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Bibliography

Update of bibliography

• [161] Sone, Y., M. Handa, and H. Sugimoto [2002]:
(to be published) → 299–332

• p. 151, the eighth line from the bottom:
Sone, Handa & Doi [unpublished] → Sone, Handa & Doi [2003]
The following reference is to be added to Bibliography:

Sone, Y., M. Handa, and T. Doi (2003), Ghost effect and bifurcation in a gas
between coaxial circular cylinder with different temperatures, Phys. Fluids 15,
2903–2915.
• p. 159, the sixth line

Sone & Doi [unpublished] → Sone & Doi [2003]
The following reference is to be added to Bibliography:

Sone, Y. and T. Doi (2003), Bifurcation of and ghost effect on temperature
field in the Bénard problem of a gas in the continuum limit, Phys. Fluids 15,
1405–1423.

Errata

• p. 11, the 10th line
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specular condition → specular reflection

• p. 33, the first line in Eq. (3.31c):

∂SijG0

∂xi
→ ∂SijG0

∂xj

• p. 33, the first line in Eq. (3.31d):

∂SijG1

∂xi
→ ∂SijG1

∂xj

• p. 36, Footnote 7:
Footnote 7 should be replaced by the following statement:

In some cases, the boundary data uwi, τw, or ωw (thus, Pw) are unknown
beforehand and may depend on the Knudsen number, for example, the surface
temperature of a particle set freely in a gas. To include the case, the data
uwi, τw, ωw, and Pw also are expanded in power series of k in the following
discussion. Even when they are independent of k, the φw depends on k because
φw generally depends on φ (ζini < 0).

• p. 104, the second line in Footnote 18:

only Ω8 and Θ8 → (Ω8,Θ8), (Ω9,Θ9), and (Ω10,Θ10)

• p. 146, the fifth line:

Ŷ1(η̃) = Ŷ1(η̃) → Ŷ1(η̃) = Y1(η̃)

• p. 177, Eq. (6.53):
The following note should be made to Eq. (6.53):

Equation (6.54), which is derived from Eqs. (6.50), (6.52), and v̂wini = 0,
is used in the derivation of Eq. (6.53) from the solvability condition. See the
second paragraph in page 130 of Y. Sone, Molecular Gas Dynamics (Birkhäuser,
Boston, 2007).

To improve the indefinite expression, the third paragraph on p. 177, which
starts from its 9th line from the bottom and ends at the second line on p. 178,
should be replaced by the following paragraph:1

Now return to the discussion of f̂Vm. The first relation of the solvability
condition (6.48) with m = 1, where

Ih1 = ζini(∂f̂V 0/∂y), (6.51)

reduces to

∂(ρ̂V 0v̂iV 0ni)

∂y
= 0, (6.52)

from which with the aid of Eqs. (6.50) and v̂wini = 0, we have

v̂iV 0ni = 0. (6.54)

1In the new paragraph, the numbering (6.54) comes earlier than (6.53) to avoid the cor-
rection of the quotations in the rest of the book.
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With the use of Eq. (6.54), the scalar product of the second relation of Eq. (6.48)
and ni reduces to

∂p̂V 0/∂y = 0. (6.53)

Thus, p̂V 0 is a function of χ1 and χ2 only, i.e.,

p̂V 0 = p̂V 0(χ1, χ2). (6.55)

The remaining three relations [or the remaining two of the second relation of
Eq. (6.48) and its third relation] reduce to identities with the aid of Eq. (6.54).

• p.215, the third line in Footnote 6:

Mn → −Mn

• p. 220, the fifth line:

Fs → −MnFs

Fb → −MnFb

Supplementary Notes

In the present supplementary notes, the letter K is attached to the labels
of equations and sections, etc. in the book Kinetic Theory and Fluid Dyna-
mics, the letter M is attached to those in Y. Sone, Molecular Gas Dynamics
(Birkhäuser, Boston, 2007), and the letter MS is attached to those in Y. Sone
[2018] (Supplement to Molecular Gas Dynamics) to avoid confusion. The two
books, Kinetic Theory and Fluid Dynamics and Molecular Gas Dynamics, and
the supplement of the latter (Sone [2018]) are, respectively, referred to as KF,
MGD, and MS.2

1 Chapter K-2

1.1 Background of the Boltzmann equation (Sections K-
2.1 and K-2.2)

The situation of a monatomic gas the description of which is the purpose of
the Boltzmann equation is explained in more detail in Section MS-1.53 (Version
13.00) [the last half of Section MS-1.5.2 (Version 11-02)]. This will serve as the
supplement to Sections K-2.1 and K-2.2, though it is prepared for the discussion
of the parameters in the nondimensional Boltzmann equation.

(Section 1.1: Version 5-00)

2Labels in MS depend on its version.
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1.2 Bulk viscosity

The assumptions (K-2.14) and (K-2.15) for the stress tensor and heat-flow vector
in classical gas dynamics are what is to be studied by kinetic theory (see KF).
For a monatomic gas, consisting of identical molecules whose intermolecular
potential is spherically symmetric, which is discussed in KF, the bulk viscosity
is easily seen to vanish. From Eqs. (K-2.2d) and (K-2.2f),3

pii = 3p. (1)

On the other hand, the trace of the first relation of Eq. (K-2.15) is

pii = 3p− 3µB
∂vi
∂Xi

.

Thus, from the two relations, we have

µB = 0. (2)

(Section 1.2: Version 3-00)

1.3 Nondimensional form of the Boltzmann equation for
an infinite-range potential (Sections K-2.9)

As mentioned in Footnote K-10 in Section K-2.9, the reference quantity B0 of
B in Eq. (K-2.41d) for or an intermolecular potential extending up to infinity
diverges to infinity4 because B0 is derived from the loss term of collision term.
Therefore, the nondimensional formulas for the collision term there are useless
for an infinite-range potential and so is the corresponding Boltzmann equation
(K-2.40a) in nondimensional form. The collision integral that is finite when the
gain and loss terms evaluated together as a whole is considered here. The recipe
to avoid the divergence in Footnote K-10 (or Section K-2.5) is conventional or
not concrete. The natural and concrete process to derive the nondimensinal form

3For molecules with internal degree of freedom (e.g., rotational and vibrational freedoms),
this freedom contributes to the integrands of Eqs. (K-2.2c)–(K-2.2g). Thus, Eq. (1) does not
generally hold. (More precisely, the velocity distribution function f depends also on the
variables of the internal degree of freedom of a molecule. The integration with respect to
these variables in Eqs. (K-2.2a)–(K-2.2g) has to be carried out. The angular momentum due
to the rotation of molecules of infinitesimal size per unit mass is negligible even when the
energy of rotation is not negligible.) The density ρ and the specific internal energy e can be
clearly defined whether the gas is in an equilibrium state or not. The specific internal energy
e/if per unit freedom of a molecule is taken as RT/2, i.e., e = ifRT/2, where if is the degree
of freedom of a molecule; thus, the relation between e and T is independent of the state of
the gas (equilibrium or nonequilibrium). The pressure is defined by the equation of state,
i.e., the perfect gas relation p = ρRT ; thus, except for a monatomic gas without internal
degree of freedom, the pressure differs generally from the isotropic part of stress tensor in a
nonequilibrium state.

4What is called the Boltzmann equation for an infinite-range potential [Footnote K-10 in
Section K-2.9 or more concretely paragraph with Eq. (M-A.59) in MGD] is conventional one
because some points have to be confirmed [see in (ii) of Footnote MS-19].

4



of the Boltzamnn equation for infinite-range potential is discussed in Section
MS-1.5 (Version 9-00 and later).5

In this relation, it is better to make the dependence of U0 (on the 2nd line
of Footnote K-11 in Section K-2.9) on m explicit. That is,

U0 → mŪ0,
where Ū0 has the dimension of RT0. Correspondingly, U0/kBT0 on the 3rd line
of Footnote K-11 in Section K-2.9 should be replaced by Ū0/RT0 [see item (iii) of
Footnote MS-19 (Version 11-02) and later]. Incidentally, some notes are added
to Footnote K-11 in Section K-2.9 here: U is better to be replaced by Û , which
is used in Section M-A.2.4; only the value 1 is allowed as m of am on the 2nd line
from below for the function B [compare the 2nd and 3rd lines in Eq. (K-2.41d);
see Section M-A.2.4 for B(|α · (ξ∗ − ξ)/|ξ∗ − ξ|, |ξ∗ − ξ|)].

(Section 1.3: Version 5-00)

2 Chapter K-3

2.1 Flows induced by temperature fields and video files of
their experiments

2.1.1 Thermal creep flow

The video file of the simple experiment (K-Sone [1991b]) demonstrating thermal
creep flow in Section K-3.11.1 can be downloaded from Sone [1991] at Kyoto Uni-
versity Research Information Repository (https://hdl.handle.net/2433/120983).

(Section 2.1.1: Version 5-00)

The thermal creep flow (see the formula on page 61 of KF), i.e.,

v1 = −K1

(
πRT0

2

)1/2
`0
T0

dTw
dX1

, (3)

vanishes in the limit that the mean free path tends to zero (`0 → 0).6 At
the standard state, the mean free path is small but finite, and therefore, the
thermal creep flow does not vanish. The mean free path is related to the thermal
conductivity λ by Eq. (K-3.91), i.e.,

`0 =
4(2RT0)1/2

5
√
πγ2Rp0

λ. (4)

The above-mentioned formula of the thermal creep flow where the mean free
path `0 replaced by the thermal conductivity λ with the above relation, i.e.,

v1 = −4K1λ

5γ2p0

dTw
dX1

, (5)

5In its Version 14-00, the relation between the conventional one to literally infinite-range
one is discussed.

