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Update of bibliography

• [19] Arkeryd, L. and A. Nouri (2006):

(to be published) → 401–443

• [29] Bardos, C., F. Golse, and Y. Sone (2006):

(to be published) → 275–300

• [59] Chen, C.-C., I.-K. Chen, T.-P. Liu, and Y. Sone (2006):

(2006) → (2007)

59, (to be published) → 60, 147–163

• [93] Ha, S.-Y., T.-P. Liu, and S.-H. Yu (2006). This paper is to be replaced
by

Yu, S.-H. (2014), Initial and shock layer for Boltzmann equation, Aech.
Rational Mech. Anal. 211, 1–60.

• [136] Liu, T.-P. and S.-H. Yu (2006a):

(2006a) → (2006)

• [137] Liu, T.-P. and S.-H. Yu (2006b):

(2006b) → (2007)

59, (to be published) → 60, 295–356
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The corresponding corrections in the text

• p. 166, the line before the last in the second paragraph:

Ha, Liu, & Yu [2006] → Yu [2014]

See [93] in Update of Bibliography.
• p. 166, the first line in the third paragraph:

[2004b, 2006a] → [2004b, 2006]

• p. 166, the last line in the third paragraph:

[2006b] → [2007]

• p. 183, the second line:

[2006] → [2007]

• p. 222, the 15th line in the second paragraph:

Ha, Liu, & Yu [2006] → Yu [2014]

See [93] in Update of Bibliography.

Errata

• p. xii, the 16th line in Preface:
http://fd.kuaero.kyoto-u.ac.jp/member/sone →
https://hdl.handle.net/2433/66098 and https://hdl.handle.net/2433/66099

• p. 7, the 14th line:

ξ = |ξi| = (ξi)
1/2 → ξ = |ξi| = (ξ2

i )1/2

• p. 9, the 7th line:

specular condition → specular reflection

• p. 15, the 2nd line of Footnote 22 (This item is not corrections, but gives
alternative expressions convenient to the discussion in Section 1.5, where the
nondimensional form of the Boltzmann equation for an finite-range intermole-
cular potential is discussed.):

U0: The dependence of U0 on the mass m of a molecule is better to be
explicit (see Sections 1.5.2 and 1.5.3). That is,

U0 → mU0

Correspondingly, U0/kBT0 on the the 3rd and 5th lines should be replaced by
U0/RT0.

• p. 15, the 2nd and 4th lines of Footnote 22:

U → Û

• p. 27, the 3rd line of Footnote 26:

Eq. (1.99) → a linear combination of Eqs. (1.99) and (1.101)

• p. 27, the 6th line of Footnote 26:
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except for a common constant factor → except for a common constant

factor and additive functions

(say, fa in Ĥ and fbi in Ĥi in

their second order) satisfying

Sh∂fa/∂t̂+ ∂fbi/∂xi = 0

• p. 48, the 21st line, p. 49, the 3rd line from below, and p. 488, the 4th line:

solid angle element → solid-angle element

• p. 81, the 4th line in Footnote 7:

uiGm → uiGm − ujGmnjni
or φeGm → of φeGm

• p. 83, the first line in Footnote 14:

uiGm → uiGm − ujGmnjni
•p. 235, Footnote M-5

http://fd.kuaero.kyoto-u.ac.jp/member/sone →
https://hdl.handle.net/2433/120983

•p. 246, Footnote M-10
http://fd.kuaero.kyoto-u.ac.jp/member/sone →
https://hdl.handle.net/2433/122357

• p. 502 – 505 and 508 (This item is not corrections, but gives alternative ex-
pressions convenient to the discussion in Section 1.5, where the nondimensional
form of the Boltzmann equation for an finite-range intermolecular potential is
discussed.):

The parameter U0 expressing the strength of the intermolecular potential is
introduced in Eq. (A.51) and on the first line of p.503. The dependence of U0 on
the mass m of a molecule is better to be explicit (see Sections 1.5.2 and 1.5.3).
That is,

U0 → mU0

Correspondingly, the following replacements with the new parameter U0 should
be made:

U0/mV2 → U0/V2 (the 2rd and 4th lines and the 7th line from below

in p. 503),

U0/m → U0 (the 3rd line from below in p. 503 and the 4th, 5th, and

7th lines in p. 504),

mRT0/U0 → RT0/U0 (the 12th and 14th – 16th lines in p. 508).

• p. 503, the 13th line from below:

solid angle elements → solid-angle elements

• p. 504, the first line in Footnote 24:

damin → domain
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• p. 505, Eq. (A.60):∣∣∣∣ 1

sin θc

∂ sin2 θe
∂θc

∣∣∣∣ → ∣∣∣∣ 1

sin θc

d sin2 θe
dθc

∣∣∣∣∣∣∣∣ 1

sin θc

∂b2

∂θc

∣∣∣∣ →
∣∣∣∣ 1

sin θc

db2

dθc

∣∣∣∣
• p. 506, the 13th line [The line next to Eq. (A.63)]:

with respect to θc → with respect to θα

• p. 617, the right-hand side of Eq. (C.2b):

In order to avoid misunderstanding, 2(n+1)!
βn+2 π is better expressed as

2π(n+ 1)!

βn+2
.

• p. 628, Reference [110]:

Reference [110] should be placed after Reference [112].

• p. 639, the 3rd line in Reference [262]:

gs → gas

Supplementary Notes

In the present supplementary notes, the letter M is attached to the labels
of sections, equations, etc. in the book Molecular Gas Dynamics and the letter
K is attached to those in Y. Sone, Kinetic Theory and Fluid Dynamics (Sone
[2002]) to avoid confusion. The two books, Molecular Gas Dynamics and Kinetic
Theory and Fluid Dynamics, themselves are, respectively, referred to as MGD
and KF.

1 Chapter M-1

1.1 Background of the Boltzmann equation (Sections M-
1.1 and M-1.2)

The situation of a monatomic gas the description of which is the purpose of the
Boltzmann equation is explained in more detail in Section 1.5.3 (the second half
part of Section 1.5.2 before Version 13-00). This will serve as the supplement
to Sections M-1.1 and M-1.2, though it is prepared for the discussion of the
parameters in the nondimensional Boltzmann equation.

(Section 1.1: Version 9-00 and 13-00)
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1.2 Supplement to Footnote M-9 in Section M-1.3

We will explicitly show the process of derivation of the conservation equati-
ons (M-1.12)–(M-1.14) by taking into account the discontinuity of the velocity
distribution function f(X, ξ, t) for a typical case.

Let S(X) be a continuous and sectionally smooth function of X, and let the
surface in the X space consisting of the points X0 that satisfy S(X0) = 0 be
indicated by S0.1 The surface S0 may be an infinite surface or a bounded surface
separating the space X into two regions. The velocity distribution function f at
time t0 is assumed to be discontinuous across the surface S0 and to be smooth
except on S0. The discontinuity propagates along the characteristics of the
Boltzmann equation (M-1.5), i.e., Xi − ξi(t − t0) = X0i, for each ξ.2 Take a
point (X, t) in the space and time, where t > t0. At this point or at (X, t), the
discontinuity of f lies on the surface S(ξ)(X, t) in the ξ space that consists of
the points ξD satisfying

S(Xi − ξDi(t− t0)) = 0, or Xi − ξDi(t− t0) = X0i. (1)

The point ξD is determined by X, t, and X0, i.e., ξD(X, t;X0). Let the side
of the domain in the ξ space that satisfies S(Xi − ξi(t − t0)) > 0 be indicated
by V+, and the other side of the domain by V−; let the outward unit normal to
the surface S(ξ)(X, t) with respect to V+ be indicated by nDi(ξD;X, t). Then,

nDi(ξD;X, t) = − ∂S(X − ξ(t− t0))/∂ξi
|∂S(X − ξ(t− t0))/∂ξj |

∣∣∣∣
ξ=ξD

=
∂S(Y )/∂Yi
|∂S(Y )/∂Yj |

∣∣∣∣
D

, (2)

where |ai| = (a2
i )

1/2 and the subscript D to ∂S(Y )/∂Yj indicates Y = X −
ξD(t − t0). The variations of ξD with respect to X or t for a given X0, i.e.,
∂ξD/∂Xi and ∂ξD/∂t, are determined from Eq. (1) as

∂S(Y )

∂Yj

∣∣∣∣
D

(
δij −

∂ξDj
∂Xi

(t− t0)

)
= 0,

∂S(Y )

∂Yj

∣∣∣∣
D

(
∂ξDj
∂t

(t− t0) + ξDj

)
= 0.

Thus, with the aid of Eq. (2),

nDj
∂ξDj
∂Xi

=
nDi
t− t0

, nDj
∂ξDj
∂t

= −nDjξDj
t− t0

. (3)

The integral of such a discontinuous function with respect to ξ over its whole
space is split into two parts as

ˆ
ψ(ξ)fdξ =

ˆ
V+

ψ(ξ)fdξ +

ˆ
V−

ψ(ξ)fdξ,

where ψ(ξ) is a smooth function of ξ. Then, the integrand is smooth in each
of V+ and V−. According to Lemma in page M-492, the following derivatives of

1It is assumed that (∂S/∂Xi)
2 6= 0 on S0. The normal to the surface S0 is defined except

at special points.
2For simplicity of explanation, we consider the case where Fi = 0 here.
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integrals over the domain V+ are transformed as3

∂

∂t

ˆ
V+

ψ(ξ)fdξ =

ˆ
V+

ψ(ξ)
∂f

∂t
dξ +

ˆ
S(ξ)

ψ(ξ)f
∂ξDj
∂t

nDjd
2ξ,

∂

∂Xi

ˆ
V+

ξiψ(ξ)fdξ =

ˆ
V+

ξiψ(ξ)
∂f

∂Xi
dξ +

ˆ
S(ξ)

ξiψ(ξ)f
∂ξDj
∂Xi

nDjd
2ξ,

where the integral over the surface S(ξ) of the second term on the right-hand
side of each equation is due to the variation of the domain V+ with t or Xi.
Summing the above two derivatives and noting Eq. (3), we have

∂

∂t

ˆ
V+

ψ(ξ)fdξ +
∂

∂Xi

ˆ
V+

ξiψ(ξ)fdξ =

ˆ
V+

ψ(ξ)
∂f

∂t
dξ +

ˆ
V+

ξiψ(ξ)
∂f

∂Xi
dξ,

where the surface integrals over S(ξ) are canceled. Similarly,

∂

∂t

ˆ
V−

ψ(ξ)fdξ +
∂

∂Xi

ˆ
V−

ξiψ(ξ)fdξ =

ˆ
V−

ψ(ξ)
∂f

∂t
dξ +

ˆ
V−

ξiψ(ξ)
∂f

∂Xi
dξ.

Thus, we have

∂

∂t

ˆ
ψ(ξ)fdξ +

∂

∂Xi

ˆ
ξiψ(ξ)fdξ =

ˆ
ψ(ξ)

∂f

∂t
dξ +

ˆ
ξiψ(ξ)

∂f

∂Xi
dξ. (4)

It may be noted that the interchange of differentiation and integration is pos-
sible only for the above combination of the integrals. With this formula, the
conservation equations are derived by choosing 1, ξi, and ξ2

i as ψ(ξ).
When the surface S0, i.e., S(X) = 0, is a finite surface or semi-infinite

surface which does not divide the ξ space into V+ and V−, we can take it as a
special case where some part of S0 joins to its other part and V− degenerates
empty. When there is a body in a gas, the discontinuity as shown in Section
M-3.1.6 generally exists. The analysis can be carried out in a similar way; that
is, determine the position of the discontinuity in the ξ space first, carry out the
differentiations in each region where the velocity distribution function is smooth
with the aid of the lemma in page M-492, and sum up the results.

(Section 1.2: Version 6-00)

1.3 Bulk viscosity (Section M-1.3)

The assumptions (M-1.15) and (M-1.16) for the stress tensor and heat-flow
vector in classical gas dynamics are what is to be studied by kinetic theory (see
Chapter M-3). For a monatomic gas, consisting of identical molecules whose

3The correspondence of the variables here and those in the lemma is as follows: ξ↔X, t
or Xi↔ ϑ, nDi ↔ nw, dξ↔ dX, d2ξ↔ d2X, V+ ↔ D(ϑ), S(ξ) ↔ ∂D(ϑ).
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intermolecular potential is spherically symmetric, which is discussed in MGD,
the bulk viscosity is easily seen to vanish. From Eqs. (M-1.2d) and (M-1.2f),4

pii = 3p. (5)

On the other hand, the trace of the first relation of Eq. (M-1.16) is

pii = 3p− 3µB
∂vi
∂Xi

.

Thus, from the two relations, we have

µB = 0. (6)

(Section 1.3: Version 7-00)

1.4 Note on the equality condition of Eq. (M-1.38)

The statement of the equality condition of Eq. (M-1.38), i.e., “The equality in
Eq. (1.38) holds when and only when f is the Maxwellian that satisfies the boun-
dary condition (1.26). . . ”, needs supplementary explanation. Some condition is
required of the scattering kernel KB in the boundary condition (M-1.26) for f to
be limited to the Maxwellian. For some KB , the equality holds in Eq. (M-1.38)
for f other than the Maxwellian. See Section 8.4.1 for more detailed discussion.

(Section 1.4: Version 5-00)

1.5 Nondimensional form of the Boltzmann equation for
an infinite-range potential (Sections M-1.9 and M-
A.2.4)

1.5.1 Preliminary

As explained in page M-505, the Boltzmann equation for an infinite-range inter-
molecular potential is conventionally introduced by taking the limit dm → ∞
with the impact parameter b fixed. For this B, the mean collision frequency
ν̄c and the reference quantity B0 in Eq. (M-1.48d) become infinite. Thus, the

4For molecules with internal degree of freedom (e.g., rotational and vibrational freedoms),
this freedom contributes to the integrands of Eqs. (M-1.2c)–(M-1.2g). Thus, Eq. (5) does not
generally hold. (More precisely, the velocity distribution function f depends also on the
variables of the internal degree of freedom of a molecule. The integration with respect to
these variables in Eqs. (M-1.2a)–(M-1.2g) has to be carried out. The angular momentum due
to the rotation of molecules of infinitesimal size per unit mass is negligible even when the
energy of rotation is not negligible.) The density ρ and the specific internal energy e can be
clearly defined whether the gas is in an equilibrium state or not. The specific internal energy
e/if per unit freedom of a molecule is taken as RT/2, i.e., e = ifRT/2, where if is the degree
of freedom of a molecule; thus, the relation between e and T is independent of the state of
the gas (equilibrium or nonequilibrium). The pressure is defined by the equation of state,
i.e., the perfect gas relation p = ρRT ; thus, except for a monatomic gas without internal
degree of freedom, the pressure differs generally from the isotropic part of stress tensor in a
nonequilibrium state.
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mean free path `, defined by Eq. (M-1.20), and the nondimensional form B̂ of
B, introduced in Eq. (M-1.48c), are useless. Thus, the proper nondimensional
form of the Boltzmann equation for an infinite-range potential is not presented
yet. We will give it here.

In the collision term (M-1.6), the change of the variables of integration is
introduced from α or (θc, ϕ) to (b, ϕ), where b is the impact parameter (Section
M-A.2.4). Noting the relations (M-A.59) and (M-A.60) and the range (0,∞) of
b for an infinite-range potential, we obtain the collision term for an infinite-range
potential in the following form:

J(f, f) =
1

m

ˆ
all ξ∗

ˆ 2π

0

ˆ ∞
0

|ξ∗ − ξ|[f(ξ′)f(ξ′∗)− f(ξ)f(ξ∗)]bdbdϕdξ∗, (7)

where
ξ′ = ξ + [α · (ξ∗ − ξ)]α, ξ′∗ = ξ∗ − [α · (ξ∗ − ξ)]α. (8)

The unit vector α is determined by (b, ϕ) with the aid of the relation between
θc and b :5

θc =

ˆ yc

0

1

(1− C − y2)
1/2

dy, C =
4U(b/y)

m(ξ∗ − ξ)2
, (9)

where yc is the smallest solution of the equation

1− 4U(b/y)

m(ξ∗ − ξ)2
− y2 = 0 (0 < y < b/dK). (10)

The potential U(r) is assumed here to tend to zero as r → ∞ and to increase
indefinitely as r → dK (≥ 0).6 In Eq. (7), the function B disappears, but in turn
its effect enters the relation between (ξ′, ξ′∗) and b through the relation (9).

1.5.2 General Case

Let the potential U(r) be given. Choosing the characteristic extent dM of the
potential (or the size of a molecule) properly, we can express the potential U(r)
in the form

U(r) = mU0Ũ(r/dM ), (11)

where Ũ(x) is a nondimensional function of a nondimensional variable x that
takes the value unity at x = 1, tends to zero as x→∞, and increases indefinitely
as x→ d̂K (= dK/dM ≤ 1); U0 is a constant of the order of RT0.7 Introducing

the nondimensional impact parameter b̂ by

5As explained in Section M-A.2.4, (θc, ϕ) is α or −α. The relation between (θc, ϕ) and
(θα, ϕ) under the convention α · (ξ∗ − ξ) > 0 introduced there, where α = (θα, ϕ), is given in
the second paragraph of page M-503.

6The case where U approaches a finite value as r → dK and an infinitely high potential
barrier lies at r = dK is included. A similar note applies to Ũ(x) in Eq. (11).

7(i) The symbols U0 and Ũ are chosen to avoid the confusion with U0 and Û introduced
in Eq. (M-A.51).

(ii) From U(r) and dM , the function Ũ(x) and the constant U0 are determined as Ũ(x) =
U(dMx)/U(dM ) and U0 = U(dM )/m. If we choose dM in such a way that U(dM )/m is of
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b̂ = b/dM , (12)

we rewrite the collision-term formulas (7)–(10) in terms of the nondimensional

variables Ũ and b̂, those introduced in Eq. (M-1.43), and the corresponding
reference quantities.8 The result is

J(f, f) =
ρ2

0d
2
M

2RT0m

ˆ
0≤ b̂<∞
0≤ϕ<2π

all ζ∗

|ζ∗ − ζ|[f̂(ζ′)f̂(ζ′∗)− f̂(ζ)f̂(ζ∗)]b̂db̂dϕdζ∗, (13)

where
ζ′ = ζ + [α · (ζ∗ − ζ)]α, ζ′∗ = ζ∗ − [α · (ζ∗ − ζ)]α. (14)

The unit vector α is determined by b̂, ϕ, and ζ∗ − ζ with the aid of θc (see
Footnote 5):

θc =

ˆ ȳc

0

1(
1− C̄ − ȳ2

)1/2 dȳ, (15)

where

C̄ =
2U0Ũ(b̂/ȳ)

RT0(ζ∗ − ζ)2
, (16)

and ȳc is the smallest positive solution of the equation for ȳ :

1− C̄ − ȳ2 = 0
(

0 < ȳ < b̂/d̂K

)
. (17)

Then, ȳc is a function of b̂ and U0/RT0(ζ∗−ζ)2; the integrand in Eq.(15) is also

a function of the same variables. Thus, θc is a function of b̂ and U0/RT0(ζ∗−ζ)2,
i.e.,

θc = fθc(b̂, U0/RT0(ζ∗ − ζ)2), (18a)

the order of RT0, the required properties of Ũ(x) and U0 are satisfied. Such a choice of dM is
possible owing to the behavior of U(r).

(iii) The size dM of a molecule is an important factor of k̃ defined by Eq. (21), which
is chosen to indicate the magnitude of the collision term. Depending on the choice of dM ,
the nondimentional collision integral (the integral part of the collision term) in Eq. (20) or
(22) can be too large or too small. This happens when U0/2RT0 in Eq. (16) is too large or
too small (note that the case θc = π/2, which occurs for C̄ = 0, corresponds to the case
without interaction between molecules). Then, k̃ is not a good indicator of the magnitude of
the collision term. Thus, dM should be chosen so as for U0/2RT0 to be of the order of unity
(say, U0/2RT0 = αpot). For a given U(r) and T0, the size dM is determined with an αpot (for
example, αpot = 1); then U0 = U(dM )/m = 2αpotRT0. For another reference temperature
T ∗0 , dM is kept unchanged, and U0, accordingly, remains unchanged. Then, U0/2RT ∗0 =
(T0/T ∗0 )αpot. This factor, U0/2RT ∗0 , enters the collision integral through C̄ in Eq. (15). For
the reference state (ρ0, T ∗0 ), the collision term is determined by the two parameters T ∗0 /T0
and k̃ based on dM determined by T0 as explained above though there is ambiguity due to T0
or αpot. The dependence of the collision term on T ∗0 /T0 is not widely mentioned.

(iv) The ambiguity of the size dM due to the choice of T0 or αpot is of the same kind as
that of a reference length and the thickness of shock wave or Knudsen layer, etc.

8The present way to obtain the nondimensional equation can be applied to a finite-range
potential.
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or
b̂ = fb̂(θc, U0/RT0(ζ∗ − ζ)2), (18b)

where the functional forms of fθc and fb̂ are determined only by Ũ(x).
The transport term (or the left-hand side) of the Boltzmann equation (M-

1.5) is rewritten as

∂f

∂t
+ ξi

∂f

∂Xi
+
∂Fif

∂ξi
=

ρ0

2RT0L

(
Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
+
∂F̂if̂

∂ζi

)
. (19)

Comparing the two expressions (13) and (19), we obtain the following nondi-
mensional form of the Boltzmann equation for an intermolecular potential of
infinite range:

Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
+
∂F̂if̂

∂ζi
=

1

k̃

ˆ
0≤ b̂<∞
0≤ϕ<2π

all ζ∗

|ζ∗ − ζ|[f̂(ζ′)f̂(ζ′∗)− f̂(ζ)f̂(ζ∗)]b̂db̂dϕdζ∗,

(20)
where

k̃ = 1/(ρ0/m)d 2
ML. (21)

Changing the variables of integration from (b̂, ϕ) to α, we have another form of
Eq. (20) with the B function in the collision term:

Sh
∂f̂

∂t̂
+ζi

∂f̂

∂xi
+
∂F̂if̂

∂ζi
=

1

k̃

ˆ
all α, all ζ∗

[f̂(ζ′)f̂(ζ′∗)− f̂(ζ)f̂(ζ∗)]B̃dΩ(α)dζ∗, (22)

where9

B̃(|α · (ζ∗ − ζ)|/|ζ∗ − ζ)|, |ζ∗ − ζ|,U0/2RT0)

=
|ζ∗ − ζ|

2

∣∣∣∣ fb̂
sin θc

∂fb̂(θc, U0/RT0(ζ∗ − ζ)2)

∂θc

∣∣∣∣ . (23)

The nondimensional form of the collision term contains the two parameters k̃
and U0/2RT0,10 which consist of macroscopic and molecular variables. For the
correct handling of the molecular variables, some discussions are required, which
will be given in Section 1.5.3.11

9(i) See Footnote 5.
(ii) The range of integration with respect to α in the integral on the right-hand side of

Eq. (22), which is originally α · (ζ∗ − ζ) > 0, is extended to the whole range of α by putting
the absolute-value sign on α · (ζ∗ − ζ) in the argument of B̃. Thus, B̃ is multiplied by 1/2 in
Eq. (23).

10It should be noted that the parameter U0/2RT0 enters Eq. (20) through the relation

between (b̂, ϕ) and α [see Eq. (18a)].
11It is generally said that the limit where the parameters m, dM , and U(dM ) [note: U0 =

U(dM )/m] tend to zero is taken in the derivation of the Boltzmann equation. Without paying
attention to their relative speeds of approach to zero and putting them zero simply in the
Boltzmann equation (20) or (22), we have a trouble. We have to review the background of
the derivation of the Boltzmann equation.
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1.5.3 Background of the Boltzmann equation and its parameters

Before discussing the parameters in the Boltzmann equation (20) or (22), it may
be in order to review the situation of a monatomic gas the description of which is
the purpose of the Boltzmann equation. A gas consists of very many molecules
in a reference volume of our interest in discussing its behavior (and even in a
very small volume in the scale of the reference volume), and its variables, such
as density, flow velocity, and temperature, as a group of so many molecules
are defined at a point (in the scale of our interest) in space and time. The
reference quantities are set from the situation of our interest. Our interest is
the behavior of a monatomic gas. The reference quantities are properly chosen
for the description or analysis of it. Hereafter, the expression “G-reference” is
used for this when the distinction with molecular quantities is preferable. In
the situation of the present interest, the molecular size dM and the molecular
mass m are, respectively, very small compared with the G-reference length L
and the mass ρ0L

3 in the G-reference volume L3, i.e.,

dM/L� 1, (24a)

m/ρ0L
3 � 1, (24b)

where ρ0 is the reference density. Thus, very many molecules are in volume L3

(in a unit volume),12 i.e.,

n0L
3 � 1 (n0 = ρ0/m). (25)

The mean value of the molecular velocities is the flow velocity of the gas, and
their standard deviation is the sound speed or (RT0)1/2 except for a constant
factor. We are interested in the situation where the flow speed is expressed in its
Mach number or its scale is at the level of (RT0)1/2. Therefore, flow velocity and
molecular velocity are expressed with (RT0)1/2 as their unit, or the G-reference
scale and the molecular scale for velocity are commonly (RT0)1/2 in contrast to
the mass and the linear dimension.13

Here, we are interested in the behavior of the above-mentioned gas in the
case where the gas is in a state with (ρ0/m)d 2

ML being at a nonzero finite
value,14 i.e.,

0 < (ρ0/m)d 2
ML <∞. (26)

Put it be CL, i.e.,
CL = (ρ0/m)d 2

ML, (27)

12When we mention that the dimensional quantity n0 is large, it is implicitly assumed that
the unit volume is of the G-reference size. This kind of expression is common. For example,
the mean free path is small. In this case, we compare it with the length under consideration or
of our daily life. Adequate care is required when dealing with reference quantities of different
scales.

13In the discussion of intermolecular collisions, only the relative velocity ξ∗−ξ is important.
Its characteristic size is at the level of (RT0)1/2, irrespective of the flow velocity of the gas.

14The π(ρ0/m)d 2
ML is the number of molecules of a gas with density ρ0 in a circular cylinder

with radius dM and length L. Thus, it is roughly the frequency of collision while a molecule
travels distance L, or 1/π(ρ0/m)d 2

M is roughly the mean free path, which is about 0.06 µm
for air at the atmospheric condition (see Table M-C.1 in Section M-C.2).
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where CL is a nonzero finite value. In this situation, (ρ0/m)d 3
M � 1 because of

Eq. (24a). The scale of velocity being common to the G-reference and the mole-
cular reference scales, the time scales in the two view points are different. The
time for a molecule to interact with another is of the order of dM/(RT0)1/2, but
the time to travel with speed (RT0)1/2 for the G-reference length L or the mean
free path 1/(ρ0/m)d 2

M is of the order of L/(RT0)1/2 or 1/(ρ0/m)d 2
M (RT0)1/2,

the latter of which is the mean free time, i.e., the average time between two
successive collisions of a molecule, and of the same order as the former because
CL is a nonzero finite value [note:1/(ρ0/m)d 2

M (RT0)1/2 = L/CL(RT0)1/2]. The
molecular-time scale [say, tmol (= dM/(RT0)1/2)] is very much smaller than the
G-time scale [say, tL (= L/(RT0)1/2] because of Eq. (24a), i.e.,

tmol/tL � 1. (28)

In the above discussion, another length scale Lδ and another time scale tδ
are implicitly introduced, which has the following conditions:

dM/Lδ � 1, Lδ/L� 1, (29a)

m/ρ0L
3
δ � 1 (n0L

3
δ � 1), (29b)

tmol/tδ � 1, tδ/tL � 1, (29c)

where tδ is the time to travel with speed (RT0)1/2 for distance Lδ, i.e., tδ =
Lδ/(RT0)1/2. This definition of tδ is consistent with Eq. (29c) because of Eqs. (26)
and (29a). By the introduction of Lδ and tδ, we can define the local gas dyn-
amic variables in space and time.15 The length and time scales of variation of
these variables are, respectively, L and tL by their definition. Equation (29b)
means that the average volume of the gas in which one molecule lies is much
smaller than L3

δ ; that is, the distance dsp between two neighboring molecules is
much small than Lδ (dsp/Lδ � 1). From Eq. (27) with nonzero finite CL and
Eq. (29a), we have

Lδ
1/(ρ0/m)d 2

M

� 1. (30)

That is, Lδ is much smaller than the mean free path 1/n0d
2
M . In the time

scale of tδ, the molecules in a volume L3
δ stay in it and do not make collision

because of the second relation of Eq. (29c), and none of them is in the process
of interaction with another molecule because of the first relation of Eq. (29c).
The molecules keep their velocity unchanged. Thus, the state in the volume L3

δ

remains unchanged in that time scale. That is, the state at a point in space

15(i) Condition (29b) is essential to this.
(ii) A point X and its neighborhood of the order of Lδ are taken as the point X in a gas (or

in G scale). A time t and its neighborhood of the order of tδ are taken as the time t in G scale.
Accordingly, a molecular velocity ξ and its neighborhood of the order of (RT0)1/2Lδ/L are the

molecular velocity ξ in G scale because all motions between two space-time points (X(0), t(0))

and (X(1), t(1)) in G scale with the above-mentioned allowance of the neighborhood are taken
to have the same velocity in G scale. Local gas dynamic variables (G scale) are defined with
the data over the above-mentioned neighborhood of the point under interest.

12



and time of the Lδ scale is well defined. For the convenience of the following
discussion, we here introduce the notation:

d̂re = dM/Lδ, L̂δ = Lδ/L, m̂re = m/ρ0L
3
δ . (31)

To describe the behavior of the gas (or in the derivation of the Boltzmann

equation), the limiting case where d̂re (= dM/Lδ) → 0, L̂δ (= Lδ/L) → 0, and
m̂re (= m/ρ0L

3
δ)→ 0 with (ρ0/m)d 2

ML fixed at a nonzero finite value is conside-
red (the Grad–Boltzmann limit), and the equation that determines the G-scale
behavior of the limiting system is established.16 First, the velocity distribution
function that expresses the state of the gas (G-scale state) is introduced, and
then the equation (the Boltzmann equation) that describes the variation of the
velocity distribution function is derived. Obviously by definition, the velocity
distribution function or the Boltzmann equation neither discriminates positions
with difference of molecular size, nor describes the variation over that size. The
transport term of the Boltzmann equation, the left-hand side of Eq. (M-1.5), is
derived only by the discussion of the G-reference level. On the other hand, the
collision term, the right-hand side of Eq. (M-1.5), is discussed by magnifying
the scales of molecular parameters (mass, radius, position, intermolecular po-
tential), and the frequency of intermolecular collision and the shift of molecular
velocities by collision are calculated.17 Thus, some quantities of molecular level
are apparently included in the collision term. In Eq. (20) or (22), m and dM ap-
pear in k̃ as the combination (ρ0/m)d 2

ML, which is fixed in the limiting process;

thus, the real molecular data can be put in m and dM . In addition to k̃, the
collision term depends on the parameter U0/2RT0,18 which will be shown to be
invariant in the limiting process in the next paragraph. Thus, the nondimensi-
onal Boltzmann equation (20) or (22) is expressed with the quantities invariant
in the limiting process.

