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Abstract

Turbulent flow is of central importance to many engineering applications in the field of
hydraulic engineering, aerospace industry, process engineering, internal combustion engines,
environmental engineering, etc. Turbulence, intermittently, is a three-dimensional, time
dependent phenomenon. The major approaches to study such flows numerically are Reynolds
Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical
Simulation (DNS). Considerable effort has been made to develop these methods in the recent
decades and an important advancement has been achieved. Since LES and DNS are more
memory and CPU intensive than RANS, the methods are not suitable for practical applications.
That is why the RANS type turbulence models, such as two equation model or Reynolds stress
model, are still the popular tool used for practical engineering applications. Therefore, the
clarification of the possibility, the limitations and areas of improvement of RANS models still
deserve attention.

Among the turbulence models, &—¢ eddy viscosity model is the simplest ‘complete’ model
that can be used on modern personal computers. Although standard k—& model has been applied
in many turbulent flows with high degree of success, the prediction is not satisfactory for some
fundamental flows containing strong streamline curvature, vortices and rotations. This
deficiency is due to the isotropic assumption of eddy viscosity. Thus, the non-linear k&—& model
is thought to be a superior tool for predicting such complex flows. Considering the draw backs
in the existing models, some refinements are proposed in the second order non-linear model
incorporating new functions for the coefficient of eddy viscosity and for that of non-linear

quadratic term. The model constants in the functional forms are estimated considering the
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v Abstract

realizability conditions and anisotropy of turbulence in some baseline flows, such as, plane
shear layer, plane strain, axisymmetric contraction and axisymmetric expansion. Thereafter the
model is applied to following engineering applications to study the model applicability as well
as to gain in-depth knowledge about these turbulent flows: (i) Turbulent jets with and without
swirl (ii) An idealized vortex street (iii) Compound channel with single and double flood plains
(iv) Rankine vortices with and without axial flow and (v) Open channel flows with rectangular
side cavity.

Approximate solutions for the fundamental properties of swirl and non-swirl jets are derived
based on the non-linear A—& model. Tuning the model constants, the approximate solutions are
compared with the previous experimental results.

Since coherent vortices are important element that governs many turbulent flows, the spatial
distribution and topological change of turbulent structures with singular points are studied. It is
observed that the turbulent kinetic energy and normal stresses show elliptical structure at vortex
center, which changes to hyperbolic profile at saddle point at a stream-wise periodic distance of
7. However, the shear stresses show hyperbolic structures at vortex center and the structure
changes to elliptical at saddle point. The turbulent structures of the vortex street are found
sensitive to the functional form of the coefficient of eddy viscosity.

Due to shear layer, coherent vortices are generated in a compound channel at the interface
of main channel and flood plain. The flow field in a compound channel is reproduced using
standard as well as non-linear k&—& models. The flow equations are discretized with finite volume
method based on a staggered grid system.The result shows that the velocity and shear stress
values are under-predicted near the interface region, if the momentum transfer due to horizontal
vortex is not considered. The pattern and magnitude of secondary currents are found in good
agreement with previous experimental results. The horizontal vortices and secondary current
both are found to play significant role to increase the compound roughness of the channel.

The unsteady numerical simulations are performed for an isolated axial vortex (trailing
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vortex) with different swirl numbers using standard and non-linear k—& models. Although a
rapid decay of tangential and axial velocity is seen in standard model, the non-linear model
shows good agreement with previous DNS results. Five different time periods are observed in
the growth/decay profile of turbulence kinetic energy. It is found that the rate of temporal decay
in tangential velocity increases with the decrease of swirl number (¢). 3D numerical simulation
is carried out for an ideal Rankine vortex using both RANS and LES. The prediction of vortex
decay by RANS model shows good agreement with LES. The profile of water surface is found
to be depressed near the central area of the vortex with a minimum water depth at the center.

A numerical simulator based on the full staggered boundary fitted coordinate method
incorporated with 2nd order non-linear k—& model is used for the analysis of complex turbulent
flows in an open channel with rectangular side-cavity. Simulation shows that the flow in a dead
zone is characterized by three types of flow phenomena: circulation inside the dead-zone,
periodic coherent vortices at the interface, and water surface oscillation inside the dead zone.
The temporal variation of water surface shows a depressed water depth at the center of coherent
vortices. This depression of the free surface moves downward with time along the interface, as
seen in the movement of coherent vortices in flow vectors. It is observed that the period of
dead-zone oscillation is same as that of instability vortex. Each cycle of velocity variation
consists two components of oscillations. The long period oscillation is due to seiche, and the

short oscillation is caused by shear instability.
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Chapter 1
INTRODUCTION

