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Abstract 

 

Turbulent flow is of central importance to many engineering applications in the field of 

hydraulic engineering, aerospace industry, process engineering, internal combustion engines, 

environmental engineering, etc. Turbulence, intermittently, is a three-dimensional, time 

dependent phenomenon. The major approaches to study such flows numerically are Reynolds 

Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical 

Simulation (DNS). Considerable effort has been made to develop these methods in the recent 

decades and an important advancement has been achieved. Since LES and DNS are more 

memory and CPU intensive than RANS, the methods are not suitable for practical applications. 

That is why the RANS type turbulence models, such as two equation model or Reynolds stress 

model, are still the popular tool used for practical engineering applications. Therefore, the 

clarification of the possibility, the limitations and areas of improvement of RANS models still 

deserve attention.  

Among the turbulence models, k–ε eddy viscosity model is the simplest ‘complete’ model 

that can be used on modern personal computers. Although standard k–ε model has been applied 

in many turbulent flows with high degree of success, the prediction is not satisfactory for some 

fundamental flows containing strong streamline curvature, vortices and rotations. This 

deficiency is due to the isotropic assumption of eddy viscosity. Thus, the non-linear k–ε model 

is thought to be a superior tool for predicting such complex flows. Considering the draw backs 

in the existing models, some refinements are proposed in the second order non-linear model 

incorporating new functions for the coefficient of eddy viscosity and for that of non-linear 

quadratic term. The model constants in the functional forms are estimated considering the 
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realizability conditions and anisotropy of turbulence in some baseline flows, such as, plane 

shear layer, plane strain, axisymmetric contraction and axisymmetric expansion. Thereafter the 

model is applied to following engineering applications to study the model applicability as well 

as to gain in-depth knowledge about these turbulent flows: (i) Turbulent jets with and without 

swirl (ii) An idealized vortex street (iii) Compound channel with single and double flood plains 

(iv) Rankine vortices with and without axial flow and (v) Open channel flows with rectangular 

side cavity. 

Approximate solutions for the fundamental properties of swirl and non-swirl jets are derived 

based on the non-linear k–ε model. Tuning the model constants, the approximate solutions are 

compared with the previous experimental results. 

Since coherent vortices are important element that governs many turbulent flows, the spatial 

distribution and topological change of turbulent structures with singular points are studied. It is 

observed that the turbulent kinetic energy and normal stresses show elliptical structure at vortex 

center, which changes to hyperbolic profile at saddle point at a stream-wise periodic distance of 

π. However, the shear stresses show hyperbolic structures at vortex center and the structure 

changes to elliptical at saddle point. The turbulent structures of the vortex street are found 

sensitive to the functional form of the coefficient of eddy viscosity. 

Due to shear layer, coherent vortices are generated in a compound channel at the interface 

of main channel and flood plain. The flow field in a compound channel is reproduced using 

standard as well as non-linear k–ε models. The flow equations are discretized with finite volume 

method based on a staggered grid system.The result shows that the velocity and shear stress 

values are under-predicted near the interface region, if the momentum transfer due to horizontal 

vortex is not considered. The pattern and magnitude of secondary currents are found in good 

agreement with previous experimental results. The horizontal vortices and secondary current 

both are found to play significant role to increase the compound roughness of the channel. 

The unsteady numerical simulations are performed for an isolated axial vortex (trailing 
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vortex) with different swirl numbers using standard and non-linear k–ε models. Although a 

rapid decay of tangential and axial velocity is seen in standard model, the non-linear model 

shows good agreement with previous DNS results. Five different time periods are observed in 

the growth/decay profile of turbulence kinetic energy. It is found that the rate of temporal decay 

in tangential velocity increases with the decrease of swirl number (q). 3D numerical simulation 

is carried out for an ideal Rankine vortex using both RANS and LES. The prediction of vortex 

decay by RANS model shows good agreement with LES. The profile of water surface is found 

to be depressed near the central area of the vortex with a minimum water depth at the center. 

A numerical simulator based on the full staggered boundary fitted coordinate method 

incorporated with 2nd order non-linear k–ε model is used for the analysis of complex turbulent 

flows in an open channel with rectangular side-cavity. Simulation shows that the flow in a dead 

zone is characterized by three types of flow phenomena: circulation inside the dead-zone, 

periodic coherent vortices at the interface, and water surface oscillation inside the dead zone. 

The temporal variation of water surface shows a depressed water depth at the center of coherent 

vortices. This depression of the free surface moves downward with time along the interface, as 

seen in the movement of coherent vortices in flow vectors. It is observed that the period of 

dead-zone oscillation is same as that of instability vortex. Each cycle of velocity variation 

consists two components of oscillations. The long period oscillation is due to seiche, and the 

short oscillation is caused by shear instability.  
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Chapter 1 
INTRODUCTION 
 
 

1.1 Preliminaries 

Most natural and industrial flows are turbulent. Therefore, Turbulent flow is of central 

importance to many engineering applications in the field of hydraulic engineering, aerospace 

industry, process engineering, internal combustion engines, environmental engineering etc. 

Such flow phenomena observed in atmosphere and oceanic flows includes most of the terrestrial 

atmospheric circulations and atmospheric mixing layers, the intense oceanic currents, the 

mixing of cold and warm air in the atmosphere by wind, the external flow over all kinds of 

vehicles (such as cars, airplanes, ships, submarines) etc. The industrial application includes the 

flow through equipments, such as pipes, ducts, precipitators, gas scrubbers, etc; and through 

machines such as internal combustion engines, gas turbines, etc. In hydraulic engineering 

applications, some of the turbulent dominated flows are: turbulent jets, flow through hydraulic 

and flood control structures (e.g. barrages), flows past an obstacle such as bridge piers, flows 

behind spur/dykes, compound channel flows, flows in a step-pool system, open channel flows 

with vegetation zone or with an abrupt expansion, flows with side cavity or dead zones etc. 

From theoretical consideration, the turbulent flow is differentiated from laminar by Reynolds 

number (= ud/ν) of the flow. Since, the kinematic viscosity of water (ν) is an order of 10-6 
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m2/sec, the Reynolds number becomes high and the flow becomes turbulent even for a small 

value of velocity and water depth. Due to the application in a wide variety of flows, in the last 

decades, turbulence has become a very lively area of scientific research, attracting many 

scientists and researchers to this subject.  

The method of investigation of this subject is divided into three categories: Analytical, 

Numerical and Experimental. In this study, Analytical and Numerical approaches are used to 

study the application of unsteady turbulent flows. In this chapter, the available numerical 

methods are explained followed by the objectives and scopes of this thesis. 

 

1.2 Numerical Methods 

 

For so many years, the experimental studies were the only technique for investigation of 

hydraulic engineering problems. The advent of computers and their rapid advancement brought 

an opportunity to the engineers to analyze those problems with less simplified assumptions. As 

the computer capabilities are increasing, the less assumptions are made and more complicated 

problems are possible to solve more accurately. In Computational Fluid Dynamics (CFD), the 

term numerical method is referred to those methods, which are to be used to solve the so called 

conservation equations. These equations are continuity, momentum or Navier-Stokes and 

Energy equations. In order to solve these equations numerically, they should be discretized and 

solved by appropriate iterative methods. 

As long as the flow is laminar, the only problem is to solve this system of discretized 

equations. The accuracy of results depends on both the grid and descritization scheme. The 

moment that the flow becomes turbulent, a chaotic, random motion is observable. In this case, 

the instantaneous flow values at a fixed location in the flow field show a fluctuating behavior. 

Turbulence, intermittently, is a three dimensional, time dependent phenomenon. So, in order to 

study such flows numerically, different approaches have been proposed that have different 
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accuracies which sometimes are flow dependent. The three major approaches are Reynolds 

Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical 

Simulation (DNS). Considerable effort has been made to develop these methods in the recent 

decades and an important advancement has been achieved.  

 

 

(a) 

 

 

 

 

 

(b) 

 

  

 

 

 

Fig. 1.1 Time averaging of velocity in RANS method (a) Steady RANS  (b) Unsteady RANS 

 

1.2.1 RANS Model 

 

Study of stationary turbulent flows has shown that fluctuating flow quantities have a 

constant mean value (Fig.1.1). This fact inspired Reynolds to decompose the dependent 

variables into an average and a fluctuating part and take a time integral average of the equations. 

Doing so, introduced new unknown parameters which are called Reynolds stresses. No longer 

the system of equations can be considered closed. This problem is referred to as turbulence 
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closure problem which means that the numbers of unknown parameters are more than the 

number of equations. The models to solve the problem is called turbulence model. In the models, 

the Boussinesq approximation is used to determine the turbulent stresses that consider an 

isotropic turbulent viscosity. However, from experiments, it is confirmed that the assumption is 

valid only for some limited flows. 

Unsteady turbulent flow is of interest to researchers both because of its practical importance 

and its potential to provide additional insight into fundamental aspects of turbulence. In such 

flows certain fundamental aspects of turbulence are exposed which although present in steady 

turbulent flows, are not apparent. In addition, due to the effect of inertia, some additional 

features of turbulence specific to transient flows can be present. 

From Fig. 1.1, it is observed that in a steady RANS the averaging time should be much 

greater (towards infinity) than the fluctuation time scale, however in a unsteady RANS the 

averaging time period should be short enough to capture the large scale structures.  

 

1.2.2 Large Eddy Simulation 

 

There are many different length scales observed in a turbulent flow. These length scales are 

representative of eddies’ scales in the motion. It is believed that the large scales, receive the 

energy from the main flow that is delivered via smaller eddies to the smallest scales where it is 

dissipated. The phenomenon is called cascade process.  

The idea of LES comes from this fact that the small scales, regardless of the type of flow 

and boundary conditions, show an isotropic behavior. So, if the large scales are resolved, it is 

accurate enough to model the small scales which are called the subgrid scale or SGS. In order to 

get reasonable good accuracy it is reported that the grid should be fine to some extent 

(Hinterberger et al. 2007). Important difference between RANS and LES governing equations is 

the method of filtering. While in RANS the filtering is performed in time, in LES the filtering is 

performed in space. Another difference compared to RANS is that as turbulence is a time 
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dependent three-dimensional phenomenon, the governing equations in LES also need to solve in 

unsteady three-dimensional format. Another fact regarding LES is that the grid is supposed to 

be fine enough to cover some part of scales in the inertial sub-range. These differences make the 

LES much more expensive than RANS models. 

 

1.2.3 Direct Numerical Simulation 

 

In this method even the small scale of turbulence is simulated. It means that a very fine 

mesh whose size is in the range of Kolmogorov micro-scales should be implemented. Although 

it gives most accurate results, the draw back with this method is that it needs very powerful 

computers with high memory capacities even for a very simple geometries and flows. 

 

1.3  Objectives and justification of the Study 

 

Since LES and DNS require high computer memory and much more CPU time than RANS, 

the methods are not suitable for practical applications. That is why the RANS type turbulence 

models, such as two equation model or Reynolds stress model, are still the popular tool used for 

practical engineering applications (Jaw & Chen, 1998). Therefore, the clarification of the 

possibility, the limitations and areas of improvement of RANS models should still be paid 

attention to.  

Among the turbulence models, k–ε eddy viscosity model is the simplest ‘complete’ model 

that can be used on modern personal computers. Due to its simplicity, it became one of the most 

popular models and found to be adopted frequently. This is a two equation model obtained by 

solving the turbulent kinetic energy (k) and its dissipation rate (ε ) from two differential 

transport equations. Although this type of model has been applied for prediction of many 

turbulent flows with high degree of success, it is unable to predict satisfactorily some 
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fundamental flows containing strong streamline curvature, vortices and rotations (Rodi, 1979). 

This deficiency of this model is due to the isotropic assumption of eddy viscosity that causes 

mostly a linear relationship between stress and strain rate throughout the turbulent flow field. 

Thus, the non-linear k–ε model is thought to be a superior tool for predicting such complex 

flows. However, some draw-backs are reported for existing non-linear model. 

Therefore the objective of this study is the refinement of existing non-linear k–ε model and 

examine its performance for different turbulent flows. Introduction to some turbulent flows are 

given below, which are considered as the subject of research in this thesis. 

Turbulent flows with large scale vortices are often observed in many natural flows and 

man-made engineering applications. One of the common examples is a compound channel, 

where coherent vortices are formed at the interface of main channel and flood plain (Fig. 1.2). 

The more complicated turbulent flow is observed in the flow field of an open channel with side 

cavity. In addition to coherent vortices, its interaction with the flow circulation and water 

surface oscillation in the dead zone makes the flow field more complex. Therefore, these are the 

subtopics chosen for this study as turbulent flow. 

 
Fig. 1.2 Plan view of flow vector in a compound channel showing the coherent vortices at the 

interface of main channel and flood plain (simulated flow field in the present study) 

Since, the coherent vortices are the important element that controls the turbulent flow fields, 

main channel

flood plain

flood plain
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the change of turbulent structures with spatial and temporal changes is necessary to investigate. 

A coherent vortex is composed of two critical points; the maximum vorticity exists at vortex 

center (focus) and minimum vorticity at saddle point. The Stuart vortex is such a vortex that 

contains both the critical points in its vorticity field, is considered as an ideal vortex to study the 

spatial change of turbulent structures with singular points. To study the temporal decay of 

vorticity, Rankine vortex is considered. This vortex has been used extensively in various 

studies; for instance, to predict the decay of wing-tip vortices, to estimate the noise level 

produced by vortices and vibrations, to model the natural phenomena such as hurricanes and 

tornados.  

Some basic turbulent flows, such as, plane shear layer, turbulent jets with and without swirl are 

also studied using analytical approach based on the proposed non-linear k–ε model. 

 

1.4  Scope of the Research 

 

The manuscript consists of eight chapters including the Introduction and the Conclusions. 

Chapter 1 describes the basics of different turbulence models and clarifies the objectives of the 

study. 

In Chapter 2, the details of k–ε model for 3D flow both in Cartesian and Curvilinear 

coordinate system is described. The existing models are discussed and the drawback of the 

models are highlighted. Some refinements in the second order non-linear model are proposed, 

where the coefficient of eddy viscosity is derived as a function of strain and rotation parameters. 

The model constants in the functional forms are estimated considering the realizability 

conditions and anisotropy of turbulence for different baseline flows.  

In Chapter 3, the approximate solutions are presented for the fundamental properties of a 

swirl jet such as spreading rate, distribution of turbulence intensities, turbulent shear stress, 

turbulent kinetic energy etc., derived by using the modified non-linear k–ε model. The derived 
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approximate solutions are useful to understand the distributions of turbulent characteristics, the 

sensitivity of model constants to the distributions of turbulent energy among the turbulent 

normal stresses, the relation between spreading rate and model constants, etc. Neglecting the 

swirl parameters from the derived solution, the spreading rate and turbulent properties are also 

calculated for a round jet without swirl. Tuning the model constants, the derived solutions are 

compared with the previous experimental results. 

In Chapter 4, the spatial distributions and topological change of turbulent structures in an 

idealized vortex street are investigated using analytical approach, and the applicability of the 

non-linear k–ε model to large scale vortices are examined. The Stuart vortex, which contains 

both vortex and saddle patterns in its vorticity contour, is considered for this analysis. The 

sensitivity of turbulent structures of the vortex street to the coefficient of eddy viscosity are 

examined. The turbulent structures are also compared with the previous experimental results of 

free shear flows. 

In Chapter 5, the three-dimensional flow field is generated for different hydraulic conditions 

using standard as well as non-linear k–ε models, where the governing equations of mean 

velocities and turbulent flow fields are discretized with the finite volume method based on a 

staggered grid system. The interactions of horizontal vortices with secondary currents, and its 

consequent effect to the prediction of flow as well as to the compound roughness of the channel, 

are explained through the interpretation of simulated results with different models. 

The turbulent characteristics of the large scale vortices in the compound channel are studied. 

The formations of singular points (i.e. vortex and saddle patterns) in the coherent structures, and 

the topological change of turbulent structures with the singular points are investigated. The 

turbulent structures are compared with the results presented in Chapter 4. 

The work presented in Chapter 6 can be classified into twofold. In the first part, 2D 

numerical simulation with 3D velocity field is carried out for a trailing vortex (axial vortex) for 

different swirl numbers using standard and Non-linear k–ε models. The temporal decay of 
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tangential and axial velocity, the effect of swirl numbers on vortex decay process, different 

time-zones of generation and decay of turbulence, distribution of turbulent intensities etc. are  

studied. The simulated results are compared with previous experimental and DNS results. In the 

second part, the 3D numerical simulation is carried out for an idealized Rankine vortex using 

Non-linear k–ε model and large eddy simulation (LES). The temporal changes in vortex 

simulated by both the models are compared.  

In Chapter 7, the three–dimensional numerical simulation is carried out to study the 

fundamental properties of an open channel flow with a rectangular side cavity. A curvilinear 

coordinate with a variable grid system is used in this study. The formation of coherent vortices 

at the interface of mainstream and dead zone, as well as its interaction with the circulation and 

water surface oscillation in the cavity are studied. The flow pattern and velocity profiles are 

compared with previous experiments. Finally, Chapter 8 summarizes all the contributions of this 

study. 
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Chapter 2 
NON-LINEAR k–ε MODEL 
 
 

2.1 Introduction 

 

It is well known that the RANS (Reynolds Averaged Navier Stokes) type turbulence models, 

such as two equation model or Reynolds stress model, are the most popular tool used for 

practical engineering applications (Kimura & Hosoda, 2003; Jaw & Chen, 1998). Because it 

requires less CPU time and computer memory compared to LES and DNS. Therefore, the 

clarification of the possibility, the limitation and areas of improvement of RANS models should 

be still paid attention to. To resolve the Reynolds stress term appeared in the averaged 

Navier-Stokes equations, the k–ε model is one of the most frequently adopted one (Jaw & Chen, 

1998). However, the standard k–ε model cannot produce satisfactory results for the flow field 

having high rate of strain and rotation because of its isotropic assumption of eddy viscosity 

(Rodi, 1979). On the other hand, a non-linear model predicts superior result by capturing the 

anisotropic turbulence.  

The non-linear k–ε model is a generalized eddy viscosity model, where additional 

non-linear terms of mean strain rate are added in the Reynolds stress equation. In standard k–ε 

model, the value of the coefficient of eddy viscosity (cμ) is assumed constant throughout the 
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turbulent flow field, that over predicts its value, especially in the case of large rate of strain and 

rotation. If the strain is sufficiently large, the model may produce negative normal stresses (Shih 

et al., 1996). Moreover, comparing the non-linear quadratic term in the Reynolds stress equation 

proposed by Youshizawa (1986) with its another form proposed by Gatski and Spezile (1991), it 

can be proved (shown in next section) that cμ is a function of strain and rotation parameters. The 

non-linear k–ε model used in this study differs from the standard k–ε model in two important 

ways: i) the eddy viscosity coefficient (cμ) is not a constant; and ii) non-linear terms are added in 

the Reynolds stress equation to account the anisotropy of normal stresses. Kimura and Hosoda 

(2003) proposed some refinements in the model functions considering the realizability 

conditions for different types of 2D basic flow patterns. They adopted the model to calculate the 

3D flows around a cube, and the complex flow features with separation and reattachment at 

each surface are qualitatively simulated. Hosoda et al. (1999) and Ali et al. (2007) calculated 3D 

flow field in compound channels using non-linear model, and pointed out that the functional 

form of cμ affects the generation of horizontal vortices. However, the functional model 

developed by Kimura and Hosoda (2003) contains some physical drawbacks (shown latter), and 

hence it requires further refinement. 

In this chapter, refinement of second order non-linear k–ε model is proposed incorporating 

some new functions for the coefficient of eddy viscosity as well as for that of quadratic term. 

For tuning model constants, the flow field of a Simple Shear is considered first. The conditions 

of realizability are derived for plane shear layer to determine the constrains of the functional 

form of cμ . The coefficients in the non-linear quadratic terms are determined considering the 

anisotropy in turbulent normal stresses for shear layer. The anisotropy of turbulence is also 

derived for some other basic flows including Plane strain, Axisymmetric Contraction and 

Axisymmetric Expansion to tune the model constants as well as to ensure the realizability 

conditions for these flows. 
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2.2 Mathematical Formulation in 3D Cartesian Coordinate 

 

2.2.1 Basic equations 

The basic equations in a k–ε model for an unsteady incompressible flow are as follows.  

Continuity equation:     

0=
∂
∂
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where, xi  : the spatial coordinates, Ui and  ui : the average and turbulent velocities respectively 

in xi direction, P : the pressure, ρ: the density of fluid, ν : the kinematic viscosity, k : the 

averaged turbulent energy, ɛ : the averaged turbulent energy dissipation rate, νt : the eddy 

viscosity, σk, σє , cє1, cє2 : the model constants. Standard values (σk = 1.0, σє= 1.3, cє1 = 1.44 and 

cє2 = 1.92) are used for these model constants.  