We discuss the dependence of U0 in the potential (11) on the scale factors d̂re,
L̂δ, and m̂re. Let the potential U(r) be given. From the profile, we determine
dM , which has ambiguity (see Footnote 7), and rewrite U(r) in the form

U = mU0Ũ(r/dM ), (32)

where U0 has the dimension of RT0. Take a given set of a molecule and a
potential (or a given pair of molecules). Let the molecule be approaching the
potential field with a relative velocity (2RT0)1/2(ζ∗− ζ) and a relative position

16(i) In this limit, n0d 3
M → 0 (n0 = ρ0/m), (ρ0/m)d 2

MLδ → 0, tmol/tδ → 0, and tδ/tL → 0.
The first one shows that the volume of the molecules in a volume of a gas is negligible to the
volume that the gas occupies.

(ii) The case where (ρ0/m)d 2
ML is independent of d̂re, L̂δ, and m̂re is considered here.

(iii) In the gas under consideration, the scale parameters d̂re, L̂δ, and m̂re are so small
that its behavior is well approximated by the solution of the equation obtained in the limit.
This is the underlying assumption in the derivation of the Boltzmann equation.

17In the discussion of the collision term of the Boltzmann equation, the collision effect at
each point of the gas is discussed with the binary collision of molecules in a volume of L3

δ
scale.

18See Footnote 10

13



(b̂, ϕ). Obviously, the reduced trajectory r̂ = fTr(θ; b̂,U0/2RT0(ζ∗ − ζ)2) of
the binary collision, where r̂ = r/dM , is independent of the G-reference scale
L. So is θc. That is, these results are invariant in the limiting process that
d̂re → 0, L̂δ → 0, and m̂re → 0. We examine the condition that Eq. (M-A.50)
for the trajectory gives a solution that satisfies the above invariant condition,
and easily find that U0/2RT0 must be invariant in the limiting process.19 From
this invariant property of U0/2RT0, we can choose the real molecular data for
U0; that is, once we have chosen dM for the real potential U , U0 is determined
as

U0 = U(dM )/m, (33)

where the real molecular data of m and dM are used. Thus, the nondimensional
Boltzmann equation (20) or (22) is expressed with the parameters that are

19(i) With the relations r = r̂dM and b = b̂dM in Eq. (M-A.50), it is reduced to

b̂2

r̂4

(
dr̂

dθ

)2

= 1−
2U0Ũ(r̂)

RT0(ζ∗ − ζ)2
−
b̂2

r̂2
.

Thus, the reduced trajectory r̂ = fTr(θ; b̂,U0/2RT0(ζ∗ − ζ)2) is required to be independent

of d̂re, L̂δ, and m̂re. This condition requires that U0/RT0 is invariant in the limiting process.
(ii) The Boltzmann equation is not derived yet for an infinite-range potential which really

extends up to infinity in the G-reference length . What is called the Boltzmann equation for an
infinite-range potential is conventionally obtained as the limiting result of the corresponding
finite-range potential confined in a L3

δ volume. The infinity is in the scale of dM and the effect
of the potential on the molecules outside the L3

δ volume is not counted. For an infinite-range
potential U(r), the corresponding cutoff potential Ucut(r) is defined by cutting off the tail of
U(r) for r > dm, i.e., Ucut = U for r ≤ dm and Ucut = 0 for r > dm. Let the B function
for the finite-range potential Ucut be Bcut

dm
. Then, the limit of Bcut

dm
as dm/dM →∞ is taken

under the condition that b/dM is fixed at a finite value in the limiting process. Let the result
be B∗∞. The Boltzmann equation in which this B∗∞ is adopted as B is conventionally called
the Boltzmann equation for the infinite-range potential U(r). The term “conventionally” is
used by the reason that the contribution of the case where limdm/dM→∞ b/dm > 0 is not
precisely estimated but is neglected, in addition to the note mentioned at the beginning. Let
the potential for infinite range be given in the form

U(r) = mU0Ũ(r/dM ).

Then, the potential Ucut is expressed as

Ucut = mU0Ũcut(r/dM ),

where Ũcut(x) = Ũ(x) for x ≤ dm/dM and Ũcut(x) = 0 for x > dm/dM . The U0 is common
to the infinite-range potential and all the cutoff potentials. For each dm/dM , U0/2RT0 is

invariant with respect to d̂re, L̂δ, and m̂re from the trajectory discussion. Thus, U0/2RT0 in
Eq. (20) or (22) is invariant in the limiting process (see Footnote 10).

(iii) In the nondimensional form B̂ given in Eq. (M-A.71) for a finite-range potential, U0

corresponds to mU0 here. The U0 in Section M-A.2.4 is better replaced by mU0 because
U0/RT0 is free from the scale factors d̂re, L̂δ, and m̂re. The symbol U0 different from U0 is

used because of difference of the behavior of the nondimensional functions Û(x) in Section

M-A.2.4 and Ũ(x) here. As the result, the argument (2mRT0/U0)1/2|ζ∗ − ζ| of B̂ there is
rewritten as (2RT0/U0)1/2|ζ∗ − ζ|. Owing to its invariance in the limiting process, U0 is

determined from the real molecular data of U . The U0 (or mU0) and Û(x) in the potential

U(r) [= U0Û(r/dm)] are determined as follows: First, dM , U0, and Ũ(x) are determined from
U(r) [= mU0Ũ(r/dM )] in the same way as for an infinite-range potential described in Footnote

7 (iii). From the result, U0 and Û(x) are determined as U0 = U0 and Û(x) = Ũ(dmx/dM ).
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invariant in the limiting process. Finally, it should be noted that the potential
or the molecule changes in the limiting process unless U0 is invariant.

1.5.4 Inverse-power potential

The collision term for the inverse-power potential is given by Eq. (M-A.64) as

J(f, f) =
1

m

(
4a0

m

) 2
n−1
ˆ

0≤g<∞
0≤ϕ<2π

all ξ∗

(f ′f ′∗ − ff∗)|ξ∗ − ξ|
n−5
n−1 gdgdϕdξ∗, (34)

where the intermolecular potential U(r) [Eq. (M-A.49a)] is given by

U(r) =
a0

rn−1
(a0 > 0, n > 1), (35)

and α or (θc, ϕ) in f ′ and f ′∗ is determined only by g, ϕ, and n [see Eq. (M-A.62a)
and (M-A.62b)].20 With the use of the nondimensional variables introduced in
Eq. (M-1.43), the collision term (34) is rewritten in the form

J(f, f) =
1

m

(
4a0

m

) 2
n−1 ρ2

0

(2RT0)1+ 2
n−1

ˆ
0≤g<∞
0≤ϕ<2π

all ζ∗

(f̂ ′f̂ ′∗ − f̂ f̂∗)|ζ∗ − ζ|
n−5
n−1 gdgdϕdζ∗.

(36)

The variables ζ′ and ζ′∗ in f̂ ′ and f̂ ′∗ are given by Eq. (14) with the aid of θc:

θc =

ˆ yc(g)

0

[
1−

(
y

g

)n−1

− y2

]−1/2

dy, (37)

where yc(g) is the positive solution, which is unique, of the equation

1− (y/g)n−1 − y2 = 0 (0 < y <∞) . (38)

The transport term (or the left-hand side) of the Boltzmann equation (M-1.5)
is expressed as

∂f

∂t
+ ξi

∂f

∂Xi
+
∂Fif

∂ξi
=

ρ0

2RT0L

(
Sh
∂f̂

∂t̂
+ ζi

∂f̂

∂xi
+
∂F̂if̂

∂ζi

)
. (39)

From the two expressions (36) and (39), we have the following nondimensi-
onal form of the Boltzmann equation:

Sh
∂f̂

∂t̂
+ζi

∂f̂

∂xi
+
∂F̂if̂

∂ζi
=

1

k̄inv

ˆ
0≤g<∞
0≤ϕ<2π

all ζ∗

(f̂ ′f̂ ′∗− f̂ f̂∗)|ζ∗−ζ|
n−5
n−1 gdgdϕdζ∗, (40)

20The variable b (the impact parameter) of integration is replaced by the nondimensional
variable g defined by g = (m/4a0)1/(n−1)|ξ∗ − ξ|2/(n−1)b [see Eq. (M-A61)].
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where

k̄inv =
1

(ρ0/m)(2a0/mRT0)
2

n−1

1

L
. (41)

The integral on the right-hand side of Eq. (40), including the relation (37) bet-
ween (ζ′, ζ′∗) and (g,ϕ), expressed in nondimensional variables does not contain

parameters except n.21 It is finite when n > 3 for a smooth f̂ (Section M-
A.2.4). Thus, 1/k̄inv is the only parameter in the collision term and expresses
the weight of the collision term in the Boltzmann equation (40). The constant
(2a0/mRT0)1/(n−1) has the dimension of length. Let it be indicated by d̄inv, i.e.

d̄inv =

(
2a0/m

RT0

) 1
n−1

. (42)

Then,

k̄inv =
1

(ρ0/m)d̄ 2
invL

. (43)

For a finite k̄inv, d̄inv/L tends to zero in the limit ρ0L
3/m→∞.

In order to examine the invariance of k̄inv in the limiting process, we rewrite
Eq. (35) in the form (11) as

U(r) =
mU0

(r/dM )n−1
(n > 1), (44)

where U0/(RT0)1/2 is independent of the scale factors d̂re, L̂δ, and m̂re.22 From
Eqs. (35) and (44),

a0 = mU0d
n−1
M . (45)

With this a0 in Eq. (41), k̄inv is expressed as

k̄inv =
1

(2U0/RT0)
2

n−1 (ρ0/m)d 2
ML

=
k̃

(2U0/RT0)
2

n−1

. (46)

In the limiting process, both k̃ and 2U0/RT0 are invariant. So is k̄inv from
Eq. (46). From the invariance of k̄inv in the limiting process, k̄inv can be cal-
culated by Eq. (41) with the real molecular data of m and a0. The result is
independent of the choice of dM . For an inverse-power potential, the effects of
the two parameters k̃ and 2U0/RT0 on the collision term are combined in the
single parameter k̄inv. In view of Eqs. (20), (21), (40), (41), and (43), the pa-
rameters k̄inv and d̄inv may be called, respectively, a reduced Knudsen number
and a reduced molecular size.

(Up to Section 1.5.4 in Section 1.5: Version 9-00)

21The parameters a0 and T0 do not enter α in f̂ ′ and f̂ ′∗. They enter k̄inv combined in the
form 2a0/mRT0.

22The choice of dM is arbitrary for the homogeneous potential, U(br) = b−(n−1)U(r), with
a single parameter. The result will be seen to be independent of dM .
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1.6 Supplement to Footnote M-26 in Chapter M-1

Footnote M-26 is supplemented with more explicit mathematical expressions for
the process given there. Take the non-dimensional form of the equation for the
H function, i.e., Eq. (M-1.72):

Sh
∂Ĥ

∂t̂
+
∂Ĥi

∂xi
=

1

k
Ĝ, (47)

where

Ĥ(xi, t̂) =

ˆ
f̂ ln(f̂/ĉ0)dζ, Ĥi(xi, t̂) =

ˆ
ζif̂ ln(f̂/ĉ0)dζ,

Ĝ = −1

4

ˆ
(f̂ ′f̂ ′∗ − f̂ f̂∗) ln

(
f̂ ′f̂ ′∗

f̂ f̂∗

)
B̂dΩdζ∗dζ ≤ 0,

 (48)

with ĉ0 = c0(2RT0)3/2/ρ0. The perturbed form of the velocity distribution

function f̂ is defined by

f̂ = E(1 + φ), (49)

where

E =
1

π3/2
exp(−ζ2).

Let ε be a small quantity. Here, we take the case in which φ is of the order of
ε, and examine the terms of the order of ε2 of Eq. (47). The perturbed function
φ is expressed as

φ = φ1ε+ φ2ε
2 + · · · . (50)

Corresponding to the expansion, the macroscopic variables, i.e., ω, ui, P, etc.,
Ĥ, Ĥi, and Ĝ are also expressed as

h = h1ε+ h2ε
2 + · · · , (51a)

Ĥ = Ĥ0 + Ĥ1ε+ Ĥ2ε
2 + · · · , (51b)

Ĥi = Ĥi0 + Ĥi1ε+ Ĥi2ε
2 + · · · , (51c)

Ĝ = Ĝ0 + Ĝ1ε+ Ĝ2ε
2 + · · · , (51d)

where h represents the perturbed macroscopic variables, ω, ui, P, etc., and the
quantities φn, hn, Ĥn, Ĥin, and Ĝn are of the order of unity. Then, with the
aid of the expanded forms of Eqs. (M-1.78a)–(M-1.78f), Ĥn, Ĥin, and Ĝn are
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expressed as

Ĥ0 = −3

2
− lnπ3/2ĉ0, (52a)

Ĥ1 = (1− lnπ3/2ĉ0)

ˆ
Eφ1dζ −

ˆ
ζ2Eφ1dζ

= (1− lnπ3/2ĉ0)ω1 −
3

2
P1, (52b)

Ĥ2 = (1− lnπ3/2ĉ0)

ˆ
Eφ2dζ −

ˆ
ζ2Eφ2dζ +

1

2

ˆ
Eφ2

1dζ

= (1− lnπ3/2ĉ0)ω2 −
(

3

2
P2 + u2

i1

)
+

1

2

ˆ
Eφ2

1dζ, (52c)

Ĥi0 = 0, (53a)

Ĥi1 = (1− lnπ3/2ĉ0)

ˆ
ζiEφ1dζ −

ˆ
ζiζ

2Eφ1dζ

= (1− lnπ3/2ĉ0)ui1 −
(
Qi1 +

5

2
ui1

)
, (53b)

Ĥi2 = (1− lnπ3/2ĉ0)

ˆ
ζiEφ2dζ −

ˆ
ζiζ

2Eφ2dζ +
1

2

ˆ
ζiEφ

2
1dζ

= (1− lnπ3/2ĉ0)(ui2 + ω1ui1)−
(
Qi2 +

5

2
ui2 + uj1Pij1 +

3

2
ui1P1

)
+

1

2

ˆ
ζiEφ

2
1dζ, (53c)

Ĝ0 = 0, (54a)

Ĝ1 = 0, (54b)

Ĝ2 = −1

4

ˆ
EE∗(φ

′
1 + φ′1∗ − φ1 − φ∗1)2B̂dΩdζ∗dζ ≤ 0. (54c)

With the aid of these expressions, the ε and ε2-order expressions of Eq (47) are
given as

Sh
∂Ĥ1

∂t̂
+
∂Ĥi1

∂xi
= (1− lnπ3/2ĉ0)

(
Sh
∂ω1

∂t̂
+
∂ui1
∂xi

)
−
[

3

2
Sh
∂P1

∂t̂
+

∂

∂xi

(
5

2
ui1 +Qi1

)]
, (55a)

Sh
∂Ĥ2

∂t̂
+
∂Ĥi2

∂xi
= (1− lnπ3/2ĉ0)

(
Sh
∂ω2

∂t̂
+
∂(ui2 + ω1ui1)

∂xi

)
− Sh

∂

∂t̂

(
3

2
P2 + u2

i1

)
− ∂

∂xi

(
Qi2 +

5

2
ui2 + uj1Pij1 +

3

2
ui1P1

)
+

1

2

(
Sh
∂

∂t̂

ˆ
Eφ2

1dζ +
∂

∂xi

ˆ
ζiEφ

2
1dζ

)
. (55b)
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Substituting the series expansion (51a) into the conservation equation (M-1.87),
we have

Sh
∂ω1

∂t̂
+
∂ui1
∂xi

= 0, (56a)

Sh
∂ω2

∂t̂
+
∂(ui2 + ω1ui1)

∂xi
= 0. (56b)

Similarly, from the conservation equation (M-1.89), we have

3

2
Sh
∂P1

∂t̂
+

∂

∂xi

(
5

2
ui1 +Qi1

)
= 0, (57a)

Sh
∂

∂t̂

(
3

2
P2 + u2

i1

)
+

∂

∂xi

(
5

2
ui2 +Qi2 + uj1Pij1 +

3

2
ui1P1

)
= 0. (57b)

With the aid of the expanded forms (56a)–(57b) of the conservation equations
(M-1.87) and (M-1.89), Eqs. (55a) and (55b) are reduced to, for the solution of
the Boltzmann equation (M-1.47) or (M-1.75a),

Sh
∂Ĥ1

∂t̂
+
∂Ĥi1

∂xi
= 0, (58a)

Sh
∂Ĥ2

∂t̂
+
∂Ĥi2

∂xi
=

1

2

(
Sh
∂

∂t̂

ˆ
Eφ2

1dζ +
∂

∂xi

ˆ
ζiEφ

2
1dζ

)
. (58b)

Thus, the o(ε2) terms being neglected in Eq. (47), it is reduced to

Sh
∂

∂t̂

ˆ
Eφ2

1dζ +
∂

∂xi

ˆ
ζiEφ

2
1dζ

= − 1

2k

ˆ
EE∗(φ

′
1 + φ′1∗ − φ1 − φ1∗)

2B̂dΩdζ∗dζ ≤ 0. (59)

This expression does not contain φ2.
(Section 1.6: Version 4-00)

2 Chapter M-2

2.1 Section M-2.5

2.1.1 Section M-2.5.1

The following form:

σ = − 2

π

ˆ
0<ξ<∞, lini<0

ξ3ljnjf(X, ξl)dξdΩ(l),

is more appropriate as Eq. (M-2.39b) than the one in the book. Then, the
explanation of dΩ(l), i.e.,

dΩ(l) is the solid-angle element in the direction of l,
has to be inserted between ‘ where ’ and ‘Tw’ just after Eq. (M-2.39c).

(Section 2.1.1: Version 6-00)
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3 Chapter M-3

3.1 Processes of solution of the systems in Section M-3.7.2
(July 2007)

The processes of solutions of the fluid-dynamic-type equations derived in Section
M-3.7.1 are straightforward and may not need explanation. For the equations
in Section M-3.7.2, some explanation may be better to be given. The discussion
will be made on the basis of the boundary conditions in Section M-3.7.3 for a
simple boundary where the shape of the boundary is invariant and its velocity
component normal to it is zero.

3.1.1 “Incompressible Navier–Stokes set”

Consider the initial and boundary-value problem of Eqs. (M-3.265)–(M-3.268),
i.e.,

∂PS1

∂xi
= 0, (60)

∂uiS1

∂xi
= 0, (61a)

∂uiS1

∂t̃
+ ujS1

∂uiS1

∂xj
= −1

2

∂PS2

∂xi
+
γ1

2

∂2uiS1

∂x2
j

, (61b)

5

2

∂τS1

∂t̃
− ∂PS1

∂t̃
+

5

2
ujS1

∂τS1

∂xj
=

5γ2

4

∂2τS1

∂x2
j

, (61c)

∂uiS2

∂xi
= −∂ωS1

∂t̃
− ∂ωS1uiS1

∂xi
, (62a)

∂uiS2

∂t̃
+ ujS1

∂uiS2

∂xj
+ ujS2

∂uiS1

∂xj

= −1

2

(
∂PS3

∂xi
− ωS1

∂PS2

∂xi

)
+
γ1

2

∂

∂xj

(
∂uiS2

∂xj
+
∂ujS2

∂xi
− 2

3

∂ukS2

∂xk
δij

)
− γ1ωS1

2

∂2uiS1

∂x2
j

+
γ4

2

∂

∂xj

[
τS1

(
∂uiS1

∂xj
+
∂ujS1

∂xi

)]
− γ3

3

∂

∂xi

∂2τS1

∂x2
j

, (62b)

3

2

∂PS2

∂t̃
+

3

2
ujS1

∂PS2

∂xj
+

5

2

(
∂PS1ujS2

∂xj
− ∂ωS2

∂t̃
− ∂(ωS2ujS1 + ωS1ujS2)

∂xj

)
=

5γ2

4

∂2τS2

∂x2
j

+
5γ5

4

∂

∂xj

(
τS1

∂τS1

∂xj

)
+
γ1

2

(
∂uiS1

∂xj
+
∂ujS1

∂xi

)2
, (62c)

where
PS1 = ωS1 + τS1, PS2 = ωS2 + ωS1τS1 + τS2. (63)
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From Eq. (60), PS1 is a function of t̃, i.e.,

PS1 = f1(t̃). (64)

In an unbounded-domain problem where the pressure at infinity is specified
(or the pressure is specified at some point), PS1 = f1(t̃) is known, but in a
bounded-domain problem consisting of simple boundaries, f1(t̃) is unknown at
this moment and is determined later. Let uiS1 and τS1 as well as f1(t̃) be given
at time t̃ in such a way that uiS1 satisfies Eq. (61a). Taking the divergence of
Eq. (61b) and using Eq. (61a), we have

∂2PS2

∂x2
i

= −2
∂ujS1

∂xi

∂uiS1

∂xj
. (65)

On a simple boundary, the derivative of PS2 normal to it is found to be expres-
sed with uiS1 and its space derivatives by multiplying Eq. (61b) by the normal
vector to the boundary.23 In the unbounded-domain problem, where f1(t̃) is
known, PS2 is determined by Eq. (65). In the bounded-domain problem, PS2 is
determined by Eq. (65) except for an additive function of t̃ [say, f2(t̃)]. Any-
way, ∂PS2/∂xi is independent of this ambiguity. From Eq. (61b), ∂uiS1/∂t̃ at
t̃ is determined, irrespective of f2(t̃), in such a way that ∂(∂uiS1/∂xi)/∂t̃ = 0
for the above choice of PS2. Thus, the solution uiS1 of Eqs. (61a) and (61b)
is determined by Eq. (61b) with the supplementary condition (65) instead of
Eq. (61a). From Eq. (61c), (5/2)∂τS1/∂t̃− ∂PS1/∂t̃ or (5/2)∂τS1/∂t̃−df1(t̃)/dt̃
is determined, i.e.,

(5/2)∂τS1/∂t̃− df1(t̃)/dt̃ = G(xi, t̃), (66)

where

G(xi, t̃) = −5

2
ujS1

∂τS1

∂xj
+

5γ2

4

∂2τS1

∂x2
j

. (67)

Thus, τS1 is determined in the unbounded-domain problem, but τS1 has am-
biguity owing to f1(t̃) in the bounded-domain problem. The undetermined
function f1(t̃) is determined in the following way.

In the bounded-domain problem where the boundary consists of simple boun-
daries, the mass of the gas in the domain is invariant with respect to t̃. The
condition at the leading order is

d

dt̃

ˆ
V

ωS1dx = 0, (68)

where V indicates the domain (or its volume in the later). With the aid of
Eq. (63), we have

df1(t̃)

dt̃
V − d

dt̃

ˆ
V

τS1dx = 0. (69)

23The time-derivative term vanishes owing to the boundary condition mentioned in the first
paragraph of Section 3.1.
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On the other hand, from Eq. (66),

−df1(t̃)

dt̃
V +

5

2

d

dt̃

ˆ
V

τS1dx =

ˆ
V

G(xi, t̃)dx. (70)

From Eqs. (69) and (70), we obtain df1(t̃)/dt̃ and d
´
V
τS1dx/dt̃ as

df1(t̃)

dt̃
=

2

3V

ˆ
V

G(xi, t̃)dx. (71)

This is the equation for f1(t̃) in the bounded-domain problem. Thus, τS1 and
f1(t̃) in the bounded-domain problem are determined together by Eqs. (61c) and
(71).

The analysis of the higher-order equations is similar; for example, from
Eqs. (62a)–(62c), uiS2, τS2, and PS3 are determined in the unbounded-domain
problem, but f2(t̃), uiS2, τS2, and PS3, except for an additive function of t̃ in
PS3, are determined in the bounded-domain problem.24 Let uiS2, τS2, and f2(t̃)
be given at t̃ in such a way that Eq. (62a) is satisfied.25 Taking the divergence
of Eq. (62b) and using Eq. (62a) and the results obtained above, we find that
PS3 is governed by the Poisson equation

∂2PS3

∂x2
i

= Inhomogeneous term, (72)

where the inhomogeneous term consists of uiS2, PS2, and the functions deter-
mined in the preceding analysis. On a simple boundary, the derivative of PS3

normal to it being known,26 PS3 is determined by this equation, except for an
additive function of t̃ [say, f3(t̃)] in the bounded-domain problem. Then, from
Eq. (62b), ∂uiS2/∂t̃ at t̃ is determined irrespective of f3(t̃). From Eq. (62c),
∂(3PS2 − 5ωS2)/∂t̃ [or ∂(5τS2 − 2PS2)/∂t̃] at t̃ is determined. Thus, uiS2 and
τS2 (except for the additive function 2f2/5 in the bounded-domain problem)
[thus, ωS2 (except for the additive function 3f2/5)] are determined. In the
bounded-domain problem, where the boundary consists of simple boundaries,
the condition of invariance of the mass of the gas in the domain at the corre-
sponding order is27

d

dt̃

ˆ
V

ωS2dx = 0. (73)

With the aid of Eq. (63), df2(t̃)/dt̃ at t̃ is determined as df1(t̃)/dt̃ is done.
To summarize, the solution (uiS1, PS1, τS1, PS2) of the initial and boundary-

value problem of Eqs. (60)–(61c) is determined, with an additive arbitrary function
f2(t̃) in PS2 in a bounded-domain problem consisting of simple boundaries, when

24Note that, with the aid of Eq. (63), the time-derivative term 3
2
∂PS2/∂t̃ − 5

2
∂ωS2/∂t̃ in

Eq. (62c) is transformed into 5
2
∂τS2/∂t̃− ∂PS2/∂t̃+ 5

2
∂ωS1τS1/∂t̃.

25The time derivative ∂ωS1/∂t̃ is known from ∂τS1/∂t̃, df1(t̃)/dt̃, and Eq. (63).
26Shift the discussion of the boundary condition for PS2 to the next order.
27The contribution of the Knudsen-layer correction to the mass in the domain is of a higher

order, though it is required to ωS2.
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the initial data of uiS1, PS1, τS1, and PS2 satisfy Eqs. (61a) and (65). The addi-
tive function f2(t̃) does not affect the other variables. The function f2(t̃) is de-
termined in the next-order analysis. In other words, the solution (uiS1, PS1, τS1)
of Eqs. (60)–(61c) is determined consistently by Eqs. (60), (61b), and (61c) with
the supplementary condition (65), instead of Eq. (61a), when the initial data of
uiS1, PS1, and τS1 satisfy Eq. (61a). Naturally, the initial PS2 is required to
satisfy Eq. (65). This process is natural for numerical computation.

3.1.2 Ghost-effect equations (M-3.275)–(M-3.278b):

Consider the initial and boundary-value problem of Eqs. (M-3.275)–(M-3.278b),
i.e.,

p̂SB0 = p̂0(t̃), (74)

p̂SB1 = p̂1(t̃), (75)

∂ρ̂SB0

∂t̃
+
∂ρ̂SB0v̂iSB1

∂xi
= 0, (76a)

∂ρ̂SB0v̂iSB1

∂t̃
+
∂ρ̂SB0v̂jSB1v̂iSB1

∂xj

= −1

2

∂p̂∗SB2

∂xi
+

1

2

∂

∂xj

[
Γ1(T̂SB0)

(
∂v̂iSB1

∂xj
+
∂v̂jSB1

∂xi
− 2

3

∂v̂kSB1

∂xk
δij

)]

+
1

2p̂0

∂

∂xj

Γ7(T̂SB0)

∂T̂SB0

∂xi

∂T̂SB0

∂xj
− 1

3

(
∂T̂SB0

∂xk

)2

δij

 , (76b)

3

2

∂ρ̂SB0T̂SB0

∂t̃
+

5

2

∂ρ̂SB0v̂iSB1T̂SB0

∂xi
=

5

4

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
, (76c)

where p̂0 and p̂1 depend only on t̃, and

p̂SB0 = ρ̂SB0T̂SB0, p̂SB1 = ρ̂SB1T̂SB0 + ρ̂SB0T̂SB1,

p̂SB2 = ρ̂SB2T̂SB0 + ρ̂SB1T̂SB1 + ρ̂SB0T̂SB2,

 (77)

p̂∗SB2 = p̂SB2 +
2

3p̂0

∂

∂xk

(
Γ3(T̂SB0)

∂T̂SB0

∂xk

)
. (78)

Let ρ̂, v̂i, and T̂ (thus, p̂ = ρ̂T̂ ) at time t̃ be given; thus, ρ̂SB0, v̂iSB1, T̂SB0

(p̂SB0), etc., including p̂SB2, are given. Then ∂ρ̂SB0/∂t̃, ∂ρ̂SB0v̂iSB1/∂t̃, and
∂T̂SB0/∂t̃ at t̃ are given by Eqs. (76a)–(76c); thus, the future ρ̂SB0, v̂iSB1, and
T̂SB0 (also p̂SB0) are determined. However, the future p̂SB0, as well as p̂SB0

at t̃, is required to be independent of xi owing to Eq. (74). Taking this point
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into account, we discuss how the solution is determined. For convenience of the
discussion, transform Eq. (76c) in the form

∂p̂SB0

∂t̃
= P, (79)

where

P =− 5

3

∂p̂SB0v̂iSB1

∂xi
+

5

6

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
.

First, consider the case where p̂ (thus, p̂SB0, p̂SB1, etc.) is specified at some
point, e.g., at infinity. Then, from Eq. (74), p̂0(t̃) is a given function of t̃, and
p̂SB0 is determined. The initial value of p̂SB0 is uniform, i.e., p̂SB0 = p̂0(0).
On the other hand, from Eq. (79), the variation of ∂p̂SB0/∂t̃ is also determined
by the data of p̂SB0, T̂SB0, v̂iSB1, and their space derivatives at t̃. This must
coincide with the corresponding data given by Eq. (74), i.e., ∂p̂SB0/∂t̃ =dp̂0/dt̃.
Substituting this relation into Eq. (79), we have

∂

∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5

dp̂0

dt̃
, (80)

which requires a relation among p̂SB0, T̂SB0, and v̂iSB1 for all t̃, because dp̂0/dt̃
is given. This condition is equivalently replaced by the following two conditions:
The initial data of p̂SB0, T̂SB0, and v̂iSB1 are required to satisfy Eq. (80), and
the time derivative of Eq. (80) has to be satisfied for all t̃, i.e.,

∂2

∂t̃∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5

d2p̂0

dt̃2
. (81)

With the aid of Eqs. (76a)–(76c) and (79), the left-hand side of Eq. (81) is ex-
pressed in the form without the time-derivative terms, i.e., ∂p̂SB0/∂t̃, ∂T̂SB0/∂t̃,
and ∂v̂iSB1/∂t̃, as follows:

∂2

∂t̃∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −1

2
p̂SB0

∂

∂xi

(
1

ρ̂SB0

∂p̂∗SB2

∂xi

)
+ fn1,

where fn1 is a given function of ρ̂SB0, v̂iSB1, T̂SB0, and their space derivatives.
Thus, the condition (81) is reduced to an equation for p̂∗SB2, i.e.,

∂

∂xi

(
1

ρ̂SB0

∂p̂∗SB2

∂xi

)
= Fn, (82)

where

Fn =
2

p̂0

(
fn1 +

3

5

d2p̂0

dt̃2

)
.

