
Verifying Fault Release Control of Power System
via Hybrid System Reachability

Yoshihiko Susuki
Kyoto University

Department of Electrical Engineering
Katsura, Nishikyo, Kyoto 615–8510

JAPAN
susuki@ieee.org

Takuya Sakiyama
Takashi Ochi
Takuji Uemura

Kansai Electric Power Co., Inc.
Power Engineering R&D Center

Nakoji, Amagasaki, Hyogo 661–0974
JAPAN

Takashi Hikihara
Kyoto University

Department of Electrical Engineering
Katsura, Nishikyo, Kyoto 615–8510

JAPAN

Abstract—Hybrid system reachability is applied to verification
of fault release control in a power system. Fault release control
is one strategy in emergency control and aims to mitigate an
electrical stress of power system caused by disturbances. We
introduce practical data in a fault release control of double
machine-infinite bus (DMIB) system. The data is obtained using
the RTDS and describes that the control is effective for prevention
of transient instability in the DMIB system. By modeling of
swing dynamics of the DMIB system as a hybrid automaton and
reachability analysis of the automaton, we show that the control
is correct for the prevention of transient instability.

I. INTRODUCTION

Power system is a safety-critical engineered system supply-
ing electrical energy. The malfunction of power system causes
damage to human activity, and this was proved in fact by the
2003 blackouts in North America and Europe. Verification of
power system [1] is then needed for guaranteeing its stability
and reliability. Many current problems of power systems are
formulated as verification ones. Examples are occurrence of
cascading outages and blackouts, penetration of distributed
power sources, and development of electricity markets.

We proposed in [2], [3] to use hybrid system reachability
for stability analysis of power systems. Hybrid systems are
dynamical systems interacting with continuous- and discrete-
valued states [4]. Hybrid system reachability is widely used for
verification of safety properties of system whose behaviors are
represented by a mathematical model of hybrid system [5], [6],
[7]. Power system dynamics and control contain hybrid nature
[8], [9], [10], implying that they are regarded as dynamic
interaction between continuous behaviors of frequency or
voltage and discrete controls such as protective relay operation.
It is therefore said that power system control is a typical
application of safety verification for hybrid systems [1]. The
method proposed in [2], [3] consists of two procedures: (A)
modeling of power system dynamics using hybrid automaton
[11] and (B) reachability analysis of the automaton.

The purpose of this paper is to apply hybrid system reacha-
bility to verification of fault release control in a power system.
Fault release control is one strategy in emergency control and
aims to mitigate an electrical stress of power system caused
by disturbances. The control is implemented by discontinuous

change of power system topology and is hence regarded as a
hybrid control. We introduce practical data in a fault release
control of double machine-infinite bus (DMIB) system. The
data is obtained using the RTDS (Real Time Digital Simulator)
and shows that the control is effective for prevention of
transient instability in the DMIB system. We next model
as a hybrid automaton the interaction of coupled swings in
two generators and of fault release control. By reachability
analysis of the automaton, we show that the fault release
control is correct for the prevention of transient instability.
The contribution of this paper is to show that hybrid system
reachability is applicable to verification of fault release control.
Preliminary discussions were reported in [12], [13], [14].

II. HYBRID SYSTEM REACHABILITY

There are many papers about theory of modeling, analysis,
and control of hybrid systems. This section presents only two
concepts on hybrid systems theory: hybrid automaton and its
reachability. The contents below are based on [15].

A. Hybrid Automaton

Hybrid automaton is a well-known mathematical model of
hybrid systems, and it has been analyzed theoretically and used
in various applications. A form of hybrid automaton, denoted
by H, is given by

H = (Q, X, U, f,Dom,G, r), (1)

with

• Q is a finite set of discrete states. X is a set of continuous
states. A pair (q, x) ∈ Q × X is the state of H;

• U = (UC, UD) is a set of continuous and discrete inputs;
• f : Q × X × UC → TX is a function which describes

continuous dynamics (vector field). TX is the tangent
bundle of X;

• Dom : Q × UD → P (X) is a domain of continuous
dynamics and describes a subset of X within which
continuous dynamics are permitted. P (X) is the power
set of X;



Fig. 1. Double machine-infinite bus system

• G : Q × Q × UD → P (X) is called guard condition
for discrete transition and describes transition relations
of discrete states;

• r : Q × Q × X × U → X is called reset function
and describes changes of continuous states at discrete
transition.

Trajectories of H evolve continuously as well as in discrete
jumps. Mathematical descriptions of trajectories and semantics
of H are presented in [7] and references therein. UC is not used
in this paper.