 

2.2.2 Turbulence models 

 

(a) Standard k–ε model  

In the standard k–ε model, the Reynolds stress tensor jiuu  is solved by linear constitutive 
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equations derived from Boussinesq eddy viscosity concept, which does not take into account the 

anisotropy effect.  
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Here, νt  is determined from the dimensional consideration of k and ε and approximated by 

εμ

2kcvt =  .                                      (2.6) 

Here, cμ is the coefficient of eddy viscosity bears a constant value of 0.09. 

 

(b) Non-linear k – ɛ  model  

Including the non-linear anisotropy term in the Reynolds stress equation introduced by 

Yoshizawa (1984), the constitutive equations can be expressed in the following forms 
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here, cβ (= c1, c2, c3) is the coefficient of non-linear quadratic term. In this equation, νt is also 

determined by equation (2.6), but cμ is no longer a constant but a function of strain and rotation 

parameters. 

The quadratic term in equation (2.7) is equivalent to the following non-linear viscosity model 

derived by Pope (1976), and Gatski & Spezile (1993). 
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where, the strain and rotation tensors are defined as 
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From Eqs. (2.7) and (2.9), the relations between the coefficients of two forms of non-linear 
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terms can be derived as  

32133223211 2,)(2,2 αααααααα −+=+=−+−= ccc            (2.11) 

The comparison between two forms of non-linear terms (the quadratic term in Eq. (2.7) and 

Eq.(2.9)) inferred that the coefficient of eddy viscosity cμ is a function of strain and rotation 

parameters. The strain parameter (S) and rotation parameter (Ω) are defined in Eq. (2.12), as 

used in the previous studies of Pope (1976), and Gatski and Speziale (1993).  
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For the coefficients of cβ, following constant values are used in previous studies for flows 

around bluff bodies (Kimura & Hosoda, 2003) : 

13.0,40.0,40.0 321 −=== ccc           (2.13) 

Comparing the analytical results for diagonal components of the anisotropic tensors with 

that of experiments for simple shear flows, it is observed that the functional form of cβ gave 

better results instead of taking their constant values (shown later).Therefore, the coefficient of 

quadratic term cβ is also considered as a function of strain and rotation parameters. 

Many kinds of model functions have been proposed for these coefficients. Some of them 

consider only strain parameter, and rotation parameter is neglected (such as, Cotton and Ismail, 

1993; Kato and Launder, 1993). Craft et al. (1993) and Kimura and Hosoda (2003) consider one 

dominant parameter of two (either S or Ω). Authors have also proposed a new function for the 

coefficients, which is more generalized than the previous forms. The comparative features are 

explained below in conjunction with the recent functional model of Kimura and Hosoda (2003).  

i)  Functional form by Kimura & Hosoda (2003) 

The functional form for the model coefficients proposed by Kimura and Hosoda (2003) are 

described as: 
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where,  

( ) 13.0,0.0,40.0,09.0,,max
0000 321 −====Ω=Φ ccccS μ              (2.15) 

The model takes into account one dominant parameter of two (either S or Ω). Moreover, the 

model of cμ is a discontinuous function that may cause sudden change of its values. 

ii) Functional form used in this study 

The model proposed a continuous function for cμ, and the strain (S) and rotation (Ω) ― 

both the parameters are taken activated in the functional form. The proposed functional model is 

expressed as   
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Here, cns, cnΩ, cds, cdΩ, cdsΩ, cds1, cdΩ1, cdsΩ1, mds and mdΩ are the model constants. The values of cβ0 

in Eq.(2.16b) are same as given in Eq.(2.15). The functional form of cμ assumed by Gatski and 

Speziale (1993) can be obtained from the above equation [Eq.(2.16a)] simply neglecting some 

higher order terms i.e. substituting cnΩ, cdsΩ, cds1, and cdΩ1 as zero. The more simplified 

functional form of cμ, suggested by Pope(1975) for two dimensional flows, can be obtained 

neglecting some more terms from the above equation. Moreover, when the strain and rotation 

effects are neglected i.e. S=Ω=0, cμ becomes equal to the standard value of 0.09. Neglecting 

quadratic term, the model reduces to the standard k – ɛ  model. 

 

 
Model 
Const. 

cμ0 cns cnΩ cds cdsΩ cdΩ cds1 cdΩ1 cdsΩ1 mds mdΩ

values 0.09 0.005 0.0068 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003

 

Table 2.1. Estimated values for the coefficients of cμ and cβ 
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2.3 Tuning of Model Constants 

 

2.3.1 Tuning of coefficients in cβ  

The coefficients of non-linear quadratic term, cβ (c1, c2, c3) in Eq.(2.6), should be 

determined carefully because they are expected to influence the physical accuracy and 

numerical performance of the model. In this study, these model constants are tuned considering 

the anisotropy of turbulent normal stresses in simple shear flows. 

For simple shear flow, the flow can be described as 

( ) 0,0, 1
3211 >===

dy
dUUUyUU               (2.17) 

The strain and rotation parameters are defined as 

dy
dUkMS 1

ε
==Ω=            (2.18) 

The diagonal components of the non-dimensional Reynolds stress tensors are 

( ) 23111

3
2

3
2 M

ccc
k
uu −

+= μ                     (2.19) 
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 ii
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(x=7.5h)
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Eq. (2.13)

Eq. (2.14b)

Eq. (2.16b)

 

  

Fig. 2.1. Comparison of anisotropy of turbulence in plane shear layer using Eqs. (2.22) 

and (2.23) for the coefficient cβ 
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( ) 21322

3
2

3
2 M

ccc
k
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+= μ                      (2.20) 

( ) 21333
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2 M
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k
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−= μ                      (2.21) 

Fig. 2.2 Relation between cμ and M in a simple shear layer 

cμ 

S Ω

Fig. 2.3 Profile of cμ (S, Ω) on an S – Ω plane [Eq. (2.16a)]  
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The anisotropic tensor mij are defined by 

ij
ji

ij k
uu

m δ
3
2

−=                                                           (2.22) 

The ratio of the turbulent energy production term Pk to the dissipation rate ε is 

2121 Mc
dy

dUuuPk
μεε

α =−==              (2.23) 

The comparison between the experimental results and analytical solutions for the anisotropy 

of turbulent normal stresses (mii) in plane shear layer is shown in Fig. 2.1 (α = the ratio of 

turbulent production and dissipation rate). In the figure, CHC and HGC denote the experimental 

results by Champagne et al. (1970) and Harris et al. (1977), respectively. The bold line indicates 

the functional form for cβ [Eq. (2.16b)], which gives better comparison with experiments than 

Eq. (2.13). Eq. (2.13) shows the values of cβ  bearing constant values, where the effects of strain 

and rotation parameters are neglected. The functional form by Kimura and Hosoda (2003) is 

also shown in figure as dotted line. 

 

2.3.2 Consideration of realizability for plane shear layer 

 

Realizability can be defined as the requirement of the non-negativity of turbulent normal 

stresses and Schwarz’ inequality between any turbulent velocity correlations. It is a basic 

physical and mathematical principle that the solution of any turbulence model equation should 

obey (Shih et al., 1996 ). The realizability inequalities for 3D turbulent flows are: 

0≥iiuu                        (2.24) 

( )jiuuuuuu jijjii ≠≥⋅
2

                      (2.25) 

0det

332313

322212

312111

≥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

uuuuuu
uuuuuu
uuuuuu

                     (2.26) 

Einstein’s summation rule is not applied in above Equations. In a two dimensional averaged 
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flow, Eq. (2.25) coincides with Eq. (2.26). In this study, the restrictions on cμ are derived from 

the mentioned realizability equations for simple shear flow.  

   Applying Eq. (2.24) to plane shear layer, following two equations are derived for the 

diagonal components of the Reynolds stress tensor (non-negativity condition) 

( )
0

3
2

3
2 23111 ≥

−
+= M

ccc
k
uu μ                      (2.27) 

( )
0

3
2

3
2 21322 ≥

−
+= M

ccc
k
uu μ                         (2.28) 

For plane shear layer, M=S=Ω. 

Applying Eq. (2.25), the following inequality equation can be derived for Reynolds stress 

component, 21uu  (Schwarz’ inequality condition). 

{ } 04)(2)522(9 2
31

4
31

2
3

2
1

22 ≤−+−−++ McccMccccMc μμ             (2.29) 

Since the value of c1 is positive and c3 is negative, Eq. (2.27) is satisfied regardless of M. Thus, 

the restrictions on cμ, derived from Eqs. (2.28) and (2.29), are as follows: 

( ) 2
31 2

2
Mcc

c
−

≤μ                              (2.30) 

( ) { }
3

31
2
3

2
1

2
31

2
3

2
1

22
3131

)522(9
)522(94)(

MccccM
MccccMccMcc

c
−++

−++++++
≤μ        (2.31) 

The model constants in the functional form of cμ in Eq. (2.16a) are tuned to satisfy the 

realizability conditions derived in Eqs. (2.30) and (2.31). 

For plane shear layer, the realizability conditions [Eqs. (2.30) and (2.31)] as well as the 

proposed functional form of cμ [Eq. (2.16a)] are plotted in Fig. 2.2. The calculations are made 

with the following values of model constants. 

,00035.0,009.0,0118.0,09.0 1110 =++=++=+= ΩΩΩΩΩ dsddsdsddsnns cccccccccμ

013.0=+ Ωdds mm            (2.32) 

Using these estimated values, the analytical solutions are derived for the anisotropy of 

turbulence in some other bench-mark flows and the individual values of model constants are 
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determined to satisfy the realizability limit (see section 2.3.4). The approximate solutions for 

swirl jet (in Chapter 3) are compared with the previous experimental results and the values of 

model constants are finally determined by tuning their values for best-fitted comparison. 

Table-2.1 shows the final values of constants obtained by such a trial and error method, and Fig. 

2.2 confirms that the model obeys the realizability conditions with these values of constants.  

   In the log-law region, the assumed functional form of cμ shows almost a constant value of 

0.09. It can be noted that, instead of functional form, if a constant value of cμ (=0.09) is used 

through out the turbulent flow field, it fails to satisfy the realizability conditions. Fig. 2.3 shows 

the distribution of assumed functional form of cμ in S – Ω plane. 

     

 

 

 

2.3.3 Distribution of cμ in S – Ω plane 

 

Figure 2.2 shows the comparison of cμ profiles by Kimura & Hosoda (2003) and the 

proposed function. Since the profiles are calculated along the line of S = Ω, two profiles seem to 

be very similar except the sharp change of Kimura & Hosoda’s profile at about S=5. However, 

the 2D profiles of those two functions on S - Ω plane are considerably different as shown in 

figures 2.4(a) and 2.4(b). Because, in these figures the effects of both the parameters (S and Ω) 

are activated. The profile proposed by Kimura & Hosoda (2003) shows sharp edges around the 
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Fig. 2.4. Profile of cμ (S, Ω) on S – Ω plane for the function in (a) Eq. 2.14a ( by Kimura and 

Hosoda, 2003), (b) Eq. 2.16a (proposed function) 
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region of S = Ω, which means that the value of the function changes suddenly around that 

region. These features seem to be physically unsound. A typical flow which satisfies S = Ω is 

plane shear layer. Therefore, the functional model by Kimura & Hosoda (2003) expressed in Eq. 

(2.14a) is not suitable for flows with vortex formation from a shear layer due to K-H instability. 

Another limitation in Craft et al. as well as Kimura & Hosoda’s functional form is that cμ has no 

dependency on Ω/S as shown by Gatski & Speziale.. 

 

2.3.4 Model performance in homogeneous strain 

 

The anisotropy of turbulence is also derived for some other baseline flows including Plane 

strain, Axisymmetric Contraction and Axisymmetric Expansion to tune the model constants as 

well as to ensure the realizability conditions for these flows. The flow fields can be defined as 

follows:  

(i) Pure Shear Strain :         U1 = a X2, U2 = U3 = 0 

(ii) Plane Strain:           U1= a X1, U2 = −a X2, U3=0 

(iii) Axisymmetric Contraction:       U1 = a X1, U2 = − (a/2) X2, U3 = − (a/2) X3   (a > 0) 

(iv) Axisymmetric Expansion:        U1 = a X1, U2 = − (a/2) X2, U3 = − (a/2) X3   (a < 0) 

Since in pure shear strain S = Ω, the influence of individual model constants are not active; 

and that’s why, tuning the model constants for plane shear the values of model constants are 

determined in groups as shown in Eq. (2.32). The analytical solutions of other three baseline 

flows are given below, in which the influence of individual model constants will be considered 

through their predictability of anisotropic turbulent stresses to satisfy the realizability constrains. 

Here, the anisotropic tensors are defined as   

ij
ji

ij k
uu

b δ
3
1

2
−=               (2.33) 

For plane strain: 
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( ) 2
3111 24

1
2
1 ScccScb ++−= μμ              (2.34) 

( ) 2
3122 24

1
2
1 ScccScb ++= μμ              (2.35) 

( ) 2
3133 12

1 Scccb +−= μ               (2.36) 

For Axisymmetric Contraction: 

( ) 2
3111 36

5
3

1 ScccScb ++−= μμ             (2.37) 

( ) 2
313322 24

1
32

1 ScccScbb +−== μμ             (2.38) 

For Axisymmetric Expansion: 

( ) 2
3111 36

5
3

1 ScccScb ++= μμ              (2.39) 

( ) 2
313322 24

1
32

1 ScccScbb +−−== μμ            (2.40) 

   The analytical solutions are plotted in Fig. 2.5 including the realizability limit along with the 

solutions by Abe et al. (1997). It is observed that both for shear straining (Fig. a) and normal 

straining [Figs. (b)−(d)], the normal stress separation is realistic and the realizability is obeyed 

even at high strain rates. The present model shows better prediction than Abe’s model. It can be 

noted that although the functional form for cμ by Abe et al. (1997) accounts both the strain and 

rotation parameters, the form is similar to Pope’s model which is based on a two-dimensional 

flows. The ability of that model in predicting 3D flows is shown in Chapter 5 for simulation of 

compound channel flows. 

The solutions are also prepared for standard k-ε model and non-linear model with the 

constant values of cβ [Eq. (2.13)], and the plots are shown in Fig. 2.6. The deficiency of 

standard model is clearly seen in the figure. Comparing with Fig. 2.5, it is observed that the 

functional form of cβ shows much sensible anisotropic behavior than their constant values for all 

the basic flows.  
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Fig. 2.5. Model performance in homogeneous strain considering the anisotropy of 

turbulence and realizability limit. 
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 Fig. 2.6. The anisotropy of turbulence for the baseline flows in homogeneous strain predicted 

by (i) Non-linear k-ε model with cβ =constant and (ii) Standard k–ε model.  
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2.4 Mathematical Formulation in 3D Curvilinear Coordinate 

 

2.4.1  Basic equations 

The 3D flow equations in a k–ε model for an unsteady incompressible flow with 

contravariant components of velocity vectors on an orthogonal curvilinear coordinate system 

can be written as follows.  

Continuity Equations: 

01
=

∂

∂
α

α

ξ
gV

g
           (2.41) 

Momentum equation: 
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ε-equation: 
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Here, Vj is the contravarient component of velocity vector of the flow and Wj is that of the grid 

motion. gij and gij are covariant and contravatiant component of metric tensor. 

The covariant derivative is defined as 

ji
j

i

k
k

i AAA Γ+
∂
∂

=∇
ξ

            (2.45) 

Where, Γij
k is the Christoffed symbol defined as  
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2.4.2 Constitutive equations 

 

The constitutive equation for 2nd-order non-linear k–ε  model described in Eq.(2.7) can be 

written in the following form 
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Strain and rotation tensors are defined as 

jiijij VgVgS α
α

α
α ∇+∇= ,  jiijij VgVg α

α
α

α ∇−∇=Ω                                (2.49) 

Considering the coefficients of non-linear terms as a function of strain and rotation parameters, 

their values can be determined from Eqs.(2.11) and (2.13). Eq.(2.11) can be written as 
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32133212311 cccccccc −+−=++=+−= ααα                   (2.50) 

Substituting the functional form from Eq.(2.16b) with the values of cβ0 from eq. (2.15), the 

above equation shows the following from 

Mf1325.01 −=α , Mf0675.02 =α , Mf0675.03 −=α , 
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M mSm
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Here, the functional form of cμ is unchanged as Eq.(2.16a) 
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However, the strain and rotation parameters are defined as 
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2.5 Summary 

 

The standard k–ε model has the deficiency of isotropic assumption of eddy viscosity. In this 

chapter, a second order non-linear k–ε model is proposed incorporating some new functions for 

the model coefficients to explore the model applicability to complex turbulent flows. 

Considering the realizability principle and anisotropy of turbulence in some baseline flows , the 

coefficient of eddy viscosity (cμ) and the coefficients of non-linear quadratic term (cβ) are 

derived as a function of strain and rotation parameters. It is observed that the functional form of 

the coefficient of quadratic term shows better comparison than their constant values. 
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Chapter 3 
TURBULENT ROUND JET WITH 
AND WITHOUT SWIRL 
 
 

 

3.1  Introduction 

 

Due to the circumferential motion of jet, the flow field of a swirling jet is more complex 

than that of a non-swirling one. However, this type of flow is observed in many natural 

geophysical as well as anthropogenic activities. Tornado is an example of natural swirling flow. 

Since the geometry, coherent structure, spreading, and dilutions of the jet fluid are highly 

influenced by the presence of swirl in a jet, it is sometimes imparted to the flow to control its 

development. The practical examples include flow through combustors, propulsion devices, 

cyclone separators etc. Swirl jet can also be used in any environmental mixing devices, where a 

faster spreading or rapid mixing of jet fluid is necessary.  

Most of the previous experimental as well as computational works on swirl jet mainly 

focused on the region close to the source. Examples are the experimental investigations 

conducted by Panda and Mclaughin (1994), Billant et al.(1998), Ribeiro and Whitelaw (1980) 

as well as Paschereit et al. (1999), where the interaction of coherent structures of swirl jet just 

downstream of the nozzle was the main concern. On the other hand, Pratte and Keffer (1972) 
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performed the experiments to study the turbulent field of the jet up to a well downstream 

distance of 30 jet diameters. Although some numerical studies have been performed on near 

nozzle region of turbulent swirling flows using Reynolds stress model (e. g. Gibson and Younis, 

1986) and Large eddy simulation (e.g. Mcllwain and Pollard, 2002; Wang et al., 2004), to the 

best of author’s knowledge, the k–ε model is yet to be applied successfully.  

In this chapter, the approximate solutions are presented for the fundamental properties of a 

swirl jet, such as spreading rate, distribution of turbulence intensities, turbulent shear stress, 

turbulent kinetic energy etc., derived by using a non-linear k–ε model. Neglecting the swirl 

parameters from the derived solutions, the spreading rate and turbulent properties are calculated 

for a round jet without swirl. The results are compared with the previous experiments. The 

model constants in the assumed functional forms for the coefficients of eddy viscosity and 

quadratic term, estimated in previous chapter considering 2D shear flow, will be determined by 

tuning their values for best fitted comparison with previous experimental results. Finally, the 

turbulent properties of swirl jet are predicted for different swirl numbers.  

 

3.2  Governing Equations  

The equations for 2nd order non-linear k–ε model can be rewritten as follows: 
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The value of the model constants are: cμ0 = 0.09, cns = 0.005, cnΩ = 0.0068, cds = 0.008, cdΩ = 

0.004, cdsΩ = -0.003, cds1 = 0.00005, cdΩ1 = 0.00005, cdsΩ1 = 0.00025, c10 =0.40, c20 =0.0, c30 = 

-0.13, mds = 0.01, mdΩ = 0.003, σk = 1.0, σε= 1.3, cε1 = 1.44 and cε2 = 1.92. In standard k – ε 

model, cμ= 0.09 and  cβ = 0.0. 

For turbulent shear flows, the following assumptions are made (Jaw and Chen, 1998): 

a) The pressure gradient is small i.e. 0≈
∂
∂

x
P   

b) Viscous shear stress is much smaller than the turbulent shear stress, and can be neglected. 

c) Diffusion in the direction normal to the flow (y- and z-directions) is much larger than the 

diffusion in the direction of flow (x-direction). 

Thus, the momentum equation in x-direction as well as the k and ε equations can be presented in 

a simplified form as follows. 

The momentum equation in x-direction: 
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3.3  Procedure for the Solution 

 

The functional forms of velocities and k–ε distributions are assumed as a first 

approximation. Using the integral equation of momentum conservation, the parameter 

accounted for swirl (introduced in assumed velocity distributions in section 3.4.1) is derived as 

function of non-dimensional swirl number, SN. Substituting the mathematical expressions of the 

assumed distributions into the continuity, momentum and non-linear k–ε equations, a set of 

algebraic equations are derived considering the relation of lowest order with respect to the 

power of 1/x. Solving these simultaneous algebraic equations, the unknown coefficients in the 

assumed distributions are determined as the function of the non-linear k–ε model constants. 

