + &;Vias) B Vil /|Vil, [Vi))dQ(a) dv
= lgp(—(1,(s); (279c¢)
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Interchanging the arguments of fE and ¢g in Illgp, we have

Vee(6,¢) = Ver(—C1,¢s). (279d)

When both f and g are odd with respect to (y,
Lo0(C1,C) = / Fo(—Th + G Vi + Cdol(Cr o) B Vil [V, [Ty de&) dV
_ / FoVi — (1, Vi + Gio(—C1, ) BU@Vil/ Vi, [Tihdo(&) dV
= Too(~C1,Cu); (280a)

Interchanging the arguments of fo and go in IIpo, we have

Hoo(C1,¢s) = Hoo(—C1,Cs); (280b)

Moo (G, Cs) = /fo(—% + G+ aVian, Vs + G — a; Vi)
X go(C1 — a;V;an, Cs + @, V;ds)
x B(|&;Vi|/ Vi, |Vi])dQ(&) aV
= /fO(f/l — G — & VA, Vs + G — 6, V;4,)
X §o(—=C1 + a;Viar, G + a; V;as) B(|&Vi|/|Vil, Vi) d (&) aV
= loo(—Ci,(s); (280c)

Interchanging the arguments of f and g in IIlpp, we have

Voo (C1,¢s) = Voo(—C1,(s)- (280d)

When f is even and ¢ is odd with respect to (3,
I5o(G1,Gs) = / Fe(=Vi + (1 Ve + G)go (Gr, G B(I@iVil/|Vil, [Vl d (@) dV

- / eV — GV + Cdo(—Gra C)B(@ Vi Vi, [V de&) dV

= —Irgo(—(1,¢s); (281a)

o(Ci,¢s) = /fE(Cqu)Qo(—‘Z + G, Ve + G)B(@Vil/ Vil Vi) d(@) dV

. /fE<—<1,<s>go<V1 LT+ )BTV VA @) av

= —Ipo(—C1,G); (281b)
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Mpo(G6) = [ Fo(-Tat G+ a7 Vi + 6 - &)
% §o(C1 — @;V;an, G + 6, V;as) B(|a:Vil/|Vil, [Vi)d(&) dV

—/fE(Vl — (1 — ag“7j51, ‘75 + (s — ajf/jas)
% Go(~C1 + a&;Vian, G + &;V;as) B(1@ Vil /[Vi], | Vi) d@)dV
= —Ilgo(—C1,¢); (281c)

Wi (¢, C) = / FulG1 — @V, G + @;V;ds)
X go(=Vi + ¢ + a;Vian, Vs + G — &, V;d,)
x B(|&;V|/|Vil, | Vi) dQ(&) aV
—/fE(—Cl + 6, Va1, G + &, Vi)
X go(‘N/l —C1— &j‘za17‘z + (s — ajvjas)
x B(|&;V|/|Vi, |Vi])dQ(&) aV
= —Veo(—G,G). (281d)

For Ipg, llog, lllog, and IVog, interchanging the role of f and g, respectively,
in IIE(), IEo, IVEo, and IIIE(), we have

Ior(G,¢s) = —lor(Ci, ), (282a)
Hog(C1,¢s) = —1lor(C1,Cs), (282b)
HIoE(C1,¢s) = —Ilor(C1,(s), (282c)
Vo (G, ¢s) = —IVor (G, Cs)- (282d)

The parity is common to I, II, III, and IV. Therefore, the parity of J(f,§)
is the same as I, i.e.,

J(fe,98)(C1,¢) = I (e, 08) (=1, G, (283a)
J(f0,90)(¢1,¢) = J(fo,50)(—C1,Cs), (283b)
J(fe,30) (1, ¢) = =T (fe, §0) (=G, o), (283¢c)
J(f0,98)(C1,¢) = =T (fo,d8)(—C1, Cs)- (283d)

Obviously, the same parity holds for the other components, i.e., (a2, (3, of ¢.
(Section 8.3: Version 4-00)
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8.4 Supplement to Section M-A.10
8.4.1 On the equality condition of Eq. (M-A.266)