6Except in the thin layer adjacent to the boundary, Y1 is negligible.
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makes the thermal creep flow more accessible. This kind of replacement can be
made between mean free path and viscosity [see Eq. (K-3.90)].

2.1.2 Thermal edge flow

The video files of the simple experiment demonstrating thermal edge flow in
Section K-3.11.4 (K-Sone & Yoshimoto [1997[) can be downloaded from Sone &
Yoshimoto [1997] at Kyoto University Research Information Repository (https://
hdl.handle.net/2433/122357).

(Section 2.1.2: Version 5-00)

3 Chapter K-4

3.1 Notes on basic equations in classical fluid dynamics

3.1.1 Euler and Navier–Stokes sets

For the convenience of discussions, the basic equations in the classical fluid
dynamics are summarized here.

The mass, momentum, and energy-conservation equations of fluid flow are
given by

∂ρ

∂t
+

∂

∂Xi
(ρvi) = 0, (6)

∂

∂t
(ρvi) +

∂

∂Xj
(ρvivj + pij) = 0, (7)

∂

∂t

[
ρ

(
e+

1

2
v2i

)]
+

∂

∂Xj

[
ρvj

(
e+

1

2
v2i

)
+ vipij + qj

]
= 0, (8)

where ρ is the density, vi is the flow velocity, e is the internal energy per unit
mass, pij , which is symmetric with respect to i and j, is the stress tenor, and qi
is the heat-flow vector. The pressure p and the internal energy e are given by
the equations of state as functions of T and ρ, i.e.,7

p = p(T, ρ), e = e(T, ρ). (9)

Especially, for a perfect gas (see Section 1.6 in Liepmann & Roshko [1957]),

p = RρT, e = e(T ). (10)

7The case where the first equation p = p(T, ρ) cannot be solved with respect to ρ, or ρ is
independent of p and T is called incompressible. The incompressible condition is a special
case of the equation of state. In a system consisting of a single incompressible substance, the
density is a constant.
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Equations (7) and (8) are rewritten with the aid of Eq. (6) in the form

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

+
∂pij
∂Xj

= 0, (11)

ρ
∂

∂t

(
e+

1

2
v2i

)
+ ρvj

∂

∂Xj

(
e+

1

2
v2i

)
+

∂

∂Xj
(vipij + qj) = 0. (12)

The operator ∂/∂t+vj∂/∂xj , which expresses the time variation along the fluid
particle, is denoted by D/Dt, i.e.,

D

Dt
=

∂

∂t
+ vj

∂

∂Xj
.

Multiplying Eq. (11) by vi we obtain the equation for the variation of kinetic
energy as

ρ
D

Dt

(
1

2
v2i

)
= −vi

∂pij
∂Xj

. (13)

Another form of Eq. (8), where Eq. (13) is subtracted from Eq. (12), is given as

ρ
De

Dt
= −pij

∂vi
∂Xj

− ∂qj
∂Xj

. (14)

Noting the thermodynamic relation

De

Dt
= T

Ds

Dt
+

p

ρ2
Dρ

Dt
, (15)

where s is the entropy per unit mass, and Eq. (6), Eq. (14) is rewritten as

ρ
Ds

Dt
= − 1

T

[
(pij − pδij)

∂vi
∂Xj

+
∂qj
∂Xj

]
. (16)

Equation (16) expresses the variation of the entropy of a fluid particle.
Equations (6)–(9) contain more variables than the number of equations.

Thus, in the classical fluid dynamics, the stress tensor pij and the heat-flow
vector qi are assumed in some ways. The Navier–Stokes set of equations (or the
Navier–Stokes equations) is Eqs. (6)–(9) where pij and qi are given by

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)
− µB

∂vk
∂Xk

δij , (17)

qi = −λ ∂T
∂Xi

, (18)

where µ, µB , and λ are, respectively, called the viscosity, bulk viscosity, and
thermal conductivity of the fluid. They are functions of T and ρ. The Euler set
of equations (or the Euler equations) is Eqs. (6)–(9) where pij and qi are given
by

pij = pδij , qi = 0, (19)
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or the Navier–Stokes equations with µ = µB = λ = 0.
For the Navier–Stokes equations, in view of the relations (17) and (18), the

entropy variation is expressed in the form8

ρ
Ds

Dt
=

1

T

[
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

− 2

3

∂vk
∂Xk

δij

)2
+ µB

(
∂vk
∂Xk

)2
+

∂

∂Xi

(
λ
∂T

∂Xi

)]
.

(20)
For the Euler equations, for which pij and qi are given by Eq.(19), the entropy
of a fluid particle is invariant, i.e.,

ρ
Ds

Dt
= 0. (21)

The incompressible condition in Footnote 7 can be expressed as9

Dρ

Dt
= 0 or

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (22)

Thus, from Eqs. (6) and (22),
∂vi
∂Xi

= 0. (23)

Equation (17) for the Navier–Stokes-stress tensor reduces to

pij = pδij − µ
(
∂vi
∂Xj

+
∂vj
∂Xi

)
. (24)

The first term on the right-hand side of Eq. (14) reduces to

−pij
∂vi
∂Xj

= −
[
pδij − µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
∂vi
∂Xj

=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
.

8Note the following transformation:

∂vi

∂Xj

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij +

2

3

∂vk

∂Xk
δij

)(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
=

1

2

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)2
+

1

3

∂vl

∂Xl
δij

(
∂vi

∂Xj
+
∂vj

∂Xi
−

2

3

∂vk

∂Xk
δij

)
.

The second term in the last expression is easily seen to vanish.
9(i) The density is invariant along fluid-particle paths. If ρ is of uniform value ρ0 initially,

it is a constant, i.e.,
ρ = ρ0.

In a time-independent (or steady) problem, the density is constant along streamlines.
(ii) This condition is useful in the system consisting of non-mixing different incompressible

substances (e.g., oil and water). Needless to say, e, µ, and λ depend on substances.
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Thus, Eq. (14) reduces to

ρ
De

Dt
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
. (25)

To summarize, the Navier–Stokes equations for incompressible fluid are

∂vi
∂Xi

= 0, (26a)

ρ
∂vi
∂t

+ ρvj
∂vi
∂Xj

= − ∂p

∂Xi
+

∂

∂Xj

[
µ

(
∂vi
∂Xj

+
∂vj
∂Xi

)]
, (26b)

ρ
∂e

∂t
+ ρvj

∂e

∂Xj
=
µ

2

(
∂vi
∂Xj

+
∂vj
∂Xi

)2
+

∂

∂Xj

(
λ
∂T

∂Xj

)
, (26c)

with the incompressible condition (22) being supplemented, i.e.,10

∂ρ

∂t
+ vj

∂ρ

∂Xj
= 0. (27)

.

3.1.2 Boundary condition for the Euler set

In Chapter K-7, we discussed the asymptotic behavior for small Knudsen num-
bers of a gas around its condensed phase where evaporation or condensation
with a finite Mach number is taking place, and derived the Euler equations and
their boundary conditions that describe the overall behavior of the gas in the
limit that the Knudsen number tends to zero. The number of boundary conditi-
ons on the evaporating condensed phase is different from that on the condensing
one. We will try to understand the structure of the Euler equations giving the
non-symmetric feature of the boundary conditions by a simple but nontrivial
case.

Consider, as a simple case, the two-dimensional boundary-value problem
of the time-independent Euler equations in a bounded domain for an incom-
pressible ideal fluid of uniform density. The mass and momentum-conservation

10The energy equation (26c) for incompressible fluid contains the heat-production term due
to the work done by viscous stress [the first term on its right-hand side] if we literally put
Eq. (17) in the energy equation (14). The incompressible Navier--Stokes set of equations is
generally used for the case where the flow velocity is not so large. That is, it is used for
the case where the dynamic energy v2i /2 per unit mass is negligibly small compared with the
internal energy e per unit mass (v2i � e). The Mach number is a common reference scale of
flow speed, but it is not useful for incompressible fluid because the speed of sound is not well
defined. Let e0 be e of the reference state. We take the speed (2e0)1/2 as the reference speed,
which is comparable to the sound speed for perfect gas. Let the typical flow speed of the
flow under consideration be U0. With the nondimensional small parameter U0/(2e0)1/2, we
compare the size of the terms in the energy equation (26c). The first term on the right-hand
side of Eq. (26c) is seen to be of higher-order of smallness compared with the convection and
conduction terms when the Reynolds number based on U0 and the Prandtl number are of the
order of unity. Thus, the neglected form is often given in literature, with the condition being
implicitly assumed.
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equations of the Euler set are

∂u

∂x
+
∂v

∂y
= 0, (28)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
, (29)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
, (30)

where ρ is the density, which is uniform, (u, v) is the flow velocity, and p is the
pressure. Owing to Eq. (28), the stream function Ψ can be introduced as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
. (31)

Eliminating p from Eqs. (29) and (30), we have11

u
∂Ω

∂x
+ v

∂Ω

∂y
= 0, (32)

where Ω is the vorticity, i.e.,

Ω =
∂u

∂y
− ∂v

∂x
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
. (33)

From Eqs. (31) and (32),

∂Ψ

∂y

∂Ω

∂x
− ∂Ψ

∂x

∂Ω

∂y
= 0. (34)

This equation shows that Ω is a function of Ψ,12 i.e.,

Ω = F (Ψ). (35)

11The following equation is formed from them:

∂Eq. (29)/∂y − ∂Eq. (30)/∂x = 0.