Approximate solutions for the distributions of turbulence characteristics such as distribution of 

turbulence intensities, turbulent shear stress, etc. are derived using the constitutive equations of 

the model. Neglecting the swirl parameters, the derived solutions for swirl jet are applied for a 

round jet without swirl. 

In the previous chapter, the coefficients in the functional forms of cμ and cβ are initially 

estimated considering realizability conditions and anisotropy of turbulence in plane shear layer. 

In this chapter, the approximate solution for a round jet with and without swirl are compared 

with the previous experiments, and the model constants are finally determined by tuning their 

values for best fitted comparison. The fundamental properties are then predicted for a jet with 
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different swirl numbers.  

 

3.4  Approximate Solution for Turbulent Swirling Jet 

 

 

Figure 3.1 shows the definition sketch of a swirl jet with Cartesian and Cylindrical 

coordinate systems. Consider, Ux, Uy, and Uz are the jet velocities in axial (x), lateral (y), and 

transverse (z) directions in Cartesian coordinate system and Ux, Ur, and Uθ are the velocities in 

axial (x), radial (r), and azimuthal (θ) directions in Cylindrical coordinate system respectively.  

 

3.4.1 Assumed profiles 

 

In the self-similar region, the following relations can be obtained for the attenuation rate of 

hydraulic variables of an axisymmetric swirl jet (Rajaratnam, 1976; Hosoda et. al., 1984).  

4020
1,1,1,
xx

k
x

UxB m ∝∝∝∝ ε                                        (3.13) 

Here, B is the jet width; Um is the centerline maximum velocity of the jet; k0 and ε0 are the 

centerline values of turbulent kinetic energy and its dissipation rate respectively. 

The following assumptions are made for the functional forms of velocity and k–ε 

Fig. 3.1 Definition sketch of swirl jet (Pratte and Keffer, 1972 ) 

Uθ 

θ 

plane wall 

  nozzle 
z r
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x
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distributions, which are compatible with the decaying power law of velocity and k–ε along the 

centerline of jet. 
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Where, a1, a3, b, α, and γ are the unknown coefficients of the velocity profile; and k0, k2, ε0, and 

ε2 are that of the k-ε distributions. 

 

3.4.2 Swirl parameter 

 

To define the swirl parameter, the cylindrical coordinate system is considered. Rajaratnam 

(1976) showed that for the circular jet with swirl, integral of the pressure plus momentum (W) 

as well as angular momentum (T) are preserved. They are defined by 

∫
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and  ∫
∞

=
0

2 drUUrT x θ                                                      (3.20) 

respectively. 

Considering Ux >> Uθ ,  Eq. (3.19) can be reduced to 
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 ∫
∞

=
0

2 drrUW x                                                        (3.21) 

Substituting the assumed velocity distributions into Eqs. (3.20) and (3.21), the following 

relations are obtained (Uθ is calculated from Uy and Uz). 
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A non-dimensional parameter combining W and T is used to represent the relative amount of 

swirl present in the flow, called swirl number (SN). 

0rW
TS N =                                                               (3.24) 

where, r0 is the radius of the jet nozzle. 

Using Eqs. (3.22) to (3.24), the swirl number can be defined as 
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3.4.3 Derived solutions 

 

Substituting the assumed velocity distributions [Eqs. (3.14) to (3.18)] into the continuity 

equation, the following algebraic relations are derived. 

γγ
baba

3
2,2

31 ==                                                   (3.27-a, b) 

The integral equation for conservation of momentum flux also results as Eq. (3.28). 
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Where, A0, U0, and M0 are the area, velocity, and initial momentum flux of the jet at inlet 

respectively. 

Substituting Eq. (3.27) into Eq. (3.28), the coefficient of attenuation of radial velocity ‘b’ is 

determined as a function of inlet conditions.  
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For the assumed velocity and k–ε distributions, using the Reynolds equation in the 

x-direction and k–ε equations, the following three algebraic expressions are derived as the 

relations of lowest order with respect to the power of 1/x. 

Reynolds equation in x-direction: 
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The values of b, a1 and a3 are determined from Eqs. (3.27) and (3.29). Substituting the 

values of k0 and ε0, which are the k and ε values at centerline, the development rate of swirl jet 

(γ) can be estimated by Eq. (3.30). For any known value of swirl number SN, the value of ‘α’ can 

be easily determined using Eq. (3.26). The coefficients of k and ε distributions are determined 

by solving Eqs. (3.31) and (3.32).    

The radial distribution of turbulent intensities as well as turbulent shear stresses are derived 

using non-linear constitutive equations. The derived equations are shown in Appendix-3.A. 

 

3.5 Results and Discussions 

  

Tuning the model constants (estimated from realizability considerations), the approximate 

solutions are compared with the previous experimental results, and the values of model 

constants are determined for best fitted comparison. Eliminating swirl parameter i.e. taking 

swirl number (SN) and hence the swirl parameter (α) as zero, the derived solutions for swirl jet is 

applied to a round jet without swirl. The comparisons of results for swirl and non-swirl jets with 

experiments are presented below.   

 

3.5.1 Round jet without swirl 

 

Figures 3.2, 3.3, and 3.4 show the radial distributions of turbulent intensities for axial, radial 

and circumferential velocities. The results are compared with the experimental data by 

Wygnanski and Fielder (1969), and Wang and Law (2002). In Fig. 3.5, the calculated shear 

stress profile is compared with the range of experimental results by Fukushima et al. (2000), 

where two experimental profiles represent the lower and upper boundary of a number of 

measured profiles for different downstream distances.  

  The distribution of turbulent kinetic energy (k) normalized by Um
2 is favorably compared with 
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the experiment of Wygnanski and Fielder, and shown in Fig.3.6. The approximate solution for 

normalized turbulent energy dissipate rate (εx/Um
3) , compared with the experimental data of 

Wygnanski & Fielder (1969) as well as with that of Sami (1967), is shown in Fig. 3.7. The 

available experimental data on turbulent kinetic energy dissipation rate are quite scattered. The 

present prediction coincides with the Wygnanski & Fielders’ data near the central region of jet, 

and it is close to Sami’s data for higher radial distances. In comparison to experimental results, 

a little deviation is observed in the spreading of ε profile; it can be noted that this deficiency 

may be due to the simple assumptions made in the exponential part of ε distributions in Eq. 

(3.18). The values of k0 and ε0, which are the center line values of k and ε, are estimated by 

tuning their values for best fitted comparison with experimental results.  

Approximate solutions are also derived by using standard k–ε model and shown in the 

figures by dotted line.   
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Fig. 3.2 Distribution of turbulent intensity of the axial velocity in a round jet without swirl 
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Fig. 3.3 Distribution of turbulent intensity of the radial velocity in a round jet without swirl 
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Fig. 3.4 Distribution of turbulent intensity of the circumferential velocity in a round jet 

without swirl 
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Fig. 3.5 Radial distribution of turbulent shear stress in a round jet without swirl 

    

  

0.00

0.03

0.06

0.09

0.12

0.0 0.1 0.2 0.3
r/x

k/
U

 m2

Wygnanski & Fiedler
Non-linear k- ε model
Standard k- ε  model

 

Fig. 3.6 Radial distribution of turbulent kinetic energy in a round jet without swirl 
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Fig. 3.7 Radial distribution of turbulent kinetic energy dissipation rate in a round jet without 

swirl 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Comparison of jet half-width 
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Fig. 3.9 Distribution of turbulent intensity of the axial velocity in a swirl jet 
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Fig. 3.10 Distribution of turbulent intensity of the radial velocity in a swirl jet 

 

3.5.2 Swirl jet 

 

In Fig. 3.8, the estimated jet half-width for a moderate swirl of SN =0.3 is plotted against 

downstream distances; both are normalized with initial jet diameter D. Here, the jet half-width 
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(r1/2) is defined as the radial distance (r), where the axial velocity is half of the maximum 

centerline velocity. The present prediction shows a good agreement with the previous 

experimental data by Pratte and Keffer (SN=0.3) as well as with that of Rose (1962) (SN=0.23). 

The prediction of Reynolds Stress Model (RSM) by Gibson and Younis (1986), which is limited 

to 15 jet diameters of downstream distances, are also shown for comparison. The swirl jet 

reasonably spreads faster than the round jet. The value of jet half-width for swirl jet evaluated 

by approximate solution is 0.144, which is about 21% higher than the estimated half-width of a 

round jet without swirl. Gibson and Younis (1986) also reported similar comparison with a 

difference of 25% between the jet-half width of swirl and non-swirl round jets. 

  The turbulent intensities for axial, lateral and circumferential velocities are calculated for the 

swirl number of SN=0.3. The results are compared with experimental data by Pratte and Keffer 

(1972) in Figs. 3.9 to 3.11. In Fig. 3.12, the distribution of normalized turbulent kinetic energy 

mUq /2
1

2 ⎟
⎠
⎞⎜

⎝
⎛  (where, 2q is twice the turbulent kinetic energy), is favorably compared with the 

previous experiment. Figure 3.13 shows the radial distribution of turbulent Reynolds stress, 

rxuu ; due to unavailability of experimental data, this result is not compared with experiments.  

The figurers show that the non-linear model well compared with experiments results. In 

comparison to experimental results as well as non-linear model prediction, the standard k–ε 

model under predicts the turbulent intensities for axial direction and over predicts for radial and 

circumferential directions. The discrepancy is higher for swirl jet case. Reasonably, the 

non-linear model showed better comparison than standard one. 

The distributions of turbulent intensities are found to be changed significantly depending 

on swirl number. For different swirl numbers of SN  = 0.3, 1.5 and 2.5, the turbulent intensities 

are calculated. The radial distributions of turbulent intensities for axial, radial and 

circumferential velocities are shown in Figs. 3.14(a), (b), and (c) respectively. It is observed that, 

with increasing swirl number the turbulent intensity is decreased for axial velocity component 

and increased for lateral and circumferential velocity components. Also the pattern of profiles, 
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especially for axial velocity, are changed significantly with the swirl numbers.  
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Fig. 3.11 Distribution of turbulent intensity of the circumferential velocity in a swirl jet 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4
r/x

(q
2 
)1/

2 /U
m

 

Fig. 3.12 Radial distribution of turbulent kinetic energy in a swirl jet 
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Fig. 3.13 Radial distribution of turbulent shear stress in a swirl jet 
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(c) 

Fig. 3.14 Distribution of turbulent intensity for different swirl numbers (a) for axial velocity  

(b) for radial velocity and (c) for circumferential velocity of jet 

  

3.6 Summary 

 

The model constants in a turbulence model are of major concern to its applicability. In this 

chapter, approximate solutions for the fundamental properties of swirl and non-swirl jets are 
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derived based on the non-linear k–ε model. Tuning the model constants (estimated from 

realizability considerations) the approximate solutions are compared with the previous 

experimental results, and the values of model constants are determined for best fitted 

comparison. The solutions of standard k–ε model is also presented. Reasonably, the non-linear 

model showed better comparison than the standard one. 

The distribution of turbulent intensity is significantly influenced by the swirl number. It is 

observed that, with increasing swirl number the turbulent intensity is decreased for axial 

velocity component and increased for lateral and circumferential velocity components. 

    

Appendix-3A: Derived Equations 

 

   Derived equations for the distributions of turbulent intensities in a swirl jet are given below. 
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The derived equation for the turbulent shear stress is as follows. 
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Chapter 4 
SPATIAL DISTRIBUTION AND 
TOPOLOGICAL CHANGE OF 
TURBULENT STRUCTURES IN AN 
IDEALIZED VORTEX STREET 
 
 

4.1 Introduction 

 

The large scale vortical structures, also referred to as coherent structures, are an intrinsic 

feature of many turbulent flows. In turbulent shear flows, they play a vital role in the overall 

development of flow through the entrainment, mixing and momentum exchange between fast and 

slow speed fluids. Flows with large scale vortices caused by shear layer instability are often 

observed in many natural, geophysical as well as anthropogenic activities. From engineering 

application perspective, some examples are: turbulent jets, flow through hydraulic and flood 

control structures (e.g. barrages), flows past an obstacle such as bridge piers, flows behind 

spur/dykes, compound channel flows, open channel flows with vegetation zone or with an abrupt 

expansion, flows with side cavity or dead zones etc. Considering the importance of 

understanding the basics of vortical structures, the free shear flows has been given attention in 

numerous research efforts since the past decades (Brown & Roshko, 1974; Browand & Weidman, 
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1976; Hossain, 1986; Panides & Chevray, 1990 ). Hossain (1986) reviewed the studies of 

coherent structures in several free shear flows, and focused on the state of understanding from 

the view point of their spatial details of turbulence structures and dynamic significance.  

 
 
 
 
 
 
 
 
     
 
 

 
 
 
 

 

Fig. 4.1. Sketch of a coherent vortex in plane mixing layer 

Fig. 4.1 shows an example of the span wise cut of coherent structure, in particular in the 

plane mixing layer (Hossain, 1986). The outer contour of coherent vorticity denotes the structure 

boundary. It shows that there are two critical points in the structure: the saddle (S) characterized 

by negligible spanwise vorticity, and the center of vortex (C) characterized by peak spanwise 

vorticity. Based on the experimental results on turbulent structures of a plane shear layer, 

Hossain (1986) reported that the structures of turbulent normal stresses at vortex point are 

elliptical in shape; on the other hand, the turbulent shear stresses show hyperbolic profile. The 

same patterns are also confirmed in further studies with turbulent axisymmetric jets and wakes.  

It is reported that the standard k–ε model cannot produce satisfactory results for the flow 

field having high rate of strain and rotation because of its isotropic assumption of eddy viscosity 

(Rodi, 1979). On the other hand, a non-linear model predicts superior result by capturing the 

anisotropic turbulence. It is reported that the generation of coherent vortices in a shear layer is 

influenced by the functional form of cμ. For compound channel, it is observed that the flow 

resistance in the channel is influenced by this function (chapter 5). Since this type of model has 

C 

S 

S 

Vortex boundary 
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been using in calculating many turbulent flows that contain vorticity in the flow field, it is worth 

to examine the model’s applicability to predict the spatial details of turbulent structures in an 

idealized vortex street.  

In this chapter, an approximate solution is derived for turbulent characteristics of an ideal 

vortex street. The Stuart vortex, which contains both vortex and saddle patterns in its vorticity 

contour, is considered for this analysis. The aim is to explore the model applicability to large 

scale vortices, and to investigate the spatial distribution and topological change of turbulent 

structures with singular points. The turbulent structures are also compared with the previous 

experimental results of free shear flows. 

 

4.2 Governing Equations 

The equations for standard and 2nd order non-linear k–ε model are rewritten as follows : 

Continuity equation:   0=
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Turbulence model (linear):  ijijtji kSuu δν
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In Equation (4.6), 
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Here,  σk = 1.0, σε= 1.3, cε1 = 1.44 cε2 = 1.92, c10 =0.40, c20 =0.0 and c30 = -0.13, have their 

standard values. 

Table 4.1 shows two sets of model constants. The value of model constants determined in 

previous chapter are given in Run-1. Run-2 shows a set of trial values that will be used to 

investigate the sensitivity of empirical functions to the structural change of turbulent properties in 

the vortex point (focus). 

 

Table 4.1  Estimated and trial values of model constants 

Model 
Const. 

cμ0 cns cnΩ cds cdsΩ cdΩ cds1 cdΩ1 cdsΩ1 mds mdΩ

Run-1 0.09 0.005 0.0068 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003
Run-2 0.09 0.01 0.007 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003
 

 

4.3  Methods of Investigations 

 

4.3.1 Stuart vortices 

 

  The stream function of Stuart vortex can be expressed as follows: 

( )xAy coscoshlog +=ψ                                (4.11) 

here, 0 ≥ A ≥ -1 is a constant and indicates the eccentricity of the elliptic streamline of the vortex. 

If A=0, the hyperbolic-tangent mixing layer is recovered; whereas A=-1 shows a single row of 
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co-rotating vortices, with circulation of -4π, periodically spaced along the x axis with a period of 

2π. Fig. 4.2 shows the streamlines of Stuart vortices with various values of A.  

In this study, we examine the Stuart vortex as a simple model of Vortex Street. Eq. (4.11) is 

substituted into k–ε equations to derive the spatial distributions of turbulent intensities. Although 

Stuart vortex is a solution of Euler equation, it is shown that the turbulence can be generated in 

the fixed flow field of the vortex. A moderate eccentricity of A=- 0.5 is used to calculate the 

turbulent characteristics of the vortex at vortex center and saddle point. 

 

4.3.2 Approximations solution 

 

For the approximate analysis of Stuart vortices, the viscous shear stress is assumed much 

smaller than the turbulent shear stress. Therefore, the k and ɛ equations [Eqs. (4.3) and (4.4)] can 

be simplified for a steady 2-D flow in the following forms. 
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Here, the Reynolds stresses are determined using the constitutive equations of the turbulence 

model. 

Two separate solutions are derived for turbulent characteristics at vortex center and saddle 

point using the stream-function of Stuart vortex to investigate the spatial distribution of turbulent 

structures in a large-scale vortex. The stream function of Stuart vortex is expanded using the 
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Taylor’s function, near the origin (0, 0) and at a periodic distance of (π, 0), for the flow field of 

vortex center and saddle point respectively. The functional forms of k and ɛ  distributions are 

assumed as a first approximation. Substituting the assumed distributions into the non-linear k and 

ɛ  equations, a set of algebraic equations are derived considering the relation among the 

coefficients with respect to the same power of variables (x and y). Solving these simultaneous 

algebraic equations, the unknown coefficients in the assumed distributions are determined as the 

function of the non-linear k–ε model constants. The distributions of turbulent stresses for vortex 

and saddle points are derived using the constitutive equations of the model. The turbulent 

structures are compared to previous experiments of large scale coherent vortices in free shear 

flows reported by Hossain (1986). 

 

4.3.3 Numerical simulation 

 

Using the model constants estimated by approximate solution, the numerical simulation is 

carried out to determine the turbulent characteristics of Stuart vortices, and the structures are 

compared with approximate solution. 

The flow field of Stuart vortices is given as input to calculate the turbulent characteristics. 

The code solves the k, ε and constitutive equations discretized with the finite volume method. 

The hybrid central upwind scheme is used for k and ε equations. Time advancement is achieved 

by Adam-Bashforth scheme of second-order accuracy, in each equation. The equations are 

discretized as fully explicit forms and solved successively with the time increment step by step. 

The wall functions are employed as the wall boundary conditions for k and ε. Periodic boundary 

conditions are used in upstream and downstream ends of the flow domain.  
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4.4 Turbulent Structures at Vortex Center (Focus) 

 

4.4.1 Approximate solution 

 

The equation of Stuart vortex expressed in Eq. (4.11) is expanded using Taylor function near 

the origin, and the approximated stream function for the vortex point  is expressed as follows 

(eccentricity, A=- 0.5 is used): 

( ) .........
12
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2
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1

2
1

2
1ln 422422 +−−−++= yyxxyxψ                     (4.14) 

The corresponding velocity field is approximated as 
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The contour of streamlines for vortex point approximated by Taylor function near the origin 

(Eq. 4.14) is shown in Fig. 4.3.  

  As a first approximation, the following polynomial functional forms are assumed for the 

distributions of k and ε 

xykykxkykxkkk 11
2

20
2

02100100 ++++++=                        (4.17) 

xyyxyx 11
2

20
2

02100100 εεεεεεε ++++++=                        (4.18)  

where, k00, k01, k10, k02, k20, k11 are the unknown coefficients for k; and ε00, ε01, ε10, ε02, ε20, ε11 are 

that for ε distributions respectively. 

Substituting the assumed k and ε distributions [Eqs. (4.17) and (4.18)], into k–ε equations [Eqs. 