Here we will discuss the equality condition in the Darrozes—Guiraud inequality in
Section M-A.10 in more detail. The equality in the Jensen inequality (M-A.265)
is proved to hold when and only when ¢ is independent of £ (see, e.g., Reference
M-129). It should be noted that the uniqueness condition of the equality applies
only to the region of & where ¢ > 0 and that no condition is required of ¢ where
1 = 0. Choose a £ in (§ — vyi)n; > 0, and consider the condition for equality
in Eq. (M-A.266). According to the above note, the equality holds only when
f(&,)/fo(€,) is a constant (say, ¢1) in the region Dy of £,, joint or disjoint,
where Kg(&,€,) > 0. If we choose another &, Kg(€,€,) > 0 in a different range
Dy of &,, and f(&,)/fo(€,) = c2 (c2 : const) is required in Dy. The constants
c1 and ¢ may be different if D; and D, are disjoint. The two constants are
required to be the same (¢; = ¢2), if D; and Dy overlap for some range of &,
(their intersection is neither empty nor measure zero).'%* From the condition
(M-1.27b), there is a region of € where K > 0 for any £, in (. — vwi)n; < 0.
Thus, the collection of the regions of £, where Kg(&,€,) > 0 with respect to
all € in (& — vywi)ni > 0 covers (& — vy )n; < 0. If K is such a kernel that the
series of the ranges &, of different & constituting the above collection overlap
with nonzero measure at the intersecting points, the constant is unique over
(& — vuwi)n; < 0, 1e., f(€,) = cofo(€,) (co : a constant) in (. — vyi)n; <0
(see Fig.1).1% Then, from the condition (M-1.27c¢),

f(&) =cofo(§) forall €. (284)

Incidentally, the kernel K5 that is positive almost everywhere (Footnote M-5 in
Section M-1.2) is classified as positive, and Eq. (284) holds almost everywhere of
&. When the overlap-covering condition is not satisfied, the above Maxwellian
is not necessarily required for the equality.'%

The equality condition of Eq.(M-A.267) is seen to be the same as that of
Eq. (M-A.266) in the following way. Obviously, B = A < [, a(€)[B(€) —
A(€)]de = 0if A(&) < B(€) and a(€) > 0. Taking

B f(€) B Kp(§,€.)f(&,) . [ f(E,)
Ay =F (f0(5)> - Bl= /(Ei*vwi)ni<0 fo(§) F <f0(€*)) e

104(1) In the common region, f(£,)/fo(€,) cannot take two values. On a set with measure
zero, whether f(&,)/fo(&,) is determined or not can be ignored. (See Footnote M-5 in Section
M-1.2 for the set with measure zero.)

(ii) If the intersection is empty or measure zero, the integrations with respect to &, at
different &’s, are not influenced by the f(€,)/fo(€,) determined by the other &.

(iif) The equality only on a set of & with measure zero is ignored. Thus, the above set of
&, where f(&,)/fo(&,) is constant is required to have some extent with measure nonzero with
respect to £ including the intersections.

105 The collection has to have some extent mentioned in Footnote 104 (iii).

1061 fact, Takata (private communication) constructed a kernel K g, which is zero in [(&; —
i) — Cl[(€ix — vwi)ni + Cx] > 0 (C and Ci: some positive constants) and satisfies the
conditions (M-1.27a)—(M-1.27c), for which the equality holds for another function.
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Ex