12This can be seen with the aid of theorems on implicit functions (see Bronshtein & Semen-
dyayev [1997], Buck [1965], Takagi [1961]):

Ω = Ω(x, y), Ψ = Ψ(x, y). (∗)

Solving the second equation with respect to x, we have

x = x̂(Ψ, y). (∗∗)

With this relation into Eq. (∗),

Ω = Ω(x̂(Ψ, y), y) = Ω̂(Ψ, y), (]a)

Ψ = Ψ(x̂(Ψ, y), y) = Ψ̂(Ψ, y). (]b)
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This functional relation between Ω and Ψ is a local relation, and therefore F
may be a multivalued function of Ψ. From Eqs. (33) and (35),

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= F (Ψ). (36)

Consider a boundary-value problem in a simply-connected bounded domain,
where Ψ is given on the boundary (Ψ = ΨB). Introduce a coordinate s (0 ≤ s <
S) along the boundary in the direction encircling the domain counterclockwise.
Then, the fluid flows into the domain on the boundary where ∂ΨB/∂s < 0, and
the fluid flows out from the domain on the boundary where ∂ΨB/∂s > 0. When
F is given, the problem is a standard boundary-value problem. In the present
problem, we have a freedom to choose F on the part where ∂ΨB/∂s < 0 or
∂ΨB/∂s > 0. For example, take the case where ∂ΨB/∂s < 0 for 0 < s < Sm

and ∂ΨB/∂s > 0 for Sm < s < S, and choose the distribution ΩB(s) of Ω along
the boundary for the part 0 < s < Sm. By the choice of ΩB , the function F (Ψ)
is determined in the following way. Inverting the relation Ψ = ΨB(s) between
Ψ and s on the part 0 < s < Sm, i.e., s(Ψ), and noting the relation (35), we
find that F is given by

F (Ψ) = ΩB(s(Ψ)). (37)

Then, the boundary-value problem is fixed. That is, Eq. (36) is fixed as13

∂2Ψ

∂x2
+
∂2Ψ

∂y2
= ΩB(s(Ψ)), (38)

and the boundary condition is given as Ψ = ΨB(s). This system is a standard
from the point of counting of the number of boundary conditions. Obviously,

That is, Ω is expressed as a function of Ψ and y. From Eqs. (]a) and (]b),

∂Ω̂(Ψ, y)

∂y
=
∂Ω(x̂(Ψ, y), y)

∂y
=
∂Ω(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ω(x, y)

∂y
, (]]a)

∂Ψ̂(Ψ, y)

∂y
= 0. (]]b)

On the other hand,

∂Ψ̂(Ψ, y)

∂y
=
∂Ψ(x̂(Ψ, y), y)

∂y
=
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
.

Thus,
∂Ψ(x, y)

∂x

∂x̂(Ψ, y)

∂y
+
∂Ψ(x, y)

∂y
= 0. (‡)

From Eqs. (34), (]]a) and (‡), we have

∂Ω̂(Ψ, y)

∂y
= 0, or Ω = Ω̂(Ψ).

13There is still some ambiguity. The case where there is a region with closed stream lines
Ψ(x, y) = const inside the domain is not excluded.
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from Eq. (33), the solution of the above system automatically satisfies condi-
tion Ω = ΩB(s) along the boundary for 0 < s < Sm. We cannot choose the
distribution of Ω on the boundary for Sm < s < S.

The energy-conservation equation of the incompressible Euler set is given by
Eq. (25) with µ = λ = 0, i.e.,

u
∂e

∂x
+ v

∂e

∂y
= 0, or

∂Ψ

∂y

∂e

∂x
− ∂Ψ

∂x

∂e

∂y
= 0, (39)

where e is the internal energy. Thus, e is a function of Ψ, i.e.,

e = F1(Ψ). (40)

In the above boundary-value problem, therefore, e can be specified on the the
part (0 < s < Sm) of the boundary, but no condition can be specified on other
part (Sm < s < S) and vice versa.14

To summarize, we can specify three conditions for Ψ, Ω, and e on the part
∂ΨB/∂s < 0 (∂ΨB/∂s > 0) of boundary but one condition for Ψ on the other
part ∂ΨB/∂s > 0 (∂ΨB/∂s < 0). The number of the boundary conditions is
not symmetric and consistent with that derived by the asymptotic theory.

3.1.3 Equations derived from the compressible Navier–Stokes set
when the Mach number and the temperature variation are
small

It is widely said that the set of equations derived from the compressible Na-
vier–Stokes set when the Mach number and the temperature variation are small
is the incompressible Navier–Stokes set although the difference is obvious from
the set of equations derived, especially from the equation of state and the energy
equation.15 The difference is explained in the two books KF and MGD in con-
nection with the set of fluid-dynamic type equations derived by the S expansion
from the Boltzmann equation in Sections K-4.3, M-3.2, and M-3.7. To make dif-
ference clearer and to eliminate the misunderstanding, we will show the process
of analysis from the compressible Navier–Stokes set with the boundary condi-
tion taken into account. Thus, it is made clear how the solution is constructed
and how the behavior of the solution in the two systems is different in the initial
and boundary-value problem. In the time-dependent case, the energy equation
contains another time-derivative term, in addition to the difference in the time-
independent case. An ambiguity of solution in the incompressible system in a
bounded domain with the simple boundary is eliminated in the compressible
system.

Take a monatomic perfect gas, for which the internal energy per unit mass
is 3RT/2. The corresponding Navier–Stokes set of equations is written in the

14From the second relation on e of Eq. (9) and the uniform-density condition, the condition
on e can be replaced by the condition on the temperature T.

15In a time-dependent case, we here consider the case where the variables vary in the
diffusion time scale. In a shorter time scale, the sound wave propagates.
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nondimensional variables introduced by Eq. (K-2.57) in Section K-2.10 as fol-
lows:

Sh
∂ω

∂t̂
+
∂(1 + ω)ui

∂xi
= 0, (41)

Sh
∂(1 + ω)ui

∂t̂
+

∂

∂xj

(
(1 + ω)uiuj +

1

2
Pij

)
= 0, (42)

Sh
∂

∂t̂

[
(1 + ω)

(
3

2
(1 + τ) + u2i

)]
+

∂

∂xj

[
(1 + ω)uj

(
3

2
(1 + τ) + u2i

)
+ ui(δij + Pij) +Qj

]
= 0. (43)

The nondimensional stress tensor Pij , and heat-flow vector Qi are expressed
as16

Pij = Pδij −
µ0(2RT0)1/2

p0L
(1 + µ̄)

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, (44a)

Qi = − λ0T0
Lp0(2RT0)1/2

(1 + λ̄)
∂τ

∂xi
. (44b)

Here, µ̄ and λ̄ are, respectively, the nondimensional perturbed viscosity and
thermal conductivity defined by

µ = µ0(1 + µ̄), λ = λ0(1 + λ̄),

where µ0 and λ0 are, respectively, the values of the viscosity µ and the thermal
conductivity λ at the reference state. The µ̄ and λ̄ are functions of τ and ω.
The first relation of the equation of state [Eq. (10)] is expressed as

P = ω + τ + ωτ. (45)

Take a small parameter ε, and consider the case where

ui = O(ε), ω = O(ε), τ = O(ε), Sh = O(ε), (46a)

µ0(2RT0)1/2

p0L
= γ1ε,

λ0T0
Lp0(2RT0)1/2

=
5

4
γ2ε, (46b)

where γ1 and γ2 are constants of the order of unity. Thus,

P = O(ε), µ̄ = O(ε), λ̄ = O(ε).

Some notes on the conditions (46a) and (46b) may be in order.
(i-a) The first three relations in Eq. (46a) are the condition on the size of per-
turbation of gas dynamic variables from the background state (vi = 0, ρ = ρ0
and T = T0) with respect to their reference values [vi = (2RT0)1/2, ρ = ρ0,

16For a monatomic gas, the bulk viscosity vanishes, i.e., µB = 0 (see Section 1.2).
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and T = T0]. The last relation is the condition of the time t0 of appreciable
variation of the perturbed quantities. This condition shows that the time-scale
t0 of variation of the variables is chosen as

t0 =
L

(2RT0)1/2ε
, (47)

which is the time that the typical gas flow proceeds over the distance L. In other
words, we are interested in the behavior of the gas, the perturbed quantities of
which vary appreciably in time t0. Naturally, the variation of boundary data is
to be consistent with the above time scale.
(i-b) The discussion in this section (Section 3.1.3) is based on the Navier–Stokes
equation, which is assumed to be valid without the restriction on the size of the
parameters. We are going to derive the set of equations for small ε under the
conditions (46a) and (46b) for the two kinds of fluid (perfect gas and incom-
pressible fluid), and compare the difference between their results. Here we are
interested in the leading nontrivial set. The equations at the higher-orders are
obviously within the framework of the Navier–Stokes equations. This applies to
the boundary condition. Nonslip or non-jump condition is used on the simple
boundary irrespective of the size of ε. The boundary condition on the interface
is borrowed from the leading-order results of the asymptotic analysis for small
Knudsen numbers of the Boltzmann system for the case in (iii).
(ii) In the Navier–Stokes system, the viscosity µ and the thermal conductivity
λ characterize the property of the fluid. The relation (46b) is the condition
between these transport coefficients and the typical size ε of the perturbations.
Form these relations, we have

µ0/ρ0
ε(2RT0)1/2L

=
γ1
2
,

2λ0
5Rµ0

=
γ2
γ1
. (48)

The quantities on the left-hand sides of the two relations consist of the para-
meters17 of the flow under consideration. Thus, we are considering the case
where the two combinations of the parameters are finite because γ1 and γ2 are
constants.
(iii-a) In the S expansion in Chapter K-4 or in Section M-3.2, the parameter
k characterizes the degree of rarefaction of the gas under consideration. The
analysis there is carried out under the condition that

ε = k, (49)

where ε is the size of perturbation φ of the velocity distribution function from the
background equilibrium state f0 at rest with the density ρ0 and the temperature
T0 corresponding to Eq. (46a), with the time-independent condition imposed.
The time-dependent case is discussed for the two cases, t0 = O[L/(2RT0)1/2]

17Note that (a) ε(2RT0)1/2 is the typical flow speed, and ε(2RT0)1/2L/(µ0/ρ0) is the
Reynolds number based on that flow speed and that (b) 3R/2 is the heat capacity at constant
volume because the internal energy per unit mass is 3RT0/2 for the gas under consideration
(perfect gas).