(4.12) and (4.13)], the following algebraic expressions are derived considering the relations of 

coefficients for the same power of variables (x, y) in each equation. To avoid complexity in 

solving a large number of equations, the higher order terms of k01, k10, k02, k20, k11, ε01, ε10, ε02, ε20 

and ε11 are neglected to form a set of linear equations. 
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Fig. 4.2 Contour of streamlines for Stuart vortex with different eccentricity: (a) A=0 (b) A=-1/2  

(c) A=-3/4  (d) A=-1.0  (e) two vortices with A=-1/2 

 

k-equation: 

( ) ( ) { }( ) 012221:0 02002
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μ                 (4.19) 

010110: εff BkAkx +=−                                   (4.20) 

1010012: εff BkAky +=                                              (4.21) 

(a) (b)

(c) (d)

(e) Vortex point (Focus)

Saddle point
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( ) 120025020211
2 : ffff CkkCBkAkx ++++=− ε               (4.22) 

( ) 220026202011
2 2: ffff CkkCBkAky ++−+= ε               (4.23) 

11112002 24: εff BkAkkxy +=−                                (4.24) 

 

ɛ  -equation: 
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010110: εε ff DkCx +=−                                       (4.26) 

1010012: εε ff DkCy +=                                       (4.27) 

( ) 320027020211
2 : ffff CCDkCx ++++=− εεεε              (4.28) 

( ) 420028202011
2 2: ffff CCDkCy ++−+= εεεε               (4.29) 

11112002 24: εεε ff DkCxy +=−                                 (4.30) 
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 Fig. 4.3 Streamline contour at vortex center (focus) of Stuart vortex approximated by Taylor 

function  
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 Fig. 4.4 Turbulent structures by approximate solution for vortex point (Run-1): (a) turbulent 

kinetic energy, k (b) turbulent energy dissipation rate, ɛ (c) turbulent normal stress in x 

direction, 11uu (d) turbulent normal stress in y direction, 22uu  (e) turbulent normal stress in 

z direction, 33uu  (f) turbulent shear stress in xy plane, 21uu  
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Solving the twelve equations from Eqs. (4.19) to (4.30), twelve unknowns are determined in 

terms of model constants. Substituting the obtained values of unknown coefficients into Eqs. 

(4.17) and (4.18), the k and ε profiles are calculated. The distributions of turbulent intensities and 

shear stresses are obtained by constitutive equations.  

Figure 4.4 shows the turbulent structures at the center of vortex determined by approximate 

solution using the model constants of Run-1. It is observed that, the profiles for turbulent kinetic 

energy (k), dissipation rate (ε) [Figs. (a) and (b)] as well as the turbulent normal stresses in x, y 

and z directions (expressed as 11uu , 22uu , 33uu and shown in Figs. (c), (d) and (e) respectively) 

show elliptical structures. On the other hand, the turbulent shear stress in xy plane ( 21uu ) shows 

hyperbolic (saddle pattern) profile [Fig. (f) ] . These features of turbulent structures at the center 

of vortex are consistent with the previous experimental results reported for free shear flows. 
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The model constants for Run-2 are a trial set of model constants to investigate the influence of 

functional form of cμ on turbulent structures at the vortex center. The variation of cμ between two 

sets of model constants, plotted against the spatial distance from vortex center (x), is shown in 

Fig. 4.5. Fig. 4.6 shows the turbulent structures at vortex center predicted by Run-2. It is found 

that the turbulent kinetic energy (k), and turbulent intensities, 11uu  and 22uu , show hyperbolic 

profile instead of elliptical structures. This means that Run-2 failed to predict the actual turbulent 

structures that are observed in the previous experimental studies. By comparing the results for 

two sets of model constants, it can be concluded that the turbulent structures in a vortex is 

sensitive to the functional form of cμ. 
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Fig. 4.5 Profiles of cμ (S, Ω) in the vortex field for Run-1 and Run-2. 

( a ) ( b )
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Fig. 4.6 Turbulent structures by approximate solution for vortex point (Run-2): (a) turbulent 

kinetic energy, k (b) turbulent energy dissipation rate, ɛ (c) turbulent normal stress in x 

direction, 11uu  (d) turbulent normal stress in y direction, 22uu  (e) turbulent normal 

stress in z direction, 33uu  (f) turbulent shear stress in xy plane, 21uu  

 
 

4.4.2 Numerical simulation 

 

In the previous section, approximate solutions are derived for the vortex point and the 

turbulent characteristics are predicted. In this section, numerical simulations are carried out for 

the same flow field, and the results are compared to approximate solution to assess the 

effectiveness of the approximate approach. 

The equation of actual Stuart vortex expressed in Eq. (4.11) gives the following velocity 

field. 

( c ) ( d )

( e ) ( f )



 
Chapter 4.  TURBULENT STRUCTURES IN AN IDEALIZED VORTEX STREET                65 

 
 

 

xAy
y

y
U x coscosh

sinh
+

=
∂
∂

=
ψ

             (4.31) 
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x
U y coscosh
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ψ

            (4.32) 

For this velocity field, the turbulent stresses as well as k and ε profiles are determined. As 

shown in Fig. 4.2(e), two vortices are considered in the flow domain with a periodic boundary 

condition at upstream and downstream end.  

The periodic turbulent structures simulated for Run-1 are shown in Fig. 4.7. Turbulent 

kinetic energy (k), its dissipation rate (ε) and turbulent normal stresses in x, y and z directions 

(expressed as 11uu , 22uu and 33uu respectively) are showing the contours in elliptical shape at 

the vortex center. On the other hand, the turbulent shear stress in xy plane ( 21uu ) is showing 

hyperbolic profile (saddle pattern). The results satisfy the approximate solution, and prove that 

the conditions derived for the constitutive law with the estimated model constants are applicable 

to simulate large scale vortices.    

In the approximate solution it is shown that, the turbulent structure is changed with the 

change of the values of model constants; the evidence is also presented using the model constants 

of Run-2. The simulation results for Run-2 are presented in Fig. 4.8. Considering turbulent 

kinetic energy and turbulent normal stresses as shown in Fig. 4.8 (a), (c) and (d), the hyperbolic 

profiles (saddle pattern) are observed instead of elliptical one. The results of numerical 

simulation fully satisfy the approximate solution. 

Figure 4.5 shows that at the center of vortex, where the strain and rotation parameters are 

large, the value of cμ is less than 1/2 of its far field value. However, in the standard k-ε model, 

the coefficient cμ has no dependency on the rate of strain and rotation, and bears a constant value 

(=0.09) throughout the turbulent flow field. This deficiency of standard k-ε model causes an 

inconsistent prediction of turbulent structures at the center of vortex. Fig. 4.9 shows the results 

simulated by standard k-ε model. The model failed to generate the elliptical structures (focus 
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pattern) for k, ε and turbulent normal stresses. The result is consistent with Run-2 (Figs. 4.6 and 

4.8), where the value of cμ is not sufficient to count the effect of strain and rotation rates. 
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Fig. 4.7 Turbulent structures by numerical simulation (Run-1): (a) turbulent kinetic energy, k (b) 

turbulent energy dissipation rate, ɛ (c) turbulent normal stress in x direction, 11uu (d) 

turbulent normal stress in y direction, 22uu  (e) turbulent normal stress in z direction, 33uu  

(f) turbulent shear stress in xy plane, 21uu  
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Fig. 4.8 Turbulent structures by numerical simulation (Run-2): (a) turbulent kinetic energy, k (b) 

turbulent energy dissipation rate, ɛ (c) turbulent normal stress in x direction, 11uu (d) 

turbulent normal stress in y direction, 22uu  (e) turbulent normal stress in z direction, 33uu  

(f) turbulent shear stress in xy plane, 21uu  

 

-2 0 2 4 6 8

x

-2

0

2

y

(a)

-2 0 2 4 6 8

x

-2

0

2

y

(b)

 
 

-2 0 2 4 6 8

x

-2

0

2

y

(c)

-2 0 2 4 6 8

x

-2

0

2

y

(d)

 
 

-2 0 2 4 6 8

x

-2

0

2

y

(e)

-2 0 2 4 6 8

x

-2

0

2

y

(f)

 
Fig. 4.9 Turbulent structures by numerical simulation by Standard k-ε model: (a) turbulent 
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kinetic energy, k (b) turbulent energy dissipation rate, ɛ (c) turbulent normal stress in x 

direction, 11uu (d) turbulent normal stress in y direction, 22uu  (e) turbulent normal stress in 

z direction, 33uu  (f) turbulent shear stress in xy plane, 21uu  
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Fig. 4.10 Saddle point of Stuart vortex approximated by Taylor function 

 
 
4.5  Turbulent Structures at Saddle Point 

 

In a Stuart vortex, two vortices are separated in the saddle point at a periodic distance of π 

from the vortex point [Fig. 4.2(e)]. Therefore, the equation of Stuart vortices expressed in 

Eq.(4.11) is expanded using Taylor function at a periodic distance of (π,0), and the approximated 

stream function for the saddle point is expressed as follows (eccentricity, A=- 0.5 is used) 

( ) .........
36
1

18
1

3
1

6
1

2
1ln 42222 +−++−= yyxyxψ                (4.33) 

The corresponding velocity field is approximated as 

32

9
1

9
1

3
2 yyxy

y
U x −+=

∂
∂

=
ψ

                       (4.34) 

2

9
1

3
1 xyx

x
U y −=

∂
∂

−=
ψ

                      (4.35) 

The contour of streamlines for saddle point approximated by Taylor function (Eq. 4.33) is shown 
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in Fig. 4.10. 

Similar to previous analysis for vortex center, the following polynomial functional forms are 

assumed for the distributions of k and ε in saddle point 

xykykxkykxkkk 11
2

20
2

02100100 ++++++=                  (4.36) 

xyyxyx 11
2

20
2

02100100 εεεεεεε ++++++=                 (4.37) 

Applying the same procedure as vortex point, the following algebraic expressions are derived 

considering the relations of coefficients for the same power of variables (x, y) in k and ε 

equations [Eqs. (4.12) and (4.13)].  

k-equation: 

( ) ( ) { }( ) 012221:0 02002
2
0000

2
00

0

0
=++− kkk

c
kc

kσ
μ

μ                (4.38) 

010110: εss BkAkx +=                                        (4.39) 

1010012: εss BkAky +=                                       (4.40) 

( ) 120025020211
2 : ssss CkkCBkAkx ++++= ε                    (4.41) 

( ) 220026202011
2 2: ssss CkkCBkAky ++++= ε                   (4.42) 

11112002 24: εss BkAkkxy +=+                                (4.43) 

ɛ  -equation: 
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010110: εε ss DkCx +=                                  (4.45) 

1010012: εε ss DkCy +=                                       (4.46) 

( ) 320027020211
2 : ssss CCDkCx ++++= εεεε                    (4.47) 

( ) 420028202011
2 2: ssss CCDkCy ++++= εεεε                     (4.48) 

11112002 24: εεε ss DkCxy +=+                                 (4.49) 

Here,  
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Solving twelve equations from Eqs. (4.38) to (4.49), twelve unknowns are determined in 

terms of model constants. The calculated profiles for k, ε and turbulent stresses are shown in Fig. 
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4.11. It demonstrates that the turbulent energy and dissipation rate as well as turbulent normal 

stresses show hyperbolic profile (saddle pattern) in a saddle point. However, the shear stress 

shows elliptic structure. 
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Fig. 4.11 Turbulent structures by approximate solution for Saddle point (Run-1): (a) turbulent 

kinetic energy, k (b) turbulent energy dissipation rate, ɛ (c) turbulent normal stress in x 

(e) (f)

( a ) ( b )

( c ) ( d )
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direction, 11uu  (d) turbulent normal stress in y direction, 22uu  (e) turbulent normal 

stress in z direction, 33uu  (f) turbulent shear stress in xy plane, 21uu  

 

From the analytical solution, it can be concluded that the turbulent structures are changed 

with the spatial distance depending on the structures of singular points. The turbulent normal 

stresses show elliptical structure near the vortex center, which are changed to hyperbolic profile 

near saddle point at a stream-wise periodic distance of π. On the other hand, the shear stresses 

show hyperbolic structures at vortex center and changed to elliptical at saddle point. The spatial 

change of turbulent structures for turbulent kinetic energy and dissipation rates are found similar 

to turbulent normal stresses. These features are consistent with the previous experiments of 

coherent vortices in plane shear layer and turbulent jets (Hossain, 1986).  

Coherent vortices are generated due to shear layer caused by velocity gradient. In a river 

flow, such velocity gradient is observed when the water flows in an out of bank condition, which 

is a common feature of a natural river. Generally, the velocity in the flood plain is lower than that 

in the main channel. Therefore, the coherent vortices are formed at the junction between the main 

channel and the flood plain. Due to shear layer instability, the vortices are generated with the 

vertical axis at the interface. In the next chapter, the spatial distributions and topological changes 

of turbulent structures in coherent vortices at the interface of a compound open channel will be 

investigated and compared with the present findings in an ideal vortex street. 

 

4.6 Summary 

 

Based on a realizable non-linear k–ε model, approximate solutions are derived for the 

turbulent properties of an idealized vortex street to explore the predictability of the model for 

large scale vortices. The spatial changes of turbulent structures with singular points in the 

vortices are investigated. The qualitative results are compared to previous experiments to assess 
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the models applicability. The findings are summarized below： 

(i) The Stuart vortex, which contains both vortex and saddle patterns in its vorticity contour, is 

considered as an ideal simple vortex street. The turbulent structures at vortex center and 

saddle point obtained by approximate solution are found to be consistent with the previous 

experimental results of large scale coherent vortices in free shear flows. 

(ii) The turbulent structures of the vortex street are found to be sensitive to the functional form of 

the coefficient of eddy viscosity, cμ. 

(iii)  The numerical simulation verifies the accuracy of approximate solution, and reveals that the 

conditions derived for the constitutive law with the estimated model constants are applicable 

to simulate large scale vortices. 

(iv) In the standard k-ε model, the coefficient cμ has no dependency on the rate of strain and 

rotation, and bears a constant value (=0.09) throughout the turbulent flow field. That’s why it 

is observed that, the standard model fails to predict the turbulent structures accurately at the 

center of vortex. 

(v) The turbulent structures are found to be changed with the spatial distance depending on the 

structures of singular points. It is observed that the turbulent normal stresses show elliptical 

structure near vortex center, which changed to hyperbolic profile near saddle point at a 

stream-wise periodic distance of π. However, the shear stress show hyperbolic structure at 

vortex center, and the structure changes to elliptical at saddle point. 

(vi) The topological changes of turbulent kinetic energy and dissipation rate with stream-wise 

spatial distance are found similar to turbulent normal stresses. 

In the next chapter, the spatial distributions and topological changes of turbulent structures in 

coherent vortices at the interface of a compound open channel will be investigated and compared 

with the present findings of an ideal vortex case. 
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Chapter 5 
UNSTEADY 3D COMPUTATION OF 
COMPOUND OPEN CHANNEL 
FLOWS  
 

 

 

5.1  Introduction 

    
Compound channel is a common feature of natural rivers, where the water in main channel 

flows in an out-of-bank condition. Since the water level in flood plain is shallower and the 

roughness is higher (due to more vegetation) than the main channel, the flow velocity in the 

flood plain is generally lower than that in the main channel. Because of this velocity gradient, a 

shear layer is observed at the junction, and large-scale vortices are generated with the vertical 

axis at the interface of main channel and flood plain. The vortex formation causes momentum 

transfer in the lateral direction from the main channel to the flood plains, resulting a decrease in 

channel conveyance, and hence, the flow resistance in the channel is increased. The vortices 

also significantly distort the velocity and shear stress pattern. A sketch of flow pattern in a 

compound channel by Shiono and Knight (1991) is shown in Fig. 5.1. In addition to the 

coherent vortices at interface, the generation of secondary currents due to anisotropy of 

turbulence makes the flow very complex, and the flow field shows strong three dimensional 

characteristics. 
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A single channel method, in which the compound channel is considered as a single channel, 

gives an under predicted discharge; on the other hand, the divided channel method predicts a 

higher discharge than the actual. Thus it is necessary to estimate effect of horizontal vortices 

on the flow resistance that directly affects the channel conveyance. Since the turbulent 

characteristics of this type of flows are highly non-linear, the nonlinear terms and empirical 

functions in a non-linear k–ε model plays an important role to generate the horizontal vortices 

and secondary currents by accounting the anisotropic turbulent behaviors. In this study, the 

flow field in a compound channel is generated using standard as well as non-liner (2nd and 3rd 

order) k–ε models. The interaction of horizontal vortices with secondary currents and its effect 

on the prediction of compound roughness are investigated. The contribution of vortices and 

secondary currents evaluated by different models are assessed from the view point of 

calculated discharge, secondary flow pattern and predicted roughness coefficients. The model 

is validated by comparing the depth averaged velocity and shear stress profiles as well as 

Fig. 5.1 Sketch of 3D flow structure in a compound channel (Shiono and Knight, 1991)  
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secondary flow patterns with previous experiments. 

Although the vortex characteristics in a compound channel are studied by many 

researchers both in experimental and numerical means, all are concentrated mainly on the 

effect of vortices to the cross-sectional flow or turbulence profiles, or to the channel resistance 

properties. However, as far as in author’s knowledge, the spatial change of turbulent structures 

with the singular points of large scale vortices are not reported for compound channel flows. In 

this study, in addition to general flow features, the formations of singular points (i.e. vortex 

and saddle patterns) in the coherent structures, and the topological changes of turbulent 

structures with the singular points are investigated and compared with the results of the ideal 

vortex street presented in previous chapter. 

 

5.2  Governing Equations 

 

The 3D unsteady flow equations for open channel with linear, 2nd order and 3rd order 

non-linear k–ε model are given below, which are used to simulate the compound channel flows 

in this study.  
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(a) Standard k–ε model 
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(b) 2nd order non-linear k–ε model 
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(c) 3rd order non-linear k–ε model 
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In Equation (5.6) and (5.7), 
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The used values of the model constants are: cμ0 = 0.09, cns = 0.005,  cnΩ = 0.0068, cds = 

0.008, cdΩ = 0.004, cdsΩ = -0.003, cds1 = 0.00005, cdΩ1 = 0.00005, cdsΩ1 = 0.00025, c10 =0.40, c20 

=0.0, c30 = -0.13, c40 = -0.02, c50 = 0.0, mds = 0.01, mdΩ = 0.003. Standard values are used for 

other model constants: σk = 1.0, σε= 1.3, cε1 = 1.44, and  cε2 = 1.92. 
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5.3  Numerical Procedure and Flow Configurations 

 

5.3.1 Numerical schemes and boundary conditions  

The code solves the governing equations for mean velocities and turbulent flow field 

discretized with the finite volume method and is based on a staggered grid system. The 

arrangements of variables in a staggered grid for 3D computations are shown in Fig. 5.2. For 

the momentum equation, convection and diffusive fluxes are approximated with Quick and 

central difference schemes respectively. The hybrid central upwind scheme is used for the k 

and ε equations. Time advancement is achieved by Adam-Bashforth scheme of second-order 

accuracy, in each equation. The basic equations are discretized as fully explicit forms and 

solved successively with the time increment in step by step. The pressure field is solved using 

iterative procedure at each time step. The free surface elevation is solved by continuity 

equation integrated over the control volume of the surface layer. 

   

 

 

Fig. 5.2 Arrangements of variables in a staggered grid in the 3D computations 
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The wall functions are employed as the wall boundary conditions for k and ε. The frictions 

near the bed and side walls are estimated by log-law. Periodic boundary conditions are used in 

upstream and downstream ends of the flow domain. Near the free surface, the eddy viscosity is 

multiplied by a damping function for the rapid attenuation of turbulent intensities in the depth 

wise direction. The turbulent dissipation rate for the surface layer is evaluated by the 

(c) Geometry-C (side slope =1:1) 

Fig. 5.3: Cross-section of compound open channel 
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expression proposed by Sugiyama et al (1995). The damping function (fs) and the dissipation 

rate (εs) for surface layer are shown in the following equations; the subscript represents the 

value of surface layer (here, Bs =10). 
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5.3.2 Flow configuration and test models  

Considering the availability of experimental data, numerical simulations are performed for 

three types of geometry. For Geometry-A (having no side slope and different roughness for 

main channel and flood plain, shown in Fig. 5.3(a)), the laboratory experiments have been 

performed by Fukuoka at al.(1989) to determine the compound roughness of the channel. For 

this geometry, the numerical simulations are performed for three cases with different flood 

plain to main channel depth ratios. The Geometry-B is a trapezoidal section with a side slope of 

1:1 (shown in Fig. 5.3(b)). For cases B1 and B2, the laboratory data are available for depth 

averaged velocity and shear stress profiles (Knight, 1992). All the cases from A1 to B2 consist 

of single flood plain. In order to compare the secondary currents (considering the availability of 

experiments), the simulation is performed for Case C1, which contains two flood plains. The 

details of hydraulic conditions are shown in Table-5.1. The reported experimental results for 

geometry B and C are from the first phase experiments of Wallingford Flood Channel Facility 

Geometry Cases B 
(cm) 

b 
(cm)

H 
(cm) 

h 
(cm) 

Long.
slope nmc nfp 

A1 7.5
A2 10.0A 
A3

200 75.7
12.5

5.0 0.001 0.01 0.028 

B1 19.8B B2 405 180 17.6 15.0 0.001 0.01106 

C C1 315 X 2 180 17.7 15.0 0.001 0.01106 

Table 5.1: Channel properties and hydraulic conditions of compound channel 
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(FCF), UK (Shiono and Knight, 1991; Wormleaton, 1996; Bousmar, 2002). Among nine series, 

Case B1 and B2 belong to series-06, and Case- C1 belongs to series 02 in that phase of 

experiments.  