B. Reachability

Reachability analysis of H seeks to determine whether
trajectories of H can reach a subset of states, denoted by
target set T , from a subset of initial states, denoted by
I . Reachability analysis is used for verification of safety
properties of system whose behaviors are modeled by H. T
is then fixed as a subset of states that describe undesirable or
unsafe behaviors of the system, called unsafe set. There are
two types of analysis. Forward reachability starts with states
in I and follows trajectories forward in time. If any of forward
trajectories intersect with T , the system is unsafe. Backward
reachability starts with states in T and follows trajectories
backward in time. If any of backward trajectories intersects
with I , the system is unsafe. The set of forward (or backward)
trajectories are called forward (or backward) reach set1.

III. NUMERICAL EXPERIMENT OF FAULT RELEASE
CONTROL

This section introduces practical data of a fault release
control of double machine-infinite bus (DMIB) system. From
the data we formulate one verification problem of fault release
control. This problem is solved in Sec. IV using hybrid system
reachability.

A. System Model and Protection Control

The DMIB system is shown in Fig. 1 and consists of
two synchronous generators, infinite bus, ac transmission
network, loads, relays, and circuit breakers. Two synchronous

1Forward (or backward) reach set coincides with forward (or backward)
reach tube in [15].

generators, denoted by G1 and G2, are coupled via the ac
transmission network. Arrows in the figure denote constant
impedance loads. The DMIB system has the three protection
systems, each of which consists of relay and circuit breaker.
Two of them are equipped with G1 and G2, and the other is
equipped with line 5. Control mechanisms for the protection
systems are as follows:

• Generation trip: The protection system with generators
consists of the impedance-type relay and circuit breaker,
and aims to remove G1 and G2 from the ac transmission
network when they start to show transient instability.
The operation is based on complex net impedance of
the network measured from each generator bus. The
breaker trips to remove generators from the network if
the net impedance passes the imaginary axis from right
domain of complex plane to left. The protection system
is regarded as a controller with single continuous-valued
input, namely, the net impedance, and single discrete-
valued output.

• Fault release: The protection system with line 5 is for
fault release control and aims to mitigate an electrical
stress caused by disturbances. The circuit breaker with the
protection system trips to disconnect the line a prescribed
period (normally, a few cycles) after either generator is
removed by the above protection system. That is, the
onset of line disconnection depends on that of generation
trip. The protection system is also regarded as a controller
with single discrete-valued output. Sec IV fixes a more
specified objective of the fault release control in order to
use hybrid system reachability.

The numerical experiment here is performed using the
RTDS (Real Time Digital Simulator) produced by RTDS
Technologies Inc. The RTDS is a fully digital electromag-
netic transient power system simulator. Generator dynamics
are modeled by the two-axis Park equations with damper
windings. The effects of AVR and PSS can be considered;
however, they are assumed not to operate in this paper. The
fault setting is as follows: Suppose that the DMIB system
is at a steady operating condition before t < tf = 0 s,
that a three phase lines-to-ground fault occurs near G2 bus
and at t = tf = 0 s, and that the faulted line is tripped at
t = tcl = 8/(60 Hz) ∼ 0.133 s, i.e., 8 cycles of 60 Hz sine
wave. The fault release control is assumed to occur 0.3 s after
either generator is removed by the protection system. System
parameters including generator and line data are shown in
Tab. I.

B. Practical Data

Figure 2 shows transient behaviors of rotor speed deviation
ω1 and ω2 relative to nominal angular frequency (2π×60Hz):
(a) for G1 and (b) for G2. Fig. 2(a) describes two behaviors
denoted by Case1 and Case2. Case1 represents the time
response without fault release control. Case2, on the other
hand, represents the response with it. The onset of control
is denoted by CB-in (line5). G2-off in Figs. 2(a) and (b)



TABLE I
PARAMETERS OF DOUBLE MACHINE-INFINITE BUS SYSTEM

(a) Line data (10MVA base per 1-line)
No. %Z = R + jX jY
1 0.14 + j0.657 j1.06
2 0.55 + j2.55 j3.70
3 0.73 + j3.40 j4.94
4 0.019 + j0.037 j5.38
5 0.028 + j0.040 j15.02
6 0.066 + j0.252 j41.28

(b) Transformer data (10MVA base)
Rated capacity Rated voltage %X

G1 82 MVA 13.8 kV/77.0 kV j0.967
G2 160MVA 15.0 kV/77.0 kV j0.618

(c) Generator data (Rated capacity base)
Rated Rated Real %X′

d inertia
capacity voltage power constant (M)