14



and t0 = O[L/(2RT0)1/2ε], in Section K-4.9 and K-4.10.3 and Sections M-3.7.1
and M-3.7.2.
(iii-b) This is one of the several cases where the behavior of a gas for small
Knudsen numbers (or k � 1) is discussed on the basis of the Boltzmann system
(Boltzmann equation and its boundary condition), and the fluid-dynamic type
equation and its boundary condition are derived for various limiting processes
(see the two books KF and MGD). The nontrivial leading-order results of the
case (49) corresponds to the set of equations of the case with Eqs. (46a) and
(46b) of the Navier–Stokes equation for perfect gas. We will use the boundary
condition on the interface obtained by the analysis of the Boltzmann system to
the discussion in this section (Section 3.1.3). The higher-order results include
higher-order effects of the Knudsen number, which is not covered by the Na-
vier–Stokes system. The higher-order boundary condition does not contribute
to the comparison. Thus, the leading-order boundary condition is used with
adjustments as the higher-order one if necessary.
(iv) The expansion parameter ε can be chosen rather freely by a finite factor.
So are the reference quantities. If we use a different reference velocity, e.g.,
(2e0)1/2, instead of (2RT0)1/2, with the same ε, the coefficients of the resulting
equations are obviously different.

According to the definition of ui in Eq. (K-2.57), ε is of the order of the
Mach number of typical flow speed U0 of the flow field. Here, we take ε as
ε = U0/(2RT0)1/2 . The relation (46b) between ε and viscosity µ0 or thermal
conductivity λ0 is taken from the result of analysis in Chapter K-4, where
the situation that the Knudsen number and the perturbation scale is of the
same of order of smallness, i.e., k = ε, is discussed. According to Eq. (K-
2.41a), the condition Sh = O(ε) in Eq. (46a) means that the time scale t0 of the
variation of variables is of the order of L/(2RT0)1/2ε, which is of the order of
time scale of viscous or thermal diffusion owing to the relation (46b). We can
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take t0 = L/(2RT0)1/2ε without loss of generality.18 Then,

Sh = ε. (50)

The new symbol t̃ , instead of t̂ is introduced to make this time scale explicit:

t̃ = t̂. (51)

Corresponding to the above situation, ui, ω, P, and τ are expanded in power
series of ε, i.e.,

ui = ui1ε+ ui2ε
2 + · · · , (52a)

ω = ω1ε+ ω2ε
2 + · · · , (52b)

P = P1ε+ P2ε
2 + · · · , (52c)

τ = τ1ε+ τ2ε
2 + · · · , (52d)

µ̄ = µ̄1ε+ µ̄2ε
2 + · · · , (52e)

λ̄ = λ̄1ε+ λ̄2ε
2 + · · · , (52f)

Pij = P1δijε+ Pij2ε
2 + · · · , (52g)

Qi = Qi2ε
2 + · · · . (52h)

Substituting Eqs. (52a)–(52h) with Eqs. (46b) and (50) into Eqs. (41)–(43) with
Eqs. (44a) and (44b), and arranging the same order terms of ε, we have

∂ui1
∂xi

= 0,
∂P1

∂xi
= 0,

∂ui1
∂xi

= 0,

18This time scale, t0 = L/(2RT0)1/2ε, is called diffusion time scale in view of the following
situation. The viscous diffusion of the parallel flow in X1 direction with nonuniform velocity
v1 is given by

∂v1

∂t
=
µ0

ρ0

∂2v1

∂X2
2

,

where the variation with respect to x3 is assumed to be absent. Let the length scale and the
time scale of variation of v1 be L and t0 respectively. Putting t = t̃ t0 and X2 = x2L, we have

∂v1

∂t̃
=

µ0t0

ρ0L2

∂2v1

∂x22

=
γ1t0(2RT0)1/2ε

2L

∂2v1

∂x22
,

where the first relation of Eq. (46b) is used in the final step. When t0 = L/(2RT0)1/2ε, the
coefficient is of the order of unity because γ2/2 is so. Then, the time derivative ∂v1/∂t̃ and
the space derivative ∂2v1/∂x22 are of the same order O(v1). Thus, in the diffusion process,

the time scale of variation is t0 = L/(2RT0)1/2ε when the length scale of variation is L.
The diffusion of heat can be discussed in the same way, with ρ0 being replaced by αρ0RT0

(α = 3/2 or 5/2 depending on the diffusion under constant volume or constant pressure), µ0
by λ0, and the velocity v1 by temperature T . With the aid of the second relation of Eq. (46b),

∂T

∂t̃
=

5γ2t0(2RT0)1/2ε

4αL

∂2T

∂x22
.

The remaining discussion is the same because γ2 is a constant of the order of unity.
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∂ω1

∂t̃
+
∂ω1ui1
∂xi

+
∂ui2
∂xi

= 0,

∂ui1

∂t̃
+
∂ui1uj1
∂xj

+
1

2

∂P2

∂xi
− γ1

2

∂

∂xj

(
∂ui1
∂xj

+
∂uj1
∂xi

− 2

3

∂uk1
∂xk

δij

)
= 0,

3

2

∂P1

∂t̃
+

∂

∂xj

(
5

2
uj2 +

5

2
P1uj1 −

5

4
γ2
∂τ1
∂xj

)
= 0,

and so on. At the leading order, the equations derived from Eqs. (41) and (43)
degenerate into the same equation ∂ui1/∂xi = 0. Owing to this degeneracy, in
order to solve the variables from the lowest order successively, the equations
should be rearranged by combination of equations of staggered orders. Thus,
we rearrange the equations as follows:

∂P1

∂xi
= 0, (53)

∂ui1
∂xi

= 0, (54a)

∂ui1

∂t̃
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1
2

∂2ui1
∂x2j

, (54b)

5

2

∂τ1

∂t̃
− ∂P1

∂t̃
+

5

2
ui1

∂τ1
∂xi

=
5

4
γ2
∂2τ1
∂x2j

, (54c)

∂ui2
∂xi

= −∂ω1

∂t̃
− ∂ω1ui1

∂xi
, (55a)

∂ui2

∂t̃
+ uj1

∂ui2
∂xj

+ uj2
∂ui1
∂xj

= −1

2

(
∂P3

∂xi
− ω1

∂P2

∂xi

)
+
γ1
2

∂

∂xj

(
∂ui2
∂xj

+
∂uj2
∂xi

− 2

3

∂uk2
∂xk

δij

)
− γ1ω1

2

∂2ui1
∂x2j

+
γ1
2

∂

∂xj

[
µ̄1

(
∂ui1
∂xj

+
∂uj1
∂xi

)]
, (55b)

3

2

∂P2

∂t̃
+

3

2
uj1

∂P2

∂xj
+

5

2

(
P1
∂uj2
∂xj

− ∂ω2

∂t̃
− ∂(ω1uj2 + ω2uj1)

∂xj

)
=

5γ2
4

∂

∂xi

(
∂τ2
∂xi

+ λ̄1
∂τ1
∂xi

)
+
γ1
2

(
∂ui1
∂xj

+
∂uj1
∂xi

)2
, (55c)

where
P1 = ω1 + τ1, P2 = ω2 + τ2 + ω1τ1. (56)

These equations are very similar to the corresponding equations obtained by the
S expansion of the Boltzmann equation in Section K-4.9 or Section M-3.7.2.19

19(i) Equations (53)–(54c) and (56) are of the same form as Eqs (K-4.86a)–(K-4.86d) and
(K-4.8d) or Eqs. (M-3.265)–(M-3.266c) and (M-3.268). Thus, the following discussion in this
section (Section 3.1.3) applies to the two systems. Naturally, it applies to the S solution in
Section K-4.10.3.

(ii) It may be noted that the second-order velocity ui2 is not solenoidal from Eq. (55a).
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In order to compare Eqs. (53)–(54c) and the first relation of Eq. (56) with
the incompressible Navier–Stokes equations (26a)–(27), we will rewrite the latter
equations for the situation [Eqs. (46a) and (46b)] where the former equations are
derived. The starting equations are Eqs. (41)–(44b)20 and the nondimensional
form of Eq. (22), i.e.,

ε
∂ω

∂t̃
+ ui

∂ω

∂xi
= 0, (57)

instead of Eq. (45). The analysis is carried out in a similar way21 and the
equations corresponding to Eqs. (53)–(54c) are22

∂P1

∂xi
= 0, (58)

20As the internal energy e, 3RT/2 [= 3RT0(1 + τ)/2] is chosen for consistency.
21(i) For incompressible fluid, the sound speed is not well defined. Thus, the speed (2e0)1/2

defined by the internal energy e0 per unit mass is taken as the reference speed, which is
comparable to the sound speed for a perfect gas. Thus, the condition that the Mach number
is small can be replaced by the condition that the flow speed |vi|/(2e0)1/2 divided by that
reference speed is small. This is the case where the work done by the viscous force is negligible
in Eq. (26c) (see Footnote 10).