The boundary condition for p̂∗SB2 in Eq. (82) on a simple boundary is derived
by multiplying Eq. (76b) by the normal ni to the boundary. In this process, the
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contribution of its time-derivative terms vanishes.28 Thus, p̂∗SB2 (or p̂SB2) is
determined in the present case, where p̂ (thus, p̂SB2) is specified at some point.
The solution p̂∗SB2 of Eq. (82) being substituted into Eq. (76b), Eqs. (76a)–(76c)

with the first relation in Eq. (77) are reduced to the equations for ρ̂SB0, T̂SB0, and
v̂iSB1 which naturally determine ∂ρ̂SB0/∂t̃, ∂T̂SB0/∂t̃, and ∂v̂iSB1/∂t̃. Further,
if the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 being chosen in such a way that
ρ̂SB0T̂SB0(= p̂SB0) = p̂0 and that Eq. (80) is satisfied, the variation ∂p̂SB0/∂t̃ of
p̂SB0(= ρ̂SB0T̂SB0) given by these equations is consistent with Eq. (74), because
Eq. (82) or (81) with the condition (80) at the initial state guarantees Eq. (80),
i.e., ∂p̂SB0/∂t̃ = dp̂0/dt̃, for all t̃.

Equations (74) and (76a)–(76c) with Eqs. (77) and (78) determine ρ̂SB0,
T̂SB0, p̂SB0, v̂iSB1, and p̂SB2 consistently for appropriately chosen initial data.
However, these equations are the leading-order set of equations derived by the
asymptotic analysis of the Boltzmann equation. In the above system, p̂SB2 is
determined. On the other hand, the variation ∂p̂SB2/∂t̃ is determined indepen-
dently by the counterpart of Eq. (79) at the order after next. The situation is
similar to that at the leading order, where Eqs. (74), with a given p̂0, and (79)
determine p̂SB0 independently. The analysis can be carried out in a similar
way. Let p̂SB2 determined by Eq. (82) be indicated by (p̂SB2)0 and the equation
for ∂p̂SB2/∂t̃, or the counterpart of Eq. (79) at the order after next, be put in
the form

∂p̂SB2

∂t̃
= P2, (83)

where P2 is a given function of ρ̂SBm, v̂iSBm+1 T̂SBm (m ≤ 2), and their space
derivatives. For the consistency, ∂(p̂SB2)0/∂t̃ is substituted for ∂p̂SB2/∂t̃ in
Eq. (83), i.e.,

P2 =
∂(p̂SB2)0

∂t̃
, (84)

where ∂(p̂SB2)0/∂t̃ is known. This requires a relation among ρ̂SBm, v̂iSBm+1

T̂SBm (m ≤ 2), and their space derivatives. This condition is equivalently re-
placed by the following two conditions: Equation (84) is applied only for the
initial state, and the time derivative of Eq. (84), i.e.,

∂P2

∂t̃
=
∂2(p̂SB2)0

∂t̃2
,

has to be satisfied for all t̃. The ∂ρ̂SBm/∂t̃, ∂v̂iSBm+1/∂t̃, ∂T̂SBm/∂t̃ (m ≤ 2) in
∂P2/∂t̃ being replaced by the counterparts of Eqs. (76a)–(76c) and (79) at the
corresponding order, an equation for p̂SB4 for all t̃ is derived.29 The conclusion
is that an additional initial condition and the condition for p̂SB4 are introduced
and, instead, that the condition (82) for p̂SB2 is required only for the initial
data. The higher-order consideration does not affect the determination of the
solution ρ̂SB0, T̂SB0, and v̂iSB1 (thus also p̂SB0).

28The discussion is similar to that in Footnote 23.
29The conditions on the odd-order p̂SB2n+1’s are derived by the analysis starting from the

condition (75) that p̂SB1 is independent of xi.
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In this way, the solution of Eqs. (74), (76a)–(78) is determined consistently
by Eqs. (76a)–(78) with the aid of the supplementary condition (82), instead of
Eq. (74), when the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 satisfy Eqs. (74) and
(80), where p̂0(t̃) is a known function of t̃ from the boundary condition.

Secondly, consider a bounded-domain problem where the boundary consists
of simple boundaries. In contrast to the first case, dp̂0/dt̃ is unknown because
no condition is imposed on p̂SB0 on a simple boundary. However, in a bounded-
domain problem consisting of simple boundaries, the mass of the gas in the
domain is invariant with respect to t̃, i.e., at the leading order,

d

ˆ
V

ρ̂SB0dx

dt̃
= 0, (85)

where V indicates the domain under consideration. Using the first relation of
Eq. (77), i.e., ρ̂SB0 = p̂0/T̂SB0, in Eq. (85), we have

dp̂0

dt̃

ˆ
V

1

T̂SB0

dx = p̂0

ˆ
V

1

T̂ 2
SB0

∂T̂SB0

∂t̃
dx. (86)

Using Eq. (76c) for ∂T̂SB0/∂t̃ in Eq. (86), we find that the variation dp̂0/dt̃ is
expressed with p̂0, T̂SB0, and v̂iSB1 as follows:

dp̂0

dt̃
= P (t̃), (87)

where

P (t̃) = p̂0

ˆ
V

1

T̂ 2
SB0

[
5

6ρ̂SB0

∂

∂xi

(
Γ2(T̂SB0)

∂T̂SB0

∂xi

)
− 5

3
v̂iSB1

∂T̂SB0

∂xi

]
dx

×
(ˆ

V

1

T̂SB0

dx

)−1

. (88)

With this expression of dp̂0/dt̃, we can carry out the analysis in a similar way
to that in the first case.

The variation dp̂0/dt̃ or ∂p̂SB0/∂t̃ is also determined by Eq. (79). The two
∂p̂SB0/∂t̃ ’s given by Eq. (87) with Eq. (88) and Eq. (79) have to be consistent.
Thus, substituting Eq. (87) with Eq. (88) into ∂p̂SB0/∂t̃ in Eq. (79), we have

∂

∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5
P (t̃), (89)

where P (t̃) is given by Eq. (88). This must hold for all t̃ for consistency. This
condition is equivalently replaced by the following two conditions: The initial
data of p̂SB0, T̂SB0, v̂iSB1 are required to satisfy Eq. (89), and the time derivative
of Eq. (89) has to be satisfied for all t̃, i.e.,

∂2

∂t̃∂xi

(
p̂SB0v̂iSB1 −

Γ2(T̂SB0)

2

∂T̂SB0

∂xi

)
= −3

5

dP (t̃)

dt̃
. (90)

26



Using Eqs. (76a), (76b), and (79) for the time derivatives ∂ρ̂SB0/∂t̃, ∂v̂iSB1/∂t̃,
and ∂p̂SB0/∂t̃ in Eq. (90), we find that p̂∗SB2 at t̃ is determined by the equation

∂

∂xi

(
1

ρ̂SB0

∂p̂∗SB2

∂xi

)
+ L

(
∂p̂∗SB2

∂xi

)
= Fn, (91)

where Fn is a given functional of ρ̂SB0, v̂iSB1, T̂SB0, and their space derivatives,
and L(∂p̂∗SB2/∂xi) is a given linear functional of ∂p̂∗SB2/∂xi, i.e.,

L
(
∂p̂∗SB2

∂xi

)
= − 1

p̂0

ˆ
V

1

T̂SB0

∂T̂SB0

∂xi

∂p̂∗SB2

∂xi
dx

(ˆ
V

1

T̂SB0

dx

)−1

.

On a simple boundary, the derivative of p̂∗SB2 normal to the boundary is
specified. Thus, p̂∗SB2 is determined except for an additive function of t̃. The
solution p̂∗SB2 of Eq. (91) being substituted into Eq. (76b), the result is indepen-
dent of the additive function. Thus, Eqs. (76a)–(76c) with the first relation in
Eq. (77) and the above p̂∗SB2 substituted are reduced to those for ρ̂SB0, T̂SB0, and

v̂iSB1, which naturally determine ∂ρ̂SB0/∂t̃, ∂T̂SB0/∂t̃, and ∂v̂iSB1/∂t̃. Further,
if the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 being chosen in such a way that
ρ̂SB0T̂SB0(= p̂SB0) = p̂0 and that Eq. (89) is satisfied, the variation ∂p̂SB0/∂t̃ of
p̂SB0(= ρ̂SB0T̂SB0) given by these equations is consistent with Eq. (74), because
Eq. (91) or (90) with the condition (89) at the initial state guarantees Eq. (89),
i.e., ∂p̂SB0/∂t̃ = dp̂0/dt̃, for all t̃.

Equations (74) and (76a)–(76c) with Eqs. (77) and (91) determine ρ̂SB0,
T̂SB0, p̂SB0, v̂iSB1, and p̂SB2, except for an additive function of t̃ in p̂SB2, con-
sistently for appropriately chosen initial data. However, these equations are the
leading-order set of equations derived by the asymptotic analysis of the Boltz-
mann equation. The analysis of the higher-order equations not shown here is
carried out in a similar way. First, the undetermined additive function in p̂SB2

is determined by the condition of invariance of the mass of the gas in the dom-
ain at the order after next as dp̂0/dt̃ is determined.30 The ∂p̂SB2/∂t̃ or p̂SB2

determined in this way is indicated by ∂(p̂SB2)0/∂t̃ or (p̂SB2)0. On the other
hand, the variation ∂p̂SB2/∂t̃ is determined independently by Eq. (83) or the
counterpart of Eq. (79) at the order after next. The two results must coincide.
The discussion from here is the same as that given from the sentence starting
from Eq. (83) to the end of the paragraph. The results are that an additio-
nal initial condition and the condition for p̂SB4 are introduced, and that the
condition (91) for p̂SB2 is required only for the initial data. The higher-order
consideration does not affect the determination of the solution ρ̂SB0, T̂SB0, and
v̂iSB1 (thus also p̂SB0).

In this way, the solution of Eqs. (74), (76a)–(76c) is determined consistently
by Eqs. (76a)–(76c) with the aid of the supplementary condition (91), instead
of Eq. (74), when the initial data of ρ̂SB0, T̂SB0, and v̂iSB1 satisfy Eqs. (74) and
(89).

30The Knudsen-layer correction to ρ̂SB1, already determined (see Footnote 29), contributes
to the mass at this order.
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3.2 Notes on basic equations in classical fluid dynamics

3.2.1 Euler and Navier–Stokes sets

For the convenience of discussions, the basic equations in the classical fluid
dynamics are summarized here.

The mass, momentum, and energy-conservation equations of fluid flow are
given by

∂ρ

∂t
+

∂

∂Xi
(ρvi) = 0, (92)

∂

∂t
(ρvi) +

∂

∂Xj
(ρvivj + pij) = 0, (93)

∂

∂t

[
ρ

(
e+

1

2
v2
i

)]
+

∂

∂Xj

[
ρvj

(
e+

1

2
v2
i

)
+ vipij + qj

]
= 0, (94)

where ρ is the density, vi is the flow velocity, e is the internal energy per unit
mass, pij , which is symmetric with respect to i and j, is the stress tenor, and qi
is the heat-flow vector. The pressure p and the internal energy e are given by
the equations of state as functions of T and ρ, i.e.,31

p = p(T, ρ), e = e(T, ρ). (95)

Especially, for a perfect gas,

p = RρT, e = e(T ). (96)

Equations (93) and (94) are rewritten with the aid of Eq. (92) in the form

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

+
∂pij
∂Xj

= 0, (97)

ρ
∂

∂t

(
e+

1

2
v2
i

)
+ ρvj

∂

∂Xj

(
e+

1

2
v2
i

)
+

∂

∂Xj
(vipij + qj) = 0. (98)

The operator ∂/∂t+vj∂/∂xj , which expresses the time variation along the fluid
particle, is denoted by D/Dt, i.e.,

D

Dt
=

∂

∂t
+ vj

∂

∂Xj
.

Multiplying Eq. (97) by vi we obtain the equation for the variation of kinetic
energy as

ρ
D

Dt

(
1

2
v2
i

)
= −vi

∂pij
∂Xj

. (99)

31The case where the first equation p = p(T, ρ) cannot be solved with respect to ρ, or ρ is
independent of p and T is called incompressible. The incompressible condition is a special
case of the equation of state. In a system consisting of a single incompressible substance, the
density is a constant.
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Another form of Eq. (94), where Eq. (99) is subtracted from Eq. (98), is given as

ρ
De

Dt
= −pij

∂vi
∂Xj

− ∂qj
∂Xj

. (100)

Noting the thermodynamic relation

De

Dt
= T

Ds

Dt
+

p

ρ2

Dρ

Dt
, (101)

where s is the entropy per unit mass, and Eq. (92), Eq. (100) is rewritten as

ρ
Ds

Dt
= − 1

T

[
(pij − pδij)

∂vi
∂Xj

+
∂qj
∂Xj

]
. (102)

Equation (102) expresses the variation of the entropy of a fluid particle.
Equations (92)–(95) contain more variables than the number of equations.

Thus, in the classical fluid dynamics, the stress tensor pij and the heat-flow
vector qi are assumed in some ways. The Navier–Stokes set of equations (or the
Navier–Stokes equations) is Eqs. (92)–(95) where pij and qi are given by

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)
− µB

∂vk
∂Xk

δij , (103)

qi = −λ ∂T
∂Xi

, (104)

where µ, µB , and λ are, respectively, called the viscosity, bulk viscosity, and
thermal conductivity of the fluid. They are functions of T and ρ. The Euler
set of equations (or the Euler equations) is Eqs. (92)–(95) where pij and qi are
given by

pij = pδij , qi = 0, (105)

or the Navier–Stokes equations with µ = µB = λ = 0.
For the Navier–Stokes equations, in view of the relations (103) and (104),

the entropy variation is expressed in the form32

ρ
Ds

Dt
=

1

T

[
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)2
+ µB

(
∂vk
∂Xk

)2
+

∂

∂Xi

(
λ
∂T

∂Xi

)]
.

(106)

32Note the following transformation:

∂vi

∂Xj

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij +

2

3

∂vk

∂Xk
δij

)(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)2
+

1

3

∂vl

∂Xl
δij

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
.

The second term in the last expression is easily seen to vanish.
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For the Euler equations, for which pij and qi are given by Eq.(105), the entropy
of a fluid particle is invariant, i.e.,

ρ
Ds

Dt
= 0. (107)

The incompressible condition in Footnote 31 can be expressed as33

Dρ

Dt
= 0 or

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (108)

Thus, from Eqs. (92) and (108),

∂vi
∂Xi

= 0. (109)

Equation (103) for the Navier–Stokes-stress tensor reduces to

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

)
. (110)

The first term on the right-hand side of Eq. (100) reduces to

−pij
∂vi
∂Xj

= −
[
pδij − µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
∂vi
∂Xj

=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
.

Thus, Eq. (100) reduces to

ρ
De

Dt
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
. (111)

To summarize, the Navier–Stokes equations for incompressible fluid are

∂vi
∂Xi

= 0, (112a)

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

= − ∂p

∂Xi
+

∂

∂Xj

[
µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
, (112b)

ρ
∂e

∂t
+ ρvj

∂e

∂Xj
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
, (112c)

with the incompressible condition (108) being supplemented, i.e.,34

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (113)

33(i) The density is invariant along fluid-particle paths. If ρ is of uniform value ρ0 initially,
it is a constant, i.e.,

ρ = ρ0.

In a time-independent (or steady) problem, the density is constant along streamlines.
(ii) This condition is useful in the system consisting of non-mixing different incompressible

substances (e.g., oil and water). Needless to say, e, µ, and λ depend on substances.
34The energy equation (112c) for incompressible fluid contains the heat-production term
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3.2.2 Boundary condition for the Euler set

In Section M-3.5, we discussed the asymptotic behavior for small Knudsen num-
bers of a gas around its condensed phase where evaporation or condensation with
a finite Mach number is taking place, and derived the Euler equations and their
boundary conditions that describe the overall behavior of the gas in the limit
that the Knudsen number tends to zero. The number of boundary conditions
on the evaporating condensed phase is different from that on the condensing
one. We will try to understand the structure of the Euler equations giving the
non-symmetric feature of the boundary conditions by a simple but nontrivial
case.

Consider, as a simple case, the two-dimensional boundary-value problem
of the time-independent Euler equations in a bounded domain for an incom-
pressible ideal fluid of uniform density. The mass and momentum-conservation
equations of the Euler set are

∂u

∂x
+
∂v

∂y
= 0, (114)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
, (115)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
, (116)

where ρ is the density, which is uniform, (u, v) is the flow velocity, and p is the
pressure. Owing to Eq. (114), the stream function Ψ can be introduced as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (117)

Eliminating p from Eqs. (115) and (116), we have35

u
∂Ω

∂x
+ v

∂Ω

∂y
= 0, (118)

due to the work done by viscous stress [the first term on its right-hand side] if we literally
put Eq. (103) in the energy equation (100). The incompressible Navier-Stokes set of equations
is generally used for the case where the flow velocity is not so large. That is, it is used for
the case where the dynamic energy v2i /2 per unit mass is negligibly small compared with the
internal energy e per unit mass (v2i � e). The Mach number is a common reference scale
of flow speed, but it is not useful for incompressible fluid because the speed of sound is not
well defined. Let e0 be e of the reference state. We take the speed (2e0)1/2 as the reference
speed, which is comparable to the sound speed for perfect gas. Let the typical flow speed of
the flow under consideration be U0. With the nondimensiol small parameter U0/(2e0)1/2, we
compare the size of the terms in the energy equation (112c). The first term on the right-hand
side of Eq. (112c) is seen to be of higher-order of smallness compared with the convection and
conduction terms when the Reynolds number based on U0 and the Prandtl number are of the
order of unity. Thus, the neglected form is often given in literature, with the condition being
implicitly assumed.

35The following equation is formed from them:

∂Eq. (115)/∂y − ∂Eq. (116)/∂x = 0.
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where Ω is the vorticity, i.e.,

Ω =
∂u

∂y
− ∂v

∂x
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
. (119)

From Eqs. (117) and (118),

∂Ψ

∂y

∂Ω

∂x
− ∂Ψ

∂x

∂Ω

∂y
= 0. (120)

This equation shows that Ω is a function of Ψ,36 i.e.,

Ω = F (Ψ). (121)

This functional relation between Ω and Ψ is a local relation, and therefore F
may be a multivalued function of Ψ. From Eqs. (119) and (121),

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= F (Ψ). (122)

Consider a boundary-value problem in a simply-connected bounded domain,
where Ψ is given on the boundary (Ψ = ΨB). Introduce a coordinate s (0 ≤ s <

36This can be seen with the aid of theorems on implicit functions (see References M-[47,
48, 267]). The proof is outlined here. The Ω and Ψ are functions of x and y :

Ω = Ω(x, y), Ψ = Ψ(x, y). (∗)

Solving the second equation with respect to x, we have

x = x̂(Ψ, y). (∗∗)

With this relation into Eq. (∗),

Ω = Ω(x̂(Ψ, y), y) = Ω̂(Ψ, y), (]a)

Ψ = Ψ(x̂(Ψ, y), y) = Ψ̂(Ψ, y). (]b)

That is, Ω is expressed as a function of Ψ and y. From Eqs. (]a) and (]b),

∂Ω̂(Ψ, y)

∂y
=
∂Ω(x̂(Ψ, y), y)

∂y
=
∂Ω(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ω(x, y)

∂y
, (]]a)

∂Ψ̂(Ψ, y)

∂y
= 0. (]]b)

On the other hand,

∂Ψ̂(Ψ, y)

∂y
=
∂Ψ(x̂(Ψ, y), y)

∂y
=
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
.

Thus,
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
= 0. (‡)

From Eqs. (120), (]]a) and (‡), we have

∂Ω̂(Ψ, y)

∂y
= 0, or Ω = Ω̂(Ψ).
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S) along the boundary in the direction encircling the domain counterclockwise.
Then, the fluid flows into the domain on the boundary where ∂ΨB/∂s < 0, and
the fluid flows out from the domain on the boundary where ∂ΨB/∂s > 0. When
F is given, the problem is a standard boundary-value problem. In the present
problem, we have a freedom to choose F on the part where ∂ΨB/∂s < 0 or
∂ΨB/∂s > 0. For example, take the case where ∂ΨB/∂s < 0 for 0 < s < Sm
and ∂ΨB/∂s > 0 for Sm < s < S, and choose the distribution ΩB(s) of Ω along
the boundary for the part 0 < s < Sm. By the choice of ΩB , the function F (Ψ)
is determined in the following way. Inverting the relation Ψ = ΨB(s) between
Ψ and s on the part 0 < s < Sm, i.e., s(Ψ), and noting the relation (121), we
find that F is given by

F (Ψ) = ΩB(s(Ψ)). (123)

Then, the boundary-value problem is fixed. That is, Eq. (122) is fixed as37

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= ΩB(s(Ψ)), (124)

and the boundary condition is given as Ψ = ΨB(s). This system is a standard
from the point of counting of the number of boundary conditions. Obviously,
from Eq. (119), the solution of the above system automatically satisfies condi-
tion Ω = ΩB(s) along the boundary for 0 < s < Sm. We cannot choose the
distribution of Ω on the boundary for Sm < s < S.

The energy-conservation equation of the incompressible Euler set is given by
Eq. (111) with µ = λ = 0, i.e.,

u
∂e

∂x
+ v

∂e

∂y
= 0, or

∂Ψ

∂y

∂e

∂x
− ∂Ψ

∂x

∂e

∂y
= 0, (125)

where e is the internal energy. Thus, e is a function of Ψ, i.e.,

e = F1(Ψ). (126)

In the above boundary-value problem, therefore, e can be specified on the the
part (0 < s < Sm) of the boundary, but no condition can be specified on other
part (Sm < s < S) and vice versa.38

To summarize, we can specify three conditions for Ψ, Ω, and e on the part
∂ΨB/∂s < 0 (∂ΨB/∂s > 0) of boundary but one condition for Ψ on the other
part ∂ΨB/∂s > 0 (∂ΨB/∂s < 0). The number of the boundary conditions is
not symmetric and consistent with that derived by the asymptotic theory.

3.2.3 Ambiguity of pressure in the incompressible Navier–Stokes sy-
stem

It may be better to note ambiguity of the solution of the initial and boundary-
value problem of the incompressible Navier–Stokes equations in a bounded dom-
ain consisting of simple boundaries.

37There is still some ambiguity. The case where there is a region with closed stream lines
Ψ(x, y) = const inside the domain is not excluded.

38From the second relation on e of Eq. (95) and the uniform-density condition, the condition
on e can be replaced by the condition on the temperature T.
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Consider the Navier–Stokes equations for an incompressible fluid, i.e.,

∂vi
∂Xi

= 0, (127a)

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

= − ∂p

∂Xi
+

∂

∂Xj
µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)
, (127b)

ρ
∂e

∂t
+ ρvj

∂e

∂Xj
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
, (127c)

∂ρ

∂t
+ vi

∂ρ

∂Xi
= 0, (127d)

where e, µ, and λ are functions of T and ρ.
Consider the initial and boundary-value problem of Eqs. (127a)–(127d) in

a bounded domain D on the boundary ∂D of which vi and T are specified
as vi = vwi and T = Tw (vwi and Tw are, respectively, the surface velocity
and temperature of the boundary satisfying

´
∂D

vwinidS = 0, ni : the unit
normal vector to the boundary) and no condition is imposed on ρ and p. Let

(v
(s)
i , ρ(s), T (s), p(s)) be a solution of the initial and boundary-value problem.

Let P (a) be an arbitrary function of t, independent of xi, that vanishes at initial
time t = 0, i.e., P (a) = f(t) with f(0) = 0. Put

(vi, ρ, T, p) = (v
(s)
i , ρ(s), T (s), p(s) + P (a)).

Then, e, µ, and λ corresponding to the new (vi, ρ, T, p) are equal to e(s), µ(s), and
λ(s) respectively, because they are determined by ρ and T. The new (vi, ρ, T, p)
satisfy the equations (127a)–(127d) and the initial and boundary conditions.

3.2.4 Equations derived from the compressible Navier–Stokes set
when the Mach number and the temperature variation are
small

It is widely said that the set of equations derived from the compressible Na-
vier–Stokes set when the Mach number and the temperature variation are small
is the incompressible Navier–Stokes set although the difference is obvious from
the set of equations derived, especially from the equation of state and the energy
equation.39 The difference is explained in the two books KF and MGD in con-
nection with the set of fluid-dynamic type equations derived by the S expansion
from the Boltzmann equation in Sections K-4.3, M-3.2, and M-3.7. To make dif-
ference clearer and to eliminate the misunderstanding, we will show the process
of analysis from the compressible Navier–Stokes set with the boundary condi-
tion taken into account. Thus, it is made clear how the solution is constructed
and how the behavior of the solution in the two systems is different in the initial
and boundary-value problem. In the time-dependent case, the energy equation

39In a time-dependent case, we here consider the case where the variables vary in the
diffusion time scale. In a shorter time scale, the sound wave propagates.

34



contains another time-derivative term, in addition to the difference in the time-
independent case. An ambiguity of solution in the incompressible system in a
bounded domain with the simple boundary is eliminated in the compressible
system.

Take a monatomic perfect gas, for which the internal energy per unit mass
is 3RT/2. The corresponding Navier–Stokes set of equations is written in the
nondimensional variables introduced by Eq. (M-1.74) in Section M-1.10 as fol-
lows:

Sh
∂ω

∂t̂
+
∂(1 + ω)ui

∂xi
= 0, (128)

Sh
∂(1 + ω)ui

∂t̂
+

∂

∂xj

(
(1 + ω)uiuj +

1

2
Pij

)
= 0, (129)

Sh
∂

∂t̂

[
(1 + ω)

(
3

2
(1 + τ) + u2

i

)]
+

∂

∂xj

[
(1 + ω)uj

(
3

2
(1 + τ) + u2

i

)
+ ui(δij + Pij) +Qj

]
= 0. (130)

The nondimensional stress tensor Pij , and heat-flow vector Qi are expressed
as40

Pij = Pδij −
µ0(2RT0)1/2

p0L
(1 + µ̄)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (131a)

Qi = − λ0T0

Lp0(2RT0)1/2
(1 + λ̄)

∂τ

∂xi
. (131b)

Here, µ̄ and λ̄ are, respectively, the nondimensional perturbed viscosity and
thermal conductivity defined by

µ = µ0(1 + µ̄), λ = λ0(1 + λ̄),

where µ0 and λ0 are, respectively, the values of the viscosity µ and the thermal
conductivity λ at the reference state. The µ̄ and λ̄ are functions of τ and ω.
The first relation of the equation of state [Eq. (96)] is expressed as

P = ω + τ + ωτ. (132)

Take a small parameter ε, and consider the case where

ui = O(ε), ω = O(ε), τ = O(ε), Sh = O(ε), (133a)

µ0(2RT0)1/2

p0L
= γ1ε,

λ0T0

Lp0(2RT0)1/2
=

5

4
γ2ε, (133b)

where γ1 and γ2 are constants of the order of unity. Thus,

P = O(ε), µ̄ = O(ε), λ̄ = O(ε).

40For a monatomic gas, the bulk viscosity vanishes, i.e., µB = 0 (see Section 1.3).
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Some notes on the conditions (133a) and (133b) may be in order.
(i-a) The first three relations in Eq. (133a) are the condition on the size of
perturbation of gas dynamic variables from the background state (vi = 0, ρ = ρ0

and T = T0) with respect to their reference values [vi = (2RT0)1/2, ρ = ρ0,
and T = T0]. The last relation is the condition of the time t0 of appreciable
variation of the perturbed quantities. This condition shows that the time scale
t0 of variation of the variables is chosen as

t0 =
L

(2RT0)1/2ε
, (134)

which is the time that the typical gas flow proceeds over the distance L. In other
words, we are interested in the behavior of the gas, the perturbed quantities of
which vary appreciably in time t0. Naturally, the variation of boundary data is
to be consistent with the above time scale.
(i-b) The discussion in this section (Section 3.2.4) is based on the Navier–Stokes
equation, which is assumed to be valid without the restriction on the size of the
parameters. We are going to derive the set of equations for small ε under
the conditions (133a) and (133b) for the two kinds of fluid (perfect gas and
incompressible fluid), and compare the difference between their results. Here
we are interested in the leading nontrivial set. The equations at the higher-
orders are obviously within the framework of the Navier-Stokes equations. This
applies to the boundary condition. Nonslip or non-jump condition is used on
the simple boundary irrespective of the size of ε. The boundary condition on the
interface is borrowed from the leading-order results of the asymptotic analysis
for small Knudsen numbers of the Boltzmann system for the case in (iii).
(ii) In the Navier–Stokes system, the viscosity µ and the thermal conductivity
λ characterize the property of the fluid. The relation (133b) is the condition
between these transport coefficients and the typical size ε of the perturbations.
Form these relations, we have

µ0/ρ0

ε(2RT0)1/2L
=
γ1

2
,

2λ0

5Rµ0
=
γ2

γ1
. (135)

The quantities on the left-hand sides of the two relations consist of the para-
meters41 of the flow under consideration. Thus, we are considering the case
where the two combinations of the parameters are finite because γ1 and γ2 are
constants.
(iii-a) In the S expansion in Chapter K-4 or in Section M-3.2, the parameter
k characterizes the degree of rarefaction of the gas under consideration. The
analysis there is carried out under the condition that

ε = k, (136)

41Note that (a) ε(2RT0)1/2 is the typical flow speed, and ε(2RT0)1/2L/(µ0/ρ0) is the
Reynolds number based on that flow speed and that (b) 3R/2 is the heat capacity at constant
volume because the internal energy per unit mass is 3RT0/2 for the gas under consideration
(perfect gas).
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where ε is the size of perturbation φ of the velocity distribution function from the
background equilibrium state f0 at rest with the density ρ0 and the temperature
T0 corresponding to Eq. (133a), with the time-independent condition imposed.
The time-dependent case is discussed for the two cases, t0 = O[L/(2RT0)1/2]
and t0 = O[L/(2RT0)1/2ε], in Section K-4.9 and K-4.10.3 and Sections M-3.7.1
and M-3.7.2.
(iii-b) This is one of the several cases where the behavior of a gas for small
Knudsen numbers (or k � 1) is discussed on the basis of the Boltzmann system
(Boltzmann equation and its boundary condition), and the fluid-dynamic type
equation and its boundary condition are derived for various limiting processes
(see the two books KF and MGD). The nontrivial leading-order results of the
case (136) corresponds to the set of equations of the case with Eqs. (133a) and
(133b) of the Navier–Stokes equation for perfect gas. We will use the boundary
condition on the interface obtained by the analysis of the Boltzmann system
to the discussion in this section (Section 3.2.4). The higher-order results in-
clude higher-order effects of the Knudsen number, which is not covered by the
Navier-Stokes system. The higher-order boundary condition does not contri-
bute to the comparison. Thus, the leading-order boundary condition is used
with adjustments as the higher one if necessary.
(iv) The expansion parameter ε can be chosen rather freely by a finite factor.
So are the reference quantities. If we use a different reference velocity, e.g.,
(2e0)1/2, instead of (2RT0)1/2, with the same ε, the coefficients of the resulting
equations are obviously different.