G1 81.176MVA 13.8 kV 70MW j26.1 10.0 s
G2 160MVA 15.0 kV 125MW j28.4 6.88 s

(a) Rotor speed deviation ω1 of G1

(b) Rotor speed deviation ω2 of G2

Fig. 2. Numerical experiment of fault release control of double machine-
infinite bus system

also denotes the onset of G2 trip caused by the impedance-
type protection. Fig. 2(b) describes that G2 shows divergence
motion of ω2, that is, transient instability, not depending on
the fault release control. Fig. 2(a), on the other hand, describes
that G1 does not show divergence motion of ω1 under the fault
release control and settles down a steady operating condition
as time passes. These figures indicate that transient instability
of G1 can be avoided by the fault release control. The next
section verifies the correctness of fault release control using
hybrid system reachability.

IV. VERIFICATION OF FAULT RELEASE CONTROL

Section III showed through numerical experiment that tran-
sient instability of G1 can be avoided by the fault release con-
trol. This section uses hybrid system reachability for verifying
the correctness of fault release control. The contents below
consist of two parts: (A) modeling of the interaction between
continuous coupled swings and discrete controls as a hybrid
automaton and (B) reachability analysis of the automaton.

A. Hybrid Modeling

First we model swing dynamics of generators G1 and G2
that are the continuous dynamics f in H. Suppose that δi is
the rotor position of Gi with respect to the infinite bus, and
ωi is the rotor speed deviation of Gi relative to the nominal
angular frequency ωs = 2π × (60 Hz), then swing dynamics
of the generators are modeled by the so-called classical swing
equations:

δ̇1 = ω1,

a
2H1

ωs
ω̇1 = Pm1 − Dω1 − G11V

2
1

−
∑

i=2,∞
{G1iV1Vi cos(δ1 − δi)

+ B1iV1Vi sin(δ1 − δi)},
δ̇2 = ω2,

2H2

ωs
ω̇2 = Pm2 − Dω2 − G22V

2
2

−
∑

i=1,∞
{G2iV2Vi cos(δ2 − δi)

+ B2iV2Vi sin(δ2 − δi)}.

(2)

δ̇1 denotes the time differentiation of δ1. δ∞ is the rotor
position of infinite bus and is assumed to be zero. The
parameters a, Hi, Pmi, D, Gii, Gij , Bij , and Vi are in per
unit system except for Hi and D in second. a is the ration
of generator rated capacity of G1 to that of G2, Hi the per
unit inertia constant of Gi, and D the damping coefficient of
generators. Gii is the internal impedance, and Gij + jBij the
transfer admittance. V1 and V2 are the bus voltages of G1 and
G2, and V∞ the voltage of infinite bus.

Second we model the protection control of generation trip
and fault release. The modeling procedure below is similar
to that in [16]. The parameters Gii, Gij , and Bij in equation
(2) discontinuously change when the fault, generation trip, and
line trip occurs by the protection control. For hybrid modeling,
it is needed to describe candidates of network topologies
explicitly. The data in Sec. III-B requires the following discrete
set Q in order to describe it as

Q = {q1, q2, q3, q4}. (3)

The discrete state q1 is the system condition for fault-on state.
q2 is the condition after removing the faulted line, q3 the
condition after removing G2 by generation trip relay, and q4

the condition after fault release control. Note that other discrete
states are needed to describe all the candidates of network
topologies. Here we re-write equation (2) to consider the



network topologies. The electrical output term P
(q)
ei indexed

by q ∈ Q, which represents the third and fourth terms in right-
hand side of equation (2), is given by

P
(q)
ei = G

(q)
ii V 2

i

+
∑

j=1,2,∞,j 6=i

{G(q)
ij ViVj cos(δi − δj)

+ B
(q)
ij ViVj sin(δi − δj)}, (4)

where i = 1, 2. The parameter G
(q)
ii denotes the internal

impedance of Gi for index q, and similarly for G
(q)
ij , B

(q)
ij . The

generation trip and fault release themselves are represented by
members of discrete control UD. For the data in Sec. III-B, the
protection control which removes the faulted line is modeled
by the discrete control σ1, and it drives the discrete transition
from q1 to q2. The protection control which removes G2 is
modeled by σ2, and it drives the discrete transition from q2

to q3. The fault release control is also denoted by σ3, and it
drives the discrete transition from q3 and q4.