(ii) Different equation of state corresponds to different substance. Thus, various parameters
differ in different systems. However, we are interested in the difference of solutions due to
the change of the equation of state among the pressure, temperature and density (perfect gas
or incompressible). Thus, we take a state at rest (vi = 0) with pressure p0 and temperature
T0. Thus, the density ρ0 = p0/RT0 for perfect gas. We imagine the incompressible fluid
at rest with density ρ0 and the other properties (internal energy e0, viscosity µ0, thermal
conductivity λ0) of the two kinds of fluid are taken to be the same. (This is not so real
because the density differs much for gas and liquid, the latter of which is much closer to
incompressible fluid. Here, we put aside the reality for the present purpose avoiding the
similarity discussion. Incompressible fluid is not gas according to the classification of gas and
liquid.) Taking the state at rest with pressure p0 and temperature T0 as the background state
(thus, the density ρ0 = p0/RT0; this relation holds only at the background state; the relation
without subscript 0 applies only to perfect gas but not to incompressible fluid), we discuss
the behavior of two kinds of fluid for the case where (a) the typical flow velocity, say U0, is
small compared with the reference speed (2e0)1/2, i.e., U0/(2e0)1/2 � 1, and (b) the relative
variations P and τ of pressure and temperature is of the order of U0/(2e0)1/2. In the main
text, (2RT0)1/2 is used instead of (2e0)1/2[= (3RT0)1/2] to define the expansion [note the
definition ui = vi/(2RT0)1/2 and the discussion in the paragraph with Eq. (46a)].

(iii) In the preceding analysis, the equation of state, Eq. (45), is partially used in the middle
of analysis. It is already used in Eq. (54c). Thus, the results, e.g., Eq. (54c), cannot directly
be transferred to the case of incompressible fluid. The expansion, with P not related to ω and
τ , should be done independently and apply the incompressible condition when necessary. It
is much simpler to start with ωn = 0 for all n.

22(i) From Eqs. (41) and (57), we have ∂ui/∂xi = 0. Obviously, one of Eqs. (41) and (57)
can be replaced by ∂ui/∂xi = 0, but both cannot be replaced by it. Some confusion about
the incompressibility is due to the misunderstanding of the statement.

(ii) It should be noted that Eqs. (54a) and (59a) are derived from Eq. (41) under the
condition (46a) without the help of the equation of state. Incompressibility cannot be judged
by Eq. (54a) or (59a).
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∂ui1
∂xi

= 0, (59a)

∂ui1

∂t̃
+ uj1

∂ui1
∂xj

= −1

2

∂P2

∂xi
+
γ1
2

∂2ui1
∂x2j

, (59b)

3

2

∂τ1

∂t̃
+

3

2
uj1

∂τ1
∂xj

=
5

4
γ2
∂2τ1
∂x2j

, (59c)

and the equation corresponding to the first relation of Eq. (56) is obtained from
the incompressible condition (57) as23

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
= 0. (60)

Now the basic equations, the behavior of solutions of which we are going to
compare, are prepared [Eqs. (53)–(54c), and (56) for perfect gas and Eqs. (58)–(60)
for incompressible fluid]. For the comparison, the initial and boundary conditi-
ons have to be chosen commonly. The diffusion time scale being natural time
scale of the solution of the incompressible Navier–Stokes equation, this scale
solution is the subject of comparison. Incidentally, the boundary data must
be consistent with the diffusion time scale. The form of the two sets of equa-
tions requires two conditions on the initial data. That is, the initial values
of ui1 and P1 must be solenoidal and uniform respectively in the domain un-
der consideration, i.e., Eqs. (54a) and (53) for perfect gas and Eqs. (59a) and
(58) for incompressible fluid). The initial condition common to perfect gas and
incompressible fluid is determined in the following way: From the request of
incompressible fluid, the density is uniform, i.e., ω1 = 0; from common request
of uniformity of pressure, i.e., P1 = 0; on the plane ω1 = 0, the temperature
τ1 = 0 from Eq. (56) for perfect gas.24 (see also Footnote 21). Only the uniform
state with respect to density, pressure and temperature can be the common
initial condition to perfect gas and incompressible fluid. The velocity can be
chosen freely under the solenoidal condition. When comparing solutions in the
two kinds of fluid, we have to choose their initial condition that satisfies the
above condition. In this case, the time-variation of the boundary data make the
difference clear. An example of comparison of this kind is shown in K-4.10.3,
where nontrivial difference of their temperature fields are shown.25 Next, we
examine the two sets of equations (perfect gas and incompressible fluid) and
make clear the effect or mechanism that makes the time development of the two

23From the choice of the background state in Footnote 21, ω = 0 and ∂ui/∂xi = 0 or ωn = 0
and ∂uin/∂xi = 0 for any n.

24(i) On the surface ω1 = 0, the pressure P1 and temperature τ1 can be chosen freely for
incompressible fluid.

(ii) We have chosen zero for the constant values for ω1, P1, and τ1 without loss of generality.
It is a problem of choosing the background state.

25The example in Section K-4.10.3 is a simple problem with the simple boundary and the
interface. In the example, the S solution of the Boltzmann equation (note Footnote 19) and
the corresponding one of the incompressible fluid are shown. In the former, the density varies
with time, and further, the temperature field is quite different from that of the latter owing
to the time-dependent boundary condition on PS1, corresponding to P1 here.

19



sets different. Then, we discuss the process of solution (or how the solution is
constructed) for each set with its boundary condition taken into account and
show an important difference between them.

Equations (58), (59a), and (59b) are, respectively, of the same form as
Eqs. (53), (54a), and (54b). Equation (54c) is rewritten with the aid of Eqs. (53)
and (56) as

3

2

∂τ1

∂t̃
+

3

2
ui1

∂τ1
∂xi
−
(
∂ω1

∂t̃
+ ui1

∂ω1

∂xi

)
=

5

4
γ2
∂2τ1
∂x2j

. (61)

The difference of Eq. (54c) or (61) from Eq. (59c) is

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
, (62)

which vanishes for an incompressible fluid. The work W done per unit time on
unit volume of fluid by pressure, given by −p0(2RT0)1/2L−1∂(1 + P )ui/∂xi, is
transformed with the aid of Eqs. (53), (54a), and (55a) in the following way:

W

p0(2RT0)1/2L−1
= −∂(1 + P )ui

∂xi

= −∂ui1
∂xi

ε−
(
P1
∂ui1
∂xi

+ ui1
∂P1

∂xi
+
∂ui2
∂xi

)
ε2 + · · ·

= −∂ui2
∂xi

ε2 + · · ·

=

(
∂ω1

∂t̃
+ ui1

∂ω1

∂xi

)
ε2 + · · · . (63)

The work vanishes up to the order considered here for incompressible fluid,
because ∂ui/∂xi = 0 and ∂P1/∂xi = 0 [see Footnotes 22 and Eq. (58)]. That
is, Eq. (54c) differs from Eq. (59c) by the amount of the work done by pressure.
Thus, naturally, the temperature τ1 fields in the two cases are different owing
to this difference.

The variation (62) of the density ω1 along a fluid-particle path is expressed
with ui1, τ1, and P1. That is, ω1 in Eq. (62) is replaced by P1 − τ1 with the
aide of Eq. (56), and Eqs. (53) and (54c) are applied to the result successively.
Then, we have

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
=
∂P1

∂t̃
− ∂τ1

∂t̃
− ui1

∂τ1
∂xi

=
3

5

∂P1

∂t̃
− 1

2
γ2
∂2τ1
∂x2j

. (64)

Therefore, the density ω1 generally varies along a fluid-particle path.
Here, we will explain the process of solution (how the solution is determined

from the basic equations and boundary condition) for the two systems (perfect
gas and incompressible fluid). In the two systems, the difference is the energy
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equation among the conservation equations [Eqs. (53)–(54c) and Eqs. (58)–(59c)]
and the equation of state [Eqs. (56) and (60)].26 When the pressure P1 is in-
dependent of t̃, the difference of the energy equations (54c) and (59c) in the
two systems is the ratio of the convection term to the heat-conduction term.
That is, the heat-conduction term is of the same form, but the convection term
differs only by numerical factor (5/2 and 3/2). Thus, we can say the difference
is the convection term by the ratio (5 : 3) or the thermal conductivity by the
ratio (3 : 5). The source of this difference is due to the work done by pres-
sure in perfect gas. The pressure P1 being constant, the variation of the flow
along a fluid particle path takes place under constant pressure during its mo-
tion, and the work done by pressure can be incorporated into the variation of
enthalpy defined by e + p/ρ, which is equal to 5RT/2 for perfect gas.27 Thus,
the change during the motion is expressed by the variation of the enthalpy.
That is, the energy equation expresses that the enthalpy variation along a fluid
particle path is equal to the energy supplied by heat conduction. On the other
hands, when P1 depends on t̃, the variation along a fluid particle path is neither
under constant pressure nor under constant volume, and thus, the extra term
∂P1/∂t̃ enters Eq. (54c) in addition to the above difference of the coefficients.
To find the solution, the boundary condition is required, which depends on the
kind of the boundary. The present discussion is for the Navier–Stokes system
apart from the kinetic theory except that sizes of viscosity and thermal con-
ductivity compared with the parameter ε are borrowed from its result. The
boundary condition is the one used in the Navier–Stokes system. That is, we
take the non-slip condition [Eq. (K-4.61a) and (K-4.61b) or Eq. (M-3.113a) and
(M-3.113b)] on the simple boundary and the leading-order result of the kinetic
theory [Eq. (K-4.68a) and Eq. (K-4.68c) or Eq. (M-3.119a) and Eq. (M-3.119c)]
on the interface.28 The same boundary condition is used for incompressible
fluid. The process of solution of a similar system, the S solution in Chapter K-4
or Section M-3.2, is given in Section MS-3.1.1 for the simple boundary. This
discussion applies to the present case.

In an unbounded domain where the pressure at infinity is imposed, P1(t̃) is
determined, but in a bounded domain with the simple boundary, it is undeter-
mined. According to the process in Section MS-3.1.1, the velocity field ui1 is
determined, which is independent of P1, for the simple boundary. On the other

26The difference of the equation of state is often treated carelessly. Equation (54a) or (59a)
is mistaken to be incompressible condition with discarding Eqs. (56) and (60).

27(i) The factor 5R/2 is the heat capacity at constant pressure for perfect gas.
(ii) In incompressible fluid, the pressure produces no work as noted just after Eq. (63).