For geometry-A, the flow domain consists of 200 grids in stream-wise (x), 42 in transverse 

(y) and 11 in depth-wise (z) directions. For Cases B1 and B2, numbers of grid for x, y and z 

directions are 200, 50 and 11 respectively; for Case C1, 200 x 72 x 11 grids are used. It can be 

noted that, since the ratio of depth (H/h) is one of the dominant factor for the formation of 

vortex at the interface, for case A, the simulation work is performed for three cases of depth 

ratios varying from 1.5 to 2.5 as shown in Table 5.1. 

 

 

(a) Plan view of flow field without horizontal vortices 

 

               (b) Plan view of flow field after generation of horizontal vortices 

Fig. 5.4: Plan view of flow pattern (case-A1, t=110 sec, a part of domain is shown) 
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Fig. 5.5: Water surface distribution near the interface for the flow field shown in Fig. 5.4 (b) 

(case-A1, Run NLKEV, t=110 sec) 

The numerical tests are performed using both standard and nonlinear k–ε models. The 

simulations are run both including vortex and excluding vortex conditions to study the effect of 

vortices in the flow field. To distinguish the effect of nonlinearity of eddy viscosity, the 

non-linear k–ε model without quadratic term is also applied. For all the three different cases of 

geometry A, as shown in Table 5.1, each of the following models and simulation conditions are 

used.  

(i) 3rd order non-linear k–ε model considering horizontal vortices  

(ii) 3rd order Non-linear k–ε model without considering horizontal vortices  

(iii) 2nd order non-linear k–ε model considering horizontal vortices (Run NLKEV) 

(iv) 2nd order Non-linear k–ε model without horizontal vortices (Run NLKE) 

(v) Standard k–ε model considering horizontal vortices (Run SKEV) 

(vi) Standard k–ε model without considering horizontal vortices (Run SKE) 

 
 

(a) 
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Fig. 5.6: Temporal change in the plan view of flow pattern for case-A1, Run NLKEV (a) t=110 

sec (b) t=140 sec (c) t=170 sec (d) t=220 sec (e) t=320 sec (half of the computational 

domain is shown) 

 
 

(b) 

(c) 

(d) 

(e) 
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5.4 Results and Discussions 

5.4.1 Plan view of flow pattern 

 
Present work is dedicated to the modelling of periodic turbulent structures, such as large 

scale vortices with vertical axis, which are observed at the interface between the main channel 

and flood plain of a compound channel. To quantify the effect of these vortices on 

characteristics of channel flow as well as on its flow resistive properties, the flow fields are also 

generated by omitting the vortices. For all the cases of geometry A with H/h from 1.5 to 2.5, 

the horizontal vortices are found to be generated both by standard and nonlinear k- ε models. 

Figure 5.4(b) shows the plan view of flow pattern generated with the horizontal vortices using 

2nd order nonlinear k–ε model for case A1. Fig. 5.4(a) shows the flow field without horizontal 

vortices. The water surface distribution corresponding to the flow field in Fig.5.4(b) is 

presented in Fig. 5.5. It demonstrates that a depression in water surface is formed at the centre 

of each vortex. The depth gradually increases in up- and down-stream of vortex centre and 

becomes maximum at saddle points of the flow field.  

During simulation, the instability in the initial uniform flow is started at about t = 70 to 90 

sec, and clear periodic vortices are appeared at about t= 100 to 150 sec. After the initial vortices 

completely developed, two or thee neighbouring vortices are found to be merged together to 

form a larger one. However, after about t=250 seconds, the merging process stops and vortices 

size remains approximately constant with respect to time. Such temporal change in the plan 

view of flow pattern is shown in Fig. 5.6. For case-A1, flow fields near the interface region is 

shown for t=110, 140, 170, 220 and 320 secs. Water surface fluctuations in the merged vortices 

are found higher than the initial small vortices. Such phenomena of vortex merging were also 

observed by Bousmar (2002) in his numerical simulation. He reported that the non-merged 

vortices better matched with experimentally observed vortices than the merged one. The 

variation of water depth along the interface is shown in Fig. 5.7. It is observed that, although 
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water surface variation is very regular for case A1 (Fig. 5.7a), they show some discrepancy for 

cases A2 and A3 (Fig 5.7 b and 5.7c). This indication reveals that the periodic vortices are not 

clearly observed as the relative depth (H/h) increases. This feature concerning the relative depth 

has also pointed out by Fukuoka et al. (1989) in their laboratory tests.  
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 Fig. 5.7: Depth variation along the downstream distance for (a) case-A1, (b) case-A2 , and  

(c) case-A3 
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5.4.2 Characteristics of secondary currents  

In addition to horizontal vortices, the helical secondary currents are considered to be 

another main source of momentum transfer on the flood plains. The flow exchange between 

main channel and flood plain due to the interaction of secondary currents and horizontal 

vortices are explained in Fig. 5.8. In the figure, the pattern of secondary currents is shown at 

different sections in a coherent vortex. The plan view of the vortex is shown in Fig. 5.8(a), 

where the positions of sections are shown. The plan view shows that the vortex lies between 

1300 to 1500 centimetres of stream-wise distances. The secondary currents are shown for the 

sections at x= 1300, 1340, 1360, 1380, 1420, 1440, 1460 and 1500 cm distances. The first and 

last sections are situated in saddle point region; 4th section is near to vortex centre; sections at 

x=1340 and 1440 cm contain the maximum tangential velocity with two opposite directional 

flow; and other sections are transition between adjacent sections. The plan as well as sectional 

view of vector plots show that, in the sections upstream side of vortex centre (first three 

sections) the flow is moving from flood plain to main channel. A reverse movement is shown 

in downstream three sections. This flow exchange between main channel and flood plain is 

minimum at saddle and vortex center, which gradually increases spatially and reaches its peak 

in between two critical points. Although the surface and bottom circulation cells in the left end 

of main channel secondary current are observed as a common feature in all the sections, the 

secondary circulation at the interface region is observed only in the sections near the vortex 

centre and saddle points.  

Figure 5.9 shows the spatially averaged cross-sectional flow pattern of secondary currents. 

The pairs of surface vortices as well as the corner vortices in main channel are clearly depicted 

by all the models. The inclined upwelling currents are generated from the edge of the junction 

toward the surface. Due to unavailability of experimental results, the calculated secondary 

currents for these cases are not directly compared with the experimental results. But the 
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qualitative features of the secondary flow patterns are found well comparable with other 

experimental results such as Tominaga and Nezu (1991). 

Comparing the prediction of 3rd order model [Fig. 5.9(b)] with that of 2nd order [Fig. 

5.9(a)], it is observed that 3rd order model predicts superior results than 2nd order model. The 

circulation cell width of both the surface vortices is under predicted by second order model. 

Although the downward vectors at the centre of main channel predicted by 3rd order model are 

well agreed with experiments, the 2nd order model shows an upward flow. The direction of 

secondary flow in the upper part of flood plain simulated by 2nd order model contradicts with 

previous experiments, however 3rd order one predicts accurately. 

The interaction of horizontal vortices with the secondary currents at the interface of 

subsections is clearly depicted in Figs. 5.9(b) and (c). The magnitude of upwelling secondary 

currents at the interface, for the flow field having horizontal vortices, is slightly smaller than 

that of without vortex condition. It indicates that the secondary currents near the junction are 

suppressed by the influence of flows caused by the vortices. The secondary currents for higher 

depth ratios (H/h) are found higher in magnitude compared to lower depth ratios. It is seen that 

with increasing the flood plain depth, the scales of surface vortices are increased. The 

magnitudes of secondary currents are also increased significantly with the flood plain depth. 

Compared to case A1, a stronger circulation cell is observed at the right end corner of flood 

plain for cases A2 and A3 [in Figs. 5.9 (d) and (e)].  

1300 1340 1380 1420 1460 1500
x (cm)

60

70

80

90

y
 (

c
m

)

 
 (a) Plan view of a single vortex with different sections for which the instantaneous profiles 

of secondary currents are given below 
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(b) Section at x=1300 cm 

(c) Section at x=1340 cm 

(d) Section at x=1360 cm 

(e) Section at x=1380 cm 

(f) Section at x=1420 cm 
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(g) Section at x=1440 cm 

(h) Section at x=1360 cm 

(i) Section at x=1500 cm 

Fig. 5.8: The instantaneous profiles of secondary currents at different sections of a single 

vortex (Case-A2) 

(a)  

(b)  
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Fig. 5.9: Spatially averaged cross-sectional flow pattern of secondary currents: (a) Case-A1, 

2nd order model (b) Case-A1, 3rd order model (c) Case-A1, 3rd order model without 

considering horizontal vortex (d) Case-A2, 3rd order model (e) Case-A3, 3rd order model 

 
5.4.3 Prediction of discharge  

The simulated discharge in a compound channel predicted by all the models for all three 

cases of geometry-A are plotted against time and shown in Fig. 5.10. The predicted discharges 

with and without including vortices indicate the contribution of vortices. On the other hand, the 

model performance between standard and non-linear k–ε model are clearly depicted. For all the 

cases, the linear model predicts higher discharge over non-linear one, and the simulated flow 

(c)  

(d)  

(e)  
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field without vortices also over predicts the discharge compared to a flow field with vortices. 

Thus the maximum and minimum discharges are predicted by a standard model without 

vortices and a non-linear model with vortices condition respectively; the comparisons show 

about 5% to 8% difference in discharge computations for case A1 to case A3 respectively.  
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Fig. 5.10: Discharges computed by different models for (a) case-A1, (b) case-A2, and (c) 

case-A3 (here, NLKE indicates second order model) 

 

5.4.4 Prediction of flow resistance  

The roughness coefficient for compound channel is calculated by numerical simulation, 

and compared to experimental as well as other semi-analytical results.  
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Fig. 5.11: Comparison of normalized compound roughness coefficient for different depth ratios  
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(a) Prediction Methods  

(i) Method 1 (Separate Channel Method): The use of Manning’s formula for discharge 

calculation is restricted to channels with an almost uniform velocity distribution in the 

cross-section. Thus, to use the equation for a compound channel, the cross-section is divided 

into two independent sections. Although the dividing line between main channel and flood 

plain can be either vertical, horizontal or diagonal, a vertical line is used here (dotted line in Fig. 

5.3a), which is the most common and practical one. In this method the interaction of flows in 

two sections are completely neglected. The total discharge is evaluated as summation of the 

discharges in two sections as 
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where, Ib is the bed slope and  ‘n’  is the Manning’s coefficient, A and S are the 

cross-sectional area and wetted perimeter respectively. The subscripts ‘mc’ and ‘fp’ are used to 

denote the parameters for main channel and flood plain respectively. 

The magnitude of the flow resistance is estimated as a compound roughness coefficient, 

Nc, which is defined as follows 
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 (ii) Method 2 (Computation with k-ε model): The definition of compound roughness 

coefficient in equation (5.14) can be written in the following form  

 
Q

Q
n
n

Q
Q

n
N fp

mc

fpmc

mc

c +=                                    (5.15) 

Using the standard and non-linear k- ε model as described in Eqs. (5.1) to (5.7), the discharge 

in main channel and flood plain are computed to calculate the compound roughness coefficient 

using the above relations. 

 



 
96        Chapter 5. UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS         

 

(b) Comparison of roughness coefficient  

For different depth ratios, the compound roughness coefficients evaluated by different 

methods and using various models are plotted in Fig. 5.11, along with the experimental results 

by Fukuoka et al. (1989). It is shown that the separate channel method, where the flow 

interaction between two subsections is not taken into account, shows the worst comparison with 

experimental result. The figure indicates that the standard and non-linear k–ε model can 

reproduce the increase of roughness coefficient due to lateral momentum transfer. The 

contribution of vortices in the momentum transfer, and thus to the channel roughness, can be 

quantified by the difference in their magnitude predicted by the models with and without 

vortices. The non-linear k- ε model shows best result over standard one. Slight improvement is 

observed in the prediction of third order model over that of second. Comparing the results for 

case A3, it is observed that the numerical result improves the resistance coefficient by about 

21% over the separate channel method, where  the vortices contribute about half of that and 

the rest is due to secondary current and associated three-dimensional turbulent structure. 

However, the value still about 9% underestimated than the experimental value. 
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Fig. 5.12:  Spatial averaged cross-sectional profiles for (a) stream-wise velocity for case B1 

(b) boundary shear stress profile for case B1 (c) stream-wise velocity for case B2 (d) 

boundary shear stress profile for case B2 

(b) 

(c) 

(d) 
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Fig. 5.13:  Comparison of spatial averaged cross-sectional profiles with Abe et al.(1997) 

for (a) stream-wise velocity for case B1 (b) boundary shear stress profile for case B1 

 

5.4.5 Velocity and shear stress profiles  

The depth averaged velocity and bed shear stress profiles are computed by 3rd order 

non-linear model for cases B1 and B2. The calculated profiles are compared with the laboratory 

experiments of Knight (1992). In Figure 5.12, Cal. (2) represents the profile without 

considering transverse momentum transfer due to horizontal vortices. It is observed that the 

(a) 

(b) 
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simulation results by the non-linear model (Cal.-1) are in good agreement with experiments. 

However, Cal. (2) under-predicts the velocity and shear-stress values at least near the interface 

region. The comparison reveals that, the well agreed profiles are obtained when the effects of 

vortices are considered.  

The flow field is also calculated using the model by Abe et al. (1997) and shown in Fig.5.13 

as Cal. (3) with comparison to previous experiments as well as the prediction of present model. 

Present model (Cal. 1) shows better comparison than Abe’s model. Cal. (3) under-predicts the 

velocity and shear-stress values near the interface region.  

 

5.4.6 Compound Channel with two flood plains  

Numerical simulation is performed for the same condition of experiments reported by 

Shiono and Knight (1991) for first phase of FCF-02 experimental series having two-flood plain 

in the geometry with B/b=4.2 and (H-h)/H=0.157. The temporal change of coherent vortices at 

interfaces of main channel and flood plains are shown in Fig. 5.14. The vortex merging 

observed for geometry A is also observed here. For a particular time, the instability vortices at 

two interfaces are found to form at the same downstream distances.  

The spatial and depth averaged velocity profile is compared with experiment in Fig. 5.15. 

An excellent agreement is observed. In Fig. 5.16, the simulation of spatial averaged secondary 

current is compared with experiments. The patterns as well the magnitudes are found in close 

agreement with each other. Near the interface region, three counter rotating secondary flow 

cells are observed. Among two surface cells, the first one is at the top edge of flood plain, 

which contains the scale as same as flood plain depth. The bottom secondary flow cell has the 

size of main channel depth. The comparison of bed shear stress profiles also shows very good 

agreement in Fig. 5.17.   
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Fig. 5.14: Temporal change in the plan view of flow pattern for the case of two flood plain of 

case-A3: (a) t=100 sec (b) t=120 sec (c) t=230 sec  
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main channel

flood plain
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Fig. 5.15 Comparison of depth averaged velocity profile for case C1 (two flood plain), 

calculation is made using 3rd order model. 

 
 
Fig. 5.16: Comparison of spatial averaged secondary current for case C1 (two flood plain case, 

calculation is made using 3rd order model): (a) Experimental (Shiono and Knight, 1991) 

(b) Simulation result 

(a)  
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Fig. 5.17: calculated spatially averaged boundary shear stress profile for case C1 compared 

with the experimental results by Shiono and Knight (1991)  

 

5.4.7 Turbulent properties of coherent vortices in compound channel  

In the previous chapter, approximate solutions are derived for the turbulent characteristics 

of Stuart vortices, and the spatial distributions and topological changes of turbulent structures 

with singular points are evaluated. In the previous section of this chapter, it is showed that in a 

compound channel the horizontal vortices are generated at the interface of main channel and 

flood plain due to turbulent shear layer. In this section, the characteristics of coherent vortices 

are analyzed from the view point of the formation and spatial change of turbulent structures 

with respect to singular points. The properties are compared with the approximate analytical 

solution (presented in chapter 4) as well as with the previous experiments.  

Fig. 5.18 shows the plan view of flow patterns for case-A1 at t=300 sec. The generated 

horizontal vortices are observed in the figure clearly. The turbulent structures near the vortex 

point at two different spatial distances are shown in Figs. 5.19 and 5.20. The flow vectors of 

two individual vortices are shown in Figs. 5.19(a) and 5.20(a) for the stream-wise distances of 
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x=200 to 380 cm and x=760 to 920 cm respectively. The figures indicate that the turbulent 

normal stresses in x, y and z directions, expressed as 11uu , 22uu  and 33uu respectively, show 

the contours in elliptical structure at the vortex center [Figs. (d), (e) and (f) respectively]. The 

structures of turbulent kinetic energy (k) and dissipation rate (ε) [Figs. (b) and (c)] are similar 

to turbulent normal stresses. On the other hand, the turbulent shear stress in xy plane ( 21uu ) 

shows hyperbolic profile [Fig. (g) ].  
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(b)

( c )

(a)

Fig. 5.18 Plan view of flow vectors showing the horizontal vortices at the interface of main 

channel and flood plan (case A1, t =300 sec) 
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Fig. 5.19 Turbulent structures near the center of a vortex (x =200~380 cm):  (a) plan view of 

flow vectors (b) k  (c) ε  (d) 11uu  (e) 22uu  (f) 33uu  (g) 21uu  

 

The turbulent structures for saddle point are shown in Fig. 5.21. It is found that the 

turbulent kinetic energy and dissipation rate as well as turbulent normal stresses show 

hyperbolic profile (saddle pattern) in the saddle point. However, the shear stress shows 

elliptical structure. 

Therefore, the changes of topological structures of turbulent stresses in the large scale 

vertices of a compound channel are found compatible with analytical solution of the idealized 

vortex street. The features are also compatible to the previous experimental results on large 

scale coherent vortices in free shear flows (Hossain, 1986).  

Hossain (1986) reported that the turbulence production is an important criterion to explain 

( f )
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the roles of ribs and vortex stretching in a coherent vortex. Fig. 5.22 shows the structures of 

turbulence production at vortex center [Figs. (a) and (b)] and saddle point [Fig. (c)] for 

different spatial distances. Comparing the turbulent structures for both the vortex and saddle 

points with Figs. 5.19 to 5.21, it is found that the turbulence productions follow the structures 

of turbulent shear stresses. The quantitative comparison indicates that the turbulence 

production at the vortex center is very small, but is larger in the upstream and downstream 

directions, being the maximum at the saddle on either side. This feature is also consistent with 

the measurements of coherent structures in free shear flows.  
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Fig. 5.20 Turbulent structures near the center of a vortex ( x =760~920 cm):  (a) plan view of flow 

vectors (b) k  (c) ε  (d) 11uu  (e) 22uu  (f) 33uu  (g) 21uu  
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Fig. 5.21 Turbulent structures at the saddle point ( x = 400~450 cm):  (a) plan view of flow 

vectors (b) k  (c) ε  (d) 11uu  (e) 22uu  (f) 33uu  (g) 21uu  
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5.5 Summary 

 

The flow field in a compound channel is generated using standard as well as non-linear 

k-ε models with including and omitting the horizontal vortices. The numerical results are 

assessed from the view point of coherent structures, such as horizontal vortices at the interface 

of subsections and secondary current of second kind. The predicted discharges by different 

models are compared and the contribution of eddy viscosity and quadratic term in non-linear 

model is evaluated. Comparing the predicted roughness coefficients with previous experimental 

results as well as with other methods, the contribution of vortices and secondary currents to the 

prediction of roughness coefficients are quantified. Based on simulated results following 

conclusions are made: 

(i) The velocity and shear-stress profiles are found to be distorted significantly due to 

generation of coherent vortices at the interface of main channel and flood plain. It is 

Fig. 5.22 Contour of turbulence production: (a) near the center of a vortex for x =200~380 

cm (b) near the center of a vortex for x =760~920 cm (c) at saddle point for x 

=350~480 cm 

(c)
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observed that the velocity and shear stress values are under-predicted near the interface 

region, if momentum transfer due to horizontal vortices is not considered. The well 

agreed profiles are obtained when the effects of vortices are taken into account.  

(ii) The magnitudes of secondary currents as well as the qualitative features of the flow 

patterns are found to be well comparable with previous experimental observations. 

Although the pairs of surface vortices as well as the corner vortices in main channel are 

clearly depicted by both the non-linear models, the 3rd order model shows better 

agreement with experiments than 2nd order model. It is seen that the magnitude of 

upwelling secondary currents at the interface are suppressed by the influence of flows 

caused by the coherent vortices. The secondary currents for higher depth ratios (H/h) are 

found higher in magnitude compared to lower depth ratios. It is noted that with increasing 

the flood plain depth, the scales of surface vortices are increased. The magnitudes of 

secondary currents are also increased significantly with the flood plain depth. 