According to the definition of ui in Eq. (M-1.74), ε is of the order of the
Mach number of typical flow speed U0 of the flow field. Here, we take ε as
ε = U0/(2RT0)1/2. The relation (133b) between ε and viscosity µ0 or thermal
conductivity λ0 is taken from the result of analysis in Section M-3.2, where
the situation that the Knudsen number and the perturbation scale is of the
same of order of smallness, i.e., k = ε, is discussed. According to Eq. (M-
1.48a), the condition Sh = O(ε) in Eq. (133a) means that the time scale t0 of the
variation of variables is of the order of L/(2RT0)1/2ε, which is of the order of
time scale of viscous or thermal diffusion owing to the relation (133b). We can
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take t0 = L/(2RT0)1/2ε without loss of generality.42 Then,

Sh = ε. (137)

The new symbol t̃ , instead of t̂ is introduced to make this time scale explicit:

t̃ = t̂. (138)

Corresponding to the above situation, ui, ω, P, and τ are expanded in power
series of ε, i.e.,

ui = ui1ε+ ui2ε
2 + · · · , (139a)

ω = ω1ε+ ω2ε
2 + · · · , (139b)

P = P1ε+ P2ε
2 + · · · , (139c)

τ = τ1ε+ τ2ε
2 + · · · , (139d)

µ̄ = µ̄1ε+ µ̄2ε
2 + · · · , (139e)

λ̄ = λ̄1ε+ λ̄2ε
2 + · · · , (139f)

Pij = P1δijε+ Pij2ε
2 + · · · , (139g)

Qi = Qi2ε
2 + · · · . (139h)

Substituting Eqs. (139a)–(139h) with Eqs. (133b) and (137) into Eqs. (128)–(130)
with Eqs. (131a) and (131b), and arranging the same-order terms of ε, we have

∂ui1
∂xi

= 0,
∂P1

∂xi
= 0,

∂ui1
∂xi

= 0,

42This time scale, t0 = L/(2RT0)1/2ε, is called diffusion time scale in view of the following
situation. The viscous diffusion of the parallel flow in X1 direction with nonuniform velocity
v1 is given by

∂v1

∂t
=
µ0

ρ0

∂2v1

∂X2
2

,

where the variation with respect to x3 is assumed to be absent. Let the length scale and the
time scale of variation of v1 be L and t0 respectively. Putting t = t̃ t0 and X2 = x2L, we have

∂v1

∂t̃
=

µ0t0

ρ0L2

∂2v1

∂x22

=
γ1t0(2RT0)1/2ε

2L

∂2v1

∂x22
,

where the first relation of Eq. (133b) is used in the final step. When t0 = L/(2RT0)1/2ε, the
coefficient is of the order of unity because γ2/2 is so. Then, the time derivative ∂v1/∂t̃ and
the space derivative ∂2v1/∂x22 are of the same order O(v1). Thus, in the diffusion process,

the time scale of variation is t0 = L/(2RT0)1/2ε when the length scale of variation is L.
The diffusion of heat can be discussed in the same way, with ρ0 being replaced by αρ0RT0

(α = 3/2 or 5/2 depending on the diffusion under constant volume or constant pressure), µ0
by λ0, and the velocity v1 by temperature T . With the aid of the second relation of Eq. (133b),

∂T

∂t̃
=

5γ2t0(2RT0)1/2ε

4αL

∂2T

∂x22
.

The remaining discussion is the same because γ2 is a constant of the order of unity.
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∂ω1

∂t̃
+
∂ω1ui1
∂xi

+
∂ui2
∂xi

= 0,

∂ui1

∂t̃
+
∂ui1uj1
∂xj

+
1

2

∂P2

∂xi
− γ1

2

∂

∂xj

(
∂ui1
∂xj

+
∂uj1
∂xi

− 2

3

∂uk1

∂xk
δij

)
= 0,

3

2

∂P1

∂t̃
+

∂

∂xj

(
5

2
uj2 +

5

2
P1uj1 −

5

4
γ2
∂τ1
∂xj

)
= 0,

and so on. At the leading order, the equations derived from Eqs. (128) and (130)
degenerate into the same equation ∂ui1/∂xi = 0. Owing to this degeneracy, in
order to solve the variables from the lowest order successively, the equations
should be rearranged by combination of equations of staggered orders. Thus,
we rearrange the equations as follows:

∂P1

∂xi
= 0, (140)

∂ui1
∂xi

= 0, (141a)

∂ui1

∂t̃
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1

2

∂2ui1
∂x2

j

, (141b)

5

2

∂τ1

∂t̃
− ∂P1

∂t̃
+

5

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2

j

, (141c)

∂ui2
∂xi

= −∂ω1

∂t̃
− ∂ω1ui1

∂xi
, (142a)

∂ui2

∂t̃
+ uj1

∂ui2
∂xj

+ uj2
∂ui1
∂xj

= −1

2

(
∂P3

∂xi
− ω1

∂P2

∂xi

)
+
γ1

2

∂

∂xj

(
∂ui2
∂xj

+
∂uj2
∂xi

− 2

3

∂uk2

∂xk
δij

)
− γ1ω1

2

∂2ui1
∂x2

j

+
γ1

2

∂

∂xj

[
µ̄1

(
∂ui1
∂xj

+
∂uj1
∂xi

)]
, (142b)

3

2

∂P2

∂t̃
+

3

2
uj1

∂P2

∂xj
+

5

2

(
P1
∂uj2
∂xj

− ∂ω2

∂t̂
− ∂(ω1uj2 + ω2uj1)

∂xj

)
=

5γ2

4

∂

∂xi

(
∂τ2
∂xi

+ λ̄1
∂τ1
∂xi

)
+
γ1

2

(
∂ui1
∂xj

+
∂uj1
∂xi

)2
, (142c)

where
P1 = ω1 + τ1, P2 = ω2 + τ2 + ω1τ1. (143)

These equations are very similar to Eqs. (M-3.265)–(M-3.268) obtained by the
S expansion of the Boltzmann equation in Section M-3.7.2.43

43(i) Equations (140)–(142a) and (143) are of the same form as Eqs. (M-3.265)–(M-3.267a)
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In order to compare Eqs. (140)–(141c) and the first relation of Eq. (143)
with the incompressible Navier–Stokes equations (112a)–(113), we will rewrite
the latter equations for the situation [Eqs. (133a) and (133b)] where the former
equations are derived. The starting equations are Eqs. (128)–(131b)44 and the
nondimensional form of Eq. (108), i.e.,

ε
∂ω

∂t̃
+ ui

∂ω

∂xi
= 0, (144)

instead of Eq. (132). The analysis is carried out in a similar way45 and the
equations corresponding to Eqs. (140)–(141c) are46

∂P1

∂xi
= 0, (145)

and (M-3.268). Thus, the following discussion in this section (Section 3.2.4) applies to the
two systems. Naturally, it applies to the S solution in Sections K-4.9 and K-4.10.3.

(ii) It may be noted that the second-order velocity ui2 is not solenoidal from Eq. (142a).
44As the internal energy e, 3RT/2 [= 3RT0(1 + τ)/2] is chosen for consistency.
45(i) For incompressible fluid, the sound speed is not well defined. Thus, the speed (2e0)1/2

defined by the internal energy e0 per unit mass is taken as the reference speed, which is
comparable to the sound speed for perfect gas. Thus, the condition that the Mach number
is small can be replaced by the condition that the flow speed |vi|/(2e0)1/2 divided by that
reference speed is small. This is the case where the work done by the viscous force is negligible
in Eq. (112c) (see Footnote 34).

(ii) Different equation of state corresponds to different substance. Thus, various parameters
differ in different systems. However, we are interested in the difference of solutions due to the
change of the equation of state among the pressure, temperature and density (perfect gas or
incompressible fluid). Thus, we take a state at rest (vi = 0) with pressure p0 and temperature
T0. Thus, the density ρ0 = p0/RT0 for perfect gas. We imagine the incompressible fluid
at rest with density ρ0 and the other properties (internal energy e0, viscosity µ0, thermal
conductivity λ0) of the two kinds of fluid are taken to be the same. (This is not so real
because the density differs much for gas and liquid, the latter of which is much closer to
incompressible fluid. Here, we put aside the reality for the present purpose avoiding the
similarity discussion. Incompressible fluid is not gas according to the classification of gas and
liquid.) Taking the state at rest with pressure p0 and temperature T0 as the background state
(thus, the density ρ0 = p0/RT0; this relation holds only at the background state; the relation
without subscript 0 applies only to perfect gas but not to incompressible fluid), we discuss
the behavior of two kinds of fluid for the case where (a) the typical flow velocity, say U0, is
small compared with the reference speed (2e0)1/2, i.e., U0/(2e0)1/2 � 1, and (b) the relative
variations P and τ of pressure and temperature is of the order of U0/(2e0)1/2. In the main
text, (2RT0)1/2 is used instead of (2e0)1/2[= (3RT0)1/2] to define the expansion [note the
definition ui = vi/(2RT0)1/2 and the discussion in the paragraph with Eq. (133a)].

(iii) In the preceding analysis, the equation of state, Eq. (132), is partially used in the middle
of analysis. It is already used in Eq. (141c). Thus, the results, e.g., Eq. (141c), cannot directly
be transferred to the case of incompressible fluid. The expansion, with P not related to ω and
τ , should be done independently and apply the incompressible condition when necessary. It
is much simpler to start with ωn = 0 for all n.

46(i) From Eqs. (128) and (144), we have ∂ui/∂xi = 0. Obviously, one of Eqs. (128) and
(144) can be replaced by ∂ui/∂xi = 0, but both cannot be replaced by it. Some confusion
about the incompressibility is due to the misunderstanding of the statement.

(ii) It should be noted that Eqs. (141a) and (146a) are derived from Eq. (128) under the
condition (133a) without the help of the equation of state. Incompressibility cannot be judged
only by Eq. (141a) or (146a).
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∂ui1
∂xi

= 0, (146a)

∂ui1

∂t̃
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1

2

∂2ui1
∂x2

j

, (146b)

3

2

∂τ1

∂t̃
+

3

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2

j

, (146c)

and the equation corresponding to the first relation of Eq. (143) is obtained from
the incompressible condition (144) as47

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
= 0. (147)

Now the basic equations, the behavior of solutions of which we are going
to compare, are prepared [Eqs. (140)–(141c), and (143) for perfect gas and
Eqs. (145)–(147) for incompressible fluid]. For the comparison, the initial and
boundary conditions have to be chosen commonly. The diffusion time scale
being natural time scale of the solution of the incompressible Navier–Stokes
equation, this scale solution is the subject of comparison.48 Incidentally, the
boundary data must be consistent with the diffusion time scale. The form of
the two sets of equations requires two conditions on the initial data. That is,
the initial values of ui1 and P1 must be solenoidal and uniform respectively in
the domain under consideration, i.e., Eqs. (141a) and (140) for perfect gas and
Eqs. (146a) and (145) for incompressible fluid). The initial condition common
to perfect gas and incompressible fluid is determined in the following way: From
the request of incompressible fluid, the density is uniform, i.e., ω1 = 0; from
common request of uniformity of pressure, i.e., P1 = 0; on the plane ω1 = 0, the
temperature τ1 = 0 from Eq. (143) for perfect gas49 (see also Footnote 45). Only
the uniform state with respect to density, pressure and temperature can be the
common initial condition to perfect gas and incompressible fluid. The velocity
can be chosen freely under the solenoidal condition. When comparing solutions
in the two kinds of fluid, we have to choose their initial condition that satisfies
the above condition. In this case, the time-variation of the boundary data make
the difference clear. An example of comparison of this kind is shown in K-4.10.3,
where nontrivial difference of their temperature fields are shown.50 Next, we

47From the choice of the background state in Footnote 45, ω = 0 and ∂ui/∂xi = 0 or ωn = 0
and ∂uin/∂xi = 0 for any n.

48In perfect gas, there are solutions with another time scale [t0 = L/(2RT0)1/2] of variation,
expressing the propagation of sound waves.

49(i) On the surface ω1 = 0, the pressure P1 and temperature τ1 can be chosen freely for
incompressible fluid.

(ii) We have chosen zero for the constant values for ω1, P1, and τ1 without loss of generality.
It is a problem of choosing the background state.

50The example in Section K-4.10.3 is a simple problem with the simple boundary and the
interface. In the example, the S solution of the Boltzmann equation (note Footnote 43) and
the corresponding one of the incompressible fluid are shown. In the former, the density varies
with time, and further, the temperature field is quite different from that of the latter owing
to the time-dependent boundary condition on PS1, corresponding to P1 here.
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examine the two sets of equations (perfect gas and incompressible fluid) and
make clear the effect or mechanism that makes the time development of the two
sets different. Then, we discuss the process of solution (or how the solution is
constructed) for each set with its boundary condition taken into account and
show an important difference between them.

Equations (145), (146a), and (146b) are, respectively, of the same form as
Eqs. (140), (141a), and (141b). Equation (141c) is rewritten with the aid of
Eqs. (140) and (143) as

3

2

∂τ1

∂t̃
+

3

2
ui1

∂τ1
∂xi
−
(
∂ω1

∂t̃
+ ui1

∂ω1

∂xi

)
=

5

4
γ2
∂2τ1
∂x2

j

. (148)

The difference of Eq. (141c) or (148) from Eq. (146c) is

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
, (149)

which vanishes for an incompressible fluid. The work W done per unit time on
unit volume of fluid by pressure, given by −p0(2RT0)1/2L−1∂(1 + P )ui/∂xi, is
transformed with the aid of Eqs. (140), (141a), and (142a) in the following way:

W

p0(2RT0)1/2L−1
= −∂(1 + P )ui

∂xi

= −∂ui1
∂xi

ε−
(
P1
∂ui1
∂xi

+ ui1
∂P1

∂xi
+
∂ui2
∂xi

)
ε2 + · · ·

= −∂ui2
∂xi

ε2 + · · ·

=

(
∂ω1

∂t̃
+ ui1

∂ω1

∂xi

)
ε2 + · · · . (150)

The work vanishes up to the order considered here for incompressible fluid,
because ∂ui/∂xi = 0 and ∂P1/∂xi = 0 [see Footnotes 46 and Eq. (145)]. That
is, Eq. (141c) differs from Eq. (146c) by the amount of the work done by pressure.
Thus, naturally, the temperature τ1 fields in the two cases are different owing
to this difference. Thus, naturally, the temperature τ1 fields in the two cases
are different owing to this difference.

The variation (149) of the density ω1 along a fluid-particle path is expressed
with ui1, τ1, and P1. That is, ω1 in Eq. (149) is replaced by P1 − τ1 with the
aide of Eq. (143), and Eqs. (140) and (141c) are applied to the result successively.
Then, we have

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
=
∂P1

∂t̃
− ∂τ1

∂t̃
− ui1

∂τ1
∂xi

=
3

5

∂P1

∂t̃
− 1

2
γ2
∂2τ1
∂x2

j

. (151)

Therefore, the density ω1 generally varies along a fluid-particle path.
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Here, we will explain the process of solution (how the solution is deter-
mined from the basic equation and boundary condition) for the two systems
(perfect gas and incompressible fluid). In the two systems, the difference is
the energy equation among the conservation equations [Eqs. (140)–(141c) and
Eqs. (145)–(146c)] and the equation of state [Eqs. (143) and (147)].51 When the
pressure P1 is independent of t̃, the difference of the energy equations (141c)
and (146c) in the two systems is the ratio of the convection term to the heat-
conduction term. That is, the heat-conduction term is of the same form, but
the convection term differs only by numerical factor (5/2 and 3/2). Thus, we
can say the difference is the convection term by the ratio (5 : 3) or the thermal
conductivity by the ratio (3 : 5). The source of this difference is due to the work
done by pressure in perfect gas. The pressure P1 being constant, the variation
of the flow along a fluid particle path takes place under constant pressure during
its motion, and the work done by pressure can be incorporated into the varia-
tion of enthalpy defined by e+ p/ρ, which is equal to 5RT/2 for perfect gas.52

Thus, the change during the motion is expressed by the variation of the ent-
halpy. That is, the energy equation expresses that the enthalpy variation along
a fluid particle path is equal to the energy supplied by heat conduction. On the
other hands, when P1 depends on t̃, the variation along a fluid particle path is
neither under constant pressure nor under constant volume, and thus, the extra
term ∂P1/∂t̃ enters Eq. (141c) in addition to the above difference of the coeffi-
cients. To find the solution, the boundary condition is required, which depends
on the kind of the boundary. The present discussion is for the Navier–Stokes
system apart from the kinetic theory except that sizes of viscosity and thermal
conductivity, compared with the parameter ε, are borrowed from its result. The
boundary conditions is the one used in the Navier–Stokes system. That is, we
take the non-slip condition [Eq. (K-4.61a) and (K-4.61b) or Eq. (M-3.113a) and
(M-3.113b)] on the simple boundary and the leading-order result of the kinetic
theory [Eq. (K-4.68a) and (K-4.68c) or Eq. (M-3.119a) and (M-3.119c)] on the
interface.53 The same boundary condition is used for incompressible fluid. The
process of solution of a similar system, the S solution in Chapter K-4 or Section
M-3.2, is given in Section 3.1.1 for the simple boundary. This discussion applies
to the present case.

In an unbounded domain where the pressure at infinity is imposed, P1(t̃)

51The difference of the equation of state is often treated carelessly. Equation (141a) or
(146a) is mistaken to be incompressible condition with discarding Eqs. (143) and (147).

52(i) The factor 5R/2 is the heat capacity at constant pressure for perfect gas.
(ii) In incompressible fluid, the pressure produces no work as noted just after Eq. (150).

53(i) The formulas for the interface is the leading-order result of S expansion of kinetic
theory analysis. The non-slip condition is also confirmed by it.

(ii) The formulas quoted above are derived for time-independent problems. The results are
shown to be applicable to the time-dependent problem with the time scale under discussion
in Section M-3.7.3.

(iii) In the formulas in the two books, the subscript S is to be neglected. The subscript 1
showing the order is extended to 2,· · · . The formulas with subscript K is to be discarded.

(iv) Keeping the fundamental form of the condition on the interface, we generalize the
formula formulas allowing the coefficients, C∗4 and d∗4, to be functions of position and time,
and the discussion is made under the generalized boundary condition.
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is determined, but in a bounded domain with the simple boundary, it is unde-
termined. According to the above mentioned process, the velocity field ui1 is
determined, which is independent of P1, for a simple boundary. On the other
hand, when the boundary is the interface or a part of it is the interface, P1 is
determined by the boundary condition, as shown in Footnote 54 below, owing to
the presence of P1 in the boundary condition on ui1ni.

54 From P1 determined,
the boundary value of ui1ni on the interface is determined by one of the relations
in Eq. (K-4.68c) or Eq. (M-3.119c). From ui1ni just determined, the boundary
value of τ1 on the interface is determined by another relation in Eq. (K-4.68c) or
Eq. (M-3.119c).55 Thus, all kinds of boundary data are prepared. The velocity
field ui1 is determined under the boundary data just obtained as in Section 3.1.1
with the aid of Footnote 56 below56. Then, we can determine the temperature

54(i) For the case of the interface, P (t̃) enters the boundary condition on the velocity normal
to the boundary. On the other hand, the integral of ui1ni over the boundary vanishes owing
to Eq. (141a), i.e., ˆ

S
ui1nidS = −

ˆ
V

∂ui1

∂xi
dx = 0.

This determines the relation of P1 and the integral of the boundary data Pw1, i.e.

P1(t̃)

ˆ
S

(1/C∗4 )dS −
ˆ
S

(Pw1/C
∗
4 )dS =

ˆ
S
ui1nidS,= 0.

Thus,

P1(t̃) =

´
S(Pw1/C∗4 )dS´
S(1/C∗4 )dS

,

where S is the surface of the boundary [see Eq. (K-4.68c) or Eq. (M-3.119c)]. It is noted
that C∗4 is a constant in the formula by the kinetic theory where the complete condensation
boundary is considered. Here, C∗4 is allowed to be a given function of xi and t to express more
general condition of the interface (0 < −1/C∗4 ≤ cM1; cM1 : const). Thus, P1 is determined.
With this P1(t̃), the boundary data of ui1ni is specified by Eq. (K-4.68c) or Eq. (M-3.119c).
Thus, the boundary value of ui is given by this ui1ni and Eq. (K-4.68a) or (M-3.119a).

(ii) When the boundary consists of the two kinds of boundaries, By the same reason, the
integral ui1ni over the boundary vanishes, which is divided into the contributions of the two
kinds of boundaries. That is, ˆ

SS

ui1nidS +

ˆ
SI

ui1nidS = 0,

where SS and SI indicate, respectively, the simple boundary and the interface. The first
integral vanishes because ui1ni = 0 on the simple boundary. Thus, the second integral also
vanishes. Then, similarly to note (i), we have

P1(t̃) =

´
SI

(Pw1/C∗4 )dS´
SI

(1/C∗4 )dS
.

Thus, P1(t̃) is determined, from which ui1ni on the interface is given by Eq. (K-4.68c) or
Eq. (M-3.119c). With this data, the boundary value of ui1 is specified on the interface.
Together with the condition on the simple boundary, the boundary value of ui1 is determined.

55The constant d∗:4 in the formula is allowed be a given function of xi and t as C∗4 is allowed
to be so in Footnote 54 (0 < −d∗4 ≤ cM2; cM2 : const).

56In the process solving the velocity field uiS1 in the simple boundary problem in Section
3.1.1, PS2 is required to satisfy the relation

∂2PS2

∂x2i
= −2

∂ujS1

∂xi

∂uiS1

∂xj
,
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τ1 from Eq. (141c) except for the bounded domain with the simple boundary.
With the determined P1 and τ1, the density ω1 is determined as

ω1 = P1 − τ1 (152)

by the first relation of Eq. (143).
In the exceptional case, Eq. (141c) contains two unknown functions τ1 and

P1. We need another condition to determine τ1 and P1. When the temperature
of the boundary is time-dependent and nonuniform, so is the solution τ1 in the
domain, irrespective of ∂P1/∂t̃ . The density ω1 is given by P1 − τ1, which is
time-dependent and nonuniform and includes undetermined P1. In a bounded
domain of the simple boundary, the mass of the fluid in the domain is invariant.
This has to be confirmed.57 The condition that the mass in the domain V is
invariant is given by

d

dt̃

ˆ
V

ω1dx =
dP1(t̃)

dt̃
V − d

dt̃

ˆ
V

τ1dx = 0, (153)

where V also indicates its volume. On the other hand, the integral form of
Eq. (141c) is

dP1(t̃)

dt̃
V − 5

2

d

dt̃

ˆ
V

τ1dx =

ˆ
V

(
5

2
ui1

∂τ1
∂xi
− 5

4
γ2
∂2τ1
∂x2

j

)
dx. (154)

in order to ensure the subsequent (or future) solenoidal condition of uiS1. According to Section
3.1.1, to determine the boundary value of ni∂PS2/∂xi, the time-derivative of the boundary
data of uiS1ni is required (uiS1 and PS2 corresponds to ui1 and P2 here). It vanishes because
uiS1ni = 0 on the simple boundary. In the interface problem, the boundary value of ui1ni is
given by the condition (K-4.68c) or (M-3.119c) and expressed with known data P1(t̃) and Pw1

[see Footnote 54 (i)]. Thus, ∂ui1ni/∂t̃ on the interface is known. This is used in constructing
the boundary data ni∂P2/∂xi as explained in Section 3.1.1. Thus, P2 is determined with
an arbitrary additive function f2(t̃) of t̃. For the combined boundary in (ii) of Footnote 54,
we can obtain P2 by the combination of ni∂P2/∂xi of the two kinds of boundaries, with an
arbitrary additive function of t̃. From P2 thus obtained, we can obtain the solution ui1 of
Eq (141b) with the boundary condition on ui1 for the cases (i) and (ii) of Footnote 54 in the
same way as Section 3.1.1. This ui1 satisfies the solenoidal condition in subsequent t̃. The
additive function in P2 does not influence the solution ui1.

57(i) It has been made clear by the analysis up to now that the condition ui1ni = 0 on
the boundary does not guarantee that mass flow in the diffusion time scale t̃ = O(1) or
t = O[L/(2RT0)1/2ε] is negligible compared with the quantity of O(ε) under concern.

(ii) Here, the order of variation of density by inflow to or outflow from a volume O(L3)
by the higher-order velocity (2RT0)1/2ε2 in time L/(2RT0)1/2ε is estimated. The inflow or
outflow of the mass of fluid over the surface O(L2) of the volume during the time is of the
order of ρ0 × (2RT0)1/2ε2 ×L/(2RT0)1/2ε×L2, which is ρ0εL3. Thus, the density varies by
the order of ρ0ε, which is of the same order as the term ω1 of the expansion of ρ in ε.

(iii) The flow ui2 in the preceding note (ii) is not obtained at the present step of analysis,
but the mass conservation condition d

´
V ω1dx/dt̃ = 0 in volume V , which is weaker than the

simple boundary condition uini = 0, determines dP1/dt̃ or future P1 as will be shown in the
main text. Then, from the integral of Eq, (142a) over V , we obtainˆ

S
ui2nidS = 0,

with the aid of ui1ni = 0 on S, ∂ui1/∂xi = 0, and the mass conservation condition, This con-
dition is required to obtain the solution of Eqs. (142a)–(143) satisfying the condition ui2ni = 0
on the simple boundary. A similar structure is repeated in higher-order analysis.
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From these two equations, the equation for P1 is obtained as

dP1(t̃)

dt̃
= − 5

3V

ˆ
V

(
ui1

∂τ1
∂xi
− 1

2
γ2
∂2τ1
∂x2

j

)
dx. (155)

From two equations (141c) and (155), The temperature τ(xi, t̃) and the pressure
P1(t̃) are determined. Then, ω1 is determined by Eq. (152). Thus, we have
obtained the required information for perfect gas, up to the order of ε under
concern.

At the final stage of the discussion of the process of solution, we briefly
describe the process for incompressible fluid, where ω = 0. The process up
to the step to obtain the velocity ui1 is the same as for perfect gas. That is,
the velocity field ui1 is determined independently of undetermined P1(t̃) for
a bounded domain with the simple boundary. In the other cases, the velocity
field ui1 is determined together with P1(t̃). The energy equation (146c) contains
only τ1 and determined ui1 without P1(t̃) term. It is similar to the equation
for perfect gas with difference of numerical coefficient and the absence of P1(t̃)
term. Thus, the solution τ1 is determined. The pressure P1(t̃), however, is left
undetermined for a bounded domain with the simple boundary. This situation
corresponds to the situation described in Section 3.2.3. Obviously, the mass is
invariant in a bounded domain because the density is invariant, which does not
work to determine P1(t̃). This ambiguity is due to the combination of the two
limiting characters of the incompressible fluid and the simple boundary.58

58Incompressible fluid is the extreme (or limiting) case of fluid very hard to compress.
Suppose that the equation of state is given by

ω =

(
P − τ
1 + τ

)2m+1

(m = 0, 1, 2, · · · ), (†1)

where m = 0 corresponds to perfect gas. Then,

ωn = 0 for n ≤ 2m, (†2a)

ω2m+1 = (P1 − τ1)2m+1. (†2b)

The equation of state (†1) is reduced to incompressible fluid in the limit m → ∞ because
ω = 0 in the limit irrespective of the perturbations P and τ of the order of ε. For m ≥ 1 (fluid
hard to compress; harder for larger m), the conservation equations are the same as those for
incompressible fluid up to n = 2m, That is, Eqs. (145)–(146c), where the contribution of work
done by pressure is absent, apply to fluid hard to compress commonly. In a bounded domain
with the simple boundary, the velocity ui1 and temperature τ1 are determined irrespective
of P1, but P1 cannot be specified within the above set of equations, and the mass in V is
invariant up to the level ω2m. The undetermined pressure P1 is determined by Eq. (†2b) and
the mass conservation at the level ω2m+1 in the volume V, i.e., d

´
V ω2m;+1dx/dt̃ = 0. From

them, we obtain the condition
ˆ
V

(P1 − τ1)2m
(

dP1

dt̃
−
∂τ1

∂t̃

)
dx = 0.

With the aid of Eq. (146c),

dP1

dt̃
=

ˆ
V

(P1 − τ1)2m
(
−ui1

∂τ1

∂xi
+

5

6
γ2
∂2τ1

∂x2i

)
dx

/ˆ
V

(P1 − τ1)2mdx , (†3)
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To summarize, the mass and momentum equations (141a) and (141b) of
the set derived from the compressible Navier–Stokes set [Eqs. (128)–(131b) and
(132)] under the situation given by Eqs. (133a) and (133b) with small ε are of the
same form as the corresponding equations (146a) and (146b) of the set derived
from the incompressible Navier–Stokes set [Eqs. (128)–(131b) and (144)], but
the energy equations (141c) and (146c) of the two sets differ by the work done
by pressure. The density ω1 obtained from ui1, τ1, and P1 by the first relation
of Eq. (143) does not generally satisfy the incompressible condition (144). Both
the density and temperature fields (ω1, τ1) are different in the two sets. The
variation of the density ω1 along a particle path is given by Eq. (151). Even if
the temperature τ1 varies according to Eq. (146c), the density ω1 determined by
Eq. (151) does not generally satisfy the incompressible condition. Further, the
two systems have a decisive difference in bounded domain problems with the
simple boundary. That is, the pressure P1 is undetermined in the incompressible
fluid system, but no such ambiguity exists in the perfect gas system, where the
pressure P1 is determined.

Finally, it may be repeated that under the situation (133a), the solenoi-
dal condition for ui1, i.e., Eq. (141a) or (146a), is derived only from the mass
conservation equation (128) without the help of the equation of state [perfect
gas condition (132) or the incompressible condition (144)]. That is, the mass

where dP1/dt̃ is expressed with the data of the present state (ui1, τ1, P1). Thus, the future
P1, thus (ui1, τ1, P1), is determined. In incompressible fluid, the limit m→∞ is taken first.
After the limit m → ∞, the number n showing the level of expansion of the solution in ε is
smaller than 2m + 1 (=∞), and therefore ωn = 0 for any n, and P1 remains undetermined.
This is the ambiguity mentioned in Section 3.2.3.

To summarize, for any finite positive m (≥ 1), the solution (ui1, τ1, P1) in a bounded domain
with the simple boundary is determined by the conservation equations (145)–(146c) with the
mass conservation condition (†3) in V , and the velocity ui1 and temperature τ1 are the same
as those of incompressible fluid. This solution is distinct from the solution for perfect gas
because the work done by pressure is absent in the energy equation (146c). The solution for
incompressible fluid is different from both the solutions, perfect gas (m = 0) or fluid hard to
compress (m ≥ 1), on the point of the ambiguity of P1. The solution for perfect gas is totally
different from the solution for incompressible fluid. The solution for fluid hard to compress
partially agrees with the solution for incompressible fluid. In this sense, the solution hard to
compress is on the side of incompressible fluid. The incompressible condition is too strongly
simplified to approximate the solution for fluid hard to compress (note that any fluid is not
exactly incompressible). It sacrifices the determinacy of P1, which is the qualitative difference
from perfect gas and fluid hard to compress.