Figure 1: Kp(&,&,) that requires f(€) = cofo(€) for all £&. The quarter in the
figure is the range (£« — vwi)n; < 0 and (§; — vy)n; > 0 in the space (€, &).
Let Kp > 0 in the regions A, B, C, and D at least, and their ranges of &, cover
(&ix — vwi)n; < 0. Then, f(£,)/fo(€,) is constant in each of A, B, C, and D
(say, a in A, b in B, ¢ in C, and d in D). Some ranges in A and B being on a
common £ having some extent, a = b. In view of the intersection of the ranges
of £, of B and C and that of B and D, ¢ = b(= a), and d = b(= a). Thus,
f(&)/fo(€) = ain (&, — vyi)n; < 0. It may be noted that the regions of
£, of A and C are required to be only in contact with each other because the
intersection of the ranges of £, of C and B is not measure zero.
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and (& — vwi)n; > 0 as the domain V' of integration, and comparing Eq. (M-
A.266) and its next equation without number, we find the equivalence of the
equality conditions of Eqs.(M-A.266) and (M-A.267). The above discussion
being common for a strictly convex function F', the equality condition applies
to the Darrozes—Guiraud inequality (M-A.262) and Eq. (M-A.268).

(Section 8.4.1: Version 5-00)

8.4.2 Extension of the Darrozes—Guiraud inequality to an interface

Darrozes—Guiraud inequality (M-A.262) or (M-A.267) is proved for a function f
satisfying the boundary condition (M-1.26) on a simple boundary (M-Darrozes
& Guiraud [1966]). Here, we discuss its extension to f that satisfies the bound-
ary condition (M-1.30) on an interface of a gas and its condensed phase.

The boundary condition on the interface is given as!?”

O=0@+ [ K6 EIIEIE. (& vani> 0] (255)

where g; and K are independent of f. Further, g; and K7 satisfy the following
conditions [see Eqgs. (M-1.31a)—-(M-1.31¢)]:
(i) Nonnegativity of g;

gr(§) >0 [(§& — vwi)ni > 0]. (286a)
(ii) Nonnegativity of K;
Kr(§,€.) >0 (& —vwi)ni >0, (§ix — vwi)ni < 0] (286b)
(iii) Condition of establishment of the equilibrium state
Ful€) = 91(€) + /( IS ESE . (6 —vun > ), (0560

where f,, is the Maxwellian determined by the temperature T, and velocity v,,;
of the interface and the saturation gas density p,, at temperature T, i.e.,

w gz — Vwi 2
fuw(€) = MJW exp <(2RTw)> . (287)
It is also required here that if f(€,) for (§« — vwi)n; < 0 is the corresponding

part of another Maxwellian [say, f.(£)], it does not give f.(&) for (& —vu)n; > 0,

which will be called the uniqueness condition of Eq. (286¢) for shortness.

In the following discussion, we impose another condition in addition to Eqs. (286a)
—(286¢), i.e., putting

(51‘ - Uwi)ni

= - K d jix — Uwy j )
o)== [ eI €06 (& vy < 0] (259

107The variables X and t are not shown here because they are not important in the present
discussion [see Footnote M-10 (ii) in Section M-1.5].
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we assume'® that
0<a(€,) <1  [(&s — vwi)ni <0]. (289)
Incidentally, from Egs. (286a)—(286¢),

fuw(8) = g1(§) = 0. (290)

We will show that the inequality (M-A.267) with fo being replaced by f,,
i.e.,

/ &L OIS @) <0 (201)

holds when F'(x) is such a strictly convex function (see Footnote M-52 in Section
M-A.10) that
F(z)>0and F(1) =0.

The equality of the relation (291) holds when f(&) = f,,(€), and this relation
is required except for some boundary conditions shown later. The inequality is
proved with the aid of the Jensen inequality (see Eq.(M-A.265) or M-Jensen
[1906], M-Lieb & Moss [2001], M-Parzen [1960], or M-Rudin [1976])

F( [ ova / / wd£> < / GF(0)de / / Gde (B=0),  (292)

where F(z) is a strictly convex function, and ¢ and ¢ (¢p > 0) are arbitrary
functions of &. The equality sign holds when ¢ is independent of &; it is also
required where ¥ > 0 for the equality.