(iii) The flow exchange between main channel and flood plain is found to be minimum at 

saddle point and vortex center, which gradually increases with streamwise distance and 

being the maximum in between two critical points. 

(iv) The resistance of compound channel is increased due to generation of coherent structures. 

The numerical result improves the prediction of compound resistance coefficient by about 

21% over the separate channel method, where the vortices contribute about half of that 

and the rest is due to secondary currents and associated three-dimensional turbulent 

structures. 

(v) For symmetrical two flood plain case, the instability vortices at two interfaces are 

generated at the same downstream distances in a particular time. The simulated results of 

sectional depth averaged velocity and bottom shear stress profiles show an excellent 

agreement with experiment. The pattern as well as the magnitude of secondary current is 

also found in close agreement. Near the interface region, three counter rotating secondary 

flow cells are observed. Among two surface cells, the first one is at the top edge of flood 
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plain, which contains the scale as same as flood plain depth. The bottom secondary flow 

cell shows the size of bank-full depth of main channel.  

(vi) The turbulent structures are found to be changed with the spatial distance depending on 

the structures of singular points. It is observed that the turbulent normal stresses show 

elliptical structure near vortex center, which changed to hyperbolic profile near saddle 

point. However, the shear stresses show hyperbolic structures at vortex center and the 

structure changes to elliptical at saddle point. The topological change of turbulent kinetic 

energy and dissipation rates with stream-wise spatial distance are found similar to 

turbulent normal stresses. 

(vii) The turbulent structures of horizontal vortices generated at the interface of main channel 

and flood plain are well agreed with that of approximate solution of an idealized vortex 

street. The structures of turbulent stresses at vortex center and saddle point are found 

consistent with previous experiments of coherent structures in free shear flows.  

(viii) Comparing the topology of turbulence production both for vortex center and saddle 

points, it is seen that they follow the structures of turbulent shear stresses. The 

quantitative comparison indicates that the turbulence production at the high vorticity point 

(vortex center) is very small, but is larger in the upstream and downstream directions, 

being the maximum at the saddle on either side, where the vorticity is minimum. This 

feature is also consistent with the measurements of coherent structures in free shear flows. 
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Chapter 6 
THE STRUCTURE AND DECAY OF 
TURBULENT RANKINE VORTEX 
WITH AND WITHOUT AXIAL FLOW 
 
 

6.1 Introduction 

 

The basic types of plane vortices can be classified into two categories: one with slower 

velocity at center and maximum at sides; and the other with maximum at center and minimum 

velocity at edges. The rotary fluid motion of the first one is called the solid body rotation, since 

it is similar to the fluid motion filled in a rotating hollow box. On the other hand, if a long 

circular rod rotates in a fluid with constant velocity around its axis, the fluid velocity is found 

highest and equal to the velocity of rod at the rods surface (due to adhesion); and with 

increasing distance from the rod, the velocity is diminished in inverse proportional to the 

distance. Such a fluid motion is called a potential vortex (Fig. 6.1). Fluid motion composed of a 

potential vortex and solid body rotation is called Rankine vortex after the fluid dynamicist 

Rankine. The radial distance from the center to the maximum tangential velocity is called the 

radius of vortex core (Fig. 6.1(c)). For a steady circular motion without a velocity component 

normal to the plane of rotation, the rankine vortex in the only possible vortex whose velocity is 
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zero at the center as well as far away from it. In addition to these basic vortices, there are other 

time-dependent rotary motions that have azimuthal velocity component as well as radial and 

axial components.  

The pressure in a vortex is not uniformly constant with the radial distance. We know the 

distribution of pressure for a solid body rotation, for instance in a rotating box, is parabola 

(Laugt, 1983). The minimum pressure exists at the center and increases towards the wall of the 

box [Fig. 6.2(a)]. On the other hand for a potential vortex, the pressure increases from wall to 

outwards distance in a concave manner [Fig. 6.2(b)]. Therefore, the combination of these two 

gives the pressure distribution of Rankine vortex as shown in Fig. 6.2(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The existence of such vortices is not limited to natural phenomena but also in many 

engineering applications. The Rankine vortex has been used extensively in various studies; for 

instance, to predict the decay of wing-tip vortices, to estimate the noise level produced by 

 Fig. 6.2 Pressure distribution in (a) solid body rotation (b) potential vortex (c) Rankine vortex 

Fig. 6.1 Velocity distribution in (a) solid body rotation (b) potential vortex (c) Rankine vortex 
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vortices and vibrations, and to model the natural phenomena such as hurricanes and tornados. 

Current aircraft spacing in and around airports is partially governed by the vortex wake hazard 

caused by the possible interaction between leading aircraft’s trailing wake and vortices and 

following aircraft. However, the vortex behavior behind a lifting vehicle is still a topic of debate. 

Fig. 6.3 Types of Rankine vortex based on far-field behavior (Uberoi, 1979); here, uθ and uz 

represent the tangential and axial velocity respectively.  

(a)          (b)         

(c)           (d)             
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 The understanding about the internal structure as well as the mechanism of turbulence growth 

in the vortex core is also debatable. Vortex flows are the major cause of cavitation and 

underwater acoustics in marine propellers. Cavitation and hollow core due to pressure deficit at 

vortex center causes air-entraining vortices, which is an important part in hydraulics. Therefore, 

the emphasis on present topic is not only due to academic interest, but due to its practical 

importance as well.  

 

Uberoi (1979) reported that in the far field such vortex is nearly independent of initial 

conditions and may take one of the four forms. Figure 6.3 shows the sketch of four possible 

flow profiles. Author considered that the line vortex and trailing vortex classification are the 

most relevant to study their properties. The line vortex is a time dependent, infinitely long 

region of concentrated vorticity with one non-zero velocity component, Vθ. Here Vθ=Г0/2πr 

contains zero circulation at r =0, and non-zero net circulation for large r. A trailing vortex is a 

time dependent vorticity concentration created at the tip of a semi-infinite wing with two 

non-zero velocity components, Vθ and Vz , and constant circulation at infinity. Therefore, the 

main difference between the trailing and line vortex is the presence of axial velocity component. 

As an example, a photograph of a trailing vortex generated at the wing tip of an agriculture 

Fig. 6.4  A smoke picture of wing-tip vortex observed in the wake of an agricultural aircraft 

(Courtesy NASA/JPL- Caltech) 
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aircraft is shown in Fig. 6.4. 

Other two vorticity concentrations, line swirl and trailing swirl, have zero circulation 

outside of some finite radius. They are unstable by Rayleighs criteria and are not considered in 

this research. 

The work presented in this chapter can be classified into twofold. In the first part, unsteady 

numerical simulation with 3D velocity field is carried out for turbulent trailing vortex with 

different swirl numbers using non-linear k–ε model. Although 3D flow equations are solved, the 

simulation is carried out based on 2D numerical grid. The trailing vortex without axial velocity 

(i.e. line vortex) is also simulated. The general features of vortex decay as well as the different 

time periods of turbulence growth/decay captured in simulation result are discussed. The self 

similarity in radial distribution of tangential velocity and circulation profiles are tested for 

trailing vortex. Well-grown vortex field is compared with previous DNS data. The simulation is 

also performed using standard k–ε model, and comparison is shown with non-linear model. 

In the second part, the 3D numerical simulation is carried out for an idealized Rankine 

vortex using non-linear k–ε model and large eddy simulation (LES). 3D staggered grid is used 

both for RANS and LES. The general flow features such as temporal change of vortex decay, 

distribution of water surface etc., predicted by both the models are compared.  

 

6.2 Nonlinear k–ε  Model 

 

Following 3D flow equations are used in unsteady RANS calculation for all the cases of 

turbulent trailing and idealized Rankine vortex.  
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∂
∂
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The value of the model constants are: cμ0 = 0.09, cns = 0.005, cnΩ = 0.0068, cds = 0.008, cdΩ = 

0.004, cdsΩ = -0.003, cds1 = 0.00005, cdΩ1 = 0.00005, cdsΩ1 = 0.00025, c10 =0.40, c20 =0.0, c30 = 

-0.13, mds = 0.01, mdΩ = 0.003, σk = 1.0, σε= 1.3, cε1 = 1.44 and cε2 = 1.92. In the standard k – ε 

model, cμ= 0.09 and cβ = 0.0. 

 

6.3 Large Eddy Simulation 

 

The basic equations used in LES are three-dimensional, time-dependent, filtered Navier 

stokes equations. In the model, the grid itself is used as a spatial filter to separate the velocity 

field into a resolved and sub-grid part. The eddies larger than the mesh size is the resolved part, 

and the effects of small scale motions on the resolved field are calculated through sub-grid scale 



 
Chapter 6.  TURBULENT RANKINE VORTEX WITH AND WITHOUT AXIAL FLOW            119 

 
 

 

model. Therefore, the resolved part, generally denoted with an over-bar, is basically the 

averaged quantity over the control volume formed by the numerical mesh. 

The filtered equations are developed from the Navier-Stokes equations. Consider, Ui is a 

velocity in i direction contains resolved scale part Ui and sub grid scale part ui, then   

iii uUU += , similarly for pressure ppP ′+= . Substituting these two decompositions into 

Navier-Stokes equations, the filtered equations of LES can be obtained as follows  

Continuity equation:     
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Here, τij is the subgrid scale Reynolds stress defined by 

jijiij uuuu −=τ               (6.12) 

The most commonly used subgrid-scale turbulence model is Smagorinsky model proposed by 

Smagorinsky (1963). In this model, the residual stress takes the Boussinesq eddy viscosity form. 
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The eddy viscosity vt is determined by the Smagorinsky model 

( ) ijijst SSCv 22Δ=              (6.14) 

 Δ is the filter width related to grid size calculated as the geometric average of the grid spacing 

in three directions, Δ=( Δx1Δx2Δx3)1/3. Cs is the Smagorinsky model constant, whose value varies 

from 0.065 to 0.20 (Ferziger & Peric, 1999); 0.15 is used in the present simulation. 
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6.4  Simulation Details and Flow Configurations of Test Cases 

 

The turbulent trailing vortex formed by the rolling up of vortex sheet have been studied 

previously both experimentally and numerically. The experimental results and theoretical 

observations by Phillips (1981), the DNS numerical study by Qin (1998) as well as by 

Duraisamy and Lele (2006) are used here to compare the non-linear k–ε model predictions. 

Phillips (1981) described the Rankine vortex as a multi-layered structure. The innermost region 

is called vortex core (Region-I). The tangential velocity is zero at the center of the core where 

viscosity produces nearly solid body rotation. The outer most region (Region-III) can be 

described by the wake diffusion but extended inward to include turbulent diffusion. Region-II is 

a buffer region between the nearly potential outerflow and the solid body rotation of core. This 

region contains the point of maximum tangential velocity where the inertial effects are 

negligible but high strain rate exists. Hoffmann & Joubart (1963) reported that this region is 

very similar to that of turbulent boundary layer near wall, and is believed to follow a behavior 

of log law.  

In this study, following test cases with different swirl numbers (q) are considered. Non-linear 

k–ε model is used for all the cases. LES is performed for case-4 to compare with RANS results.  

(a) Case-1: trailing vortex with axial velocity for q =1.0  

(b) Case-2: trailing vortex with axial velocity for q=0.5 

(c) Case-3: trailing vortex without axial velocity, i.e., q = ∝ 

(d) Case-4: 3D simulation of Rankine vortex without axial velocity using both LES and RANS 

model 

 

6.4.1 Initial conditions 

 

(a) Case-1: For this q-vortex, the direct numerical simulation results are reported by Qin (1998). 
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The simulation is performed with the same initial conditions of Qin. Since the axial velocity of 

this vortex is not a function of axial distance but of radial distance, 2D numerical grid becomes 

applicable to simulate 3D flow field. The details of the flow field is given below. 
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Here, V0 is the scaling velocity, related to the initial mean tangential flow, defined as 
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Mp =0.009 and γ =1.1209 are used in Qin’s (1998) DNS simulation. As discussed by Lessen et 

al. (1974), the stability of q-vortex can be related to the value of swirl number q. They found 

that for any value of q0<√2, the vortex is initially unstable and the addition or subtraction of a 

constant velocity to the axial velocity profile, or an inversion of a velocity deficit to a velocity 

excess, does not change the temporal stability of the vortex. In this case, to make the vortex 

initially unstable, the initial swirl number q0 is chosen to be unity.  

The time is non-dimensionalized by T = 2πr0/Vθm at t = 0. Here, r0 is the radial distance 

where the tangential velocity contains the peak value in the initial flow field (at t = 0).   

(b) Case-2: For cases-2 and 3, the results of direct numerical simulation are reported by 

Duraisamy and Lele (2006). The initial condition of the vortex is given below. 
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Here, α = 1.25643 (Lamb’s constant), which makes the initial core radius (the radial location of 

maximum tangential velocity) is r0 =1. For case 2, q0 = 0.5. 

(c) Case-3: This case does not contain any axial velocity. Therefore, it can be considered as line 

vortex. In consideration of q-vortex, this case has a value of q0 = ∝ in axial velocity distribution 

(Eq. 6.21). 

(d) Case-4: All the three cases explained above are simulated using 3D flow equations with 2D 

numerical grid. However, in Case-4 simulation is performed using 3D Cartesian grid for an 

idealized Rankine vortex.  

The initial condition of the vortex is given below. 

Tangential velocity, ( )2
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Radial velocity,    0
0

=
V
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Axial velocity,    0
0

=
V
Vz                                                   (6.24) 

 

6.4.2 Flow domain and computational schemes 

 

The governing equations for mean velocities and turbulent flows are discretized with the 

finite volume method based on a staggered grid system. For the momentum equation, 

convective and diffusive fluxes are approximated with Quick and central difference schemes 

respectively. The hybrid central upwind scheme is used for the k and ε equations. Time 

advancement is achieved by Adam-Bashforth scheme of second-order accuracy, in each 

equation. The basic equations are discretized as fully explicit forms and solved successively 

with the time increment in step by step. The pressure field is solved using iterative procedure at 

each time step.  
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(a) 2D grid (for Cases-1 to 3): The numerical simulations for 3-D unsteady flows are performed 

under the same conditions of DNS computations (Qin, 1998 for case-1; Duraisamy and Lele, 

2006 for next two cases). Variable grid spacing is used with dense grid at centre and coarser 

towards the boundary. The computational domain consists of 100 grids in each of lateral (x and 

y) directions for all the cases. The size of domain is taken sufficiently large (12 r0 ×12 r0) to 

overcome the interference of boundary in the vortex decay process. Cartesian grid is used for 

computation, and the results are presented in cylindrical coordinate using the geometric 

conversion. 

(b) 3D grid (for Case-4): The flow domain consider here is 12 r0 ×12 r0 (in two lateral, x and y 

directions) ×1 r0 (in axial /depth-wise, z direction). For LES 140×140×15 grids are used in x, y 

and z directions respectively. For RANS simulation the grid no is reduced to 70×70×10 grids. 

Variable grid system is used for two lateral directions.  

 

6.5 Simulation of Turbulent Trailing Vortex with Swirl Number q =1.0 

 

The distribution of tangential velocity, axial velocity and corresponding pressure 

distribution in the vortex are shown in Fig. 6.5 for simulation time t=3.72T. The case of trailing 

vortex considered here contains the axial velocity with a minimum magnitude at vortex center 

(at center, Vz =0 at t=0) that gradually increases in outward direction and became constant at a 

far distance from the center. In the simulated results, the axial velocity in the center region is 

found to increase with time in order to reduce the gradient with far field. The tangential velocity 

also decays with time. The details of temporal change in flow characteristics are explained in 

the next sections. 

The basics of pressure distribution in a Rankine vortex are described in Fig. 6.2. The 

distribution of pressure in a trailing vortex is found similar to the line vortex regardless the 

presence of axial velocity. The figure shows that the pressure at vortex center is minimum and 
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gradually increases in outward direction and becomes constant at a far distance from the center. 

 

 

 

 

 

(a) Distribution of tangential velocity 

(b) Distribution of axial velocity 
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6.5.1 Decay of Trailing vortex 

 

Figs. 6.6, 6.7 and 6.8 show the profiles of tangential velocity, axial velocity and circulation 

for different times calculated using Non-linear k-ε model. Figs. 6.9, 6.10 and 6.11 show those of 

the standard k-ε model. It is observed that the standard model shows faster decay of tangential 

and axial velocity than the non-linear model.  

The circulation is zero at the vortex center line and is found to increase toward the radial 

direction that reached a free stream value at some radius outside the vortex core (at rγ/r0 >5). A 

circulation overshoot is observed after the adjustment of initial conditions and when the vortex 

comes in self similar stage (at about t >3.0T). Qin’s DNS simulation also shows a brief 

overshoot after the vortex adjusts itself to the unphysical initial conditions. Saffman (1974) 

claimed that the circulation overshoot is a general feature of turbulent vortices. However, 

Phillips argued that the circulation overshoot is unlikely. Some researches pointed out that the 

Fig. 6.5 Simulation result for q =1 vortex at t =3.72T 

(b) Distribution of pressure 
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overshoot does not appear to be enough to produce a visible instability. Uberoi (1979) added 

that overshoot is possible if vortex diffusion rate is greater than that for a laminar vortex. 

In the tangential velocity, maximum decay occurs at the point of maximum velocity, while 

for axial velocity the maximum decay is at the center of vortex. Figure 6.12 compares the 

percentage changes of axial velocity and peak tangential velocity with initial time. It is observed 

that the decay rate of axial velocity is much higher than the tangential velocity. Since the vortex 

takes some time to adjust with initial condition, it is observed that the decay rate is small at 

initial times, approximately t< 1.25T.  For both velocities, the high decay rate is observed in 

intermediate time period of 1.25T> t <4.25T. After that the decay slows down, and the slope of 

trajectories shows to proceed towards minimum. 
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Fig. 6.6 Radial distribution of tangential velocity and its decay with time (Non-linear k–ε 

model) 



 
Chapter 6.  TURBULENT RANKINE VORTEX WITH AND WITHOUT AXIAL FLOW            127 

 
 

 

 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

rγ/ro

Γ
γ

/
( 
ro

V
o
) 
 

t = 0

t = 2.36T

t = 3.72T

t = 5.00T

t = 7.013T

 

Fig. 6.7 Radial distribution of normalized circulation for different times (Non-linear k–ε model)  
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Fig. 6.8 Time decay in radial distribution of axial velocity (Non-linear k–ε model) 
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Fig. 6.9  Radial distribution of tangential velocity and its decay with time (Standard k–ε 

model) 
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Fig. 6.10  Radial distribution of normalized circulation for different times (Standard k–ε 

model)  
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Fig. 6.11 Radial distribution of axial velocity and its decay with time (Standard k–ε model) 
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Fig. 6.12 Comparison between time decay of axial velocity and tangential velocity 
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Fig. 6.13  Self-similar profile of tangential velocity compared with Phillips’ model 
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Fig. 6.14 Self-similarity in the circulation profile compared with Phillips’ model 

 

Eq. (6.26) 
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6.5.2 Self-similarity of profiles 

 

From dimensional analysis Hoffmann and Joubart (1963) showed that for fully-developed 

flow 
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Here, r1 is the radial distance of maximum tangential velocity Vθm . Г is the circulation defined 

as θπ Vr2=Γ  and Г1 is the value at a radial distance of r1. 

By plotting experimental results of Vθ/ Vθm versus r/r1, Phillips (1981) also showed that for a 

fully developed flow the data collapsed in a single curve, and independent of the outer flow 

characteristics.  

Comparing with the experimental results, Phillips proposed the following equations to fit 

the self-similar profile. 
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Logarithomic part of Region-II: 
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In Fig. 6.13, it is observed that for tangential velocity the self similarity solution embraces 

all the regions I, II and III. Here the profiles are shown for t > 3.0T. Eq. (6.26) proposed by 

Phillips is perfectly fitted with the simulation results by non-linear k-ε model. For t<3.0T, 
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region I and II are found to show self similarity, but region III does not collapse with the data 

shown in Fig. 6.13. Therefore, region III shows the similarity form only for a particular flow 

conditions and in the fully developed flow case. 

Figure 6.14 shows the self-similar circulation profile. It is seen that although the simulated 

results for region I and region II collapse in a single curve, region III does not show the self 

similarity form. Eqs. (6.27) and (6.28) are also showing excellent fitting with the simulated data. 

From previous studies it is found that region I is weakly dependent on initial and hydraulic 

conditions. Phillips noted that this self-similar profile exists in region I and II, regardless the 

presence of axial velocity component. Present result also support the argument and reveals that 

this region shows self-similarity form for all the times including t<3.0T. The logarithmic region 

near r/r1 =1 is reported as truly universal region. Dissimilarity in region III is observed in figures 

also reported in previous studies. Due to circulation overshoot, there does not seem to be any 

scope for the self-similarity solution in region III.  