This kind of situation is often seen when some small parameter is approximated by its
extreme value. Here, we have two parameters taken to their limits first (incompressible fluid
and the simple boundary, the latter of which can be taken, for example, as the limiting
case with the coefficient 1/C∗4 in the interface condition being taken to zero). Another well-
known example is the approximation of fluid with small viscosity (Navier–Stokes equation
with large Reynolds number) by ideal fluid (Euler equation). The ghost effect of infinitesimal
curvature in References [4]–[6] and Section 7.3 (see also Chapter M-9 and Section 7.2) is
another aspect of this kind of behavior, where we see that a plane wall or straight pipe is
too strong simplification (any plane wall or straight pipe to be discussed is not exactly so).
The ghost effect of infinitesimal curvature is shown by analysis with the limiting processes as
above taken into consideration.

From the above discussion, it is clear that the two systems under consideration (perfect gas
and incompressible fluid) are distinct.
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conservation equation at the level of O(ε) are common to perfect gas and in-
compressible fluid, i.e.,

∂ui1
∂xi

= 0, (156)

but the equation of state is different for the two kinds of fluid, i.e.,

ω1 = P1 − τ1 (perfect gas), (157a)

ω1 = 0 (incompressible fluid). (157b)

The solenoidal condition (141a) or (146a), i.e., ∂ui1/∂xi = 0, does not guarantee
the invariance of the density ω1 in the diffusion time scale t̃ = O(1) (see Footnote
57).59

3.2.5 Equations derived from the compressible Euler set when the
Mach number and the temperature variation are small

Take the Euler set of equations, Eqs. (M-3.250a)–(M-3.250c) and the equation
of state, in the nondimensional form derived from the Boltzmann equation in
the limit k → 0:

∂ρ̂

∂t̂
+
∂ρ̂v̂j
∂xj

= 0, (158a)

∂ρ̂v̂i

∂t̂
+
∂ρ̂v̂j v̂i
∂xj

+
1

2

∂p̂

∂xi
= 0, (158b)

∂

∂t̂

[
ρ̂

(
v̂2
i +

3

2
T̂

)]
+

∂

∂xj

[
ρ̂v̂j

(
v̂2
i +

5

2
T̂

)]
= 0, (158c)

p̂ = ρ̂T̂ , (158d)

where the subscript H0 is eliminated for simpleness of notation. We consider the
situation where the state of the gas deviates slightly from a uniform equilibrium
state at rest. That is,

ρ̂ = 1 + ω̂, p̂ = 1 + P̂ , T = 1 + τ̂ , v̂i = ûi, (159)

where the perturbed quantities ω̂, P̂ , τ̂ , and ûi are small, say of the order of ε.
They are expanded as

ĥ = ĥ1ε+ ĥ2ε
2 + · · · , (160)

where ĥ = ω̂, P̂ , τ̂ , or ûi.

59Note the size ε of the variation of quantities, the diffusion time-scale [L/(2RT0)1/2ε] under
consideration, and the nonlinearity in the mass conservation equation (128). Owing to these
situations, the density variation, i.e,

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
,

along the fluid particle path is obtained from ui, τ1, and P1, and is generally finite (6= 0),
affecting ∂ui2/∂xi in Eq. (142a).
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We discuss the two cases with different time scale. The first case is

∂ĥ

∂t̂
= O(ĥ). (161)

Substituting the expansions (160) of the variables ω̂, P̂ , τ̂ , and ûi into the Euler
equations (158a)–(158d) and arranging the same-order terms with Eq. (161) in
mind, we find that the leading-order variables are governed by the following set
of equations:

∂ω̂1

∂t̂
+
∂ûj1
∂xj

= 0, (162a)

∂ûi1

∂t̂
+

1

2

∂P̂1

∂xi
= 0, (162b)

∂P̂1

∂t̂
+

5

3

∂ûj
∂xj

= 0, (162c)

P̂1 = ω̂1 + τ̂1. (162d)

This set is the well-known acoustic equations (see Section M-3.7.1), which are
explained in a standard textbook of gas dynamics, e.g., M-Liepmann & Roshko
[1957].

The second case is the case where the variables are slowly varying or the
time scale of variation of the variables is long and of the order 1/ε :

∂ĥ

∂t̂
= εO(ĥ). (163)

Here, we introduce the shrunk time t̂ε:

t̂ε = εt̂. (164)

Then,

∂ĥ

∂t̂ε
= O(ĥ). (165)

Substituting the expansion (160) of the variables ω̂, P̂ , τ̂ , and ûi into the Euler
equations (158a)–(158d) and arranging the same-order terms with Eq. (165) in
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mind, we obtain the equations that determine the leading-order variables as60

∂P̂1

∂xi
= 0, (166a)

∂ûj1
∂xj

= 0, (166b)

∂ûi1

∂t̂ε
+ ûj1

∂ûi1
∂xj

+
1

2

∂P̂2

∂xi
= 0, (166c)

5

2

∂τ̂1

∂t̂ε
− ∂P̂1

∂t̂ε
+

5

2
ûj1

∂τ̂1
∂xj

= 0, (166d)

P̂1 = ω̂1 + τ̂1. (166e)

From Eq. (166a), P̂1 is a function of t̂ε only, and thus is determined by the
boundary condition.61 The relation

∂P̂1

∂t̂ε
=
∂P̂1

∂t̂ε
+ ûj1

∂P̂1

∂xj
, (167)

obvious from Eq. (166a), is conveniently used in the following discussion. The
energy equation (166d) is transformed as

3

2

(
∂τ̂1

∂t̂ε
+ ûj1

∂τ̂1
∂xj

)
− ∂ω̂1

∂t̂ε
− ûj1

∂ω̂1

∂xj
= 0, (168)

by using Eqs. (166e) and (167) for ∂P̂1/∂t̂ε. From Eqs. (168) and (166e), the
variation of ω̂1 along the fluid-particle path is expressed as follows:

∂ω̂1

∂t̂ε
+ ûj1

∂ω̂1

∂xj
=

3

5

(
∂P̂1

∂t̂ε
+ ûj1

∂P̂1

∂xj

)
=

3

5

dP̂1

dt̂ε
. (169)

Equations (168) and (169) are the linearized forms of the isentropic variations
of ω̂1 versus τ̂1 and P̂1 along the fluid-particle path. The energy equation (168)
is conveniently compared with the energy equation of incompressible fluid. For
the latter, the last two terms are absent and the temperature is invariant along
the fluid-particle path. The difference is the work done by pressure, which can
be shown as is done in Section 3.2.4.

The behavior of the gas governed by Eqs. (166a)–(166e) is summarized as
follows:
(1): Equations (166b) and (166c) for the velocity field are of the same form as
those of incompressible fluid.
(2): Depending on the condition of the boundary, P̂1 can be time dependent
or independent. (i) If P̂1 is time dependent, the density ω̂1 varies along the

60Under the assumptions (159) and (163) or (165), the solenoidal condition (166b) for ûi1
is derived solely from the mass conservation equation (158a). It should not be confused with
the incompressible condition.

61For example, the pressure is specified at infinity in an unbounded problem.
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fluid-particle path owing to Eq. (169). (ii) If P̂1 is time independent, the tem-
perature τ̂1 and the density ω̂1 are invariant along the fluid-particle path owing
to Eqs. (166d) and (169).

(Section 3.2.5: Version 8-00)

4 Chapter M-4

4.1 Notes on application of the solution in Section M-4.3

In the application of the quasi-unidirectional solution in Section M-4.3, some
cares are required. For some ranges from the entrance and from the exit of
the pipe, the assumptions made in the first paragraph of Section M-4.3 and
the assumption62 just after Eq. (M-4.64) are not generally satisfied. For a long
pipe,63 it is expected that the three regions, entrance, central, and exit regions,
can be analyzed separately and that the results can be smoothly connected. In
the central region, we try to use the solution of Section M-4.3. This process
being successfully done, and the contributions of the entrance and exit regions
to the pressure and temperature variations being estimated to be much smaller
than the contributions of the central region, the solution in Section M-4.3 gives
the global behavior of flow through a long pipe. It is often applied without
confirmation that the end effects are so small as to be neglected. The solution
of the central region, for which the solution of Section M-4.3 is used, has to
be confirmed that it satisfies the above assumptions made in the analysis. For
example, if the vacuum condition (or the vanishing density condition) is directly
applied to the exit when exit is connected to a large vacuum chamber, one finds
the average flow velocity on the cross section of the exit is infinite owing to
the mass flow conservation through the pipe. This obviously violates the latter
assumption. The solution cannot be applied up to such low density (or pressure)
region. The contribution of the region where the assumption is violated has to
be investigated in more complete formulation.

In a pipe problem, the temperature is controlled locally by the temperature
of the pipe, but the pressure is controlled only at the entrance and the exit.
The local pressure in between is determined by the mass conservation condition
as shown in Section M-4.3. Thus, the nondimensional local pressure gradient
cannot be specified at our disposal. For example, let us examine how the solution
on the basis of the local linear theory breaks down in a straight pipe with a
uniform cross section and a uniform temperature. According to Eq. (M-4.77)
required by the mass flow conservation through the pipe, the quantities at the
cross section A and the cross section B are related as follows:

pA

(
L

p

dp

dX1

)
A

M̂P(kA) = pB

(
L

p

dp

dX1

)
B

M̂P(kB),

62This condition is consistent with the preceding assumptions.
63This means that the length of the pipe is much larger than the linear dimension of its

cross section.
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where the subscripts A and B indicate the values at the cross sections A and B
respectively, X1 is the coordinate along the pipe, and the unnecessary common
factors Tw and L are eliminated from the formula (M-4.77). The nondimensional
pressure gradient at the cross section B is expressed with that at A as(

L

p

dp

dX1

)
B

=
pAM̂P(kA)

pBM̂P(kB)

(
L

p

dp

dX1

)
A

,

where the ratio M̂P(kA)/M̂P(kB) is bounded from below by a positive constant
when kB > kA and becomes infinite as kA → 0 (see, for example, Table M-5.3,
M-Sone & Yamamoto [1968]).64 Thus, |(L/pB)(dp/dX1)B| becomes very large
or infinite even when |(L/pA)(dp/dX1)A| is small if pA/pB � 1 or kA � 1,
and the slowly varying assumption |(L/p)(dp/dX1)| � 1 is violated at the cross
section B. Thus, the solution in Section M-4.3 is generally no longer valid there,
and more complete analysis is required. In practical applications, the quantities
that are assumed to be small may be small but are not very small. Thus, they
may easily reach non-small values in another cross section.

(Section 4.1: Version 8-00)

4.2 Gas over a plane interface: Supplement to M-4.4

Here, the discussion of the half-space problem under the boundary condition
(M-1.26) for a simple boundary in Section M-4.4 is extended to that under the
boundary condition (M-1.30) or (287) for an interface of a gas and its condensed
phase. That is, a plane simple boundary is replaced by a plane condensed phase
of the gas, and the possible solution including the possible state at infinity is
discussed in the situation when no evaporation or condensation is taking place
on the condensed phase. This is the problem first discussed by Golse under
the complete condensation condition (Bardos, Golse & Sone [2006]), which is a
special case of the boundary condition (M-1.30). The analysis goes parallel to
that in Section M-4.4. The full explanation is given with the difference being
shown with footnotes, though it may be redundant.

Consider a semi-infinite expanse of a gas (X1 > 0) bounded by its stationary
plane condensed phase with a uniform temperature Tw at X1 = 0. There is no
external force acting on the gas. The state of the gas is time-independent and
uniform with respect to X2 and X3, i.e., f = f(X1, ξ), and it approaches an
equilibrium state as X1 →∞, i.e.,

f → ρ∞
(2πRT∞)3/2

exp

(
− (ξi − vi∞)2

2RT∞

)
as X1 →∞, (170)

where ρ∞, vi∞, and T∞ are bounded. The boundary condition on the interface

64Generally, M̂P(k) first decreases from infinity as k increases from zero, reaching the mi-
nimum value at some k (around k =

√
π or Kn = 2 in Table M-5.3) (Knudsen minimum) and

increases to the finite value at k =∞.
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is given by Eq. (287) with the conditions (288a)–(288c) and (291), i.e.,

f(0, ξ) = gI +

ˆ
ξ1∗<0

KI(ξ, ξ∗)f(0, ξ∗)dξ∗ (ξ1 > 0). (171)

Here, we are interested in the case where no evaporation or condensation is
taking place on the condensed phase,65 i.e.,

ρv1 =

ˆ
ξ1fdξ = 0 at X1 = 0. (172)

We will show that the solution of the Boltzmann equation (M-1.5), i.e.,

ξ1
∂f

∂X1
= J(f, f), (173)

describing the above situation exists only when

vi∞ = 0, ρ∞ = ρw, T∞ = Tw,

where ρw is the saturation gas density at temperature Tw, and that the solution
is uniquely given by the Maxwellian

f =
ρw

(2πRTw)3/2
exp

(
− ξ2

i

2RTw

)
. (174)

From the integral of the Boltzmann equation (173) over the whole space of
ξ [or the conservation equation (M-1.12)], i.e.,

d

dX1

(ˆ
ξ1fdξ

)
= 0,

and Eq. (172), we find that the mass flux vanishes for X1 ≥ 0, i.e.,

ˆ
ξ1fdξ = 0 (0 ≤ X1 <∞). (175)

With this result in the condition (170) at infinity, we have

ˆ
ξ1ξ

2
i fdξ = 0 at infinity. (176)

The integral of the Boltzmann equation (173) multiplied by ξ2
j over the whole

space of ξ [or the conservation equation (M-1.14)] gives

d

dX1

(ˆ
ξ1ξ

2
j fdξ

)
= 0. (177)

65No mass flux across the boundary irrespective of a situation is the definition of a simple
boundary.
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Thus, from Eqs. (176) and (177), we have

ˆ
ξ1ξ

2
j fdξ = 0 (0 ≤ X1 <∞). (178)

For the boundary condition (287) with the conditions (288a)–(288c) and
(291), the following inequality holds at X1 = 0 [Eq. (310) with ρv1 = 0, vwi = 0,
ni = (1, 0, 0)]:66 ˆ

ξ1f ln(f/fw)dξ ≤ 0, (179)

where fw is the Maxwellian with the temperature Tw and velocity vwi (= 0) of
the condensed phase and the saturation gas density ρw at temperature Tw, i.e.,

fw =
ρw

(2πRTw)3/2
exp

(
− ξ2

i

2RTw

)
. (180)

With the aid of Eqs. (175) and (178),

ˆ
ξ1f ln(f/c0)dξ ≤

ˆ
ξ1f ln(fw/c0)dξ

= − 1

2RTw

ˆ
ξ1ξ

2
i fdξ = 0 at X1 = 0, (181)

where c0 is a constant to make the argument of the logarithmic function dimen-
sionless, whose choice does not influence the result.

On the other hand, from the H theorem, i.e., Eq. (M-1.36), in a time-
independent one-dimensional case,

−
ˆ
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

+

ˆ
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=∞

=

ˆ ∞
0

GdX1 ≤ 0, (182)

where

G = − 1

4m

ˆ
(f ′f ′∗ − ff∗) ln

(
f ′f ′∗
ff∗

)
BdΩdξ∗dξ ≤ 0.

From Eqs. (170), (175), and (176), the second term on the left-hand side of
Eq. (182) vanishes, that is,

−
ˆ
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

=

ˆ ∞
0

GdX1 ≤ 0. (183)

Combining the two inequalities (181) and (183), we have

0 ≤ −
ˆ
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

=

ˆ ∞
0

GdX1 ≤ 0.

66The same equality holds for a simple boundary except that ρw in fw is a free parameter
for this case (see Section M-4.4).
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Therefore, we have ˆ ∞
0

GdX1 = 0, thus, G = 0, (184)

and ˆ
ξ1f ln(f/c0)dξ

∣∣∣∣
X1=0

= 0.

From Eq. (184), f is Maxwellian in 0 < X1 <∞, and Eq. (173) is reduced to
ξ1∂f/∂X1 = 0. That is, f is a uniform Maxwellian. From the condition (170)
at infinity and Eq. (175), the solution is to be in the form

f =
ρ∞

(2πRT∞)3/2
exp

(
−ξ

2
1 + (ξ2 − v2∞)2 + (ξ3 − v3∞)2

2RT∞

)
(0 < X1 <∞).

(185)
From the uniqueness condition of Eq. (288c), the Maxwellian that satisfies the
boundary condition (288c) is given by Eq. (180). Thus, the parameters in
Eq. (185) have to be67

v2∞ = v3∞ = 0, ρ∞ = ρw, T∞ = Tw,

and the solution is given by Eq. (174).
The same statement holds for the linearized Boltzmann equation with the

corresponding general boundary condition (M-1.112) on an interface of the gas
and its condensed phase. The temperature Tw of the condensed phase and the
saturation gas density ρw at temperature Tw are, respectively, taken here as the
reference temperature T0 or τw = 0 and the reference density ρ0 or ωw = 0.68

The linearized Boltzmann equation is given in the form

ζ1
∂φ

∂η
= L(φ) (0 < η <∞). (186)

The boundary condition on the interface is given by Eq. (M-1.112) with the
supplementary conditions (i), (ii-a), and (ii-b) as

E(ζ)φ(η, ζ) =

ˆ
ζ1∗<0

K̂I0(ζ, ζ∗)φ(η, ζ∗)E(ζ∗)dζ∗ (ζ1 > 0) at η = 0. (187)

The condition at infinity is

φ(η, ζ)→ ω∞ + 2ζiui∞ +

(
ζ2
i −

3

2

)
τ∞ as η →∞, (188)

where ω∞, ui∞ and τ∞ are some constants and η = x1/k (= 2X1/
√
π`0). Then,

the solution of the boundary-value problem (186)–(188) exists when and only
when

ω∞ = 0, ui∞ = 0, τ∞ = 0, (189)

67For a simple boundary, we can choose ρ∞ at our disposal, because ρ in Eq. (M-1.27c) is
arbitrary.

68We take the reference density ρw in contrast with the case of a simple boundary. This is
only for convenience of explanation. For this choice, ωw term disappears in Eq. (187) but ω∞
term appears in Eq. (188)
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and the unique solution is given by

φ = 0. (190)

The proof can be given in the same way as the preceding proof for the
nonlinear case. From the conservation equation (M-1.99), i.e., ∂u1/∂η = 0, and
the condition of absence of evaporation or condensation on the condensed phase
(u1 =

´
ζ1φEdζ = 0 at η = 069), we have

u1 =

ˆ
ζ1φEdζ = 0 (0 ≤ η <∞). (191)

Thus,
ui∞ = 0. (192)

From Eqs. (188) and (192),ˆ
ζ1φ

2Edζ = 0 at infinity. (193)

According to the second part of Section M-A.10,70

ˆ
ζ1φ

2Edζ ≤ 0 at η = 0. (194)

The linearized-Boltzmann-equation version of the equation for the H function
given by Eq. (M-1.115) is expressed as

∂

∂η

ˆ
ζ1φ

2Edζ = LG, (195)

where

LG = −1

2

ˆ
EE∗(φ

′ + φ′∗ − φ− φ∗)2B̂dΩdζ∗dζ ≤ 0. (196)

From Eqs. (193), (194), and (195) with Eq. (196), we find that LG is to be zero
and that φ is a summational invariant or the linearized form of a Maxwellian,
i.e.,

φ = ω + 2(ζ2u2 + ζ3u3) +

(
ζ2
i −

3

2

)
τ,

where Eq. (191) is used. Then, Eq. (186) reduces to ζ1∂φ/∂η = 0, and therefore,
ω, u2, u3, and τ are constant. In view of Eq. (188), the constants ω, u2, u3, τ,
and φ are given as

ω = ω∞, u2 = u2∞, u3 = u3∞, τ = τ∞,

φ = ω∞ + 2(ζ2u2∞ + ζ3u3∞) +

(
ζ2
i −

3

2

)
τ∞.

69The boundary where this equality holds irrespective of a situation is the definition of a
simple boundary.

70This is the linearized-Boltzmann-equation version of the inequality (310) and valid for
both types of boundaries, a simple boundary and an interface. For the case of an interface,
an additional condition (M-A.271), which corresponds to Eq. (291) in the nonlinear case, is

imposed on the kernel K̂I0 (see also Footnote 109 in Section 8.4.2).
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Owing to the supplementary condition (ii-b) to the boundary condition (M-
1.112) together with Eq. (192), we have71

ω∞ = 0, u1∞ = 0, u2∞ = 0, u3∞ = 0, τ∞ = 0,

φ = 0.

(Section 4.2: Version 5-00)

4.3 Onsager relation (Section M-4.5)

In the last paragraph of Section M-4.5, a short comment on the Onsager relation
for the solution of the Boltzmann equation is given. Recently, comprehensive
discussion of the symmetry of solutions of the linearized Boltzmann system and
the Onsager relation in the system were given by Takata [2009a,b]. Making
use of the property of the linearized kinetic boundary condition (see Sections
M-1.11 and M-A.9), Takata considered three kinds of the Green function of the
time-independent linearized Boltzmann equation, and showed symmetric rela-
tions among them. On the basis of this symmetric property, various symmetric
relations of solutions of the time-independent linearized Boltzmann system were
derived. Then, he proceeded to the discussion of the Onsager relation of the
Boltzmann system. The incompleteness of M-Sharipov [1994a,b] was also men-
tioned there. Further, he tried to extend his works to time-dependent problems
(Takata [2010]).

(Section 4.3: Version 10-00)

5 Chapter M-5

5.1 Flows induced by temperature fields and video files of
their experiments

The addresses of the videos of the experiments on flows induced by tempe-
rature fields in Kyoto University Research Information Repository, which are
permanent, are listed here.
Thermal creep flow
The Web address in Footnote M-5 in Section M-5.11 should be made by

https ://hdl.handle.net/2433/120983,
which is the video file of a part of the experiments in Sone [1991].

(Section 5.1: Version 11-02)
The thermal creep flow [see Eq. (M-5.1)], i.e.,

v1 = −K1

(
πRT0

2

)1/2
`0
T0

dTw
dX1

, (197)

71Owing to the difference of the supplementary condition (ii-b) of Eq. (M-1.112) [or
Eq. (187)] for an interface from the condition (iii) of Eq. (M-1.107) for a simple boundary,
ω is determined for an interface. For a simple boundary, ω∞ can be chosen at our disposal.
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vanishes in the limit that the mean free path tends to zero (`0 → 0).72 At
the standard state, the mean free path is small but finite, and therefore, the
thermal creep flow does not vanish. The mean free path is related to the thermal
conductivity λ by Eq. (M-3.71), i.e.,

`0 =
4(2RT0)1/2

5
√
πγ2Rp0

λ. (198)

The above-mentioned formula of the thermal creep flow where the mean free
path `0 replaced by the thermal conductivity λ with the above relation, i.e.,

v1 = −4K1λ

5γ2p0

dTw
dX1

, (199)

makes the thermal creep flow more accessible. This kind of replacement can be
made between mean free path and viscosity [see Eq. (M-3.71)].

The preceding formulas are derived from the result of the linearized Boltz-
mann equation. According to the discussion in Chapter M-3 ans Section A6
of KF, the results apply to more general cases. In these cases, the variables,
including the transport and slip coefficients, are the local values at the position
under discussion. The subscript 0 is to be eliminated.
Thermal edge flow
The Web address in Footnote M-13 in Section M-5.14 should be replaced by

https ://hdl.handle.net/2433/122357,
which is the video file of a part of the experiments in Sone & Yoshimoto [1997].

(Section 5.1: Version 11-02)

6 Chapter M-7

6.1 New reference

A mathematical work related to the subject in Chapter M-7 was published
recently:

Liu, T.-P. and S.-H. Yu (2013), Invariant manifolds for steady Boltzmann
flows and applications, Arch. Rational Mech. Anal. 209, 869–997.

(Version 12-00)

7 Chapter M-9

7.1 Processes of solution of the equations with the ghost
effect of infinitesimal curvature (July 2007)

The way in which Eqs. (M-9.33)–(M-9.39b) or Eqs. (M-9.49a)–(M-9.50e), inclu-
ding the time-dependent case with the additional time-derivative terms given
by Eq. (M-9.42) or the mathematical expressions next to Eq. (M-9.59), contain

72Except in the thin layer adjacent to the boundary, Y1 is negligible.
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the pressure terms, (p̂S0,p̂S2) or (P01, P02, P20), is different from the way in
which the Navier–Stokes equations (M-3.265)–(M-3.266c) do the pressure terms,
(PS1, PS2). In Section M-9.4, we consider the time-independent solution of
Eqs. (M-9.49a)–(M-9.50e) [Eqs. (M-9.56)–(M-9.57d)] that is uniform with re-
spect to χ̄. Here, it may be better to explain how a solution of Eqs. (M-9.33)–(M-
9.39b) or Eqs. (M-9.49a)–(M-9.50e) in a general case or a time-dependent solu-
tion that depends on χ or χ̄ is obtained. Incidentally, the boundary conditions
for the time-dependent case are derived in the same way as in Section M-3.7.3.
Naturally from the derivation of the equations, the domain of a gas is in a
straight pipe or channel of infinite length whose axis is in the x or χ direction.

7.1.1 Equations (M-9.33)–(M-9.39b):

Take Eqs. (M-9.33)–(M-9.39b) with the additional time-derivative terms given
by Eq. (M-9.42), i.e.,73

∂p̂S0

∂y
=
∂p̂S0

∂z
= 0, (200)

∂ρ̂S0

∂t̂
+
∂ρ̂S0v̂xS0

∂χ
+
∂ρ̂S0v̂yS1

∂y
+
∂ρ̂S0v̂zS1

∂z
= 0, (201)

ρ̂S0
∂v̂xS0

∂t̂
+ ρ̂S0

(
v̂xS0

∂v̂xS0

∂χ
+ v̂yS1

∂v̂xS0

∂y
+ v̂zS1

∂v̂xS0

∂z

)
= −1

2

∂p̂S0

∂χ
+

1

2

∂

∂y

(
Γ1
∂v̂xS0

∂y

)
+

1

2

∂

∂z

(
Γ1
∂v̂xS0

∂z

)
, (202)

ρ̂S0
∂v̂yS1

∂t̂
+ ρ̂S0

(
v̂xS0

∂v̂yS1

∂χ
+ v̂yS1

∂v̂yS1

∂y
+ v̂zS1

∂v̂yS1

∂z
− 1

c2
v̂2
xS0

)
= −1

2

∂p̂cS2

∂y
+

1

2

∂

∂χ

(
Γ1
∂v̂xS0

∂y

)
+

∂

∂y

(
Γ1
∂v̂yS1

∂y

)
+

1

2

∂

∂z

[
Γ1

(
∂v̂yS1

∂z
+
∂v̂zS1

∂y

)]

+
1

2p̂S0

 ∂

∂y

Γ7

(
∂T̂S0

∂y

)2+
∂

∂z

(
Γ7
∂T̂S0

∂y

∂T̂S0

∂z

)
+

1

p̂S0

{
∂

∂y

[
Γ8

(
∂v̂xS0

∂y

)2]
+

∂

∂z

(
Γ8
∂v̂xS0

∂y

∂v̂xS0

∂z

)}
, (203)

73Equation (M-9.33) is replaced by its equivalent form (200).
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ρ̂S0
∂v̂zS1

∂t̂
+ ρ̂S0

(
v̂xS0

∂v̂zS1

∂χ
+ v̂yS1

∂v̂zS1

∂y
+ v̂zS1

∂v̂zS1

∂z

)
= −1

2

∂p̂cS2

∂z
+

1

2

∂

∂χ

(
Γ1
∂v̂xS0

∂z

)
+

1

2

∂

∂y

[
Γ1

(
∂v̂yS1

∂z
+
∂v̂zS1

∂y

)]
+

∂

∂z

(
Γ1
∂v̂zS1

∂z

)

+
1

2p̂S0

 ∂

∂y

(
Γ7
∂T̂S0

∂y

∂T̂S0

∂z

)
+

∂

∂z

Γ7

(
∂T̂S0

∂z

)2
+

1

p̂S0

{
∂

∂y

(
Γ8
∂v̂xS0

∂y

∂v̂xS0

∂z

)
+

∂

∂z

[
Γ8

(
∂v̂xS0

∂z

)2]}
, (204)

5ρ̂S0

2

∂T̂S0

∂t̂
+

5

2
ρ̂S0

(
v̂xS0

∂T̂S0

∂χ
+ v̂yS1

∂T̂S0

∂y
+ v̂zS1

∂T̂S0

∂z

)

− ∂p̂S0

∂t̂
− v̂xS0

∂p̂S0

∂χ

=
5

4

∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

5

4

∂

∂z

(
Γ2
∂T̂S0

∂z

)
+ Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
,

(205)

and the subsidiary relations

p̂S0(χ, t̂) = ρ̂S0T̂S0, (206a)

p̂cS2 = p̂S2 +
2Γ1

3

(
∂v̂xS0

∂χ
+
∂v̂yS1

∂y
+
∂v̂zS1

∂z

)
+

Γ7

3p̂S0

(∂T̂S0

∂y

)2
+

(
∂T̂S0

∂z

)2
+

2

3p̂S0

[
∂

∂y

(
Γ3
∂T̂S0

∂y

)
+

∂

∂z

(
Γ3
∂T̂S0

∂z

)]

− 2Γ9

3p̂S0

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
, (206b)

where Γ1, Γ2, Γ3, Γ7, Γ8, and Γ9 are short forms of the functions Γ1(T̂S0),
Γ2(T̂S0), . . . ,Γ9(T̂S0) of T̂S0 defined in Section M-A.2.9.

Consider the solution of the initial and boundary-value problem of Eqs. (200)–(206b).
Let ρ̂, v̂i, and T̂ (thus, p̂ = ρ̂T̂ ) at time t̂ be given; thus, ρ̂S0, v̂xS0, v̂yS1,

v̂zS1, T̂S0 (p̂S0), etc., including p̂S2, are given. Then ∂ρ̂S0/∂t̂, ∂v̂xS0/∂t̂,
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∂v̂yS1/∂t̂, ∂v̂zS1/∂t̂, and ∂T̂S0/∂t̂ at t̂ are given by Eqs. (201)–(206b); thus,

the future ρ̂S0, v̂xS0, v̂yS1, v̂zS1, and T̂S0 (also p̂S0) are determined. However,
the future p̂S0 is required to be independent of y and z, as well as p̂S0 at t̂,
owing to Eq. (200). Taking this into account, we will discuss how the solution
is obtained by this system consistently.

First, transform Eq. (205) with the aid of Eqs. (201) and (206a) in the follo-
wing form:

∂p̂S0

∂t̂
= P, (207)

where

P = −5

3
p̂S0

(
∂v̂xS0

∂χ
+
∂v̂yS1

∂y
+
∂v̂zS1

∂z

)
− v̂xS0

∂p̂S0

∂χ

+
5

6

[
∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

∂

∂z

(
Γ2
∂T̂S0

∂z

)]
+

2

3
Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
.

(208)

For p̂S0 to be independent of y and z [see Eq. (200)], P as well as the initial data
of p̂S0 is required to be independent of y and z. Noting that p̂S0 is independent
of y and z, and taking the average of Eq. (208) over the cross section S of the
pipe or channel,74 we have another expression P of P, explicitly uniform with
respect to y and z, i.e.,

P = −5

3

∂v̂xS0

∂χ
p̂S0 − v̂xS0

∂p̂S0

∂χ
+

5

6

[
∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

∂

∂z

(
Γ2
∂T̂S0

∂z

)]

+
2

3
Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
, (209)

where

A =

ˆ
S

Adydz

/ˆ
S

dydz.