28(i) The formulas for the interface is the leading-order result of S expansion of kinetic
theory analysis. The non-slip condition is also confirmed by it.

(ii) The formulas quoted above are derived for time-independent problems. The results are
shown to be applicable to the time-dependent problem with the time scale under discussion
in Section M-3.7.3.

(iii) In the formulas in the two books, the subscript S is to be neglected. The subscript 1
showing the order is extended to 2,· · · . The formulas with subscript K is to be discarded.

(iv) Keeping the fundamental form of the condition on the interface, we generalize the
formula formulas allowing the coefficients, C∗

4 and d∗4, to be functions of position and time,
and the discussion is made under the generalized boundary condition.
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hand, when the boundary is the interface or a part of it is the interface, P1 is
determined by the boundary condition, as shown in Footnote 29 below, owing to
the presence of P1 in the boundary condition on ui1ni.

29 From P1 determined,
the boundary value of ui1ni on the interface is determined by one of the relations
in Eq. (K-4.68c) or Eq. (M-3.119c). From ui1ni just determined, the boundary
value of τ1 on the interface is determined by another relation in Eq. (K-4.68c)
or Eq. (M-3.119c).30 Thus, all kinds of boundary data are prepared. The velo-
city field ui1 is determined under the boundary data just obtained as in Section
MS-3.1.1 with the aid of Footnote 31 below.31 Then, we can determine the

29(i) For the case of the interface, P (t̃) enters the boundary condition on the velocity normal
to the boundary. On the other hand, the integral of ui1ni over the boundary vanishes owing
to Eq. (54a), i.e., ∫

S
ui1nidS = −

∫
V

∂ui1

∂xi
dx = 0.

This determines the relation of P1 and the integral of the boundary data Pw1, i.e.

P1(t̃)

∫
S

(1/C∗
4 )dS −

∫
S

(Pw1/C
∗
4 )dS =

∫
S
ui1nidS,= 0.

Thus,

P1(t̃) =

∫
S(Pw1/C∗

4 )dS∫
S(1/C∗

4 )dS
,

where S is the surface of the boundary [see Eq. (K-4.68c) or Eq. (M-3.119c)]. It is noted
that C∗

4 is a constant in the formula by the kinetic theory where the complete condensation
boundary is considered. Here, C∗

4 is allowed to be a given function of xi and t to express more
general condition of the interface (0 < −1/C∗

4 ≤ cM1; cM1 : const). Thus, P1 is determined.
With this P1(t̃), the boundary data of ui1ni is specified by Eq. (K-4.68c) or Eq. (M-3.119c).
Thus, the boundary value of ui1 is given by this ui1ni and Eq. (K-4.68a) or (M-3.119a).

(ii) When the boundary consists of the two kinds of boundaries, By the same reason, the
integral ui1ni over the boundary vanishes, which is divided into the contributions of the two
kinds of boundaries. That is, ∫

SS

ui1nidS +

∫
SI

ui1nidS = 0,

where SS and SI indicate, respectively, the simple boundary and the interface. The first
integral vanishes because ui1ni = 0 on the simple boundary. Thus, the second integral also
vanishes. Then, similarly to note (i), we have

P1(t̃) =

∫
SI

(Pw1/C∗
4 )dS∫

SI
(1/C∗

4 )dS
.

Thus, P1(t̃) is determined, from which ui1ni on the interface is given by Eq. (K-4.68c) or
Eq. (M-3.119c). With this data, the boundary value of ui1 is specified on the interface.
Together with the condition on the simple boundary, the boundary value of ui1 is determined.

30The constant d∗4 in the formula is allowed to be a given function of xi and t as C∗
4 is

allowed to be so in Footnote 29 (0 < −d∗4 ≤ cM2; cM2 : const).
31In the process solving the velocity field uiS1 in the simple boundary problem in Section

MS-3.1.1, PS2 is required to satisfy the relation

∂2PS2

∂x2i
= −2

∂ujS1

∂xi

∂uiS1

∂xj
,

in order to ensure the subsequent (or future) solenoidal condition of uiS1. According to
Section MS-3.1.1, to determine the boundary value of ni∂PS2/∂xi, the time-derivative of
the boundary data of uiS1ni is required (uiS1 and PS2 corresponds to ui1 and P2 here). It
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temperature τ1 from Eq. (54c) except for the bounded domain with the simple
boundary. With the determined P1 and τ1, the density ω1 is determined as

ω1 = P1 − τ1, (65)

by the first relation of Eq. (56).
In the exceptional case, Eq. (54c) contains two unknown functions τ1 and

P1. We need another condition to determine τ1 and P1. When the temperature
of the boundary is time-dependent and nonuniform, so is the solution τ1 in the
domain, irrespective of ∂P1/∂t̃ . The density ω1 is given by P1 − τ1, which is
time-dependent and nonuniform and includes undetermined P1. In a bounded
domain of the simple boundary, the mass of the fluid in the domain is invariant.
This has to be confirmed.32 The condition that the mass in the domain V is
invariant is given by

d

dt̃

∫
V

ω1dx =
dP1(t̃)

dt̃
V − d

dt̃

∫
V

τ1dx = 0, (66)

where V also indicates its volume. On the other hand, the integral form of
Eq. (54c) is

dP1(t̃)

dt̃
V − 5

2

d

dt̃

∫
V

τ1dx =

∫
V

(
5

2
ui1

∂τ1
∂xi
− 5

4
γ2
∂2τ1
∂x2j

)
dx. (67)

vanishes because uiS1ni = 0 on the simple boundary. In the interface problem, the boundary
value of ui1ni is given by the condition (K-4.68c) or (M-3.119c) and expressed with known
data P1(t̃) and Pw1 [see Footnote 29 (i)]. Thus, ∂ui1ni/∂t̃ on the interface is known. This is
used in constructing the boundary data ni∂P2/∂xi as explained in Section MS-3.1.1. Thus,
P2 is determined with an arbitrary additive function f2(t̃) of t̃. For the combined boundary
in (ii) of Footnote 29, we can obtain P2 by the combination of ni∂P2/∂xi of the two kinds of
boundaries, with an arbitrary additive function of t̃. From P2 thus obtained, we can obtain
the solution ui1 of Eq (54b) with the boundary condition on ui1 for the cases (i) and (ii) of
Footnote 29 in the same way as Section MS-3.1.1. This ui1 satisfies the solenoidal condition
in subsequent t̃. The additive function in P2 does not influence the solution ui1.

32(i) It has been made clear by the analysis up to now that the condition ui1ni = 0 on
the boundary does not guarantee that mass flow in the diffusion time scale t̃ = O(1) or
t = O[L/(2RT0)1/2ε] is negligible compared with the quantity of O(ε) under concern.

(ii) Here, the order of variation of density by inflow to or outflow from a volume O(L3)
by the higher-order velocity (2RT0)1/2ε2 in time L/(2RT0)1/2ε is estimated. The inflow or
outflow of the mass of fluid over the surface O(L2) of the volume during the time is of the
order of ρ0 × (2RT0)1/2ε2 ×L/(2RT0)1/2ε×L2, which is ρ0εL3. Thus, the density varies by
the order of ρ0ε, which is of the same order as the term ω1 of the expansion of ρ in ε.

(iii) The flow ui2 in the preceding note (ii) is not obtained at the present step of analysis,
but the mass conservation condition d

∫
V ω1dx/dt̃ = 0 in volume V , which is weaker than the

simple boundary condition uini = 0, determines dP1/dt̃ or future P1 as will be shown in the
main text. Then, from the integral of Eq, (55a) over V , we obtain∫

S
ui2nidS = 0,

with the aid of ui1ni = 0 on S, ∂ui1/∂xi = 0, and the mass conservation condition, This
condition is required to obtain the solution of Eqs. (55a)–(56) satisfying the condition ui2ni =
0 on the simple boundary. A similar structure is repeated in higher-order analysis.
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From these two equations, the equation for P1 is obtained as

dP1(t̃)

dt̃
= − 5

3V

∫
V

(
ui1

∂τ1
∂xi
− 1

2
γ2
∂2τ1
∂x2j

)
dx. (68)

From two equations (54c) and (68), The temperature τ(xi, t̃) and the pressure
P1(t̃) are determined. Then, ω1 is determined by Eq. (65). Thus, we have
obtained the required information for perfect gas, up to the order of ε under
concern.

At the final stage of the discussion of the process of solution, we briefly
describe the process for incompressible fluid, where ω = 0. The process up
to the step to obtain the velocity ui1 is the same as for perfect gas. That is,
the velocity field ui1 is determined independently of undetermined P1(t̃) for a
bounded domain with the simple boundary. In the other cases, the velocity
field ui1 is determined together with P1(t̃). The energy equation (59c) contains
only τ1 and determined ui1 without P1(t̃) term. It is similar to the equation
for perfect gas with difference of numerical coefficient and the absence of P1(t̃)
term. Thus, the solution τ1 is determined. The pressure P1(t̃), however, is left
undetermined for a bounded domain with the simple boundary. This situation
corresponds to the situation described in Section MS-3.2.3. Obviously, the mass
is invariant in a bounded domain because the density is invariant, which does
not work to determine P1(t̃). This ambiguity is due to the combination of the
two limiting characters of the incompressible fluid and the simple boundary.33

33Incompressible fluid is the extreme (or limiting) case of fluid very hard to compress.
Suppose that the equation of state is given by

ω =

(
P − τ
1 + τ

)2m+1

(m = 0, 1, 2, · · · ), (†1)

where m = 0 corresponds to perfect gas. Then,

ωn = 0 for n ≤ 2m, (†2a)

ω2m+1 = (P1 − τ1)2m+1. (†2b)

The equation of state (†1) is reduced to incompressible fluid in the limit m → ∞ because
ω = 0 in the limit irrespective of the perturbations P and τ of the order of ε. For m ≥ 1 (fluid
hard to compress; harder for larger m), the conservation equations are the same as those for
incompressible fluid up to n = 2m, That is, Eqs. (58)–(59c), where the contribution of work
done by pressure is absent, apply to fluid hard to compress commonly. In a bounded domain
with the simple boundary, the velocity ui1 and temperature τ1 are determined irrespective
of P1, but P1 cannot be specified within the above set of equations, and the mass in V is
invariant up to the level ω2m. The undetermined pressure P1 is determined by Eq. (†2b) and
the mass conservation at the level ω2m+1 in the volume V, i.e., d

∫
V ω2m;+1dx/dt̃ = 0. From

them, we obtain the condition∫
V

(P1 − τ1)2m
(

dP1

dt̃
−
∂τ1

∂t̃

)
dx = 0.