108(i) This condition corresponds to Eq. (M-1.27b) for a simple boundary. The simple bound-
ary consists of molecules of different kinds from the gas molecules, and they stay there forever.
The gas molecules impinging on the boundary are reflected without time delay (in the time
scale of our interest), and there is no net mass flux to the boundary in this process. The
condition (M-1.27b) is derived from this situation, as explained in Footnote M-13 in Section
M-1.6.1. In the case of an interface, the condition (289) is derived similarly, if we consider
that some of the molecules impinging on the interface do not reflect and stay there. However,
the interface is the condensed phase of the gas and consists of the same kind of molecules
as the gas. On the interface, molecules leave it depending on the condition of the interface
even if there is no impinging molecules; this is the g; part in Eq.(285). When a molecule
impinges on the interface, it interacts with molecules of the interface, and some molecules
leave the interface. Whether the impinging molecule is reflected or kicks out another molecule
has no difference. Further, depending on the condition (e.g., speed or direction) of the im-
pinging molecule and that of the interface, more than one molecule may be kicked out or no
molecule may be kicked out or reflected. Thus, it is not clear that the condition (289) holds
or not. However, it is sure that the size of the kernel K7 is limited owing to the conditions
(286a)—(286¢), e.g., K1 = 0 if gy = fu (the complete condensation). See also Footnote 111 in
Section 8.4.2.

(ii-a) The case a(€,) = 1 for (£« — vw;)n; < 0 is excluded by the uniqueness condition of
Eq. (286¢). In fact, multiplying Eq. (285) by (§; — vwj)n; and integrating with respect to &
over (& —vw;)n;j >0, we obtain g7 (§) = 0. Thus, C'fy (C : a constant) also satisfies Eq. (285).

(ii-b) When a(€,) = 0 for (§j« — vwj)n; < 0, the kernel K(€,&,) degenerates, i.e.,
Kr(€,&,) =0 for (§ — vy;)n;>0. This is the case of the complete condensation.
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Let F(z) be a nonnegative strictly convex function that takes value zero at

r=1,'"91ie.,

F(z) >0, F(1)=0. (293)

Consider the function F(f(€)/fw(€)), where f,,(€) is given by Eq.(287). The
function F(f(§)/fw(&)) for (& — vwi)n; > 0 is bounded by an integral of f(&)
for (& — vyi)n; < 0 with the aid of Eq. (285) in the following way:

() -r (8 [ e e
-Fle (- 20) L ee rohe e
<gros (-2 ) ([ e e )

:<1‘iﬁ2>F<[m1MMKou—mivﬁ%fﬂ<>f%$d§>

[(fl — vwi)ni > 0]
(294)

Here, we, for a moment, consider the point of € [(§; — vy;)n; > 0] where

fw(€> - 91(5) >0,

for which

KI(£7£*>fw(£*) . e
A;wwn@u—m@uummmﬂ&—l (& = vwi)ns > 0],

because of Eq. (286¢); in the second and third lines, the simple < sign of the
subscript of the integral sign [ indicates (&;x — vui)n; < 0; the convex property
of F(z) is used from the second line to the third, and F'(1) = 0 is used from the
third to the fourth.

Now, we apply the Jensen inequality (292) to the function F on the fourth
line in Eq. (294). Here, we choose ¢(&,) and ¥(&,) as

f(.)
YE)= ey
P(E,) = Ki(€,€.)/u(&.) >0 [(& —vwi)ni >0, (&ix — vwi)ns < 0]

[1*91(5)/]‘-11)( )} w( )

It should be noted that ¢(€,) is defined for the whole range of €, and that ¥(&,)
depends also on € and satisfies the relation, irrespective of &,

(§ix =vwi)ni<0

109Note that = = 1 is the unique zero point of F(z).
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Then, F(f(&)/fw(§)) for (§ — vwi)ni > 0 is bounded as

A7) <) F</<g> = 01(©)/ 1 ©)11u©) fw(ﬁ*)d£*>
KI(&?S*)fw(S*) f(g*) v
= /@i*_ww G ( fw(E*)) dé. (6 = vu)ns > 0]
(295)