Last we integrate the continuous dynamics in equation
(2) with the discrete transition above and obtain a hybrid
automaton used for the verification problem. H is given as
follows:

Q = {q1, q2, q3, q4},
X = S2 × R2 × R+ 3 x = (δ1, δ2, ω1, ω2, z),
UC = ∅,
UD = {σ1, σ2, σ3},
f(qi, x), qi ∈ Q, i = 1, 2, 3, 4,

Dom = Q × X,

G(qi, qi+1, x, σi), i = 1, 2, 3,

r(qi, qi+1, x, σi) = x, i = 1, 2, 3.
(5)

A schematic diagram of H is in Fig. 3. The new variable
z/ s ∈ R+ with continuous dynamics ż = 1 is added to X in
order to drive the discrete controls σ1 and σ3. The continuous
dynamics f are then given by

f(qi, x) =



ω1

ω2
ωs

2H1a
{Pm1 − Dω1 − P

(qi)
e1 (x)}

ωs

2H2
{Pm2 − Dω2 − P

(qi)
e2 (x)}

1


. (6)

The guard condition G is based on the control mechanisms of
the protection systems and is defined as

G(q1, q2, x, σ1) = {x ∈ X | z = tcl},
G(q2, q3, x, σ2)
= {x ∈ X | Re[Z2(x)] = 0

and d(Re[Z2(x)])/dt < 0},
G(q3, q4, x, σ3) = {x ∈ X | z = t2 + ∆t},

(7)

where Z2(x) is the complex net impedance of ac transmission
network measured from G2 bus, and its real part is represented

Fig. 3. Schematic diagram of hybrid automaton H showing the interaction
between coupled swings of the generators and discrete controls for the
protection systems

by

Re[Z2] =
V2

|I(q2)
2 |2

·

·

cos δ2

∑
j=1,2,∞

Vj(G
(q2)
2j cos δj − B

(q2)
2j sin δj)

+ sin δ2

∑
j=1,2,∞

Vj(G
(q2)
2j sin δj + B

(q2)
2j cos δj)

 . (8)

I
(q2)
2 is the complex output current of G2 that is also a

function of rotor positions (δ1, δ2) and discrete variable qi.
For G(q3, q4, x, σ3) in equation (7), t2 is the onset time of
discrete control σ2, and ∆t is the prescribed delay time for
the fault release control. The reset condition r in equation (5)
implies that there is no jump of continuous evolution at the
onset of discrete transitions.

B. Reachability Analysis

We use forward reachability of H for verifying the correct-
ness of fault release control. To explore forward reach sets,
it is needed to fix the unsafe set T and the initial set I . The
setting of T depends on the objective of controller/algorithm
whose performance is verified. We now regard the objective
of fault release control as avoiding transient instability of G1
and define the unsafe set T as

T = {(q, x) ∈ Q × X | ω1 ≥ ωcr}, (9)

where ωcr(> 0 rad/s) is the critical upper value of ω1 which
the generator can operate safely. The reason why ωcr is used
is that if G2 is removed from the network, transient instability
of G1 is well represented by a solution converging to the
stable periodic solution of the second kind, positioned at
ω1(t) ∼ Pm1/D(> 0), in equation (2). On the other hand,
the setting of I depends on how initial operating conditions
of the DMIB system are assumed. The data in Sec. III-B is
obtained under the assumption at t = tf that the DMIB system
is at a steady operating condition. With these in our mind, we
use the following setting of I:

I = {(q, x) ∈ Q × X | z = tf ,−π ≤ δ1 < π,

−5 rad/s ≤ ω1 ≤ 5 rad/s, δ2 = δ∗2 ,

ω2 = 0 rad/s}, (10)



TABLE II
PARAMETER SETTING OF HYBRID AUTOMATON H

(a) Fixed values
H1 5 s H2 3.5 s ωs 2π × (60Hz)
Pm1 0.28 Pm2 0.75 Vi 1
D 0.01 s tf 0 s tcr 0.133 s
∆t 0.3 s ωcr 5 rad/s

(b) Internal and transfer admittance G
(q)
ij + jB

(q)
ij

Pre-fault topology
i \ j 1 2 ∞
1 0.0072 − j0.3730 0.0137 + j0.0530 0.0000 + j0.3146
2 0.0137 + j0.0530 0.0980 − j0.7497 0.0299 + j0.6580

Fault-on topology (q = q1)

i \ j 1 2 ∞
1 0.0053 − j0.3809 0 + j0 −0.0031 + j0.2176
2 0 + j0 0.0000 − j1.1086 0 + j0