1.1 Preliminaries

Most natural and industrial flows are turbulent. Therefore, Turbulent flow is of central
importance to many engineering applications in the field of hydraulic engineering, aerospace
industry, process engineering, internal combustion engines, environmental engineering etc.
Such flow phenomena observed in atmosphere and oceanic flows includes most of the terrestrial
atmospheric circulations and atmospheric mixing layers, the intense oceanic currents, the
mixing of cold and warm air in the atmosphere by wind, the external flow over all kinds of
vehicles (such as cars, airplanes, ships, submarines) etc. The industrial application includes the
flow through equipments, such as pipes, ducts, precipitators, gas scrubbers, etc; and through
machines such as internal combustion engines, gas turbines, etc. In hydraulic engineering
applications, some of the turbulent dominated flows are: turbulent jets, flow through hydraulic
and flood control structures (e.g. barrages), flows past an obstacle such as bridge piers, flows
behind spur/dykes, compound channel flows, flows in a step-pool system, open channel flows
with vegetation zone or with an abrupt expansion, flows with side cavity or dead zones etc.
From theoretical consideration, the turbulent flow is differentiated from laminar by Reynolds

number (= ud/v) of the flow. Since, the kinematic viscosity of water (v) is an order of 10

-1-
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m*/sec, the Reynolds number becomes high and the flow becomes turbulent even for a small
value of velocity and water depth. Due to the application in a wide variety of flows, in the last
decades, turbulence has become a very lively area of scientific research, attracting many

scientists and researchers to this subject.

The method of investigation of this subject is divided into three categories: Analytical,
Numerical and Experimental. In this study, Analytical and Numerical approaches are used to
study the application of unsteady turbulent flows. In this chapter, the available numerical

methods are explained followed by the objectives and scopes of this thesis.

1.2 Numerical Methods

For so many years, the experimental studies were the only technique for investigation of
hydraulic engineering problems. The advent of computers and their rapid advancement brought
an opportunity to the engineers to analyze those problems with less simplified assumptions. As
the computer capabilities are increasing, the less assumptions are made and more complicated
problems are possible to solve more accurately. In Computational Fluid Dynamics (CFD), the
term numerical method is referred to those methods, which are to be used to solve the so called
conservation equations. These equations are continuity, momentum or Navier-Stokes and
Energy equations. In order to solve these equations numerically, they should be discretized and
solved by appropriate iterative methods.

As long as the flow is laminar, the only problem is to solve this system of discretized
equations. The accuracy of results depends on both the grid and descritization scheme. The
moment that the flow becomes turbulent, a chaotic, random motion is observable. In this case,
the instantaneous flow values at a fixed location in the flow field show a fluctuating behavior.
Turbulence, intermittently, is a three dimensional, time dependent phenomenon. So, in order to

study such flows numerically, different approaches have been proposed that have different
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accuracies which sometimes are flow dependent. The three major approaches are Reynolds
Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES) and Direct Numerical
Simulation (DNS). Considerable effort has been made to develop these methods in the recent

decades and an important advancement has been achieved.

Velocity, u
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a . Instantaneous velocit
@) Time averaged Y
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A

(b)

» Time, T

Fig. 1.1 Time averaging of velocity in RANS method (a) Steady RANS (b) Unsteady RANS

1.2.1 RANS Model

Study of stationary turbulent flows has shown that fluctuating flow quantities have a
constant mean value (Fig.1.1). This fact inspired Reynolds to decompose the dependent
variables into an average and a fluctuating part and take a time integral average of the equations.
Doing so, introduced new unknown parameters which are called Reynolds stresses. No longer

the system of equations can be considered closed. This problem is referred to as turbulence
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closure problem which means that the numbers of unknown parameters are more than the
number of equations. The models to solve the problem is called turbulence model. In the models,
the Boussinesq approximation is used to determine the turbulent stresses that consider an
isotropic turbulent viscosity. However, from experiments, it is confirmed that the assumption is
valid only for some limited flows.

Unsteady turbulent flow is of interest to researchers both because of its practical importance
and its potential to provide additional insight into fundamental aspects of turbulence. In such
flows certain fundamental aspects of turbulence are exposed which although present in steady
turbulent flows, are not apparent. In addition, due to the effect of inertia, some additional
features of turbulence specific to transient flows can be present.

From Fig. 1.1, it is observed that in a steady RANS the averaging time should be much
greater (towards infinity) than the fluctuation time scale, however in a unsteady RANS the

averaging time period should be short enough to capture the large scale structures.

1.2.2  Large Eddy Simulation

There are many different length scales observed in a turbulent flow. These length scales are
representative of eddies’ scales in the motion. It is believed that the large scales, receive the
energy from the main flow that is delivered via smaller eddies to the smallest scales where it is
dissipated. The phenomenon is called cascade process.

The idea of LES comes from this fact that the small scales, regardless of the type of flow
and boundary conditions, show an isotropic behavior. So, if the large scales are resolved, it is
accurate enough to model the small scales which are called the subgrid scale or SGS. In order to
get reasonable good accuracy it is reported that the grid should be fine to some extent
(Hinterberger et al. 2007). Important difference between RANS and LES governing equations is
the method of filtering. While in RANS the filtering is performed in time, in LES the filtering is

performed in space. Another difference compared to RANS is that as turbulence is a time
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dependent three-dimensional phenomenon, the governing equations in LES also need to solve in
unsteady three-dimensional format. Another fact regarding LES is that the grid is supposed to
be fine enough to cover some part of scales in the inertial sub-range. These differences make the

LES much more expensive than RANS models.