Up to this point, we limited our discussion to the point of & [(&; — vwi)ni > 0]
where

fw(§) —g1(€) > 0.
If it vanishes at some &€ 4 [(§4 — vwi)ni > 0], i.e.,

fw(£A> - gI(&A) =0, (296)
the integral f(&*_vm)m<O Ki(&,€,) fo(€,)dE, vanishes there, i.e.,

/ Ki(€a &) Ful€,)dE, =0,
(€iv—vwi)ni <0

because of the condition (286¢). The function f,(&,) being positive for all £,
the kernel K(€ 4, €,) must vanish for (£, — vwi)n; < 0, i.e.,

Ki(€4,€,)=0 [(&ix — Vi) < 0] (297)
Thus, from the boundary condition (285),
f(&a) = 91(84) = fu(€a)-
Therefore, the function F(f(€,4)/fw(€4)) vanishes, i.e.,
F(f(€4)/fw(€4)) = F(1) =0. (298)

From Eqgs. (297) and (298), the equality holds between the left-most side and
the right-most of Eq. (295) at £ = £ 4. In conclusion, the inequality

F ( fw(ﬁ)) = /@) ARG ( Fulel)

) d¢, [(& — vwi)ni > 0],
(299)
holds without the assumption of f,,(&) — g;(&€) > 0.

When f(€)/fw(€) =1 for all &, F(f(&)/fw(&)) vanishes in Eq. (299), and
the equality holds there. We look for the other possibilities of the equality. The

first inequality in Eq. (295) comes from that of Eq. (294), for which the equality

holds at & = £ 4 when (i) g1(§4)/fw(€a) =0 or (ii) g1(§4)/fw(§4) =1, or (iii)
the arguments of two F’s on the third line of Eq. (294) are equal, i.e.,

(€n—vwimi<o 1= 91(6a)/ fu(€a)]fuw(€a) ful(€s) ™7

(300)
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for some f(&,). In the third case, the equality relation being imposed between
the first and the second line on the right-hand side of Eq. (295) under the con-
dition (300), we find that

where B4(€,) is the region of £, in which K;(€4,€,) > 0.
If g1 (&)/ fu(€) = 0 for (& —vwi)n; > 0, the boundary condition (285) reduces
to

(&) = / Ki(6,€.)£(€.)dE.. (301)
(&ix—Vwi)ni<0

Then, the Maxwellian agf,(€) (ap : a constant) also satisfies the boundary
condition (285), which is not allowed by the uniqueness condition of Eq. (286¢).
Thus, this case is excluded. If g7(&)/fw (&) = 1 for (& — vyi)n; > 0, the kernel
K (€, &,) vanishes for (§;—vy;)n; > 0 and (£ —vywi)n; < 0 from the discussion in
the preceding paragraph. That is, (&) = f, (&) in (§;—vw)n; > 0 irrespective of
f(€)in (& —vy;)n; < 0 (this is the case of the complete condensation condition).
For this case the equality holds in Eq.(299). If the third condition holds for
(& — vwi)n; > 0, we have

Ful€) = g1(€) + /(6_ K EIEIAE (16w > 0] (302)

From the discussion of the preceding paragraph,

f(&.) = fu(€,) in B(£,), (303)

where B(&,) is the region of &, in which K (&,&,) > 0 for some &€. This condition
is paraphrased as

f(&,) = fuw(€,) exceptin the region a(€,) = 0. (304)
Whether f(s*) = fw(g*) or O[(é.*) =0in (61* - 'Uwi)ni <0,
f(&) = fuw(&) [(& — vwi)ni > 0].