 

6.5.3 Instability vortices 

 

The non-linear model shows the occurrence of instability in a well grown vortex field ( at  

t >3.0T for this case) after the self-similar form of flow field is attained. Figure 6.15 shows the 

flow field of vortex (fig. a) and the instability vortices (Fig. b) at t =7.013T. Note that the 

instability vortex field is calculated by subtracting a mean velocity field from the main vortex 

field. Phillips’ multi-layered structure is seen in this figure. Due to tangential velocity gradient 

between region I and II, as well as between II and III, instability vortices are found to form in 

those regions. In this figure, the instability vortices are observed at a radial distance of 0.7r1 and 

1.2 r1 respectively. 
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Fig. 6.15  Non-linear k–ε model prediction of (a) vortex flow field  and (b) instability in the   

flow field ( t = 7.01T) 

 

6.5.4 Temporal growth/decay of turbulence 

 

Production of turbulence in the vortex field is due to the tangential and axial velocity 

gradients. In the vortex lifetime, five different growth/decay rates of turbulent kinetic energy as 

reported in DNS calculation (Qin, 1998) are also reflected in the simulation of non-linear k-ε 

model. Figure 6.16 shows the growth/decay of turbulence kinetic energy with approximated five 

different time periods. Initially (zone (i)), the vortex changes very slowly, as it requires 

(a) 

(b) 

I
II

III



 
134            Chapter 6.  TURBULENT RANKINE VORTEX WITH AND WITHOUT AXIAL FLOW        

 

adjustment of any unphysical nature of initial conditions. In time zone (ii), an exponential 

growth of turbulent kinetic energy is seen. The growth slows down in the next time period of 

zone (iii). It is found that the growth of axial velocity is significantly high in time zone (ii) and 

(iii). The turbulent kinetic energy reaches its peak value and remains about constant throughout 

the short period of zone (iv). It reveals that in this stabilization period the flow field becomes 

saturated and cannot support additional turbulence. Finally, the decay of turbulence is started as 

predicted by most of the previous researches (such as, Uberoi, 1979; Bachelor, 1964; etc.). The 

logarithmic plot shows that the decay rate in zone (v) is much slower than the growth rate in 

zone (ii). It shows that the decay of velocity field slows down as the turbulence decay period 

starts. 
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Fig. 6.16 Growth of turbulent kinetic energy with different time periods (Non-linear k–ε model) 

 

Figure 6.17 shows the radial distribution of turbulent normal stresses (Rii) in axial, radial 

(i) 

(ii) 

(iii) (iv) (v) 
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and tangential directions for different times; the stresses are noted as zzuu , rr uu and θθuu  

respectively. Here, the radial distance is normalized by r1 =r0(t), which is the radial distance of 

maximum tangential velocity. For a round jet in a stagnant surroundings, zzuu > θθuu ≥ rr uu  

over the radius of jet (Ali et al., 2006; Wygnanski & Fielder, 1969). However, in the matured 

stage of a trailing vortex, the turbulent normal stresses show two types of anisotropy depending 

on the radial distance. Inside the vortex core (r/r1<1) up to certain distance from center, the 

relation is rruu ≥ θθuu > zzuu ; and beyond that distance the stresses follows rruu > zzuu > θθuu . 

The latter case is the situation where turbulence production is significantly less than diffusion, 

such as in the central region of an axisymmetric wake. These anisotropic behaviors of 

turbulence are also reported in previous studies by Devenport et al. (1996) and Phillips & 

Graham (1984). 
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Fig. 6.17 Radial distribution of turbulent intensities at three directions at (a) t =3.72 T       

(b) t =5.0 T (c) t=7.013T  

In the growth stage of time zone (ii), all the normal stresses are found to increase 

simultaneously. In Fig. 6.17, the distribution of turbulent normal stresses are shown for different 

times (t= 3.72 T, 5.0 T and 7.13T), those are belongs to time zones (iii), (iv) and (v), 

respectively. Comparison of turbulent intensities between time zones (iii) and (iv) indicates that 

only the axial velocity component shows significant decay. On the other hand, comparison 

between (iv) and (v), shows the simultaneous decay of turbulent intensities in all the velocity 

components.  

It is observed that at the center of vortex (i.e. at r =0), θθuu = rr uu throughout the 

simulation time. It confirms the axisymmetric condition of the flow field.  

 

6.5.5 Comparison with Qin’s DNS data 

 

Circumferential velocity, circulation and axial velocity are compared with the DNS 

calculation of Qin (1998) at time t =3.72 T as shown in Figs. 6.18, 6.19 and 6.20 respectively. 

At this stage the vortex already overcame the effect of initial conditions and shows self-similar 

behavior. Also, the turbulent flow field became saturated and stabilized gaining a peak value of 

turbulent kinetic energy after passing its growth periods. In the figure, the non-linear model 

 rruu  

 

 θθuu  

(c) 
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shows well agreement with DNS data. Although the axial velocity decay is fitted well, the 

magnitude and position of maximum tangential velocity shows slightly faster decay than DNS 

data. A very high decay rate is found for the standard model in comparison to the non-linear 

model and DNS simulations. Such discrepancy is also seen in the comparison of circulation 

profile. By comparing the turbulence kinetic energy in Fig. 6.21, it is observed that the 

non-linear model shows much better comparison over standard model. However, the model 

over-predicts the kinetic energy near the maximum point, and this is the cause of faster decay of 

tangential velocity than DNS as observed in Fig. 6.18.  
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Fig. 6.18  k–ε model prediction of tangential velocity profile compared with Qin’s DNS results 

( t = 3.72T) 
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Fig. 6.19  k–ε model prediction of circulation profile compared with Qin’s DNS results ( t = 

3.72T) 
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Fig. 6.20 k–ε model prediction of axial velocity profile compared with Qin’s DNS results ( t = 

3.72T) 
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Fig. 6.21 k–ε model prediction of turbulent kinetic energy with Qin’s DNS results ( t = 3.72T) 

 

6.6 Simulation of Turbulent Trailing Vortex with a Swirl Number q = 0.5 

 

Calculated flow profiles for radial distributions of tangential velocity, axial velocity and 

circulations are shown in Figs. 6.22, 6.23 and 6.24 respectively. Non-linear model is used in 

these calculations. The initial flow profiles are also included in the figure. It can be noted that 

the initial radial distribution of axial velocity profile as shown in Fig 6.23 for the case of q = 0.5 

is different from that for q=1 (shown in Fig. 6.8). Comparison of results at time t =2.9T is shown 

in the figures with the DNS calculations of Duraisamy and Lele (2006). At this stage the 

turbulent flow field became saturated after the exponential growth period of turbulent kinetic 

energy. The figure indicates that the predicted profiles are well agreed with DNS data. Since the 

circulations are non-dimensionalized by their initial maximum values, the overshoot is clearly 

seen in the figure (Fig. 6.4) both in non-linear k–ε and DNS simulations.  
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Fig. 6.22 Non-linear k–ε model prediction of tangential velocity profile compared with DNS 

results of Duraisamy and Lele (2006) for q = 0.5 
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Fig. 6.23  Non-linear k–ε model prediction of axial velocity profile compared with DNS results 

of Duraisamy and Lele (2006) for q = 0.5 
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Fig. 6.24  Non-linear k–ε model prediction of normalized circulation compared with DNS 

results of Duraisamy and Lele (2006) for q = 0.5 
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Fig. 6.25  Time decay of maximum tangential velocity (at r = r0(t)) compared with DNS results 

of Duraisamy and Lele (2006) for q = 0.5 
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Fig. 6.26 Time decay of maximum axial velocity (at r = 0) compared with DNS results of 

Duraisamy and Lele (2006) for q = 0.5 
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Fig. 6.27 Comparison of time decay in maximum axial and maximum tangential velocities (the 

velocities are normalized by their initial maximum values)   

 

Figure 6.25 shows the calculated time decay of maximum tangential velocity (velocity at r = 

r0(t)) for q = 0.5 along with DNS results of Duraisamy and Lele (2006). Such comparison for 

maximum axial velocity (velocity at r = 0) is shown in Fig. 6.26. The simulations show good 
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agreement with DNS results. To study the comparative temporal decay between tangential and 

axial velocities, their maximum radial values are normalized by the initial maximum, and 

plotted in Fig. 6.27. In the initial period as well as the period after vortex stabilization (i.e. in the 

decay phase of turbulent kinetic energy, explained in Fig. 6.16), the decay rate is about same. 

However, in the turbulence growth periods, the decay of axial velocity is much higher compared 

to that of tangential velocity. The phenomena is same as the results for q0 =1.0 as explained in 

Fig 6.12.  

 

6.7  Simulation of Turbulent Trailing Vortex with no Axial Velocity 

 

Figure 6.28 shows the comparison of time decay in tangential velocity for different swirl 

numbers; The DNS results of Duraisamy and Lele (2006) for no axial flow case is also shown to 

compare with calculated decay profile. The figure reveals that, the rate of temporal decay in 

tangential velocity increases with decreasing the swirl number q. Therefore, if no axial velocity 

is present in the flow field, which is the situation for q = ∝ , the temporal decay of tangential 

velocity should be smaller compared to the vortex filed with axial velocity. 
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Fig. 6.28 Comparison of time decay of tangential velocity for different swirl numbers; the DNS 
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results of Duraisamy and Lele (2006) for no axial flow case is also shown to compare with 

calculated decay profile.  
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Fig. 6.29 Comparison of temporal fluctuations of velocity at a point by RANS and LES 

simulations. 

 

6.8 3D Simulation of Rankine Vortex with no Axial Velocity using LES and RANS  

 

For the case of trailing vortices, the axis of rotation is horizontal as shown in Fig. 6.4 as an 

example of a wing-tip vortex. However, in the present 3D simulation, the vortex flow field is 

given to rotate with the vertical axis in a free surface rectangular domain. Therefore, although 

the tangential flow equation for the present case is similar to previous cases, it differs from 

q-vortex from the view point of flow orientation, and thus, from boundary conditions. In natural 

flow such vortices can be found in whirlpools in tidal currents, dust whirls on the street or the 

coherent vortices in shear layer. 
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Fig. 6.30 Plan view of flow vectors at t = 40 sec by (a) RANS and (b) LES simulations. 

 

 

 

(a)  

(b)  
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The temporal change of velocity at a point is shown in Fig. 6.29 both for LES and RANS 

simulations. In addition to temporal decay of velocity, the typical velocity fluctuations are 

observed in LES results; on the other hand, RANS simulation shows a mean decay profile. In 

Fig. 6.30, plan view of velocity vector also shows some spatial fluctuations of velocity in LES 

simulations, which are absent in RANS results. 

Figure 6.31 shows the radial distribution of tangential velocity at t = 3.06 T both by LES 

and RANS. They showed a good comparison. The comparison of circulation profile predicted 

by both the models for t = 3.06T and 4.84T is shown in Fig. 6.32. At t= 3.06T no circulation 

overshoot is visible. However, a very small overshoot (compare to previous cases of q-vortex) is 

observed at t = 4.84T both in LES and RANS results. 

The variation of water surface for different times predicted by RANS and LES is shown in 

Fig. 6.33. The water surface found to be depressed near the central area with minimum water 

depth at the center of vortex. Since the strength of vortex decreases due to the decay of 

tangential velocity, the amount of depression in water surface is also decreased with time. 
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Fig. 6.31 Radial distribution of tangential velocity calculated by RANS and LES (t = 3.06T) 
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Fig. 6.32 Radial distribution of tangential velocity calculated by RANS and LES (t = 3.06T and 

4.48 T) 
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Fig. 6.33 Radial distribution of depth calculated by RANS and LES (symbols show LES 

prediction, and lines show corresponding RANS prediction) 
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Fig. 6.34 Time decay of maximum tangential velocity calculated by RANS and LES 

 

 

 

Fig. 6.35 Pattern of secondary current at t = 40 sec by (a) RANS and (b) LES simulations. 

(a)  

(b)  
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Figure 6.34 shows the calculated time decay of maximum tangential velocity both for LES 

and non-linear k–ε model. It is found that although the prediction of RANS model shows good 

agreement with LES in initial times, some deviation is observed at t> 3.0T. Such discrepancy in 

the decay phase of turbulence is also observed in previous cases (in Fig. 6.27). From these 

comparisons, it is observed that in the growth phase as well as in stabilized phase of turbulence, 

the decay rate of tangential velocity by RANS model is well comparable with LES and DNS. 

However, in the decay phase of turbulence, RANS model shows slight faster decay of tangential 

velocity due to its slower decay of turbulence compared to LES and DNS. 

The secondary currents calculated by both the models are shown in Fig. 6.35. The flow 

vectors of secondary current shows three circulation cell in both side of centerline. Secondary 

current inside the vortex core is found relatively weaker than the out side of core. It is explained 

that (Fig. 6.1) the Rankine vortex is a combination of nearly solid body rotation and potential 

vortex. For both type of vortices, the patterns of secondary currents are reported by Lugt (1983). 

The LES as well as RANS predictions are found well agreed to that. In the vortex core, the 

secondary current shows the pattern similar to that of solid body rotation; and out side the core, 

the pattern is similar to that of potential vortex. The patterns as well as magnitudes of secondary 

currents predicted by two models are well comparable to each other.   

 

6.9 Summary 

 

The unsteady numerical simulations are performed for an isolated turbulent axial vortex 

using standard and non-linear k–ε models. Since the rotational effects of vortex are not captured 

by a standard k-ε model, it predicts extremely rapid and strong turbulence growth and causes a 

rapid decay of tangential and axial velocity. However, the non-linear model shows good 

agreement with DNS data. For the tangential velocity, the self similarity solution embraces 

regions I and II (defined by Phillips) for all the time periods, however region- III collapses in a 
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single curve only for fully developed flow. Phillips’ model equations for similarity solution of 

velocity and circulation profiles are perfectly fitted with the simulated results. Circulation 

overshoot is found in the well grown vortex field. Due to this overshoot, the self similarity 

solution seems hardly possible in region III.  

It is observed that the decay rate of axial velocity is much higher than the tangential velocity. 

Since the vortex takes some time for initial adjustments, it is seen that the decay rate is small at 

initial times. For both the velocities, the high decay rate is seen in intermediate time period. 

After that the decay slows down, and the slope of decay proceeds towards minimum. 

Five different time periods are observed in the growth/decay profile of turbulent kinetic 

energy. Initially the vortex changes very slowly to adjust with initial conditions, then an 

exponential growth is found that slows down before gaining its peak value. The peak value of 

turbulent kinetic energy remains about constant for a short period that finally follows the period 

of turbulence decay.  

After the maturity of vortex, the turbulent normal stresses show two types of anisotropic 

behavior depending on the radial distance. Although the radial component is always greater than 

other two, the tangential component is greater near the center and smaller around the region of 

maximum tangential velocity in comparison to axial component. The decay rate of energy after 

the period of stabilization is much slower than the growth rate in the time zones before the 

stabilization. The decay of velocity field slows down as the turbulence decay period starts. 

In the initial period as well as the period after vortex stabilization (i.e. in the decay phase of 

turbulent kinetic energy), the decay rate of axial and tangential velocity is about same. However, 

in the turbulence growth periods, the decay of axial velocity is much higher compared to that of 

tangential velocity. 

The result reveals that the rate of temporal decay in tangential velocity increases with 

decreasing the swirl number q. Therefore, if no axial velocity is present in the flow field, which 

is the situation for q = ∝ , the decay of tangential velocity with time should be smaller compared 

to the vortex filed with axial velocity. 
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3D numerical simulation is carried out for an ideal Rankine vortex using both RANS and 

LES. For the case of trailing vortices, the axis of rotation is horizontal. However, in this 3D 

simulation, the vortex flow field is given to rotate with the vertical axis in a free surface 

rectangular domain. The prediction of vortex decay by RANS model shows good agreement 

with LES. The water surface found to be depressed near the central area of the vortex with a 

minimum water depth at center of it. Since the strength of vortex decreases due to the decay of 

tangential velocity, the depression in water surface is also decreased with time. 
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Chapter 7 
3D UNSTEADY SIMULATION OF 
OPEN CHANNEL FLOWS WITH A 
RECTANGULAR SIDE CAVITY 
 
 

 

7.1 Introduction 

 

The floodplain encroachment in a river, such as embayment, spur-dykes, lateral intake etc., 

are constructed along the river for various hydraulic reasons such as flood protection, navigation, 

land reclamation, approach roads, bridges or other hydraulic structures. Besides the hydraulic 

reasons, such structures play an important role to increase the biodiversity of aquatic species by 

creating habitat and providing shelter for them. The main stream of a river, where the velocity is 

high, is not suitable for all kinds of aquatic species to live, especially for weak, small and young 

fishes. Such arrangement of shelter with the placement of embayment along the banks of the 

river is shown in Fig.7.1. In Japan, these inlets are called “Wando” and generally used to create 

a good habitat for natural lives there. 

Since the flow velocity inside a dead zone is lower than that of main channel, a shear layer 

is formed at the interface due to velocity gradient. In a turbulent flow, this shear layer causes the 

generation of coherent vortices. In river engineering, turbulent flows with coherent vortices are 
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observed in compound channel flow, in a flow with vegetation zone, in open channel flow with 

abrupt expansion, etc. The turbulent characteristics of coherent vortices and their spatial 

distributions with singular points are studied in previous chapters. The characteristics of such 

large scale vortices in a compound channel, and its contribution to the channel roughness as 

well as to the flow properties are also studied in chapter 5. However, in an open channel with a 

dead zone, the interaction of coherent vortices with other dominating flow structures makes the 

flow field complicated. 

            

   Fig. 7.1 Embayment with rock dykes in Yodo river, Japan (Muto et al., 2002) 

 

Previous studies show that the interactive flow fields in and around the embayment largely 

depends on main stream Froude number. Kimura and Hosoda (1997) studied the fundamental 

properties of flows in a compound channel with dead zone both experimentally and numerically 

with 2D open channel flow equations. They reported that a circulation and free surface 

oscillation is observed inside the dead zone; and along the interface of mainstream and dead 

zone, the flow is characterized by formation of coherent vortices. They reproduce the flow 

features numerically by plane two-dimensional open channel flow equations. Mizumura and 

Yamasaka (2002) studied the 2D steady flow in an open channel embayment and concentrated 

only on mean circulation flow inside the cavity. They reported that a 2D flow model cannot 

Embayment 

Left floodplain 

 Right floodplain 
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express the 3D flow structure at the interface of embayment. 

In this chapter, the three–dimensional numerical simulation is carried out to study the 

fundamental properties of an open channel flow with a rectangular side cavity. A curvilinear 

coordinate with a variable grid system is used in this study. The formation of coherent vortices 

at the interface of mainstream and dead zone, as well as its interaction with the circulation and 

water surface oscillation in the cavity will be studied. The flow pattern and velocity profiles will 

be compared with the experiments of Kimura & Hosoda (1997). 

 

7.2 Non-linear k–ε Model in 3D Curvilinear Coordinate 

 

The 3D flow equations in a k–ε model for an unsteady incompressible flow with 

contravariant components of velocity vectors on a curvilinear coordinate system can be written 

as follows.  

Continuity Equations: 
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ε-equation: 
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2nd-order non-linear turbulence model: 
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The values of model constants are given in Table.2.1. 

        

7.3 Computational Scheme and Flow Domain 

 

The governing equations for mean velocities and turbulent flows are discretized with the 

finite volume method based on full staggered boundary fitted coordinate system. The 

arrangement of hydraulic variables on staggered grid in a 3D field is shown in Fig. 7.2. For the 

momentum equation, convective and diffusive fluxes are approximated with Quick and central 

difference schemes respectively. The hybrid central upwind scheme is used for the k and ε 

equations. Time advancement is achieved by Adam-Bashforth scheme of second-order accuracy, 

in each equation. The basic equations are discretized as fully explicit forms and solved 

successively with the time increment in step by step. The pressure field is solved using iterative 

procedure at each time step. The free surface elevation is solved by continuity equation 

integrated over the control volume of the surface layer. 



 
Chapter 7.  OPEN CHANNEL FLOWS WITH A RECTANGULAR SIDE CAVITY                157 

 
 

 

Fig. 7.2 Arrangements of variables in a staggered grid in the 3D computations 

(Curvilinear coordinate system)

The wall functions are employed as the wall boundary conditions for k and ε. The frictions 

near the bed and side walls are estimated by log-law. An inflow velocity is prescribed in 

upstream end, and fixed depth with zero velocity gradient is used as boundary condition at 

downstream end of the flow domain. 

     

 

 
Table. 7.1 Hydraulic parameters for the simulation of open channel with dead zone 

 

 

 

The numerical simulations for 3-D unsteady flows are performed under the same conditions 

of laboratory experiments conducted by Kimura and Hosoda (1997). The plan view of the 

computational domain is shown in Fig. 7.3. It consists of 76 grids in longitudinal (stream-wise, 

x), 42 in transverse (width-wise, y) and 10 in perpendicular to bed (depth-wise, z) directions. 