With the aid of Eq. (59c),

dP1

dt̃
=

∫
V

(P1 − τ1)2m
(
−ui1

∂τ1

∂xi
+

5

6
γ2
∂2τ1

∂x2i

)
dx

/∫
V

(P1 − τ1)2mdx , (†3)
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To summarize, the mass and momentum equations (54a) and (54b) of the
set derived from the compressible Navier–Stokes set [Eqs. (41)–(44b) and (45)]
under the situation given by Eqs. (46a) and (46b) with small ε are of the same
form as the corresponding equations (59a) and (59b) of the set derived from
the incompressible Navier–Stokes set [Eqs. (41)–(44b) and (57)], but the energy
equations (54c) and (59c) of the two sets differ by the work done by pressure.
The density ω1 obtained from ui1, τ1, and P1 by the first relation of Eq. (56)
does not generally satisfy the incompressible condition (60). Both the density
and temperature fields (ω1, τ1) are different in the two sets. The variation of
the density ω1 along a fluid-particle path is given by Eq. (64). Even if the
temperature τ1 varies according to Eq. (59c), the density ω1 determined by
Eq. (64) does not generally satisfy the incompressible condition. Further, the
two systems have a decisive difference in bounded domain problems with the
simple boundary. That is, the pressure P1 is undetermined in the incompressible
fluid system, but no such ambiguity exists in the perfect gas system, where the
pressure P1 is determined.

Finally, it may be repeated that under the situation (46a), the solenoidal
condition for ui1, i.e., Eq. (54a) or (59a), is derived only from the mass con-
servation equation (41) without the help of the equation of state [perfect gas
condition (45) or the incompressible condition (57)]. That is, the mass conserva-

where dP1/dt̃ is expressed with the data of the present state (ui1, τ1, P1). Thus, the future
P1, thus (ui1, τ1, P1), is determined. In incompressible fluid, the limit m→∞ is taken first.
After the limit m → ∞, the number n showing the level of expansion of the solution in ε is
smaller than 2m + 1 (=∞), and therefore ωn = 0 for any n, and P1 remains undetermined.
This is the ambiguity mentioned in Section MS-3.2.3.

To summarize, for any finite positive m (≥ 1), the solution (ui1, τ1, P1) in a bounded domain
with the simple boundary is determined by the conservation equations (58)–(59c) with the
mass conservation condition (†3) in V , and the velocity ui1 and temperature τ1 are the same
as those of incompressible fluid. This solution is distinct from the solution for perfect gas
because the work done by pressure is absent in the energy equation (59c). The solution for
incompressible fluid is different from both the solutions, perfect gas (m = 0) or fluid hard to
compress (m ≥ 1), on the point of the ambiguity of P1. The solution for perfect gas is totally
different from the solution for incompressible fluid. The solution for fluid hard to compress
partially agrees with the solution for incompressible fluid. In this sense, the solution hard to
compress is on the side of incompressible fluid. The incompressible condition is too strongly
simplified to approximate the solution for fluid hard to compress (note that any fluid is not
exactly incompressible). It sacrifices the determinacy of P1, which is the qualitative difference
from perfect gas and fluid hard to coompress.

This kind of situation is often seen when some small parameter is approximated by its
extreme value. Here, we have two parameters taken to their limits first (incompressible fluid
and the simple boundary, the latter of which can be taken, for example, as the limiting case
with the coefficient 1/C∗

4 in the interface condition being taken to zero). Another well-known
example is the approximation of fluid with small viscosity (Navier–Stokes equation with large
Reynolds number) by ideal fluid (Euler equation). The ghost effect of infinitesimal curvature
in References [8]–[10] and Section MS-7.3 (see also Chapter M-9 and Section MS-7.2) is another
aspect of this kind of behavior, where we see that a plane wall or straight pipe is too strong
simplification (any plane wall or straight pipe to be discussed is not exactly so). The ghost
effect of infinitesimal curvature is shown by analysis with the limiting processes as above taken
into consideration.

From the above discussion, it is clear that the two systems under consideration (perfect gas
and incompressible fluid) are distinct.
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tion equation at the level of O(ε) are common to perfect gas and incompressible
fluid, i.e.,

∂ui1
∂xi

= 0, (69)

but the equation of state is different for the two kinds of fluid, i.e.,

ω1 = P1 − τ1 (perfect gas), (70a)

ω1 = 0 (incompressible fluid). (70b)

The solenoidal condition (54a) or (59a), i.e., ∂ui1/∂xi = 0, does not guarantee
the invariance of the density ω1 in the diffusion time scale t̃ = O(1) (see Footnote
32).34

3.1.4 Equations derived from the compressible Euler set when the
Mach number and the temperature variation are small

Take the Euler set of equations for a monatomic gas, which is derived from the
Boltzmann equation in the limit k → 0 (see Section M-3.71). Its nondimensional
form with the notation (K-2.36) is given as follows [see Eqs. (M-3.250a)–(M-
3.250c) and the equation of state]:

∂ρ̂

∂t̂
+
∂ρ̂v̂j
∂xj

= 0, (71a)

∂ρ̂v̂i

∂t̂
+
∂ρ̂v̂j v̂i
∂xj

+
1

2

∂p̂

∂xi
= 0, (71b)

∂

∂t̂

[
ρ̂

(
v̂2i +

3

2
T̂

)]
+

∂

∂xj

[
ρ̂v̂j

(
v̂2i +

5

2
T̂

)]
= 0, (71c)

p̂ = ρ̂T̂ , (71d)

where Strouhal number Sh is taken to be unity without loss of generality. We
consider the situation where the state of the gas deviates slightly from a uniform
equilibrium state at rest. That is,

ρ̂ = 1 + ω̂, p̂ = 1 + P̂ , T = 1 + τ̂ , v̂i = ûi, (72)

where the perturbed quantities ω̂, P̂ , τ̂ , and ûi are small, say of the order of ε.
They are expanded as

ĥ = ĥ1ε+ ĥ2ε
2 + · · · , (73)

34Note the size ε of the variation of quantities, the diffusion time-scale [L/(2RT0)1/2ε] under
consideration, and the nonlinearity in the mass conservation equation (41). Owing to these
situations, the density variation, i.e,

∂ω1

∂t̃
+ ui1

∂ω1

∂xi
,

along the fluid particle path is obtained from ui, τ1, and P1, and is generally finite (6= 0),
affecting ∂ui2/∂xi in Eq. (55a).
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where ĥ = ω̂, P̂ , τ̂ , or ûi.
We discuss the two cases with different time scale. The first case is

∂ĥ

∂t̂
= O(ĥ). (74)

Substituting the expansions (73) of the variables ω̂, P̂ , τ̂ , and ûi into the Eu-
ler equations (71a)–(71d) and arranging the same-order terms with Eq. (74) in
mind, we find that the leading-order variables are governed by the following set
of equations:

∂ω̂1

∂t̂
+
∂ûj1
∂xj

= 0, (75a)

∂ûi1

∂t̂
+

1

2

∂P̂1

∂xi
= 0, (75b)

∂P̂1

∂t̂
+

5

3

∂ûj
∂xj

= 0, (75c)

P̂1 = ω̂1 + τ̂1. (75d)

This set is the well-known acoustic equations, which are explained in a standard
textbook of gas dynamics, e.g., K-Liepmann & Roshko [1957].

The second case is the case where the variables are slowly varying or the
time scale of variation of the variables is long and of the order 1/ε :

∂ĥ

∂t̂
= εO(ĥ). (76)

Here, we introduce the shrunk time t̂ε:

t̂ε = εt̂. (77)

Then,

∂ĥ

∂t̂ε
= O(ĥ). (78)

Substituting the expansion (73) of the variables ω̂, P̂ , τ̂ , and ûi into the Eu-
ler equations (71a)–(71d) and arranging the same-order terms with Eq. (78) in
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mind, we obtain the equations that determine the leading-order variables as35

∂P̂1

∂xi
= 0, (79a)

∂ûj1
∂xj

= 0, (79b)

∂ûi1

∂t̂ε
+ ûj1

∂ûi1
∂xj

+
1

2

∂P̂2

∂xi
= 0, (79c)

5

2

∂τ̂1

∂t̂ε
− ∂P̂1

∂t̂ε
+

5

2
ûj1

∂τ̂1
∂xj

= 0, (79d)

P̂1 = ω̂1 + τ̂1. (79e)

From Eq. (79a), P̂1 is a function of t̂ε only, and thus is determined by the
boundary condition.36 The relation

∂P̂1

∂t̂ε
=
∂P̂1

∂t̂ε
+ ûj1

∂P̂1

∂xj
, (80)

obvious from Eq. (79a), is conveniently used in the following discussion. The
energy equation (79d) is transformed as

3

2

(
∂τ̂1

∂t̂ε
+ ûj1

∂τ̂1
∂xj

)
− ∂ω̂1

∂t̂ε
− ûj1

∂ω̂1

∂xj
= 0, (81)

by using Eqs. (79e) and (80) for ∂P̂1/∂t̂ε. From Eqs. (81) and (79e), the variation
of ω̂1 along the fluid-particle path is expressed as follows:

∂ω̂1

∂t̂ε
+ ûj1

∂ω̂1

∂xj
=

3

5

(
∂P̂1

∂t̂ε
+ ûj1

∂P̂1

∂xj

)
=

3

5

dP̂1

dt̂ε
. (82)

Equations (81) and (82) are the linearized forms of the isentropic variations of
ω̂1 versus τ̂1 and P̂1 along the fluid-particle path. The energy equation (81) is
conveniently compared with the energy equation of incompressible fluid. For
the latter, the last two terms are absent and the temperature is invariant along
the fluid-particle path. The difference is the work done by pressure, which can
be shown as is done in Section 3.1.3.