Let us consider the case where the three situations (i), (ii), and (iii) listed
just before Eq. (300) take place for different &, say, (i) for € in Ay, (ii) for £ in
Ao, and (iii) for € in A3. The A, part does not contribute to the restriction on
f(&€,). When A; is empty, the condition is the same as for the case of Eq. (302),
i.e.,, Eq.(303) or (304). When A; is not empty, from the discussion for £ in
As, f(€,) = fu(€,) in the region of &, where K (£,€,) > 0 for some € in Aj
[say, B3(&,)], and the condition for the remaining &, is determined only by the
behavior of K; for € in Ay, that is, the region f(&,)/f.(€,) = const [say, B1(&,)]
is looked for in the range (£;« — vyi)n; < 0 in the same way as in Section 8.4.1
and if By has a common region with Bs, f(£,) = f,(£,) in By. In the region
of the remaining &, [say, R(&,)], f(&,) other than f,(&,) can exist. The region
a(€,) =1in R(&,) is denoted by Rn—1 for the convenience in the later citation.
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When Aj is empty, the boundary condition (285) is expressed as

7€) = ( e ) . /@MO( Ki(&e.) >f(£*)d£* S
(305)

where

/ Mdﬁ* =1 [(&; — vwi)n; > 0 and € in A4].
(&ix—Vwi )N <O Jw(€)

The boundary condition (305) obviously satisfies the conditions (286a)—(286¢).11°
In this case, the restriction on f(&,) is determined by K; in A;. Substituting
f&) = Cpfuw(€,) [(Cix — vwi)n; < 0, Cp : independent of £,], which is the
strongest restriction on f(&,), into Eq. (305), we have f(&) = Cp f,(€) [in Aq]
and f(&) = fu(§) [in Ag] for (& — vwi)ni > 0. For this f(§), the equality
holds in Eq. (299). Thus, for the boundary condition (305) as well as the com-
plete condensation condition, the equality in Eq. (299) holds for f(&) other than
f(&) = fw(8) [F(£.) = Cb fu(&.) for (§ix — vwi)ni <0 for Eq.(305), and f(&,)
is arbitrary for (&;. — vyi)n; < 0 for the complete condensation]. This is an
example of f(&,) that satisfies the equality in Eq. (299).
With the aid of the inequality (299) and Eq. (288), we have

/(givm)m>0(§i - ”Uwi)nifw(ﬁ)F< f(€) ) d¢

fu(8)

<'/(51'—vw¢)m>0(£l UUM)anw(g)/(&'*—vm)ni<0 fw(é) fw(é*)
f&.) )

- w(&)F i — vwi)ni K1 (€, €,)dEdE,

/(5i*—1’wi)nqz<0f (E ) (fw(g*) \/(fi—vwi)m>0(€ ! )n I(£ § ) £ €

= - 6] = Vs )T f(g*)
- /(éi*—Uwi)ni,<0 &) wi) sz(E*)F(fw(g*)>d§*, (306)

where 0 < a(€,) < 1 [the assumption (289)]. Thus, we obtain the extension of
Eq. (M-A.267) to the case of an interface as follows:

/all E(fi - Uwi)nifw(é)F(f{U((gg))> d¢

</ 1= a6 — tmniful€.)F
(&ix —Vwi)n; <0

)d£*d£

f(€.)
fuw (&)

) d¢, <0.
(307)

Obviously, the equal sign holds in the two inequalities of Eq. (307) when f(&) =
fw(€). Conversely, it is required for the equal sign to hold in the inequalities

10Tg confirm the uniqueness condition of Eq. (286¢) is simple. Note f(&) [(& — vw:i)ni > 0]
for £ in As.
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that f(&) = fu(&) for all &€ when R,—; is empty.''' It should be noted that
F(z) is required to satisfy that F(z) > 0 and F(1) = 0 in addition to convexity.
Here, we take

F(z)=z(lnx—1) + 1,

which is strictly convex, nonnegative, and zero at x = 1. Then,

o G
/aug(fz wi )i [f(é) (1 Ful€) 1) +fw(£):| dg <0,
or
i — Vwi )T nf(E) Vi — Vi )N
/all 5(51 wz) Zf(E)I fw(E) d€ S P( 7 wz) T (308)

This is the extension of Eq. (M-A.262) for a simple boundary to an interface.
We try to express the inequality (308) in terms of macroscopic variables. It
is simply transformed in the following form:

[ (6 -vapms@mag
all ¢ Co
< / (& — vwi)ni f(§) In fL@dﬁ + p(vi — Vi)
all & Co
1 5 1
“RT. {qmi + (V5 — Vwj)DijNi + PV — Voi ) <2RT + 5(%‘ - ij)z)]
Pu
+ p(v: = vui)ns <ln (27 RT,,)3/2cy + 1) ’

where ¢q is a constant to make the argument of the logarithmic function dimen-
sionless, and

Dij = Pij — POij, (309)

I1({) The integration of a nonnegative function multiplied by a positive function does not
change the equality condition. Thus, the equality condition of the inequality of Eq. (306) is
the same as that of Eq.(299) [B = A & [a(€)[B(&) — A(€)]d€ = 0 if A(¢) < B(€) and
a(€) > 0]. Thus, the range where f(£,) = fw(&,) is required is outside R. For the equality of
the Darrozes—Guiraud inequality, we have to examine the equality of the second inequality in
Eq. (307). The second equal sign holds only when F(f(£,)/fw(€.)) = 0 in R outside Ra=1
because fu(€,) > 0 and 1 — «(€,) > O there. Thus, f(€,)/fw(€.) = 1 outside Ro=1 in
(&ix — vwi)ns < 0 (see Footnote 109 in Section 8.4.2). When Ro=1 is empty, the integral fans

on the left-most side reduces to |, o- This vanishes only when F(f(§)/fw(€)) =0,

(& —vws)ni>
ie., f(&) = fw(&) for (& — vwi)ny > 0. Thus, f(&) = fw(€) for all € when Ro=1 is empty.
It may be noted that when Az is empty [or for the boundary condition (305)], Ra=1 is
the range of &, where a(€,) = 1 in (&« — vwi)ni < 0. Incidentally, g;(&€) that is positive
almost everywhere (Footnote M-5 in Section M-1.2) is classified positive, for which A; in the
paragraph following to that of Eq. (304) is empty and Eq. (304) holds (that is, Rqa=1 is empty),
and therefore the equal signs hold in Eq. (307) only when f(&) = fu, (&) for all €.

(i) If «(&,) exceeds unity for some range of &, in (i« — vwsi)ns; < 0 and the assumption
(289) is violated, but the integral

e e o 7€)
/@Mwi>ni<o[1 (€N (Ein — Vi) sz@*)F( fw(ﬁ*)>d€*

is nonpositive, the inequality holds.

94



The p;; is the part of stress tensor with the pressure contribution subtracted.
Only the tangential component of the stress p;;n; contributes to (v; — vw;)Di;jn:
when no flow to the boundary. Further, In p,, /(27 RT,,)%/?cy is related to the H
function H,, for f(&) = fu, (&) as

Y —-ln— = 1
o n (27TRTw)3/2C0 27 (3 0)
which is independent of v,,;. That is,
e = [ neml®aco [ e O
all & all £ o

where € e
(v) Pw o [ & T Vi
1™(&) = GrRrr e © p< 9RT, )

On the other hand, by definition (see Section M-1.7),
[, (6= vemi € mlF €/l = (H — Hrvwo

Therefore,
(Hi — vai)ni
[qimi + (vj — Vwj)Pijni
H, 1 5 1
T RTL < R(T —T,) + 5(uj — %j)Zﬂ . (311)

When f = f,, both sides of the inequality vanish and the equal sign holds.
Conversely, for the kernel K; with R,—; empty, e.g., g that is positive almost
everywhere, the equal sign holds only when f = f,,.

Finally, we consider the variation of the integral H of H over the domain D.
According to Eq. (M-1.36),

1
< -
~ RT,

+ p(vi — vwi)ni {

dH
—_ = (I’IZ — vai)ni +/ GdX,
dt oD D
where
H= / HdX.
D

With the aid of Eq. (311), the variation is bounded as

dH 1

Dl G

dt = RT,

[@ini + (vj — Vwj)Digni]
H, 1
+ p(vi — Vi) [

pw  RT, <5R(T Tw) + %(Uj —ij)z)], (312)

because [, GdX <0 [see Eq. (M-1.34b)].

(Section 8.4.2: Version 5-00)
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