The expression (209) is noted to be independent of v̂yS1 and v̂zS1. The two
expressions (208) and (209) must give the same result, i.e.,

P = P,

74(i) In a channel, where the gas extends from z = −∞ to z =∞, the integral
´
S Adydz per

unit length in z, per a period in z, etc. should be considered. Otherwise, it can be infinite.
(ii) Note that v̂yS1ny + v̂zS1nz = 0 on a simple boundary where ni = (0, ny , nz) is the

normal to the boundary.
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or

− 5

3
p̂S0

(
∂v̂xS0

∂χ
+
∂v̂yS1

∂y
+
∂v̂zS1

∂z

)
− v̂xS0

∂p̂S0

∂χ

+
5

6

[
∂

∂y

(
Γ2
∂T̂S0

∂y

)
+

∂

∂z

(
Γ2
∂T̂S0

∂z

)]
+

2

3
Γ1

[(
∂v̂xS0

∂y

)2
+

(
∂v̂xS0

∂z

)2]
= P, (210)

when Eq. (200) holds, and vice versa. The condition (210) for all t̂ is equivalently
replaced by the two conditions that the initial data of p̂S0, T̂S0, v̂xS0, v̂yS1,
and v̂zS1 satisfy Eqs. (200) and (210) and that the time derivative of Eq. (210)
holds for all t̂, i.e.,

∂P
∂t̂

=
∂P

∂t̂
. (211)

Using Eqs. (201)–(204) and (207) for ∂ρ̂S0/∂t̂, ∂v̂xS0/∂t̂, ∂v̂yS1/∂t̂, ∂v̂zS1/∂t̂,

and ∂p̂S0/∂t̂ (ρ̂S0∂T̂S0/∂t̂ = ∂p̂S0/∂t̂ − T̂S0∂ρ̂S0/∂t̂) in ∂P/∂t̂ derived from
Eq. (208), we find that ∂P/∂t̂ is expressed with ρ̂S0, v̂xS0, v̂yS1, v̂zS1, p̂S0, and
p̂cS2 in the form

∂P
∂t̂

=
5

6
p̂S0

[
∂

∂y

(
1

ρ̂S0

∂p̂cS2

∂y

)
+

∂

∂z

(
1

ρ̂S0

∂p̂cS2

∂z

)]
+ Fn1, (212)

where Fn1 is a given function of ρ̂S0, v̂xS0, v̂yS1, v̂zS1, p̂S0, and their space
derivatives. The expression (209) of P being independent of v̂yS1 and v̂zS1,
its time derivative ∂P/∂t̂ does not contain ∂v̂yS1/∂t̂ and ∂v̂zS1/∂t̂. Therefore,
with the aid of Eqs. (201), (202), and (205), ∂P/∂t̂ is expressed with ρ̂S0, v̂xS0,
v̂yS1, v̂zS1, p̂S0, and their space derivatives, i.e.,

∂P

∂t̂
= Fn2(ρ̂S0, v̂xS0, v̂yS1, v̂zS1, p̂S0, and their space derivatives), (213)

where Fn2 is a given functional of its arguments. From Eqs. (211), (212), and
(213), we have

∂

∂y

(
1

ρ̂S0

∂p̂cS2

∂y

)
+

∂

∂z

(
1

ρ̂S0

∂p̂cS2

∂z

)
= Fn, (214)

where Fn = 6(Fn2− Fn1)/5p̂S0, and therefore, Fn is a given functional of ρ̂S0,
v̂xS0, v̂yS1, v̂zS1, p̂S0, and their space derivatives. This is the equation for p̂cS2

over a cross section of the pipe or channel.
The boundary condition for p̂cS2 on a simple boundary is obtained by mul-

tiplying Eqs. (202)–(204) by the normal ni = (0, ny, nz) to the boundary; In
this process, the contribution of their time-derivative terms vanishes because
v̂yS1ny + v̂zS1nz = 0; Then, the ny∂p̂

c
S2/∂y + nz∂p̂

c
S2/∂z is imposed as the

boundary condition. Thus, p̂cS2 is determined by Eq. (214) except for an addi-
tive function of t̂ and χ. With this p̂cS2 substituted into Eqs. (203) and (204),
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∂ρ̂S0/∂t̂, ∂v̂xS0/∂t̂, ∂v̂yS1/∂t̂, ∂v̂zS1/∂t̂, and ∂p̂S0/∂t̂ are determined by
Eqs. (201)–(206b) independently of the additive function in p̂cS2 in such a way
that ∂(∂p̂S02/∂y)/∂t̂ = ∂(∂p̂S0/∂z)/∂t̂ = 0 and ∂(∂P/∂y)/∂t̂ = ∂(∂P/∂z)/∂t̂ =
0. That is, the solution (ρ̂S0, v̂xS0, v̂yS1, v̂zS1, T̂S0) of Eqs. (200)–(206b) is deter-
mined by Eqs. (201)–(206b) with the aid of the supplementary condition (214),
instead of Eq. (200), when the initial condition for ρ̂S0, v̂xS0, v̂yS1, v̂zS1, and

T̂S0 is given in such a way that p̂S0 (= ρ̂S0T̂S0) and P are independent of y
and z.

Equations (200)–(206b) are the leading-order set of equations derived by
the asymptotic analysis of the Boltzmann equation. The analysis of the higher-
order equations not shown here is carried out in a similar way. The equation for
∂p̂S2/∂t̂, corresponding to Eq. (207), is derived at the order after next. However,
owing to the consistency of p̂S0, p̂S2 is already determined by Eq. (214) except
for an additive function of χ and t̂. The situation is similar to that at the leading
order. That is, p̂S0 and p̂S2 are, respectively, determined by Eqs. (200) and
(214), each with an additive function of χ and t̂ and also by Eqs. (207) and the
counterpart of Eq. (207) at the order after next. Thus, the higher-order analysis
can be carried out in a similar way. The results are that an additional initial
condition and an equation for p̂S4, the counter part of Eq. (214), are introduced
and that the condition (214) is required only for the initial data. The higher-
order consideration does not affect the determination of the solution ρ̂S0, T̂S0,
v̂xS0, v̂yS1, and v̂zS1 (thus also p̂S0).

To summarize, the solution (ρ̂S0, v̂xS0, v̂yS1, v̂zS1, T̂S0) of Eqs. (200)–(206b)
is determined by Eqs. (201)–(206b) with the aid of the supplementary condition
(214), instead of Eq. (200), when the initial data of ρ̂S0, v̂xS0, v̂yS1, v̂zS1, and

T̂S0 are given in such a way that p̂S0 (= ρ̂S0T̂S0) and P are independent of y
and z.75 The results are not affected by the higher-order analysis.

7.1.2 Equations (M-9.49a)–(M-9.50e):

Take Eqs. (M-9.49a)–(M-9.50e) with the additional time-derivative terms given
in the first mathematical expressions after Eq. (M-9.59), i.e.,

∂P01

∂χ̃
=
∂P01

∂y
=
∂P01

∂z
= 0, P01 = ω + τ, (215a)

∂P02

∂y
=
∂P02

∂z
= 0, (215b)

75If P is independent of y and z, P = P by definition.
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∂ux
∂χ̃

+
∂uy
∂y

+
∂uz
∂z

= 0, (216a)

∂ux

∂t̂
+ ux

∂ux
∂χ̃

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −1

2

∂P02

∂χ̃
+
γ1

2

(
∂2ux
∂y2

+
∂2ux
∂z2

)
, (216b)

∂uy

∂t̂
+ ux

∂uy
∂χ̃

+ uy
∂uy
∂y

+ uz
∂uy
∂z
− u2

x

C2
= −1

2

∂P20

∂y
+
γ1

2

(
∂2uy
∂y2

+
∂2uy
∂z2

)
,

(216c)

∂uz

∂t̂
+ ux

∂uz
∂χ̃

+ uy
∂uz
∂y

+ uz
∂uz
∂z

= −1

2

∂P20

∂z
+
γ1

2

(
∂2uz
∂y2

+
∂2uz
∂z2

)
, (216d)

∂τ

∂t̂
− 2

5

∂P01

∂t̂
+ ux

∂τ

∂χ̃
+ uy

∂τ

∂y
+ uz

∂τ

∂z
=
γ2

2

(
∂2τ

∂y2
+
∂2τ

∂z2

)
. (216e)

The qualitative difference of this set of equations from the set (200)–(206b) is the
absence of the time-derivative term in Eq. (216a) that corresponds to Eq. (201).

Consider the solution of the initial and boundary-value problem of Eqs. (215a)–(216e).
Let ux, uy, uz, and τ at t̂ be given in such a way that Eq. (216a) is sa-
tisfied. Integrating Eq. (216a) over the cross section of the channel or pipe[´
S

Eq. (216a)dydz
]
, we find that

´
S
uxdydz depends only on t̂,76 i.e.,

ˆ
S

(∂ux/∂χ̃)dydz = 0, (217)

where S indicates the cross section. Applying Eqs. (215b), (216a), and (217) to
the equation ∂

´
Eq. (216b)dydz/∂χ̃, we have ∂2P02/∂χ̃

2 as

∂2P02

∂χ̃2
=

∂

∂χ̃

[
−2

∂u2
x

∂χ̃
+ γ1

(
∂2ux
∂y2

+
∂2ux
∂z2

)]
, (218)

where

A =

ˆ
S

Adydz

/ˆ
S

dydz.

Thus, ∂P02/∂χ̃ and P02 are determined if they are specified at a point in the gas.
Here, we consider this case.77 Using Eq. (216a) in the sum of ∂[Eq. (216b)]/∂χ̃,
∂[Eq. (216c)]/∂y, and ∂[Eq. (216d)]/∂z, we obtain the equation for P20 in the
form

∂2P20

∂y2
+
∂2P20

∂z2
= Fn(ux, uy, uz, and their space derivatives), (219)

where Fn is a given functional of the variables in the parentheses, and the time
derivatives are absent owing to Eq. (216a). Thus, the right-hand side of Eq. (219)
is known. This equation is the Poisson equation for P20 over the cross section

76See Footnote 74, with v̂yS1 and v̂zS1 being replaced by uy and uz .
77(i) Imagine the case of the Poiseuille flow.

(ii) Here, P (thus, P01) is specified at some point. Then, P01 is a given function of t̂.

64



S. Its boundary condition is obtained in a way similar to how the condition
for p̂cS2 in Eq. (214) is derived. Thus, P20 over each cross section is determined
except for an additive function of t̂ and χ̃. This ambiguity does not influence
∂P20/∂y and ∂P20/∂z.

With P02 and P20 prepared above into Eqs. (216b)–(216e), the time deriva-
tives ∂ux/∂t̂, ∂uy/∂t̂, ∂uz/∂t̂, and ∂τ/∂t̂ are determined in such a way that
∂(∂ux/∂χ̃ + ∂uy/∂y + ∂uz/∂z)/∂t̂ = 0 owing to the above choice of P20.78

Thus, the solution (ux, uy, uz, τ) of Eqs. (215b), (216a)–(216e) is determined
by Eqs. (216b)–(216e) with the aid of the supplementary conditions (218) and
(219) for P02 and P20, instead of Eqs. (215b) and (216a). This process is natu-
ral for numerical computation. The undetermined additive function of χ̃ and t̂
in P20, which does not affect the solution (ux, uy, uz, τ), is determined by the
higher-order equation derived from that for ∂v̂xS2/∂t̂ (see Section 7.1.1), in a
way similar to that in which P02 is determined by Eq. (216b). In the higher-
order equation, P20 plays the same role as P02 in Eq. (216b); Equation (219)
corresponds to Eq. (215b), and P20 and P02 are determined by these equations,
each with an additive function of χ̃ and t̂.

7.2 Notes on the equations with the ghost effect of infini-
tesimal curvature, Eqs. (M-9.33)–(M-9.39b)

Here, the process of analysis where the curvilinear coordinates x, y, and z in
Eqs. (M-9.33)–(M-9.39b)79 are identified with rectangular ones is explained in
more detail.

7.2.1 The curvilinear system (x, y, z)

The coordinate system (x, y, z), introduced in Eq. (M-9.4a), is practically a cy-
lindrical one, and is related to a rectangular one (x1, x2, x3) as

x1 = (L̂+ y) sin
x

L̂
, x2 = (L̂+ y) cos

x

L̂
− L̂, x3 = z, (220)

where L̂ = LA/D. It obviously reduces to the rectangular one (x1, x2, x3) in
the limit L̂→∞ for any finite range of (x, y, z). In Sections M-9.1 and M-9.2,
we studied the asymptotic behavior of the Boltzmann system in the limit that
k → 0 and L̂→∞ simultaneously under the condition

L̂k2 = c2, (221)

78Note that P01 is known (Footnote 77).
79Equations (M-9.33)–(M-9.39b) are those for time-independent states. The corresponding

equations for time-dependent states are given by adding the time-derivative terms (M-9.42) to
them or by Eqs. (200)–(206b). When Eqs. (M-9.33)–(M-9.39b) are mentioned in this section,
they mean the equations with the time-dependent terms.

65



where c (> 0) is a constant. In this process, we consider the range of (x, y, z)
when the range of θ satisfies the conditions

−∞ < L̂θ <∞, (222a)

L̂θ2 → 0, (222b)

where
θ = −x/L̂. (223)

The three conditions (221), (222a), and (222b) are satisfied if we take the range
of θ to be

|θ| ≤ θ0, (224)

where θ0 tends to zero as k → 0 under the two conditions

θ0/k
2 →∞ as k → 0, (225a)

θ0 = o(kα) (1 ≤ α < 2), (225b)

for some α in the above range. In the limit k → 0, the variable x covers (−∞,∞)
for the above range of θ, and the system (x, y, z) reduces to the rectangular
system (x1, x2, x3), i.e., (x, y, z) = (x1, x2, x3).80 In the analysis in Section 7.2,
we further limit the bound θ0 of the range of θ to

θ0 = o(kα) (3/2 ≤ α < 2), (226)

instead of Eq. (225b). Under the condition, the system (x, y, z) converges faster
to the rectangular system (x1, x2, x3) as will be seen below.

From Eq. (220), we have
∂x1

∂x

∂x1

∂y
∂x2

∂x

∂x2

∂y

 =


L̂+ y

L̂
cos

x

L̂
sin

x

L̂

− L̂+ y

L̂
sin

x

L̂
cos

x

L̂

 , (227a)


∂2x1

∂x2

∂2x1

∂x∂y

∂2x1

∂y2

∂2x2

∂x2

∂2x2

∂x∂y

∂2x2

∂y2

 =

−
L̂+ y

L̂2
sin

x

L̂

1

L̂
cos

x

L̂
0

− L̂+ y

L̂2
cos

x

L̂
− 1

L̂
sin

x

L̂
0

 . (227b)

From Eqs. (220), (227a), and (227b), noting the relations (221), (223), (224),
and (226), we obtain the following uniform bounds for small k of the difference

80When θ = ±k, y = 0 corresponds to x2 = −c2/2 in the limit k → 0. When θ = ±k2, x
corresponds to x1 = ∓c2 in the limit. The inequalities (225a) and (225b) are required for the
system (x, y, z) to approach the rectangular system.
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between the two systems (x, y, z) and (x1, x2, x3) in −∞ < x <∞ and |y| ≤ a0

(a0 : a constant independent of k):81

0 ≤ |x− x1| ≤ o(kα), 0 ≤ y − x2 ≤ c2o(k2(α−1)), (228a)

0 ≤
∣∣∣∣∂x1

∂x
− 1

∣∣∣∣ ≤ O(k2)

c2
, 0 ≤

∣∣∣∣∂x1

∂y

∣∣∣∣ ≤ o(kα), (228b)

0 ≤
∣∣∣∣∂x2

∂x

∣∣∣∣ ≤ o(kα), 0 ≤ 1− ∂x2

∂y
≤ o(k2α), (228c)

∣∣∣∣∂2x1

∂x2

∣∣∣∣ ≤ o(k2+α)

c2
, 0 <

∂2x1

∂x∂y
≤ O(k2)

c2
,

∂2x1

∂y2
= 0, (228d)

0 < −∂
2x2

∂x2
≤ O(k2)

c2
,

∣∣∣∣ ∂2x2

∂x∂y

∣∣∣∣ ≤ o(k2+α)

c2
,

∂2x2

∂y2
= 0. (228e)

7.2.2 Process to identify (x, y, z) in Eqs. (M-9.33)–(M-9.39b) with
(x1, x2, x3)

The flow velocity components (v̂xS0, 0, 0) in Section M-9.2 coincide with those
(v̂1, v̂2, v̂3) of the rectangular system, i.e., (v̂1, v̂2, v̂3) = (v̂xS0, 0, 0) in the limit
k → 0 described in Section 7.2.1. In the higher orders in k, differences be-
tween the two systems, coordinates and velocity components, are introduced.
For a nearly parallel flow considered here, some of the series of the conserva-
tion equations in the expansion in k degenerate. Owing to the degeneracy, the
series of solutions in the expansion is obtained by staggered combinations of
equations. That is, the limiting velocity field (v̂xS0, 0, 0) is determined together
with the next-order components v̂yS1 and v̂zS1 owing to the degeneracy of the
momentum conservation equations by the equations (M-9.33)–(M-9.39b), where
the variables (x, y, z) are identified with (x1, x2, x3). Some notes should be gi-
ven to identify (x, y, z) with (x1, x2, x3).82 The set of Eqs. (M-9.33)–(M-9.38)
is the combination of the component equations at different levels of expansion
in k of the conservation equations. For the momentum conservation equations
(M-9.33), (M-9.35)–(M-9.37), equations of three different levels appear: Eq. (M-
9.33) is at the level of the order of unity, Eq. (M-9.35) is at the level of the order

81i) Dependence of the bounds on the constant c2 in Eq. (221) is made explicit for the
convenience to the discussion in Section M-9.3.

ii) For any finite x, or |x| ≤ C0, the bound is tighter; for example, 0 ≤ |x − x1| ≤
C0O(k2)/c2, 0 ≤ y − x2 ≤ C2

0O(k2)/c2.
82Equations (M-9.33)–(M-9.39b) are derived from the Boltzmann equation (M-9.5) with

(x, y, z) as its independent space variables. In this process, the relation between (x, y, z) and
(x1, x2, x3) is not taken into account until the last step. Their relation depends on k as shown
in Section 7.2.1. With this relation, we have to rewrite the equations expressed with (x, y, z)
into the equations expressed with (x1, x2, x3). After this process, it is seen that (x, y, z) can
be identified with (x1, x2, x3) in Eqs. (M-9.33)–(M-9.39b). This process is explained in more
detail.

67



of k, and Eqs. (M-9.36) and (M-9.37) are at the level of the order of k2. The
deviation (x, y, z) from (x1, x2, x3) for k 6= 0, including those in the arguments
of functions, introduces residual contributions to equations at higher-order le-
vels. In the mass and energy conservation equations (M-9.34) and (M-9.38), the
variables (x, y, z) can be identified with (x1, x2, x3) because they appear as the
nontrivial leading-order equations. The momentum conservation equations are
vector equations. Their x1, x2, and x3 components are related to their x, y,
and z components by the relation

(
a1

a2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ax
ay

)
, (229a)

a3 = az, (229b)

where a1, a2, and a3 are, respectively, the x1, x2, and x3 components of a vec-
tor, and ax, ay, and az are its x, y, and z components.

For the further analysis, we prepare the expressions of ∂p̂S0(x, y, z)/∂y and
∂p̂S0(x, y, z)/∂z in the rectangular system. Owing to the chain rule of differen-
tiation,

∂p̂S0(x, y, z)

∂y
= k

∂p̌S0(xi(x, y, z))

∂χ1

∂x1

∂y
+
∂p̌S0(xi(x, y, z))

∂x2

∂x2

∂y
, (230a)

∂p̂S0(x, y, z)

∂z
=
∂p̌S0(xi(x, y, z))

∂x3
, (230b)

where
χ1 = kx1, (231)

and p̌S0 is the function p̂S0 expressed with the rectangular variables (x1, x2, x3).
In Eqs. (230a) and (230b), it should be noted that x1 and x2 are independent
of z, and x3 depends only on z. In view of the bound of ∂x1/∂y in Eq. (228b),
the first term on the right-hand side of Eq. (230a) is bounded by o(kα+1).83

Thus, it does not contribute to the result up to the level of the order of k2, and
can be neglected in the present discussion, where the momentum conservation
equations up to the level of the order of k2 are considered. For the evaluation
of the second term of Eq. (230a) and Eq. (230b), we put

x1 = x+X(x, y), x2 = y + Y (x, y), (232)

83The derivative ∂/∂χ1 agrees with ∂/∂χ at the leading order in k. In fact,

∂

∂χ1
=

∂χ

∂χ1

∂

∂χ
+

∂y

∂χ1

∂

∂y
,

and from Eqs. (227a), (228b), and (228c), the estimates of ∂χ/∂χ1 and ∂y/∂χ1 are obtained
after some manipulation as

∂χ/∂χ1 = 1 +O(k2), ∂y/∂χ1 = o(kα−1).
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where the bounds of X and Y for small k are given by Eq. (228a). Then, the
derivatives of p̌S0 with respect to x2 or x3 at (x, y, z) in Eqs. (230a) and (230b)
are

∂p̌S0(xi(x, y, z))

∂x2
=
∂p̌S0(xi)

∂x2

∣∣∣∣
x1=x+X, x2=y+Y, x3=z

=
∂p̌S0(xi)

∂x2

∣∣∣∣
(x1,x2,x3)=(x,y,z)

+

(
X

∂

∂x1
+Y

∂

∂x2

)
∂p̌S0(xi)

∂x2

∣∣∣∣
(x1,x2,x3)=(x,y,z)

+
1

2

(
X2 ∂

2

∂x2
1

+2XY
∂2

∂x1∂x2
+Y 2 ∂

2

∂x2
2

)
∂p̌S0(xi)

∂x2

∣∣∣∣
(x1,x2,x3)=(x,y,z)

+ · · · ,

(233a)

∂p̌S0(xi(x, y, z))

∂x3
=
∂p̌S0(xi)

∂x3

∣∣∣∣
x1=x+X, x2=y+Y, x3=z

=
∂p̌S0(xi)

∂x3

∣∣∣∣
(x1,x2,x3)=(x,y,z)

+

(
X

∂

∂x1
+Y

∂

∂x2

)
∂p̌S0(xi)

∂x3

∣∣∣∣
(x1,x2,x3)=(x,y,z)

+
1

2

(
X2 ∂

2

∂x2
1

+2XY
∂2

∂x1∂x2
+Y 2 ∂

2

∂x2
2

)
∂p̌S0(xi)

∂x3

∣∣∣∣
(x1,x2,x3)=(x,y,z)

+ · · · .

(233b)

With the above preparation, we consider the momentum conservation equa-
tions in the (x1, x2, x3) system. Let A be an equation, and be rewritten in
the form A = 0 with all the terms on the right-hand side shifted to the left.
With this notation, first, take the x2 and x3 components of the momentum
conservation equations84

1
2Eq. (M-9.33)y cos θ + 1

2Eq. (M-9.23)y k cos θ + Eq. (M-9.35) k sin θ

+ Eq. (M-9.36) k2cos θ + Eq. (M-9.35+) k2 sin θ = 0, (234a)

1
2Eq. (M-9.33)z + 1

2Eq. (M-9.23)z k + Eq. (M-9.37) k2 = 0. (234b)

Here, Eq. (M-9.33)y and Eq. (M-9.33)z are, respectively, the two equations of
Eq. (M-9.33), i.e., ∂p̂S0/∂y = 0 and ∂p̂S0/∂z = 0; A similar convention applies

84i) Note that Eqs. (M-9.33)–(M-9.37) [and Eqs. (M-9.23) and (M-9.35+)] are derived from
the solvability conditions (M-9.22a)–(M-9.22c). The solvability conditions are the expansion
form in k of the conservation equations (M-1.57)–(M-1.59) arranged for the nearly parallel flow
considered in Sections M-9.1 and M-9.2. The equations corresponding to ψ = ζx, ζy , and ζz
are, respectively, the x, y, and z components of the momentum conservation equations. Their
x1, x2, and x3 components are derived from them with the aid of Eqs. (229a) and (229b).
In this process, the summation of terms of different orders of k has to be considered because
Eqs. (M-9.33), (M-9.35)–(M-9.37) [and Eqs. (M-9.23) and (M-9.35+)] come from equations at
different orders of k.

ii) It should be noted that Eq. (M-9.33)y or z and Eq. (M-9.23)y or z are, respecti-
vely, the doubles of Eqs. (M-9.22a) and (M-9.22b) for ψ = ζy or ζz . In fact, the left-
hand sides of Eqs. (M-9.22a) and (M-9.22b) for ψ = ζy or ζz are (1/2)∂p̂S0/∂y or ∂z and

(1/2)∂p̂S1/∂y or ∂z. Thus, the factor 1/2 is put in front of Eq. (M-9.33) and Eq. (M-9.23) in
Eqs. (234a), (234b), and (236).
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to Eq. (M-9.23)y and Eq. (M-9.23)z; Eq. (M-9.35+) is the equation correspon-
ding to Eq. (M-9.35) to be derived in the next order in k, i.e., Eq. (M-9.22c) for
ψ = ζx. From Eqs. (234a) and (234b) at the level of the order of unity, noting
Eqs. (230a) and (230b) with their note and the relations (233a) and (233b), we
have Eqs. (M-9.33) with (x, y, z) identified with (x1, x2, x3), i.e.,

∂p̌S0(xi)

∂x2
=
∂p̌S0(xi)

∂x3
= 0. (235)

Owing to Eqs. (235), (233a), and (233b), the residues of ∂p̂S0/∂y and ∂p̂S0/∂z
in Eqs. (230a) and (230b) are of the order of o(k2). A similar discussion applies
to the second terms on the left-hand sides of Eqs. (234a) and (234b). The third
term in Eq. (234a) is of the order of o(k1+α) because sin θ = o(kα) [Eq. (226)],
and the last term is of higher order than the third. Therefore, Eqs. (M-9.36)
and (M-9.37) where (x, y, z) are identified with (x1, x2, x3) in the arguments and
derivatives are derived from Eqs. (234a) and (234b) at the order of k2. Next,
take the x1 component of the momentum conservation equations

− 1
2Eq. (M-9.33)y sin θ− 1

2Eq. (M-9.23)y k sin θ+Eq. (M-9.35) k cos θ = 0. (236)

The first and second terms on the left-hand side of Eq. (236) are of higher order
than the third owing to the factor sin θ. Thus, Eq. (M-9.35) with (x, y, z) identi-
fied with (x1, x2, x3) in the arguments and derivatives is derived from Eqs. (236)
at the order of k. To summarize, Eqs. (M-9.33)–(M-9.39b) are the equations
in the rectangular coordinate system (x, y, z) that determine the rectangular
velocity (v̂xS0, 0, 0) in the limit k → 0 together with v̂yS1 and v̂zS1, whether
v̂yS1 and v̂zS1 are rectangular components or not.

7.2.3 Discussion

According to Eqs. (229a) and (229b), the x1, x2, and x3 components of the flow
velocity, i.e., v̂1, v̂2, and v̂3 are expressed as85

v̂1 = v̂xS0 cos θ + · · · , (237a)

v̂2 = (v̂yS1 cos θ)k + v̂xS0 sin θ + · · · , (237b)

v̂3 = v̂zS1k + · · · . (237c)

Noting that cos θ = 1− o(k2α) and sin θ = o(kα) [Eq. (226)], we have

v̂10 = v̂xS0, v̂20 = 0, v̂30 = 0, (238a)

v̂21 = v̂yS1, v̂31 = v̂zS1. (238b)

where v̂1= v̂10+· · · , v̂2 = v̂20 + v̂21k + · · · , and v̂3 = v̂30 + v̂31k + · · · . If
we take Eqs. (M-9.33)–(M-9.39b) with (x, y, z) identified with (x1, x2, x3) as the
equations in the rectangular system from the above discussion, one easily raise a

85Here, the arguments x, y, and z are identified with the rectangular components x1, x2,
and x3, as noted in the preceding paragraph.
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question where the term ρS0v̂
2
xS0/c

2 on the left-hand side in Eq. (M-9.36) comes
from.86 The conservation equations (M-1.57)–(M-1.59) in a rectangular system
have no such term in the convection term. To understand this, we have to
examine the second term v̂xS0 sin θ on the right-hand side of Eq. (237b), which
comes from the infinitesimal curvature of the flow (v̂xS0, 0, 0), more carefully.

Owing to Eqs. (221) and (223), the leading-order term for small k of v̂xS0 sin θ
in Eq. (237b) is expressed in the form

v̂xS0 sin θ = −v̂xS0x/L̂ = −kχv̂xS0/c
2, (239)

where the variable χ is used because it is a natural variable, instead of x1, in
the analysis of Eqs. (M-9.33)–(M-9.39b).87 Then, from Eqs. (237a)–(237c),88

(v̂10, v̂20, v̂30) = (v̂xS0, 0, 0), (240a)

v̂21 = v̂yS1 −
χ

c2
v̂xS0, (240b)

v̂31 = v̂zS1, (240c)

In the range (226) of θ of our interest, the second term on the right-hand side of
Eq. (240b), which comes from the infinitesimal curvature of the flow (v̂xS0, 0, 0),
is negligibly small, i.e.,

χ

c2
v̂xS0 = o(kα−1),

because χ = kx = −kL̂θ = o(kα−1). However, its derivative with respect to χ
is of the order of unity, i.e.,

∂

∂χ

χv̂xS0

c2
=
v̂xS0

c2
+
χ

c2
∂v̂xS0

∂χ
,

where the first term on the right-hand side is of the order of unity and the second
is infinitesimal [o(kα−1)]. If we express Eq. (M-9.36) in the variables v̂10, v̂21, and
v̂31 in place of v̂xS0, v̂yS1, and v̂zS1 with the aid of Eqs. (240a)–(240c), the term
ρS0v̂

2
xS0/c

2 in Eq. (M-9.36) disappears in the equations in the new variables v̂10,
v̂21, and v̂31, and its convection term (or its left-hand side) reduces to one of the
momentum conservation equations [Eq. (M-1.58)] in the rectangular coordinate
system.

The above somewhat strange relation between a functional value and its
derivative is due to the present situation where an infinitesimal range χ =
o(kα−1) is interested in, though it is a straight channel or pipe with infinite

86There is a similar term proportional to v2θ/r in the convection term of the r component of
the momentum conservation equation in the cylindrical coordinate system [see, e.g., Eq. (M-
9.73b)]. This is due to the curvature of the coordinate line r = const, but not to the curvature
of a flow. The term is not zero even for a straight flow. There is a term proportional to vrvθ/r
in the convection term of the θ component [see, e.g., Eq. (M-9.73c)]. When a flow is along a
coordinate line r = const, the term vrvθ/r vanishes because vr = 0.

87The length scale of variation of the variables v̂xS0, v̂yS1, etc. is of the order of unity in
the variable χ but of the order of 1/k in x or x1.