The behavior of the gas governed by Eqs. (79a)–(79e) is summarized as fol-
lows:
(1): Equations (79b) and (79c) for the velocity field are of the same form as
those of incompressible fluid.

35Under the assumptions (72) and (76) or (78), the solenoidal condition (79b) for ûi1 is
derived solely from the mass conservation equation (71a). It should not be confused with the
incompressible condition.

36For example, the pressure is specified at infinity in an unbounded problem.
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(2): Depending on the condition of the boundary, P̂1 can be time dependent or
independent. (i) If P̂1 is time dependent, the density ω̂1 varies along the fluid-
particle path owing to Eq. (82). (ii) If P̂1 is time independent, the temperature τ̂1
and the density ω̂1 are invariant along the fluid-particle path owing to Eqs. (79d)
and (82).

(Section 3.1.4: Version 4-00)

4 Appendix K-A

4.1 Boundary condition for Euler equations

In Appendix K-A.10, we discussed the boundary condition for the linearized
Euler equations for simple examples. Related discussion is given in Section
3.1.2 in this notes.

5 Appendix K-C

5.1 Numerical procedure for discrete ξi and η (Supple-
ment to Sections K-C.2 and K-C.3)

In Appendix K-C, a numerical method of solution of conservation equations, e.g.,
fluid-dynamic equations, by a kinetic equation is discussed. As noted there, the
range of the variables ξi and η may be a set of discrete points. Obviously, the
integrals with respect to ξi and η in the discussion in Section K-C.2 are taken
to be the summation over the discrete points because the velocity distribution
function f is the collection of delta functions of ξi and η with their center at
the discrete points. To solve the conservation equations by kinetic-equation
approach, a finite number of discrete ξi’s and η’s are sufficient. The number
depends on the size of the conservation equations. Here, we will describe the
procedure of solution of conservation equations by a kinetic equation with the
formulas expressed in discrete ξi and η.

The Navier–Stokes equations (K-C.34a)–(K-C.34c) are taken as an example.
In this case, r = 0, 1, . . . , 4, i or j = 1, 2, 3, and γr’s are chosen as

γ0 = 1, γi = ξi, γ4 = ξ2i + (α− 3)η2, (83)

where α ≥ 3 is a constant.37 From the Navier–Stokes equations (K-C.34a)–(K-
C.34c), we can identify ρr and Ĥr

i as follows:

ρ0 = ρ, (84a)

ρi = ρui, (84b)

ρ4 = ρ(u2j + 2e), (84c)

37The constant α is the freedom of a molecule of the gas under consideration. For a mona-
tomic gas without internal degree of freedom, α = 3.
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Ĥ0
i = ρui, (85a)

Ĥj
i = ρuiuj + pij , (85b)

Ĥ4
i = ρui(u

2
j + 2e) + 2ujpij + 2qi, (85c)

where

e =
αRT

2
, (86a)

p = ρRT, (86b)

pij = pδij − µ
(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− µB

∂uk
∂xk

δij , (86c)

qi = −λ ∂T
∂xi

. (86d)

The velocity distribution function f (m,n) of Chapman–Enskog type that gives
a given set (ρr, Ĥ

r
i ) is obtained by the following simultaneous linear algebraic

equations, which correspond to Eqs. (K-C.1) and (K–C.5):38∑
m,n

f (m,n) = ρ0, (87a)

∑
m,n

ξ
(m)
i f (m,n) = ρi, (87b)

∑
m,n

[(ξ
(m)
i )2 + (α− 3)(η(n))2]f (m,n) = ρ4, (87c)

∑
m,n

ξ
(m)
i ξ

(m)
j f (m,n) = Ĥj

i (j ≤ i), (87d)

∑
m,n

ξ
(m)
i [(ξ

(m)
j )2 + (α− 3)(η(n))2]f (m,n) = Ĥ4

i . (87e)

The set of points (ξ
(m)
i , η(n))’s has to be chosen in the way that the determinant

formed with the coefficients of f (m,n) does not vanish and that the number of
the points is 14 [5 for ρr, 6 for Ĥj

i (j ≤ i), and 3 for Ĥ4
i ] in the present case.39

If one chooses more points for one’s convenience, one should impose some extra
conditions to make f (m,n) unique.40

Once the way to determine the velocity distribution function f (m,n) of the
Chapman–Enskog type is fixed, we can proceed to the next procedure described

38Note that the relation between ρi and f (m,n) and that between Ĥ0
i and f (m,n) are the

same. That is, these relations are commonly expressed by Eq. (87b).
39i) When the determinant vanishes, we cannot obtain the solution for arbitrary data on

the right-hand side.
ii) In the case of α = 3 (monatomic gas), the left-hand side of Eq. (87c) is derived from

Eq. (87d) with i = j. The right-hand side of Eq. (87c) is obtained in the same way because
the bulk viscosity vanishes (µB = 0) for a monatomic gas. Thus, Eq. (87c) is unnecessary in
the analysis.

40Sometimes, it is convenient to choose more (ξ(m), η(n)) than required to avoid awkward
distribution f (m,n).
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in Section K-C.3. That is, (i) for given initial data ρr, ui and T , compute Ĥr
i by

Eqs. (85b)–(86d); (ii) construct the corresponding velocity distribution function
f (m,n) of Chapman–Enskog type by Eqs. (87a)–(87e); (iii) determine the solution
of the free-molecular equation (K-C.35) at the next time step with the velocity
distribution function constructed in the step (ii) as the initial condition; (iv)
compute ρr from the resulting velocity distribution function by Eqs (87a)–(87c);
(v) return to the step (i) and repeat the process. Then, we can obtain the
solution of the Navier–Stokes equations (K-C.34a)–(K-C.34c).

To determine the solution of the free-molecular equation in the step (iii)
of the preceding paragraph, we need the boundary condition compatible with
the solution of Chapman–Enskog type. For the Navier–Stokes equations, ui
and T are generally specified on the boundary of bodies, but ρ is not specified.
The boundary value of ρ is determined with ρ and ui at the previous time
step by Eq. (K-C.34a). Then, we know the boundary data ρr. Together with
the ρ, ui, and T inside gas obtained by the free-molecular solution starting
at the preceding time step, we can determine the boundary data of Ĥr

i by
Eqs. (85b)–(86d). Then, the boundary data f (m,n) compatible with the solution
of Chapman–Enskog type are determined by Eqs. (87a)–(87e).

In the process of solution of the free-molecular equation (K-C.35) by a finite
difference method, one can make use of a simplifying process introduced in
the lattice-Boltzmann-equation approach. Then, the step (iii) in the above
procedure is simplified. Let X be a lattice point in xi space, and let ∆t be the
time step of computation. We arrange the lattice points

∑
X ′s and ξ(m)′s in

such a way thatX+ξ(m)∆t is also some lattice point in xi. Then, f (m,n) at t+∆t
is obtained by shifting f (m,n) at t among the lattice points X’s. For example,
take rectangular lattices for xi, where the lattice points X’s are expressed as
X = (m1,m2,m3)∆x with mi being an integer (0,±1, 2, · · · ). Then, we choose

ξ(m) = (k1, k2, k3)∆x/∆t , where ki is, for example, ki = 0,±1. Then,

f(mi∆x, kiξ, t+ ∆t) = f((mi − ki)∆x, kiξ, t),

where ξ =∆x/∆t.41 With the above choice of ξ(m), (mi − ki)∆x is a lattice
point of xi or X. Other examples of the lattice point system are found, for
example, in Qian, Succi & Orszag [1995].

In Section K-C.3, we discussed the process and validity of solving the con-
servation equations, or the validity of the procedure of solution given in this
section, by making use of the free molecule equation on the basis of the discus-
sion in Section K-C.2. In this discussion, we implicitly assumed the stability
of solution of Eq. (K-C.6) with Eq. (K-C.7). Further, it is also assumed that
|Ĥr

i (ρr,∇ρr)−Ĥr
i (ρcr,∇ρcr)| = O((∆t)2) for Ĥr

i at the step (i) after step (iv)
(or at time t + ∆t) when |ρr − ρcr| = O((∆t)2) [Eq. (K-C.40)] for the present
Navier–Stokes equations.42 More rigorously, the condition about the size used

41The appropriate lattice ratio of ∆x and ∆t (thus, ξ) depends on the conservation equations
(i.e., the Navier–Stokes equations) under consideration.

42This assumption corresponds to the assumption on the space variation of ρr and ρcr. For
the Euler equations, this assumption is not required because the space-derivative terms are
absent in Ĥr

i .
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in the discussions in Section K-C.3 should be uniformly bounded in some neig-
hborhood of the solution of Eq. (K-C.6). The conditions are mainly determined
by the property of solution of the Navier–Stokes equations [generally, Eqs (K-
C.12) and (K-C.13)]. Some examples of the numerical computation of the Na-
vier–Stokes equations by the present method are carried out by Kataoka [private
communication].

(Section 5.1: Version 3-00)
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