Post-fault topology before G2 trip (q = q2)

i \ j 1 2 ∞
1 0.0118 − j0.3476 0.0197 + j0.0721 −0.0031 + j0.2677
2 0.0197 + j0.0721 0.1556 − j0.5912 0.0289 + j0.4577

Post-fault topology after G2 trip (q = q3)

i \ j 1 2 ∞
1 0.0183 − j0.3412 0 + j0 0.0280 + j0.3144
2 0 + j0 0 + j0 0 + j0

Post-fault topology after fault release control (q = q4)

i \ j 1 2 ∞
1 0.0093 − j0.3576 0 + j0 −0.0093 + j0.3576
2 0 + j0 0 + j0 0 + j0

where δ∗2 is the value at the steady operating condition, in this
case, a stable equilibrium point. I contains the stable point
of equation (2) before the fault. The reason why I does has
non-zero measure is that we attempt to analyze the correctness
of fault release control with considering perturbations to the
initial conditions.

There are many contributions to theory of reachability
analysis of hybrid systems: see references in [15]. Estimation
methods for forward reachability of hybrid systems with non-
linear dynamics by reduction to linear problems are proposed
in [17], [18], which are called Lagrangian approach. We per-
form the reachability analysis by direct numerical integration
of equation (2). Namely, the set I of initial states are finely
partitioned by a grid, and the trajectory starting from each
element of the grid is computed by numerical integration and
is checked whether it intersects with T or not. The parameter
setting for numerical simulations is given in Tab. II.

Figure 4 shows numerical results of reachability analysis.
Each bounded two-dimensional plane describes the set I of
initial conditions. The colored regions represent forward reach
sets for the unsafe set T . Precisely, each region is a finite set
of elements of the grid from which trajectory of H intersects
with T in time 5 s. The non-colored (white) regions represent
the subset of I from which trajectory does not intersect with
T for 5 s. Fig. 4(a) is the case without fault release control,
namely, without the discrete control σ3. The colored region
is divided into three subsets. The subset denoted by qi is an
approximation of the subset of I from which trajectory of H
goes to T at discrete state qi. IP denotes a steady operating

(a) Case1 (b) Case2

Fig. 4. Numerical results of reachability analysis. Colored regions provide
approximations of forward reach sets for the unsafe set T .

condition and corresponds to the initial state used for the
RTDS in Sec. III-B. IP in Fig. 4(a) exists inside the colored
region, that is, the forward reach set for T . This implies that as
time passes, G1 shows transient instability without fault release
control. This is consistent with the data in Fig. 2(a). On the
other hand, Fig. 4(b) is the case with the fault release control
σ3. The colored region, denoted by q1 ∼ q3, represents an
approximation the subset of I from which trajectory intersects
with T at qi (i = 1, 2, 3) in 5 s. IP also denotes the initial state
used for the RTDS and exists outside the colored region, i.e.,
the forward reach set. This implies that G1 does not show
transient instability in 5 s with considering the fault release
control. This is consistent with the data in Fig. 2(a). Thus
the reachability analysis of hybrid automaton can verify that
the fault release control is correct for prevention of transient
instability of G1 caused by the fault near G2 bus.

V. CONCLUSION

We applied hybrid system reachability to verification of
fault release control in a power system. This paper introduced
practical data of a fault release control in double machine-
infinite bus (DMIB) system, which was obtained by the RTDS
(Real Time Digital Simulator). The dynamics related to the
fault release control were modeled as a hybrid automaton and
were analyzed via forward reachability of the automaton. Thus
we show that the reachability analysis of hybrid automaton can
verify the correctness of fault release control obtained by the
RTDS.

Future work related to this paper is discussed. The present
application of reachability analysis relies on numerical in-
tegration of continuous dynamics with considering discrete
transitions. No theoretical result is provided which supports the
reachability analysis of infinitely many initial states through a
finite number of iterations of an algorithm. We are firmly of
the opinion that such numerical results cannot prove something
about safety verification problems. Here it is the fact that
transient dynamics of power systems require high-dimensional
nonlinear differential or differential-algebraic equations for
their precise analyses [19]. Hence, although the present result
on reachability is in a good agreement with the practical
data, we need to use the estimation methods [17], [18] for



reachability analysis of nonlinear hybrid systems, which is
in future work. Another work is to use the obtained results
of reachability analysis for designing and modifying control
mechanisms of the protection systems.
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