88Note that cos θ = 1− k2χ2/2c4 + · · · .
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length (in x1). In this range of χ, the coordinate system (x, y, z) can be identified
with the rectangular coordinate system (x1, x2, x3). Equations (M-9.33)–(M-
9.39b), without (x, y, z) identified with (x1, x2, x3), are valid for any range of χ,
and their process of solution for time-dependent problems is explained in Section
7.1.1. The corresponding process of solution in the infinitesimal χ range or at
the given point χ = 0 is obtained by paraphrasing the process in Section 7.1.1
in the following way.

Let a set consisting of a and its derivatives ∂na/∂χn(n = 1, 2, 3, · · · ) on the
cross section (0, y, z) be indicated by {a}, where a is a quantity or an equation or
equations. Prepare the sets of the equations: {Eq. (201)}–{Eq. (205)} and the
initial data of {ρ̂S0}, {v̂xS0}, {v̂yS1}, {v̂zS1}, and {p̂S0}. The time derivatives
{∂ρ̂S0/∂t̂}, {∂v̂xS0/∂t̂}, {∂v̂yS1/∂t̂}, {∂v̂zS1/∂t̂}, and {∂p̂S0/∂t̂} are expressed
with {ρ̂S0}, {v̂xS0}, {v̂yS1}, {v̂zS1}, {p̂S0}, {p̂S2} and their derivatives with
respect to y and z by the sets of equations {Eq. (201)}–{Eq. (205)} with the
aid of the supplementary conditions {Eq. (206a)} and {Eq. (206b)}. The sets of
equations {Eq. (200)}89 for all t̂ can be replaced by the conditions {Eq. (200)}
and {Eq. (210)} for the initial data and the set of equations {Eq. (214)} of {p̂S2}
for all t̂, whose coefficients and inhomogeneous terms are expressed by {ρ̂S0},
{v̂xS0}, {v̂yS1}, {v̂zS1}, and {p̂S0} and their derivatives with respect to y and
z.90 The set {p̂S2} is determined except the set of additive functions {ψ} of t̂.91

This {p̂S2} being substituted into {Eq. (201)}–{Eq. (205)}, the time derivatives
{∂ρ̂S0/∂t̂}, {∂v̂xS0/∂t̂}, {∂v̂yS1/∂t̂}, {∂v̂zS1/∂t̂}, and {∂p̂S0/∂t̂} are expressed
with {ρ̂S0}, {v̂xS0}, {v̂yS1}, {v̂zS1}, {p̂S0}, and their derivatives with respect
to y and z.92 Then, the time evolution of {ρ̂S0}, {v̂xS0}, {v̂yS1}, {v̂zS1},
and {p̂S0} is determined, satisfying the conditions {Eq. (200)} and {Eq. (210)}
throughout.93

The above process of solution is formally consistent. However, we have to
deal with an infinite series of equations. Generally, the series does not end at
a finite order.94 Exceptionally, the solution that is independent of χ is easily
seen to be possible. Further, the series of equations cannot be solved successi-

89{Eq. (200)} are the two sets {∂p̂S0/∂y = 0} and {∂p̂S0/∂z = 0}.
90See the discussion from Eq. (207) to Eq. (214) in Section 7.1.1.
91(i) Its boundary condition is of the form {ny∂p̂S2/∂y+nz∂p̂S2/∂z} = {known data} [see

the paragraph following that with Eq. (214) in Section 7.1.1].
(ii) Equation (214) and the boundary condition for p̂cS2 can be transformed into those for

p̂S2 keeping the property required in the discussion. Thus, they can be used interchangeably.
92In this process, {ψ} does not contribute to {Eq. (201)}–{Eq. (205)}.
93The set {ψ} in {p̂S2} is undetermined in this process, but it does not influence {ρ̂S0},
{v̂xS0}, {v̂yS1}, {v̂zS1}, and {p̂S0}. In the higher-order analysis in k, which is unnecessary

for the present purpose, equations for {∂ρ̂S2/∂t̂}, {∂v̂xS2/∂t̂}, {∂v̂yS3/∂t̂}, {∂v̂zS3/∂t̂}, and

{∂p̂S2/∂t̂} are derived, where partially determined {p̂S2} is in the same situation as {p̂S0}
partially determined by {Eq. (200)}.

94For example, if ∂sv̂yS1/∂χ
s (s = 0, 1, · · · , n) is nonzero and nonuniform in a region

of the cross section, ∂n+1[Eq. (203)]/∂χn+1 [or the equation for ∂(∂n+1v̂yS1/∂χ
n+1)/∂t̂]

contains a nonzero term (∂v̂yS1/∂χ)(∂n+1v̂yS1/∂χ
n∂y). Similarly, the equation for

∂(∂n+1(∂v̂yS1/∂y)∂χn+1)/∂t̂ contains a nonzero term (∂2v̂yS1/∂y∂χ)(∂n+1v̂yS1/∂y∂χ
n).

Therefore, ∂n+1v̂yS1/∂χ
n+1 is nonzero and nonuniform.
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vely from the lowest order with respect to differentiation ∂n/∂χn.95 Thus, the
infinite series of equations has to be handled simultaneously. The velocity v̂xS0

at (χ, y, z) in the limit k → 0 is expressed as

v̂xS0 = (v̂xS0)χ=0 + χ

(
∂v̂xS0

∂χ

)
χ=0

+
1

2
χ2

(
∂2v̂xS0

∂χ2

)
χ=0

+ · · · , (241)

where the solution applies to finite χ. In the present case, where χ is negligibly
small, the velocity field is expressed as

v̂xS0(x, y, z, t̂) = v̂xS0(χ; y, z, t̂)
∣∣
χ=0

, (242)

where v̂xS0 expressed in the shrunk variable χ is indicated as v̂xS0(χ; y, z, t̂) with
the semicolon after χ in order to avoid confusion with v̂xS0(x, y, z, t̂) expressed
in x.96 The solution is uniform with respect to x irrespective of the initial data,
but its variation with time depends on them.

Examples showing the effect of infinitesimal curvature are found in Sone &
Doi [2005, 2007], where the instabilities of the plane Couette and Poiseuille flows
are studied on the basis of Eqs. (M-9.49a)–(M-9.50e) with the time-derivative
terms [or Eqs. (215a)–(216e)]97, in addition to the example in Section M-9.4 of
the bifurcation of the time-independent plane Couette flow with infinitesimal
curvature. In the papers, the solution that is independent of χ̃, corresponding
to χ in Section 7.1.1, is considered,98and is found to have the critical point of
stability. Naturally, one can analyze the problems in a rectangular coordinate
system without infinitesimal curvature term [−ρS0v̂

2
xS0/c

2 in Eq. (M-9.36) or
−u2

x/C
2 in Eq. (M-9.50c)]. In this case, one has to take into account of the

dependence on χ̃ of the initial and boundary conditions modified according to
the relation

u2 = uy −
χ̃

C2
ux, (243)

corresponding to Eq. (240b).
(Section 7.2: Version 10-00)

95For example, ∂n[Eq. (202)]/∂χn [or the equation for ∂(∂nv̂xS0/∂χ
n)/∂t̂] contains

v̂xS0∂
n+1v̂xS0/∂χ

n+1.
96To present the result of analysis, the variables (x, y, z) are natural for the present problem.

For analysis, the variables (χ, y, z) are convenient.
97i) Equations (M-9.49a)–(M-9.50e) are the simplified version for small but finite Mach num-

bers and temperature variations of Eqs. (M-9.33)–(M-9.39b). They are derived from Eqs. (M-
9.33)–(M-9.39b) (see Section M-9.3).

ii) The time-derivative terms are given at the end of page M-465.
iii) The discussion in the preceding two paragraphs can be carried out in a similar way

for these equations. Note the difference of notation owing to the difference of situations in
Sections 7.1.1 and 7.1.2.

98For Eqs. (215a)–(216e), the solution in which the variables except P02 are all independent
of χ̃ but ∂P/∂χ̃ is a constant, including ∂P/∂χ̃ = 0, is consistent with the equations. The
Poiseuille flow is the case where ∂P/∂χ̃ is a nonzero constant.
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7.3 Ghost effect of infinitesimal curvature on the Poi-
seuille flow through a pipe

The fluid-dynamics-type equations with the ghost effect of infinitesimal curva-
ture described in Sections M-9.2 and M-9.3 apply not only to flows through a
straight channel between two parallel walls but also to flows through a straight
pipe of uniform cross section. For flows through a channel, the bifurcation of the
time-independent plane Couette flow (Section M-9.4) and the linear stability of
the plane Couette and Poiseuille flows (Sone & Doi [2005, 2007]) are studied.
In this section, we examine the effect of the infinitesimal curvature of the pipe
axis on the Poiseuille flow through a circular pipe.

Here, we take the situation discussed in Section M-9.3, where the Mach
number and the temperature variation are small but finite, and discuss the
Poiseuille flow through a circular pipe. The fluid-dynamics-type equations for
the time-independent case are given by Eqs. (M-9.49a)–(M-9.50e), i.e.,

∂P01

∂χ̃
=
∂P01

∂y
=
∂P01

∂z
= 0, P01 = ω + τ, (244a)

∂P02

∂y
=
∂P02

∂z
= 0, (244b)

∂ux
∂χ̃

+
∂uy
∂y

+
∂uz
∂z

= 0, (245a)

ux
∂ux
∂χ̃

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −1

2

∂P02

∂χ̃
+
γ1

2

(
∂2ux
∂y2

+
∂2ux
∂z2

)
, (245b)

ux
∂uy
∂χ̃

+ uy
∂uy
∂y

+ uz
∂uy
∂z
− u2

x

C2
= −1

2

∂P20

∂y
+
γ1

2

(
∂2uy
∂y2

+
∂2uy
∂z2

)
, (245c)

ux
∂uz
∂χ̃

+ uy
∂uz
∂y

+ uz
∂uz
∂z

= −1

2

∂P20

∂z
+
γ1

2

(
∂2uz
∂y2

+
∂2uz
∂z2

)
, (245d)

ux
∂τ

∂χ̃
+ uy

∂τ

∂y
+ uz

∂τ

∂z
=
γ2

2

(
∂2τ

∂y2
+
∂2τ

∂z2

)
. (245e)

The boundary condition for these equations is the nonslip condition. The velo-
city vanishes and the temperature is uniform on the surface (y2 + z2 = 1) of the
cylinder, i.e.,

ux = 0, uy = 0, uz = 0, τ = 0 at y2 + z2 = 1. (246)

Further, a constant pressure gradient is applied along the axis of the cylinder.
Then, in view of Eq. (244b), ∂P02/∂χ̃ is constant, i.e.,

∂P02

∂χ̃
=

(
∂P02

∂χ̃

)
0

. (247)

Obviously, τ = 0 is a solution independently of the velocity. From now on,
we are interested only in the velocity field. First, consider the case where the
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infinitesimal curvature term u2
x/C

2 is absent in Eq. (245c), and look for the
solution with uy = uz = 0.99 We easily find the solution as

ux =
−1

4γ1

(
∂P02

∂χ̃

)
0

[
1− (y2 + z2)

]
, (248)

and P20 is uniform over the cross section. This is the Poiseuille flow with
parabolic profile in the classical fluid dynamics. What we are interested in here
is the infinitesimal curvature effect on the Poiseuille flow. In the case of flows
through the channel, there are flows that have the same velocity profiles as those
without the infinitesimal curvature term (the Couette and Poiseuille flows), for
which the infinitesimal-curvature affects only P20 (see Section M-9.4.1 and Sone
& Doi [2007]). We examine whether this is the case for the Poiseuille flow
through the circular cylinder.

The solution where the variables (ux, uy, uz, ∂P02/∂χ̃, P20, τ) are indepen-
dent of χ̃ (see Footnote 99) is consistent with the equations (244b)–(245e) and
boundary condition (246). We discuss this class of solutions. We examine whet-
her the solution with uy = uz = 0 is consistent as in the Couette and Poiseuille
flows through a channel. Obviously, Eq. (245a) is consistent. From Eq. (245b),
we have

0 = −1

2

(
∂P02

∂χ̃

)
0

+
γ1

2

(
∂2ux
∂y2

+
∂2ux
∂z2

)
,

from which we obtain Eq. (248). From Eq. (245d), P20 is seen to be independent
of z. Equation (245c) reduces to

u2
x

C2
=

1

2

∂P20

∂y
,

from which we obtain, with the aid of Eq. (248),

P20 =
1

8γ2
1C

2

(
∂P02

∂χ̃

)2

0

[
b0 + y(1− z2)2 − 2

3
y3(1− z2) +

1

5
y5

]
,

where b0 is a constant. This result contradicts with the result from Eq. (245d)
that P20 is independent of z. Thus, the solution with uy = uz = 0 does not
exist. Thus, in the Poiseuille flow through a circular pipe, the flow (ux, 0, 0)
with parabolic profile (248) is subject to change due to uy and uz induced
by the infinitesimal curvature of the axis of the cylinder. Generally, in flows
through pipes with various cross section, their velocity profiles without uy and
uz depend on z as well as on y in contrast to the flows in the channel. So does
the infinitesimal curvature term u2

x/C
2 in Eq. (245c). This gives the dependence

99For the pipe of infinite length in the scale of x, the corresponding range of χ̃ is infinite-
simal χ̃ (see Section 7.2.1), and the solution of the system (244a)–(245e) is interested in this
infinitesimal χ̃ range or at the point χ̃ = 0. The way to handle the system at the point χ̃ = 0
is discussed in Section 7.2.3. The condition uy = uz = 0 is taken to be so in a finite range of χ̃
or to be ∂nuy/∂χ̃n = ∂unz /∂χ̃

n = 0 (n = 1, 2, · · · ) at the point χ̃ = 0 as well as uy = uz = 0
there.
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of P20 on z. On the other hand, in the momentum conservation equation (245d)
in the z direction, there is no term of the curvature effect owing to the present
infinitesimal curvature of the pipe. Thus, P20 is uniform with respect to z.
Owing to this contradiction, uy and uz cannot be zero in a flow through a pipe.
The infinitesimal flow (uy, uz) disturbs the main flow ux.

Here, we rewrite Eqs. (244b)–(245d) for the class of solutions for which
the variables (ux, uy, uz, ∂P02/∂χ̃, P20) are independent of χ̃ (see Footnote 99).
From Eq. (245a) with ∂ux/∂χ̃ = 0, we can introduce the stream function Ψ such
that

uy =
∂Ψ

∂z
, uz = −∂Ψ

∂y
. (249)

This replaces Eq. (245a). From Eqs. (245c) and (245d), we can eliminate P20 by
the operation ∂[Eq. (245d)]/∂y−∂[Eq. (245c)]/∂z. Then, from Eqs. (245b)–(245d)
and (249), we have

γ1

2
4ux −Dux =

1

2

(
∂P02

∂χ̃

)
0

, (250a)

γ1

2
4ωx −Dωx = ∂z

u2
x

C2
, (250b)

4Ψ = −ωx, (250c)

uy =
∂Ψ

∂z
, uz = −∂Ψ

∂y
, (250d)

where

4 =
∂2

∂y2
+

∂2

∂z2
, (251a)

D = uy
∂

∂y
+ uz

∂

∂z
, (251b)

∂z =
∂

∂z
, (251c)

ωx =
∂uz
∂y
− ∂uy

∂z
. (251d)

Here, ωx is the axial component of the vorticity. The boundary condition is
that the velocity (ux, uy, uz) vanishes on the boundary (y2 + z2 = 1).

In order to arrange the parameters scattered in Eqs. (250a)–(250d), we in-
troduce the following variables:

Ux = ux

[
1

γ1

(
∂P02

∂χ̃

)]−1

, Uy =
2uy
γ1

, Uz =
2uz
γ1

, (252a)

Ψ̄ =
2Ψ

γ1
, Ωx =

2ωx
γ1

. (252b)
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Then, Eqs. (250a)–(250d) are rewritten as

4Ux − D̄Ux = 1, (253a)

4Ωx − D̄Ωx =

(
2

γ2
1C

∂P02

∂χ̃

)2

0

∂zU
2
x , (253b)

4Ψ̄ = −Ωx, (253c)

Uy =
∂Ψ̄

∂z
, Uz = −∂Ψ̄

∂y
, (253d)

where

D̄ = Uy
∂

∂y
+ Uz

∂

∂z
, (254a)

Ωx =
∂Uz
∂y
− ∂Uy

∂z
. (254b)

The boundary condition on the surface of the pipe is given as

Ux = 0, Uy = 0, Uz = 0. (255)

The system (253a)–(253d) contains only one parameter, i.e.,(
2

γ2
1C

∂P02

∂χ̃

)2

0

. (256)

The variables Uy, Uz, and Ωx are explicitly expressed with Ψ̄ [Eqs. (253c) and
(253d)]. Thus, it is a system for Ux and Ψ̄. One of the boundary conditions for
Uy and Uz can be replaced by

Ψ̄ = 0 on the boundary. (257)

Incidentally, this system applies to the corresponding problem for a pipe with
an arbitrary cross section.

For the cylindrical pipe problem, the cylindrical coordinate system (x, r, θ)
is convenient, which is defined by

x = x, y = r cos θ, z = r sin θ, (258a)

Uy = Ur cos θ − Uθ sin θ, Uz = Ur sin θ + Uθ cos θ. (258b)

Then,

Ur =
1

r

∂Ψ̄

∂θ
, Uθ = −∂Ψ̄

∂r
, (259a)

Ωx =
1

r

∂rUθ
∂r
− 1

r

∂Ur
∂θ

. (259b)
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The operators 4, D̄, and ∂z are expressed in the variables (x, r, θ) and (Ur, Uθ),
instead of (x, y, z) and (Uy, Uz), as

4 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
, (260a)

D̄ = Ur
∂

∂r
+
Uθ
r

∂

∂θ
, (260b)

∂z = sin θ
∂

∂r
+

cos θ

r

∂

∂θ
. (260c)

Substituting the expressions (260a)–(260c) into Eqs. (253a)–(253c), and repla-
cing Eq. (253d) by Eq. (259a), we obtain the equations in the cylindrical system.
The boundary condition at r = 1 is given by

Ψ̄ = 0,
∂Ψ̄

∂r
= 0. (261a)

To find the disturbed Poiseuille flow, it is practical to solve the system
(253a)–(253c) and (259a) with Eqs. (260a)–(260c) numerically. It is not a so
hard problem. Numerical computation of a structurally similar but more com-
plicated system was carried out in the study of a ghost effect in the Bénard
problem (see Section M-8.2). Following the process of solution there, we outline
the method of numerical computation of the present system. The solution is

obtained by iteration. First, choose initial data U
(0)
r and U

(0)
θ of Ur and Uθ,

which vanish on the boundary, and compute the initial data Ω(0) of the boun-
dary value of Ω by Eq. (259b).100 With these initial data, we start iteration
from n = 1 in the superscript (n) in the following expressions. One iteration
consists of solving three partial differential equations successively.

(i) The first step is to find U
(n)
x by solving the following boundary-value problem

of a linear elliptic partial differential equation: The equation for U
(n)
x is

4U (n)
x − D̄(n−1)U (n)

x = 1, (262)

where

D̄(n) = U (n)
r

∂

∂r
+
U

(n)
θ

r

∂

∂θ
,

and its boundary condition at r = 1 is

U (n)
x = 0. (263)

(ii) The second step is to find Ω
(n)
x by solving the following boundary-value

problem of a linear elliptic partial differential equation: The equation for Ω
(n)
x

is

100In view of the boundary condition for Ur and Uθ, on the boundary (r = 1), Eq. (259b)
reduces to

Ωx =
∂Uθ

∂r
.
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4Ω(n)
x − D̄(n−1)Ω(n)

x =

(
2

γ2
1C

∂P02

∂χ̃

)2

0

∂z(U
(n)
x )2, (264)

and its boundary condition at r = 1 is

Ω(n)
x = Ω(n−1)

x − ϑU (n−1)
θ , (265)

where ϑ is a constant to be chosen for the iteration to converge. This requires
some explanation, which will be given after the main explanation of the process
is finished.
(iii) The third step is to find Ψ̄(n) by solving the following boundary-value
problem of a linear elliptic partial differential equation: The equation for Ψ̄(n)

is

4Ψ̄(n) = −Ω(n)
x , (266)

and its boundary condition at r = 1 is

Ψ̄(n) = 0. (267)

From Ψ̄(n), compute U
(n)
r and U

(n)
θ by Eq. (268):

U (n)
r =

1

r

∂Ψ̄(n)

∂θ
, U

(n)
θ = −∂Ψ̄(n)

∂r
. (268)

These U
(n)
r and U

(n)
θ , together with the boundary value of Ω

(n)
x in the step (ii),

serve as the initial data of the next iteration.
(iv) Now, we can go to the next iteration (n→ n+ 1) with the above mentioned
initial data. Start again from the step (i), and continue the iteration until the
solution is considered to have converged enough.

In the present problem, Ux, Ur, and Uθ, or Ux, Ψ̄, and ∂Ψ̄/∂r, on the
boundary are specified, but Ωx on the boundary is not known until the final
solution is obtained. Thus, it is not obvious what condition is to be chosen as
the boundary condition for Eq. (264). In the process of iteration, the conditions

U
(n)
x = 0 and Ψ̄(n) = 0 (or U

(n)
r = 0) are given as the boundary conditions

for Eqs. (262) and (266) respectively. Thus, the information ∂Ψ̄/∂r = 0 (or
Uθ = 0) has to be taken in to the boundary condition for Eq. (264). In the

iteration process, the condition ∂Ψ̄(n)/∂r = 0 (or U
(n)
θ = 0) can be replaced

by the weaker condition ∂Ψ̄(n)/∂r → 0 (or U
(n)
θ → 0) as n → ∞. When the

solution of iteration converges, Ω
(n+1)
x − Ω

(n)
x → 0 as n→ 0. Thus, we put

Ω(n)
x = Ω(n−1)

x − ϑU (n−1)
θ ,

where ϑ is some constant to be chosen for the iteration process to converge.

Then, U
(n)
θ converges to zero as the solution converges in the limit of the itera-

tion process. If a vorticity of positive value is put in a flow over the boundary
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wall, a flow with positive Uθ is induced on the wall. Thus, the constant ϑ should
be positive. If it is positive but too large, the correction is in the correct di-
rection but in excess, and the iteration may diverge. Proper size of ϑ should be
chosen by examination in practical applications.

Finally, the effect of infinitesimal curvature is discussed for the Navier–Stokes
equations with the nonslip condition of an incompressible fluid in Section M-9.5.
The equations for the velocity field derived from them are of the same form as
Eq. (244b)–(245d) with the nonslip condition. Thus, the results obtained in this
section as well as those in Section M-9.4 and Sone & Doi [2005, 2007] apply to
the Navier–Stokes system.

(Section 7.3: Version 11-00)

8 Appendix M-A

8.1 Note on the loss term of the collision integral [From
Eq. (M-A.18) to Eq. (M-A.21)]

Consider the following collision term of the Boltzmann equation (M-A.18):101

d2
m

2m

ˆ
all e, all ξ∗

|(ξ∗ − ξ) · e|[f(ξ′)f(ξ′∗)− f(ξ)f(ξ∗)]dΩ(e)dξ∗, (269)

where
ξ′ = ξ + [α · (ξ∗ − ξ)]α, ξ′∗ = ξ∗ − [α · (ξ∗ − ξ)]α. (270)

The change (M-A.20) of the variable of integration from e to α, i.e.,

|(ξ∗ − ξ) · e|dΩ(e) =
2

d2
m

BdΩ(α), (271)

is introduced instead of expressing α in Eq. (270) in terms of e. The part of the
integral of Eq. (269)

d2
m

2m

ˆ
all e, all ξ∗

|(ξ∗ − ξ) · e|f(ξ)f(ξ∗)dΩ(e)dξ∗,

which comes from I− in Eq. (M-A.8) and corresponds to the loss term (see
Section M-1.2) of the collision integral of the Boltzmann equation (M-1.5) or
(M-A.21), does not contain α, and the change (271) of the variable of integration
is not required.102 Thus, the result is determined uniquely irrespective of the
relation between α and e, that is, the loss term of the collision integral is
independent of the intermolecular potential when dm is of a finite value. That
is, the loss term of the collision integral is determined only by d2

m/2m and f(ξ),
and is the same as that for the hard-sphere molecule with the same dm.

(Section 8.1: Version 6-00)

101The factor d2m/2m can be rewritten as nd2m/2ρ, where n is the number of molecules in
unit volume. The numerator nd2m is of the order of the inverse of the mean free path (Section
M-1.5). Note Footnote M-4 in Section M-A.1.
102Transformation (M-A.20) or (271) is carried out to make the variable of integration to be

the same. Thus, it is simply one of the changes of variable e of integration to some variable.
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8.2 Note on the loss term of the kernel representation of
the linearized collision integral [Section M-A.2.10]

In Section M-A.2.10, we discussed the kernel representation of the linearized
collision integral L(φ) introduced in Section M-1.10, and gave its explicit form
for a hard-sphere molecule. From the discussion in Section 8.1, the kernel re-
presentation of the loss term of the linearized collision integral for a hard-sphere
molecule applies to any intermolecular potential with a finite dm.

In Section M-A.2.10, the linearized collision integral L(φ) is expressed by
Eqs. (M-137a)–(M-A.139c) as

L(φ) =

ˆ
E∗(φ

′ + φ′∗ − φ− φ∗)B̂ dΩ(α)dζ∗

= LG(φ)− LL2(φ)− νL(ζ)φ, (272)

where

LG(φ) =

ˆ
E∗(φ

′ + φ′∗)B̂ dΩ(α)dζ∗, (273a)

LL2(φ) =

ˆ
E∗φ∗B̂ dΩ(α)dζ∗

=

ˆ
K2(ζ, ζ∗)φ(ζ∗)dζ∗, (273b)

νL(ζ) =

ˆ
E∗B̂ dΩ(α)dζ∗. (273c)

The loss term is the sum of Eqs. (273b) and (273c) multiplied by φ, i.e., LL2(φ)+
νL(ζ)φ.103 The kernel K2(ζ, ζ∗) and the function νL(ζ) for a hard-sphere mo-
lecule are given by Eqs. (M-A.149b) and (M-A.149c) as

K2(ζ, ζ∗) =
|ζ∗ − ζ|
2
√

2π
exp

(
−ζ2
∗
)
, (274a)

νL(ζ) =
1

2
√

2

[
exp(−ζ2) +

(
2ζ +

1

ζ

)ˆ ζ

0

exp(−ζ2
∗)dζ∗

]
, (274b)

where
ζ = |ζ|.

These formulas apply to any potential with a finite dm as well as to a hard-sphere
molecule.

(Section 8.2: Version 6-00)

103Only the term νL(ζ)φ is often called the loss term, and the rest, i.e., LG(φ) − LL2(φ),
is called the gain term by misunderstanding. This is probably because the loss term of the
original collision integral (269) is often written in the form νcf , where νc is the collision
frequency defined by Eq. (M-1.18) as

νc = m−1

ˆ
all α, all ξ∗

f(ξ∗)BdΩ(α)dξ∗ = (d2m/2m)

ˆ
all e, all ξ∗

|(ξ∗ − ξ) · e|f(ξ∗)dΩ(e)dξ∗.

Not to mention, LL2(φ) is derived from νcf .
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8.3 Parity of the collision integral: Supplement to Section
M-A.2.7

In Section M-A.2.7, we discussed the parity of the linearized collision integral.
It may be better to explain a similar property of the collision integral defined
by Eq. (M-1.9), i.e.,

Ĵ(f̂ , ĝ) =
1

2

ˆ
(f̂ ′ĝ′∗ + f̂ ′∗ĝ

′ − f̂ ĝ∗ − f̂∗ĝ)B̂ dΩ(α) dζ∗, (275)

B̂ = B̂(|α·V |/|V |, |V |),

f̂ = f̂(ζi), f̂∗ = f̂(ζi∗), f̂
′ = f̂(ζ ′i), f̂

′
∗ = f̂(ζ ′i∗),

and a similar notation for ĝ, ĝ∗, ĝ
′, and ĝ′∗,

ζ ′i = ζi + αjVjαi, ζ
′
i∗ = ζi∗ − αjVjαi, ζi∗ = Vi + ζi.

Here, we discuss the relation of the parity of Ĵ(f̂ , ĝ) with respect to a com-

ponent (ζ1, ζ2, or ζ3) of the variable ζ to that of f̂ and ĝ. Put the integral (275)
in the sum

Ĵ(f̂ , ĝ) =
1

2
(IV + III − II − I) , (276)

where

I =

ˆ
f̂∗ĝB̂ dΩ(α) dV , (277a)

II =

ˆ
f̂ ĝ∗B̂ dΩ(α) dV , (277b)

III =

ˆ
f̂ ′∗ĝ
′B̂ dΩ(α) dV , (277c)

IV =

ˆ
f̂ ′ĝ′∗B̂ dΩ(α) dV , (277d)

and discuss each term separately.104 In Eqs. (277a)–(277d), the variable of inte-
gration is changed from ζ∗ to V (= ζ∗− ζ). The following change of the variables

Ṽ1 = −V1, Ṽs = Vs, α̃1 = −α1, α̃s = αs (s = 2, 3) (278)

is performed in the integrals I, II, III, and IV. Noting that

ζi∗ = Vi + ζi, |Ṽi| = |Vi|, α̃iṼi = αiVi, (279)

we can transform the integrals I, II, III, and IV in the following way, where the
subscript s indicates s = 2 and 3:

I(ζ1, ζs) =

ˆ
f̂(V1 + ζ1, Vs + ζs)ĝ(ζ1, ζs)B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α) dV

=

ˆ
f̂(−Ṽ1 + ζ1, Ṽs + ζs)ĝ(ζ1, ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ ;

(280a)

104The separation is made only for convenience of explanation.
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Interchanging the arguments of f̂ and ĝ in I, we have

II(ζ1, ζs) =

ˆ
f̂(ζ1, ζs)ĝ(−Ṽ1 + ζ1, Ṽs + ζs) B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ ;

(280b)

III(ζ1, ζs) =

ˆ
f̂(Vi + ζi − αjVjαi)ĝ(ζi + αjVjαi)B̂ (|αiVi|/|Vi|, |Vi|)dΩ(α) dV

=

ˆ
f̂(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝ(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ ;
(280c)

Interchanging the arguments of f̂ and ĝ in III, we have

IV (ζ1, ζs) =

ˆ
f̂(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× ĝ(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ . (280d)

Now we examine the parity of the integrals I, II, III, and IV with respect to
ζ1 on the basis of Eqs. (280a)–(280d). Here, we introduce the notation: (i) the

parity of f̂ (or ĝ) is indicated by the subscript attached to it, i.e., the subscript
E is attached when it is even and the subscript O when it is odd; (ii) the first

subscript of I, II, III, and IV indicates the parity of f̂ in them and the second
indicates the parity of ĝ. First, when f̂ and ĝ are even functions of ζ1.