The hydraulic conditions are shown in Table 7.1. 

Run Q0 
(cm3/s) he (cm) ν  

(cm2/s)
Froude

no. 
Bottom 
slope

Δt 
(sec)  

1 747.0 2.02 0.917 
×10-2 0.83 1/500 0.0001  
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Fig. 7.3. Diagram of flow domain 

 

Fig. 7.4. Time averaged velocity vectors 
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Fig. 7.5. Comparison of time averaged velocity profile along T0-T1 
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7.4 Numerical Results and Discussions 

7.4.1 Time averaged flow properties  

 

The unsteady flow in a dead zone is characterized by three important flow criteria: the 

circulation and oscillation inside the dead zone, and the coherent vortices at the interface of 

main stream and dead zone. However, the time averaged flow does not show instability 

characteristics. Fig. 7.4 shows the time averaged (averaging for 10 secs) velocity vector, which 

mainly characterized by the circulation inside the dead zone. The simulated vector field and the 

circulation pattern are very similar to the previous experimental and 2D numerical studies 

(Kimura and Hosoda, 1997; Takemoto et al.,1984). 

Fig. 7.5 shows the time averaged profile of stream-wise velocity (u) along the transverse 

cross-section at centerline of dead zone (the section is shown in Fig. 7.3 as T0-T1). The 

comparison of simulated result with experiment shows good agreement.  

 

7.4.2 Temporal variation of flows  

 

The formation of instability vortices at the interface of main channel and dead-zone and its 

interaction with the dead zone circulation can be described by considering the temporal change 

of velocity vectors as shown in Fig. 7.6. In the figure, the flow vectors are presented at a 

periodic interval of 0.2 sec. It indicates that the vortices formed at the upstream end of the 

interface (just after x =0) moves downwards with increasing time. The deviation of velocity 

vectors from the main circulation near the interface shows the position of instability vortices. 

The center point of dead zone circulation (i.e. the location of minimum tangential velocity) is 

also found to be changed slightly depending on the location and maturity of instability vortices. 

Fig.7.7 shows close-up view of vector plot near the upstream corner of shear layer. The vortex 

formation and its temporal changes at an interval of 0.2 sec are illustrated in this figure. It is 

found that the instability vortex observed at upstream corner of interface moves downstream 
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with gradual amplification with time, and the process continues repeatedly with a constant 

periodic interval. The velocity vectors at t = 57.2 sec and t = 58.0 sec show the instability 

vortices of about same maturity, it gives an estimation about the vortex period as about 0.8 sec. 

The temporal variations of water surface distribution are demonstrated in Fig. 7.8, for the 

same time periods as discussed for vector plots. Two important phenomena can be explained 

from these figures. One is seiche inside the dead-zone, and another is hollow water surface at 

the center of instability vortices. The hollow of the free surface moves downward with time 

along the interface, as observed in the movement of large vortices in vector plots (in Fig. 7.6). 

In the present flow domain two to three hollows in water surface can be seen in an instantaneous 

flow field. Since, the vortices at the upstream corner are premature and those near the 

downstream corner are decayed due to merging with main circulation, the large vortices at the 

middle part of the interface are most matured and show highest depression in the surface. The 

feature can be further explained using a water depth profile along the interface. Fig. 7.9 

describes the spatial distribution of water surface near the interface regions. The effect of 

instability vortices on the water surface as discussed above is clearly depicted in this figure. The 

depressions in the profile, that indicate the position of instability vortices, is gradually 

increasing with down stream distances and show maximum depression in the middle half of the 

interface. 

The second important phenomenon described in Fig. 7.8 is the oscillation inside the dead zone. 

If we look beyond the interface it can be seen that, Figs. (a) and (b) show minimum depth at 

downstream end and maximum depth in upstream end of dead zone; on the other hand, Figs. (c) 

and (d) show reverse phenomena. Finally, in Fig.(e) the depth distribution returns to its nearly 

starting phase (as Fig.(a)) after 0.8 sec. A periodic change in the depth difference between 

upstream and down stream end of dead zone indicates the existence of oscillation in the cavity.  
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Fig. 7.6. Temporal change of velocity vectors at 0.2 sec intervals 

(a)  t =57.2 sec 

(b)  t =57.4 sec

(c)  t =57.6 sec 

(d)  t =57.8 sec

(e)  t =58.0 sec 
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Fig. 7.7. Temporal change of instability vortices at 0.2 sec intervals 

(a)  t =57.2 sec 

(b)  t =57.4 sec

(c)  t =57.6 sec 

(d)  t =57.8 sec

(e)  t =58.0 sec 



 
Chapter 7.  OPEN CHANNEL FLOWS WITH A RECTANGULAR SIDE CAVITY                163 

 
 

 

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.026

0.0264

0.0268

0.0272

0.0276

0.028

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.026

0.0264

0.0268

0.0272

0.0276

0.028

0.026

0.0264

0.0268

0.0272

0.0276

0.028

0.026

0.0264

0.0268

0.0272

0.0276

0.028

0.026

0.0264

0.0268

0.0272

0.0276

0.028

 

Fig. 7.8. Temporal change of water depth distribution at 0.2 sec intervals (the arrow indicates 

the stream-wise movement of depression in water surface) 

(a)  t =57.2 sec 

(b)  t =57.4 sec

(c)  t =57.6 sec 

(d)  t =57.8 sec

(e)  t =58.0 sec 
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Fig. 7.9. Temporal change of water depth distribution along the interface  
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Fig. 7.10. Temporal change of water depth distribution along S-S section 
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Fig. 7.11. Temporal variations of water surface at A and B  
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Fig. 7.12. Temporal variations in stream-wise velocity (u) at point D  
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Fig. 7.13. Temporal variation of transverse-velocity component (v) at the interface (x =5 cm)  
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Fig. 7.14. Instantaneous pattern of secondary current at (a) S-S section (b) T0-T1 section (c) 

adjacent grid just upstream of T0-T1 section (d) adjacent grid just downstream of T0-T1 

section (t = 57.2 sec) 

 

This oscillation of water surface is clearly demonstrated in Fig. 7.9. In this figure, the 

spatial water depth distribution in the dead zone along the section S-S (as shown in Fig. 7.3) is 

shown for different time intervals. It explains that the node of oscillation, that contains the 

lowest seiche mode with a direction parallel to the main flow, is located near the center of the 

circulation. The wavelength of the oscillation is about twice the dead-zone length. Fig. 7.8 

depicts that the water depth distribution at t = 57.2 sec and t = 58.0 sec show about same 

orientation of instability vortices as well as same seiche mode. It gives an estimation of the 

period of instability vortex , which is about the same as the oscillation (approximately 0.8 sec). 

Comparing with Fig. 7.9, it is observed that the depth variation inside the dead zone is 

mainly due to the seiche, and near the interface it is governed by the instability vortices. 

Figure 7.11 shows the calculated results for temporal free surface oscillation at point A and 

B. The period of oscillation is found as 0.75 sec, which is slightly smaller than the 

experimentally observed value of 0.87 sec. The temporal variation of stream-wise velocity (u) is 

compared with experiment in Fig. 7.12. The calculated magnitude of velocity variation is well 

agreed with experiment. The period of oscillation in the temporal changes of u-velocity is found 

(d) 
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same with the periodic oscillation of water surface. 

The temporal change of transverse velocity component (v) at a point on the interface (x =5 

cm, y =0) is shown in Fig. 7.13. It is observed that, each cycles of temporal velocity variations 

consists two components of oscillations. The long one is due to seiche and has a time period of 

0.75 sec. The period of short oscillation component is about 0.15-0.25 sec, which is caused by 

the instability vortices. This phenomenon is also reported in previous experimental 

observations. 

 

7.4.3 Secondary currents  

 

Although the depth of the flow is small, strong secondary currents are found to be generated 

at inside the dead zone as well as near the interface area. Figure 7.14 shows the pattern of 

instantaneous secondary current at S-S section, T0-T1 section as well as the sections just 

upstream and downstream of T0-T1 for t = 57.2 sec. Some flow exchange between main-channel 

and dead zone is observed in Figs. 7.14(c) and (d). 

The secondary currents in time-averaged flow filed are presented in Fig. 7.15 (for the 

sections perpendicular to main stream flow direction and across the dead-zone, T-T ) and in Fig. 

7.16 (for the longitudinal sections of the dead-zone, S-S). The sectional locations are shown in 

Fig. 7.15(a) for T-T sections and in Fig. 7.16 (a) for S-S sections. In the figure, Surface and 

corner circulation cells near the boundaries of dead-zone are clearly depicted. Although, several 

circulation cells are observed at the middle of dead-zone in T2-T2 section with the size equal to 

the depth, the circulation cell/cells near the interface region are found to be much stronger and 

seems to be a general feature of the dead zone flow (as it is seen in all the T-T sections).  

Flow field with higher water depth and smaller grid size may give a better and improved 

presentation of secondary flow in such a complicated flow field. 
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Fig. 7.15. Pattern of time-averaged secondary current in transverse section (T-T) 

T1  T2  T3 

(b) Time averaged secondary current at Section T1 – T1  

 
(a) Location of sections in the plan view of Time averaged velocity field 

(c) Time averaged secondary current at Section T2 – T2  

T1 T2 T3

(d) Time averaged secondary current at Section T3– T3 
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(b) Time averaged secondary current at Section S1 – S1  

 
(a) Location of sections in the plan view of time averaged velocity field 

(c) Time averaged secondary current at Section S2 – S2  

(d) Time averaged secondary current at Section S3– S3  

Fig. 7.16. Pattern of time-averaged secondary current in dead-zone (S-S section) 
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7.5 Summary 

 

The flow field in an open channel with a rectangular side cavity is investigated by 

three-dimensional unsteady RANS computations. The time averaged flow properties and 

temporal change of velocity profiles are well compared with previous experimental results. It is 

found that the flow in a dead zone is characterized by three types of flow phenomena: the 

circulation inside the dead-zone, periodic coherent vortices at the interface of main stream and 

dead zone, and the water surface oscillation inside the dead zone. In this study all these 

characteristics are successfully reproduced by numerical simulation.  

It is denoted that the instability vortex generated at upstream corner of interface moves 

downstream with gradual amplification with time that finally merges with the dead-zone 

circulation at the downstream corner. The process continues repeatedly with a constant periodic 

interval. 

The temporal variation of water surface shows a depressed water depth at the center of 

coherent vortices. This hollow of the free surface moves downward with time along the 

interface, as observed in the movement of large vortices in vector plots. 

In the calculated result, a periodic change in depth difference between upstream and down 

stream end of dead zone indicates the existence of oscillation in the cavity. The period of 

oscillation is found same as that of instability vortex.  

It is observed that, each cycles of velocity variations consists two components of 

oscillations. The long one is due to seiche and has a time period of 0.75 sec. The period of short 

oscillation component is about 0.15-0.25 sec and caused due to instability vortices. This 

phenomenon is also reported in previous experimental observations. 

Although the depth of the calculated flow field is small, strong secondary currents are 

found to be generated at inside the dead zone as well as near the interface area. 
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Chapter 8 
CONCLUSIONS 

 

 

8.1  Summary of the findings   

 

The standard k–ε model has the deficiency of predicting the flow field with high rate of 

strain and rotation due to its isotropic assumption of eddy viscosity. Therefore, a second order 

non-linear k-ε model is proposed incorporating some new functions for the model coefficients to 

explore the model applicability to complex turbulent flows. Firstly, the refinements are proposed, 

and model constants are turned considering some basic turbulent flows. Considering theoretical 

approach, the analytical solutions are derived for predicting the turbulent properties of these 

flows. After that, numerical simulations are carried out for several complex turbulent flows 

governed by coherent vortices, secondary circulation as well as water surface oscillations. The 

findings of this research are summarized below headed with sub-topics.  

I. Refinement of the model 

Considering the realizability principle and anisotropy of turbulence for some baseline 

turbulent flows, the coefficient of eddy viscosity (cμ) and the coefficients of non-linear quadratic 

terms (cβ) are derived as a function of strain and rotation parameters. The simple shear layer, 

plane strain, axisymmetric contraction and axisymmetric expansion are considered as baseline 

flows to tune the model constants. It is observed that, both for shear straining and normal 
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straining, the predicted normal stress separation is realistic, and the realizability is maintained 

even at high strain rates. 

II. Round jet with and without swirl 

Approximate solutions for the fundamental properties of swirl and non-swirl jets are derived 

based on the non-linear k–ε model. The approximate solutions are compared with the previous 

experimental results and further tuning of model constants are performed for best fitted 

comparison. The solutions of standard k–ε model is also presented. Reasonably, the non-linear 

model showed better comparison than standard one. 

III. Turbulent structures in a coherent vortex  

Based on the proposed non-linear k–ε model, approximate solutions are derived for the 

turbulent properties of an idealized vortex street to explore the predictability of the model for 

large scale vortices. The spatial changes of turbulent structures with the singular points in a 

coherent vortex are investigated. The qualitative results are compared to previous experiments 

to assess the models applicability. 

The Stuart vortex, which contains both vortex and saddle patterns in its vorticity contour, is 

considered as an ideal simple vortex street. The turbulent structures at vortex center and saddle 

point obtained by approximate solution are found consistent with the previous experimental 

results of large scale coherent vortices in free shear flows. The turbulent structures of the vortex 

street are found sensitive to the functional form of the coefficient of eddy viscosity, cμ.  

The turbulent structures are found to be changed with the spatial distance depending on the 

structures of singular points. It is observed that the turbulent normal stresses show elliptical 

structure near vortex center, which changed to hyperbolic profile near saddle point at a 

stream-wise periodic distance of π. However, the shear stresses show hyperbolic structures at 

vortex center, and the structure changes to elliptical at saddle point. 

The topological change of turbulent kinetic energy and dissipation rates with stream-wise 

spatial distance are found to be similar to turbulent normal stresses. 
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IV. Compound open channel flows 

The flow field in a compound channel is generated using standard as well as non-linear k- ε 

models both including and omitting the horizontal vortices. The numerical results are assessed 

from the view point of coherent structures, such as horizontal vortices at the interface of 

subsections and secondary current of second kind. The predicted discharges by different models 

are compared and the contribution of eddy viscosity and quadratic term in non-linear model is 

evaluated. Comparing the predicted roughness coefficients with previous experimental results as 

well as with other methods, the contribution of vortices and secondary currents to the prediction 

of roughness coefficients are quantified.  

The velocity and shear-stress profiles are found to be distorted significantly due to the 

generation of coherent vortices at the interface of main channel and flood plain. It is observed 

that the velocity and shear stress values are under-predicted near the interface region, if the 

momentum transfer due to horizontal vortices is not considered. The well agreed profiles are 

obtained when the effects of vortices are taken into account.  

In the prediction of secondary current, although the pairs of surface vortices as well as the 

corner vortices in main channel are clearly depicted by both the non-linear models, the 3rd order 

model shows superior comparison with experiments than 2nd order model. It is seen that the 

magnitude of upwelling secondary currents at the interface are suppressed by the influence of 

flows caused by the coherent vortices. The secondary currents for higher depth ratios (H/h) are 

found higher in magnitude compared to lower depth ratios. It is observed that with increasing 

the flood plain depth, the scales of surface vortices are increased. The magnitude of secondary 

currents also increases significantly with the flood plain depth. 

The resistance of compound channel is found to be increased due to the generation of 

coherent structures. The numerical result improves the prediction of compound resistance 

coefficient by about 21% over the separate channel method, where the vortices contribute about 

half of that and the rest is due to secondary currents and associated three-dimensional turbulent 

structures. 
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The turbulent structures in coherent vortices at interface are found to be changed with the 

stream-wise distance depending on the structures of singular points. The structures of turbulent 

stresses at vortex center and saddle point are found consistent with that of an idealized vortex 

street (Stuart vortex) as well as previous experiments of free shear flows.  

V. The structure and decay of a turbulent Trailing vortex 

The unsteady numerical simulations are performed for an isolated turbulent axial vortex 

using standard and non-linear k–ε models. Since the rotational effects of vortex are not captured 

by a standard k–ε model, it predicted extremely rapid and strong turbulence growth and caused a 

rapid decay of tangential and axial velocity. However, the non-linear model shows good 

agreement with DNS results. For the tangential velocity, the self similarity solution embraces 

regions I and II (defined by Phillips) for all the time periods, however region-III collapses in a 

single curve only for fully developed flow. Phillips’ model equations for similarity solution of 

velocity and circulation profiles are perfectly fitted with the simulated results. Circulation 

overshoot is observed in the well grown vortex field. Due to this overshoot, the self similarity 

solution seems to be not possible in region III.  

It is observed that the decay rate of axial velocity is much higher than tangential velocity. 

Since the vortex takes some time for initial adjustments, the decay rate is small at initial times. 

For both the velocities, the high decay rate is seen in intermediate time period. After that the 

decay slows down, and the slope of decay proceeds towards minimum. 

Five different time periods are observed in the growth/decay profile of turbulence kinetic 

energy. Initially the vortex changes very slowly, then an exponential growth is seen that slows 

down before gaining its peak value. The peak value of turbulent kinetic energy remains about 

constant for a short period that finally follows the period of turbulence decay.  

After the maturity of vortex, the turbulent normal stresses show two types of anisotropic 

behavior depending on the radial distance. Although the radial component is always greater than 

other two, the tangential component is greater near the center and smaller around the region of 
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maximum tangential velocity in comparison to axial component. The decay rate of energy after 

the period of stabilization is much slower than the growth rate in the time zones before the 

stabilization. The decay of velocity field slows down as the turbulence decay period starts. 

The result reveals that the rate of temporal decay in tangential velocity increases with 

decreasing the swirl number q. Therefore, if no axial velocity is present in the flow field, which 

is the situation for q = ∝, the decay of tangential velocity with time should be smaller compared 

to the vortex field with axial velocity. 

3D numerical simulation is carried out for an ideal Rankine vortex using both RANS and 

LES. For the case of trailing vortices, the axis of rotation is horizontal. However, in this 3D 

simulation, the vortex flow field is given to rotate with the vertical axis in a free surface 

rectangular domain. The prediction of vortex decay by RANS model shows good agreement 

with LES. The water surface found to be depressed near the central area of the vortex with a 

minimum water depth at center of it. Since the strength of vortex decreases due to the decay of 

tangential velocity, the depth of depression in water surface is also decreased with time. 

VI. Open channel flow with a rectangular side cavity  

The flow in a dead zone is characterized by three types of flow phenomena: the circulation 

inside the dead-zone, periodic coherent vortices at the interface of main stream and dead zone, 

and the water surface oscillation inside the dead zone. In this study all these characteristics are 

successfully reproduced by numerical simulation.  

It is found that the instability vortex generated at upstream corner of interface moves 

downstream with gradual amplification with time that finally merges with the dead-zone 

circulation at the downstream corner. The process continues repeatedly with a constant periodic 

interval. 

The temporal variation of water surface displays a depressed water depth at the center of 

coherent vortices. This hollow of the free surface moves downward with time along the 

interface, as observed in the movement of large vortices in vector plots. A periodic change in 

depth difference between upstream and down stream end of dead zone indicates the existence of 
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oscillation in the cavity. It is observed that the period of oscillation is same as that of instability 

vortex.  

It is found that, each cycles of velocity variations consists two components of oscillations. 

The long one is due to seiche and has a time period of 0.75 sec. The period of short oscillation 

component is about 0.15-0.25 sec and caused due to instability vortices. This phenomenon is 

also pointed out in previous experimental observations. 

 

8.2  Recommendation for Further Studies   

 

Based on the analysis and results of the worked out problems as well as comparison of 

results with previous investigations, the following works are recommended for future studies 

concerning the further knowledge about the investigated problems. 

In this study, all the analytical and numerical investigations are mainly based on a 2nd order 

non-linear k–ε model. A 3rd order model is also used in Chapter 5 as a trial case. It is observed 

that the secondary current predicted by 3rd order model is slightly better than the 2nd order. 

Detail investigations are necessary to estimate the coefficients of third order terms for further 

improvement of the model. 

For the simulation of Rankine vortex, a Cartesian coordinate system is used in this study. A 

Cylindrical coordinate instead of Cartesian may give a better presentation of the flow field. 

Flows in an open channel with a rectangular dead zone is studied for only one case. 

However, the change of hydraulic parameters such as Froude number, aspect ratio of the dead 

zone is necessary for better understanding of such a complicate flow field. The water surface 

oscillations found in the present 3D modeling is slightly smaller than the prediction of 2D 

model (Kimura & Hosoda, 1997). Although, such problem of 3D simulation is reported in 

previous researches (Kimura et. al., 2006), further study is required to identify the reasons 

behind this problem. 
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