IEE(ζ1, ζs) =

ˆ
f̂E(−Ṽ1 + ζ1, Ṽs + ζs)ĝE(ζ1, ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

=

ˆ
f̂E(Ṽ1 − ζ1, Ṽs + ζs)ĝE(−ζ1, ζs)

× B̂ (|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= IEE(−ζ1, ζs), (281a)

where the last relation holds owing to the first relation of Eq. (280a); Interchan-

ging the arguments of f̂E and ĝE in IEE , we have

IIEE(ζ1, ζs) = IIEE(−ζ1, ζs); (281b)
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IIIEE(ζ1, ζs) =

ˆ
f̂E(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝE(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

=

ˆ
f̂E(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝE(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= IIIEE(−ζ1, ζs); (281c)

Interchanging the arguments of f̂E and ĝE in IIIEE , we have

IVEE(ζ1, ζs) = IVEE(−ζ1, ζs). (281d)

When both f̂ and ĝ are odd with respect to ζ1,

IOO(ζ1, ζs) =

ˆ
f̂O(−Ṽ1 + ζ1, Ṽs + ζs)ĝO(ζ1, ζs) B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

=

ˆ
f̂O(Ṽ1 − ζ1, Ṽs + ζs)ĝO(−ζ1, ζs) B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= IOO(−ζ1, ζs); (282a)

Interchanging the arguments of f̂O and ĝO in IIOO, we have

IIOO(ζ1, ζs) = IIOO(−ζ1, ζs); (282b)

IIIOO(ζ1, ζs) =

ˆ
f̂O(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

=

ˆ
f̂O(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= IIIOO(−ζ1, ζs); (282c)

Interchanging the arguments of f̂ and ĝ in IIIOO, we have

IVOO(ζ1, ζs) = IVOO(−ζ1, ζs). (282d)

When f̂ is even and ĝ is odd with respect to ζ1,

IEO(ζ1, ζs) =

ˆ
f̂E(−Ṽ1 + ζ1, Ṽs + ζs)ĝO(ζ1, ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −
ˆ
f̂E(Ṽ1 − ζ1, Ṽs + ζs)ĝO(−ζ1, ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −IEO(−ζ1, ζs); (283a)
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IIEO(ζ1, ζs) =

ˆ
f̂E(ζ1, ζs)ĝO(−Ṽ1 + ζ1, Ṽs + ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −
ˆ
f̂E(−ζ1, ζs)ĝO(Ṽ1 − ζ1, Ṽs + ζs)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −IIEO(−ζ1, ζs); (283b)

IIIEO(ζ1, ζs) =

ˆ
f̂E(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −
ˆ
f̂E(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× ĝO(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃)dṼ

= −IIIEO(−ζ1, ζs); (283c)

IVEO(ζ1, ζs) =

ˆ
f̂E(ζ1 − α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× ĝO(−Ṽ1 + ζ1 + α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −
ˆ
f̂E(−ζ1 + α̃j Ṽjα̃1, ζs + α̃j Ṽjα̃s)

× ĝO(Ṽ1 − ζ1 − α̃j Ṽjα̃1, Ṽs + ζs − α̃j Ṽjα̃s)

× B̂(|α̃iṼi|/|Ṽi|, |Ṽi|)dΩ(α̃) dṼ

= −IVEO(−ζ1, ζs). (283d)

For IOE , IIOE , IIIOE , and IVOE , interchanging the role of f̂ and ĝ, respectively,
in IIEO, IEO, IVEO, and IIIEO, we have

IOE(ζ1, ζs) = −IOE(ζ1, ζs), (284a)

IIOE(ζ1, ζs) = −IIOE(ζ1, ζs), (284b)

IIIOE(ζ1, ζs) = −IIIOE(ζ1, ζs), (284c)

IVOE(ζ1, ζs) = −IVOE(ζ1, ζs). (284d)

The parity is common to I, II, III, and IV. Therefore, the parity of Ĵ(f̂ , ĝ)
is the same as I, i.e.,

Ĵ(f̂E , ĝE)(ζ1, ζs) = Ĵ(f̂E , ĝE)(−ζ1, ζs), (285a)

Ĵ(f̂O, ĝO)(ζ1, ζs) = Ĵ(f̂O, ĝO)(−ζ1, ζs), (285b)

Ĵ(f̂E , ĝO)(ζ1, ζs) = −Ĵ(f̂E , ĝO)(−ζ1, ζs), (285c)

Ĵ(f̂O, ĝE)(ζ1, ζs) = −Ĵ(f̂O, ĝE)(−ζ1, ζs). (285d)
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Obviously, the same parity holds for the other components, i.e., ζ2, ζ3, of ζ.
(Section 8.3: Version 4-00)

8.4 Supplement to Section M-A.10

8.4.1 On the equality condition of Eq. (M-A.266)

Here we will discuss the equality condition in the Darrozes–Guiraud inequality in
Section M-A.10 in more detail. The equality in the Jensen inequality (M-A.265)
is proved to hold when and only when φ is independent of ξ (see, e.g., Reference
M-129). It should be noted that the uniqueness condition of the equality applies
only to the region of ξ where ψ > 0 and that no condition is required of φ where
ψ = 0. Choose a ξ in (ξi − vwi)ni > 0, and consider the condition for equality
in Eq. (M-A.266). According to the above note, the equality holds only when
f(ξ∗)/f0(ξ∗) is a constant (say, c1) in the region D1 of ξ∗, joint or disjoint,
where KB(ξ, ξ∗) > 0. If we choose another ξ, KB(ξ, ξ∗) > 0 in a different range
D2 of ξ∗, and f(ξ∗)/f0(ξ∗) = c2 (c2 : const) is required in D2. The constants
c1 and c2 may be different if D1 and D2 are disjoint. The two constants are
required to be the same (c1 = c2), if D1 and D2 overlap for some range of ξ∗
(their intersection is neither empty nor measure zero).105 From the condition
(M-1.27b), there is a region of ξ where KB > 0 for any ξ∗ in (ξi∗ − vwi)ni < 0.
Thus, the collection of the regions of ξ∗ where KB(ξ, ξ∗) > 0 with respect to
all ξ in (ξi− vwi)ni > 0 covers (ξi∗− vwi)ni < 0. If KB is such a kernel that the
series of the ranges ξ∗ of different ξ constituting the above collection overlap
with nonzero measure at the intersecting points, the constant is unique over
(ξi∗ − vwi)ni < 0, i.e., f(ξ∗) = c0f0(ξ∗) (c0 : a constant) in (ξi∗ − vwi)ni < 0
(see Fig. 1).106 Then, from the condition (M-1.27c),

f(ξ) = c0f0(ξ) for all ξ. (286)

Incidentally, the kernel KB that is positive almost everywhere (Footnote M-5 in
Section M-1.2) is classified as positive, and Eq. (286) holds almost everywhere of
ξ. When the overlap-covering condition is not satisfied, the above Maxwellian
is not necessarily required for the equality.107

The equality condition of Eq. (M-A.267) is seen to be the same as that of
Eq. (M-A.266) in the following way. Obviously, B = A ⇔

´
V
a(ξ)[B(ξ) −

105(i) In the common region, f(ξ∗)/f0(ξ∗) cannot take two values. On a set with measure
zero, whether f(ξ∗)/f0(ξ∗) is determined or not can be ignored. (See Footnote M-5 in Section
M-1.2 for the set with measure zero.)

(ii) If the intersection is empty or measure zero, the integrations with respect to ξ∗ at
different ξ’s, are not influenced by the f(ξ∗)/f0(ξ∗) determined by the other ξ.

(iii) The equality only on a set of ξ with measure zero is ignored. Thus, the above set of
ξ∗ where f(ξ∗)/f0(ξ∗) is constant is required to have some extent with measure nonzero with
respect to ξ including the intersections.
106The collection has to have some extent mentioned in Footnote 105 (iii).
107In fact, Takata (private communication) constructed a kernel KB , which is zero in [(ξi −
vwi)ni − C][(ξi∗ − vwi)ni + C∗] > 0 (C and C∗: some positive constants) and satisfies the
conditions (M-1.27a)–(M-1.27c), for which the equality holds for another function.
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Figure 1: KB(ξ, ξ∗) that requires f(ξ) = c0f0(ξ) for all ξ. The quarter in the
figure is the range (ξi∗ − vwi)ni < 0 and (ξi − vwi)ni > 0 in the space (ξ∗, ξ).
Let KB > 0 in the regions A, B, C, and D at least, and their ranges of ξ∗ cover
(ξi∗ − vwi)ni < 0. Then, f(ξ∗)/f0(ξ∗) is constant in each of A, B, C, and D
(say, a in A, b in B, c in C, and d in D). Some ranges in A and B being on a
common ξ having some extent, a = b. In view of the intersection of the ranges
of ξ∗ of B and C and that of B and D, c = b (= a), and d = b (= a). Thus,
f(ξ∗)/f0(ξ∗) = a in (ξi∗ − vwi)ni < 0. It may be noted that the regions of
ξ∗ of A and C are required to be only in contact with each other because the
intersection of the ranges of ξ∗ of C and B is not measure zero.
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A(ξ)]dξ = 0 if A(ξ) ≤ B(ξ) and a(ξ) > 0. Taking

A(ξ) = F

(
f(ξ)

f0(ξ)

)
, B(ξ) =

ˆ
(ξi∗−vwi)ni<0

KB(ξ, ξ∗)f0(ξ∗)

f0(ξ)
F

(
f(ξ∗)

f0(ξ∗)

)
dξ∗,

and (ξi − vwi)ni > 0 as the domain V of integration, and comparing Eq. (M-
A.266) and its next equation without number, we find the equivalence of the
equality conditions of Eqs. (M-A.266) and (M-A.267). The above discussion
being common for a strictly convex function F , the equality condition applies
to the Darrozes–Guiraud inequality (M-A.262) and Eq. (M-A.268).

(Section 8.4.1: Version 5-00)

8.4.2 Extension of the Darrozes–Guiraud inequality to an interface

Darrozes–Guiraud inequality (M-A.262) or (M-A.267) is proved for a function f
satisfying the boundary condition (M-1.26) on a simple boundary (M-Darrozes
& Guiraud [1966]). Here, we discuss its extension to f that satisfies the boun-
dary condition (M-1.30) on an interface of a gas and its condensed phase.

The boundary condition on the interface is given as108

f(ξ) = gI(ξ) +

ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)f(ξ∗)dξ∗ [(ξi − vwi)ni > 0], (287)

where gI and KI are independent of f. Further, gI and KI satisfy the following
conditions [see Eqs. (M-1.31a)–(M-1.31c)]:
(i) Nonnegativity of gI

gI(ξ) ≥ 0 [(ξi − vwi)ni > 0]. (288a)

(ii) Nonnegativity of KI

KI(ξ, ξ∗) ≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0]. (288b)

(iii) Condition of establishment of the equilibrium state

fw(ξ) = gI(ξ) +

ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)dξ∗ [(ξi − vwi)ni > 0], (288c)

where fw is the Maxwellian determined by the temperature Tw and velocity vwi
of the interface and the saturation gas density ρw at temperature Tw i.e.,

fw(ξ) =
ρw

(2πRTw)3/2
exp

(
− (ξi − vwi)2

2RTw

)
. (289)

It is also required here that if f(ξ∗) for (ξi∗ − vwi)ni < 0 is the corresponding
part of another Maxwellian [say, fe(ξ)], it does not give fe(ξ) for (ξi−vwi)ni > 0,
which will be called the uniqueness condition of Eq. (288c) for shortness.

108The variables X and t are not shown here because they are not important in the present
discussion [see Footnote M-10 (ii) in Section M-1.5].
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In the following discussion, we impose another condition in addition to Eqs. (288a)
–(288c), i.e., putting

α(ξ∗) = −
ˆ

(ξi−vwi)ni>0

(ξi − vwi)ni
(ξj∗ − vwj)nj

KI(ξ, ξ∗)dξ [(ξj∗ − vwj)nj < 0], (290)

we assume109 that

0 ≤ α(ξ∗) ≤ 1 [(ξi∗ − vwi)ni < 0]. (291)

Incidentally, from Eqs. (288a)–(288c),

fw(ξ)− gI(ξ) ≥ 0. (292)

We will show that the inequality (M-A.267) with f0 being replaced by fw,
i.e., ˆ

all ξ

(ξi − vwi)nifw(ξ)F [f(ξ)/fw(ξ)]dξ ≤ 0, (293)

holds when F (x) is such a strictly convex function (see Footnote M-52 in Section
M-A.10) that

F (x) ≥ 0 and F (1) = 0.

The equality of the relation (293) holds when f(ξ) = fw(ξ), and this relation
is required except for some boundary conditions shown later. The inequality is
proved with the aid of the Jensen inequality (see Eq. (M-A.265) or M-Jensen
[1906], M-Lieb & Moss [2001], M-Parzen [1960], or M-Rudin [1976])

F

(ˆ
φψdξ

/ˆ
ψdξ

)
≤
ˆ
ψF (φ)dξ

/ˆ
ψdξ (ψ ≥ 0), (294)

109(i) This condition corresponds to Eq. (M-1.27b) for a simple boundary. The simple boun-
dary consists of molecules of different kinds from the gas molecules, and they stay there forever.
The gas molecules impinging on the boundary are reflected without time delay (in the time
scale of our interest), and there is no net mass flux to the boundary in this process. The
condition (M-1.27b) is derived from this situation, as explained in Footnote M-13 in Section
M-1.6.1. In the case of an interface, the condition (291) is derived similarly, if we consider
that some of the molecules impinging on the interface do not reflect and stay there. However,
the interface is the condensed phase of the gas and consists of the same kind of molecules
as the gas. On the interface, molecules leave it depending on the condition of the interface
even if there is no impinging molecules; this is the gI part in Eq. (287). When a molecule
impinges on the interface, it interacts with molecules of the interface, and some molecules
leave the interface. Whether the impinging molecule is reflected or kicks out another molecule
has no difference. Further, depending on the condition (e.g., speed or direction) of the im-
pinging molecule and that of the interface, more than one molecule may be kicked out or no
molecule may be kicked out or reflected. Thus, it is not clear that the condition (291) holds
or not. However, it is sure that the size of the kernel KI is limited owing to the conditions
(288a)–(288c), e.g., KI = 0 if gI = fw (the complete condensation). See also Footnote 112 in
Section 8.4.2.

(ii-a) The case α(ξ∗) = 1 for (ξj∗ − vwj)nj < 0 is excluded by the uniqueness condition
of Eq. (288c). In fact, multiplying Eq. (287) by (ξj − vwj)nj and integrating with respect to
ξ over (ξj − vwj)nj > 0, we obtain gI(ξ) = 0. Thus, Cfw (C : a constant) also satisfies
Eq. (287).

(ii-b) When α(ξ∗) = 0 for (ξj∗ − vwj)nj < 0, the kernel KI(ξ, ξ∗) degenerates, i.e.,
KI(ξ, ξ∗) = 0 for (ξj − vwj)nj > 0. This is the case of the complete condensation.
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where F (x) is a strictly convex function, and φ and ψ (ψ ≥ 0) are arbitrary
functions of ξ. The equality sign holds when φ is independent of ξ; it is also
required where ψ > 0 for the equality.

Let F (x) be a nonnegative strictly convex function that takes value zero at
x = 1,110 i.e.,

F (x) ≥ 0, F (1) = 0. (295)

Consider the function F (f(ξ)/fw(ξ)), where fw(ξ) is given by Eq. (289). The
function F (f(ξ)/fw(ξ)) for (ξi − vwi)ni > 0 is bounded by an integral of f(ξ)
for (ξi − vwi)ni < 0 with the aid of Eq. (287) in the following way:

F

(
f(ξ)

fw(ξ)

)
= F

(
gI(ξ)

fw(ξ)
+

ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)

fw(ξ)
f(ξ∗)dξ∗

)

= F

[
gI(ξ)

fw(ξ)
+

(
1− gI(ξ)

fw(ξ)

)ˆ
<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

]
≤ gI
fw
F (1) +

(
1− gI

fw

)
F

(ˆ
<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

)
=

(
1− gI(ξ)

fw(ξ)

)
F

(ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

)
[(ξi − vwi)ni > 0].

(296)

Here, we, for a moment, consider the point of ξ [(ξi − vwi)ni > 0] where

fw(ξ)− gI(ξ) > 0,

for which
ˆ

(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)
dξ∗ = 1 [(ξi − vwi)ni > 0],

because of Eq. (288c); in the second and third lines, the simple < sign of the
subscript of the integral sign

´
indicates (ξi∗ − vwi)ni < 0; the convex property

of F (x) is used from the second line to the third, and F (1) = 0 is used from the
third to the fourth.

Now, we apply the Jensen inequality (294) to the function F on the fourth
line in Eq. (296). Here, we choose φ(ξ∗) and ψ(ξ∗) as

φ(ξ∗) =
f(ξ∗)

fw(ξ∗)
,

ψ(ξ∗) =
KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)
≥ 0 [(ξi − vwi)ni > 0, (ξi∗ − vwi)ni < 0].

110Note that x = 1 is the unique zero point of F (x).
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It should be noted that φ(ξ∗) is defined for the whole range of ξ∗ and that ψ(ξ∗)
depends also on ξ and satisfies the relation, irrespective of ξ,

ˆ
(ξi∗−vwi)ni<0

ψ(ξ∗)dξ∗ = 1 [(ξi − vwi)ni > 0].

Then, F (f(ξ)/fw(ξ)) for (ξi − vwi)ni > 0 is bounded as

F

(
f(ξ)

fw(ξ)

)
≤
(

1− gI
fw

)
F

(ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

[1− gI(ξ)/fw(ξ)]fw(ξ)

f(ξ∗)

fw(ξ∗)
dξ∗

)

≤
ˆ

(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗ [(ξi − vwi)ni > 0].

(297)

Up to this point, we limited our discussion to the point of ξ [(ξi−vwi)ni > 0]
where

fw(ξ)− gI(ξ) > 0.

If it vanishes at some ξA [(ξiA − vwi)ni > 0], i.e.,

fw(ξA)− gI(ξA) = 0, (298)

the integral
´

(ξi∗−vwi)ni<0
KI(ξ, ξ∗)fw(ξ∗)dξ∗ vanishes there, i.e.,

ˆ
(ξi∗−vwi)ni<0

KI(ξA, ξ∗)fw(ξ∗)dξ∗ = 0,

because of the condition (288c). The function fw(ξ∗) being positive for all ξ∗,
the kernel KI(ξA, ξ∗) must vanish for (ξi∗ − vwi)ni < 0, i.e.,

KI(ξA, ξ∗) = 0 [(ξi∗ − vwi)ni < 0]. (299)

Thus, from the boundary condition (287),

f(ξA) = gI(ξA) = fw(ξA).

Therefore, the function F (f(ξA)/fw(ξA)) vanishes, i.e.,

F (f(ξA)/fw(ξA)) = F (1) = 0. (300)

From Eqs. (299) and (300), the equality holds between the left-most side and
the right-most of Eq. (297) at ξ = ξA. In conclusion, the inequality

F

(
f(ξ)

fw(ξ)

)
≤
ˆ

(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗ [(ξi − vwi)ni > 0],

(301)
holds without the assumption of fw(ξ)− gI(ξ) > 0.

When f(ξ)/fw(ξ) = 1 for all ξ, F (f(ξ)/fw(ξ)) vanishes in Eq. (301), and
the equality holds there. We look for the other possibilities of the equality. The

91



first inequality in Eq. (297) comes from that of Eq. (296), for which the equality
holds at ξ = ξA when (i) gI(ξA)/fw(ξA) = 0 or (ii) gI(ξA)/fw(ξA) = 1, or (iii)
the arguments of two F ’s on the third line of Eq. (296) are equal, i.e.,

ˆ
(ξi∗−vwi)ni<0

KI(ξA, ξ∗)fw(ξ∗)

[1− gI(ξA)/fw(ξA)]fw(ξA)

f(ξ∗)

fw(ξ∗)
dξ∗ = 1, (302)

for some f(ξ∗). In the third case, the equality relation being imposed between
the first and the second line on the right-hand side of Eq. (297) under the con-
dition (302), we find that

f(ξ∗) = fw(ξ∗) in BA(ξ∗),

where BA(ξ∗) is the region of ξ∗ in which KI(ξA, ξ∗) > 0.
If gI(ξ)/fw(ξ) = 0 for (ξi−vwi)ni > 0, the boundary condition (287) reduces

to

f(ξ) =

ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)f(ξ∗)dξ∗. (303)

Then, the Maxwellian a0fw(ξ) (a0 : a constant) also satisfies the boundary
condition (287), which is not allowed by the uniqueness condition of Eq. (288c).
Thus, this case is excluded. If gI(ξ)/fw(ξ) = 1 for (ξi − vwi)ni > 0, the kernel
KI(ξ, ξ∗) vanishes for (ξi−vwi)ni > 0 and (ξi∗−vwi)ni < 0 from the discussion in
the preceding paragraph. That is, f(ξ) = fw(ξ) in (ξi−vwi)ni > 0 irrespective of
f(ξ) in (ξi−vwi)ni < 0 (this is the case of the complete condensation condition).
For this case the equality holds in Eq. (301). If the third condition holds for
(ξi − vwi)ni > 0, we have

fw(ξ) = gI(ξ) +

ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)f(ξ∗)dξ∗ [(ξi − vwi)ni > 0]. (304)

From the discussion of the preceding paragraph,

f(ξ∗) = fw(ξ∗) in B(ξ∗), (305)

where B(ξ∗) is the region of ξ∗ in which KI(ξ, ξ∗) > 0 for some ξ. This condition
is paraphrased as

f (ξ∗) = fw (ξ∗) except in the region α(ξ∗) = 0. (306)

Whether f (ξ∗) = fw (ξ∗) or α(ξ∗) = 0 in (ξi∗ − vwi)ni < 0,

f(ξ) = fw(ξ) [(ξi − vwi)ni > 0].

Let us consider the case where the three situations (i), (ii), and (iii) listed
just before Eq. (302) take place for different ξ, say, (i) for ξ in A1, (ii) for ξ in
A2, and (iii) for ξ in A3. The A2 part does not contribute to the restriction on
f(ξ∗). When A1 is empty, the condition is the same as for the case of Eq. (304),
i.e., Eq. (305) or (306). When A1 is not empty, from the discussion for ξ in
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A3, f (ξ∗) = fw (ξ∗) in the region of ξ∗ where KI(ξ, ξ∗) > 0 for some ξ in A3

[say, B3(ξ∗)], and the condition for the remaining ξ∗ is determined only by the
behavior of KI for ξ in A1, that is, the region f (ξ∗)/fw (ξ∗) = const [say, B1(ξ∗)]
is looked for in the range (ξi∗ − vwi)ni < 0 in the same way as in Section 8.4.1
and if B1 has a common region with B3, f (ξ∗) = fw (ξ∗) in B1. In the region
of the remaining ξ∗ [say, R(ξ∗)], f (ξ∗) other than fw (ξ∗) can exist. The region
α(ξ∗) = 1 in R(ξ∗) is denoted by Rα=1 for the convenience in the later citation.

When A3 is empty, the boundary condition (287) is expressed as

f(ξ) =

(
0

fw(ξ)

)
+

ˆ
(ξi∗−vwi)ni<0

(
KI(ξ, ξ∗)

0

)
f(ξ∗)dξ∗

[ξ in A1]
[ξ in A2]

,

(307)
where
ˆ

(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
dξ∗ = 1 [(ξi − vwi)ni > 0 and ξ in A1].

The boundary condition (307) obviously satisfies the conditions (288a)–(288c).111

In this case, the restriction on f(ξ∗) is determined by KI in A1. Substituting
f(ξ∗) = CDfw(ξ∗) [(ξi∗ − vwi)ni < 0, CD : independent of ξ∗], which is the
strongest restriction on f(ξ∗), into Eq. (307), we have f(ξ) = CDfw(ξ) [in A1]
and f(ξ) = fw(ξ) [in A2] for (ξi − vwi)ni > 0. For this f(ξ), the equality
holds in Eq. (301). Thus, for the boundary condition (307) as well as the com-
plete condensation condition, the equality in Eq. (301) holds for f(ξ) other than
f(ξ) = fw(ξ) [f(ξ∗) = CDfw(ξ∗) for (ξi∗ − vwi)ni < 0 for Eq. (307), and f(ξ∗)
is arbitrary for (ξi∗ − vwi)ni < 0 for the complete condensation]. This is an
example of f(ξ∗) that satisfies the equality in Eq. (301).

With the aid of the inequality (301) and Eq. (290), we have

ˆ
(ξi−vwi)ni>0

(ξi − vwi)nifw(ξ)F

(
f(ξ)

fw(ξ)

)
dξ

≤
ˆ

(ξi−vwi)ni>0

(ξi − vwi)nifw(ξ)

ˆ
(ξi∗−vwi)ni<0

KI(ξ, ξ∗)fw(ξ∗)

fw(ξ)
F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗dξ

=

ˆ
(ξi∗−vwi)ni<0

fw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)ˆ
(ξi−vwi)ni>0

(ξi − vwi)niKI(ξ, ξ∗)dξdξ∗

= −
ˆ

(ξi∗−vwi)ni<0

α(ξ∗)(ξi∗ − vwi)nifw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗, (308)

where 0 ≤ α(ξ∗) ≤ 1 [the assumption (291)]. Thus, we obtain the extension of

111To confirm the uniqueness condition of Eq. (288c) is simple. Note f(ξ) [(ξi − vwi)ni > 0]
for ξ in A2.
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Eq. (M-A.267) to the case of an interface as follows:

ˆ
all ξ

(ξi − vwi)nifw(ξ)F

(
f(ξ)

fw(ξ)

)
dξ

≤
ˆ

(ξi∗−vwi)ni<0

[1− α(ξ∗)](ξi∗ − vwi)nifw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗ ≤ 0.

(309)

Obviously, the equal sign holds in the two inequalities of Eq. (309) when f(ξ) =
fw(ξ). Conversely, it is required for the equal sign to hold in the inequalities
that f(ξ) = fw(ξ) for all ξ when Rα=1 is empty.112 It should be noted that
F (x) is required to satisfy that F (x) ≥ 0 and F (1) = 0 in addition to convexity.
Here, we take

F (x) = x(lnx− 1) + 1,

which is strictly convex, nonnegative, and zero at x = 1. Then,

ˆ
all ξ

(ξi − vwi)ni
[
f(ξ)

(
ln

f(ξ)

fw(ξ)
− 1

)
+ fw(ξ)

]
dξ ≤ 0,

or ˆ
all ξ

(ξi − vwi)nif(ξ) ln
f(ξ)

fw(ξ)
dξ ≤ ρ(vi − vwi)ni. (310)

This is the extension of Eq. (M-A.262) for a simple boundary to an interface.
We try to express the inequality (310) in terms of macroscopic variables. It

112(i) The integration of a nonnegative function multiplied by a positive function does not
change the equality condition. Thus, the equality condition of the inequality of Eq. (308) is
the same as that of Eq. (301) [B = A ⇔

´
a(ξ)[B(ξ) − A(ξ)]dξ = 0 if A(ξ) ≤ B(ξ) and

a(ξ) > 0]. Thus, the range where f(ξ∗) = fw(ξ∗) is required is outside R. For the equality of
the Darrozes–Guiraud inequality, we have to examine the equality of the second inequality in
Eq. (309). The second equal sign holds only when F (f(ξ∗)/fw(ξ∗)) = 0 in R outside Rα=1

because fw(ξ∗) > 0 and 1 − α(ξ∗) > 0 there. Thus, f(ξ∗)/fw(ξ∗) = 1 outside Rα=1 in
(ξi∗− vwi)ni < 0 (see Footnote 110 in Section 8.4.2). When Rα=1 is empty, the integral

´
all ξ

on the left-most side reduces to
´
(ξi−vwi)ni>0. This vanishes only when F (f(ξ)/fw(ξ)) = 0,

i.e., f(ξ) = fw(ξ) for (ξi − vwi)ni > 0. Thus, f(ξ) = fw(ξ) for all ξ when Rα=1 is empty.
It may be noted that when A3 is empty [or for the boundary condition (307)], Rα=1 is
the range of ξ∗ where α(ξ∗) = 1 in (ξi∗ − vwi)ni < 0. Incidentally, gI(ξ) that is positive
almost everywhere (Footnote M-5 in Section M-1.2) is classified positive, for which A1 in the
paragraph following to that of Eq. (306) is empty and Eq. (306) holds (that is, Rα=1 is empty),
and therefore the equal signs hold in Eq. (309) only when f(ξ) = fw(ξ) for all ξ.

(ii) If α(ξ∗) exceeds unity for some range of ξ∗ in (ξi∗ − vwi)ni < 0 and the assumption
(291) is violated, but the integral

ˆ
(ξi∗−vwi)ni<0

[1− α(ξ∗)](ξi∗ − vwi)nifw(ξ∗)F

(
f(ξ∗)

fw(ξ∗)

)
dξ∗

is nonpositive, the inequality holds.
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is simply transformed in the following form:

ˆ
all ξ

(ξi − vwi)nif(ξ) ln
f(ξ)

c0
dξ

≤
ˆ

all ξ

(ξi − vwi)nif(ξ) ln
fw(ξ)

c0
dξ + ρ(vi − vwi)ni

= − 1

RTw

[
qini + (vj − vwj)p̃ijni + ρ(vi − vwi)ni

(
5

2
RT +

1

2
(vj − vwj)2

)]
+ ρ(vi − vwi)ni

(
ln

ρw
(2πRTw)3/2c0

+ 1

)
,

where c0 is a constant to make the argument of the logarithmic function dimen-
sionless, and

p̃ij = pij − pδij , (311)

The p̃ij is the part of stress tensor with the pressure contribution subtracted.
Only the tangential component of the stress p̃ijni contributes to (vj −vwj)p̃ijni
when no flow to the boundary. Further, ln ρw/(2πRTw)3/2c0 is related to the H
function Hw for f(ξ) = fw(ξ) as

Hw

ρw
= ln

ρw
(2πRTw)3/2c0

− 3

2
, (312)

which is independent of vwi. That is,

Hw =

ˆ
all ξ

fw(ξ) ln
fw(ξ)

c0
dξ =

ˆ
all ξ

f (v)
w (ξ) ln

f
(v)
w (ξ)

c0
dξ,

where

f (v)
w (ξ) =

ρw
(2πRTw)3/2

exp

(
− (ξi − vi)2

2RTw

)
.

On the other hand, by definition (see Section M-1.7),

ˆ
all ξ

(ξi − vwi)nif(ξ) ln[f(ξ)/c0]dξ = (Hi −Hvwi)ni.

Therefore,

(Hi −Hvwi)ni

≤ − 1

RTw
[qini + (vj − vwj)p̃ijni]

+ ρ(vi − vwi)ni
[
Hw

ρw
− 1

RTw

(
5

2
R(T − Tw) +

1

2
(vj − vwj)2

)]
. (313)

When f = fw, both sides of the inequality vanish and the equal sign holds.
Conversely, for the kernel KI with Rα=1 empty, e.g., gI that is positive almost
everywhere, the equal sign holds only when f = fw.
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Finally, we consider the variation of the integral H of H over the domain D.
According to Eq. (M-1.36),

dH

dt
=

ˆ
∂D

(Hi −Hvwi)ni +

ˆ
D

GdX,

where

H =

ˆ
D

HdX.

With the aid of Eq. (313), the variation is bounded as

dH

dt
≤ − 1

RTw
[qini + (vj − vwj)p̃ijni]

+ ρ(vi − vwi)ni
[
Hw

ρw
− 1

RTw

(
5

2
R(T − Tw) +

1

2
(vj − vwj)2

)]
, (314)

because
´
D
GdX ≤ 0 [see Eq. (M-1.34b)].

(Section 8.4.2: Version 5-00)
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