1.2.3  Direct Numerical Simulation

In this method even the small scale of turbulence is simulated. It means that a very fine
mesh whose size is in the range of Kolmogorov micro-scales should be implemented. Although
it gives most accurate results, the draw back with this method is that it needs very powerful

computers with high memory capacities even for a very simple geometries and flows.

1.3 Objectives and justification of the Study

Since LES and DNS require high computer memory and much more CPU time than RANS,
the methods are not suitable for practical applications. That is why the RANS type turbulence
models, such as two equation model or Reynolds stress model, are still the popular tool used for
practical engineering applications (Jaw & Chen, 1998). Therefore, the clarification of the
possibility, the limitations and areas of improvement of RANS models should still be paid
attention to.

Among the turbulence models, k—& eddy viscosity model is the simplest ‘complete’ model
that can be used on modern personal computers. Due to its simplicity, it became one of the most
popular models and found to be adopted frequently. This is a two equation model obtained by
solving the turbulent kinetic energy (k) and its dissipation rate (¢ ) from two differential
transport equations. Although this type of model has been applied for prediction of many

turbulent flows with high degree of success, it is unable to predict satisfactorily some
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fundamental flows containing strong streamline curvature, vortices and rotations (Rodi, 1979).
This deficiency of this model is due to the isotropic assumption of eddy viscosity that causes
mostly a linear relationship between stress and strain rate throughout the turbulent flow field.
Thus, the non-linear k—¢ model is thought to be a superior tool for predicting such complex
flows. However, some draw-backs are reported for existing non-linear model.

Therefore the objective of this study is the refinement of existing non-linear k—< model and
examine its performance for different turbulent flows. Introduction to some turbulent flows are
given below, which are considered as the subject of research in this thesis.

Turbulent flows with large scale vortices are often observed in many natural flows and
man-made engineering applications. One of the common examples is a compound channel,
where coherent vortices are formed at the interface of main channel and flood plain (Fig. 1.2).
The more complicated turbulent flow is observed in the flow field of an open channel with side
cavity. In addition to coherent vortices, its interaction with the flow circulation and water
surface oscillation in the dead zone makes the flow field more complex. Therefore, these are the

subtopics chosen for this study as turbulent flow.
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Fig. 1.2 Plan view of flow vector in a compound channel showing the coherent vortices at the
interface of main channel and flood plain (simulated flow field in the present study)

Since, the coherent vortices are the important element that controls the turbulent flow fields,
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the change of turbulent structures with spatial and temporal changes is necessary to investigate.
A coherent vortex is composed of two critical points; the maximum vorticity exists at vortex
center (focus) and minimum vorticity at saddle point. The Stuart vortex is such a vortex that
contains both the critical points in its vorticity field, is considered as an ideal vortex to study the
spatial change of turbulent structures with singular points. To study the temporal decay of
vorticity, Rankine vortex is considered. This vortex has been used extensively in various
studies; for instance, to predict the decay of wing-tip vortices, to estimate the noise level
produced by vortices and vibrations, to model the natural phenomena such as hurricanes and
tornados.

Some basic turbulent flows, such as, plane shear layer, turbulent jets with and without swirl are

also studied using analytical approach based on the proposed non-linear k&—& model.

1.4 Scope of the Research

The manuscript consists of eight chapters including the Introduction and the Conclusions.
Chapter 1 describes the basics of different turbulence models and clarifies the objectives of the
study.

In Chapter 2, the details of 4—¢& model for 3D flow both in Cartesian and Curvilinear
coordinate system is described. The existing models are discussed and the drawback of the
models are highlighted. Some refinements in the second order non-linear model are proposed,
where the coefficient of eddy viscosity is derived as a function of strain and rotation parameters.
The model constants in the functional forms are estimated considering the realizability
conditions and anisotropy of turbulence for different baseline flows.

In Chapter 3, the approximate solutions are presented for the fundamental properties of a
swirl jet such as spreading rate, distribution of turbulence intensities, turbulent shear stress,

turbulent kinetic energy etc., derived by using the modified non-linear &~ model. The derived
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approximate solutions are useful to understand the distributions of turbulent characteristics, the
sensitivity of model constants to the distributions of turbulent energy among the turbulent
normal stresses, the relation between spreading rate and model constants, etc. Neglecting the
swirl parameters from the derived solution, the spreading rate and turbulent properties are also
calculated for a round jet without swirl. Tuning the model constants, the derived solutions are
compared with the previous experimental results.

In Chapter 4, the spatial distributions and topological change of turbulent structures in an
idealized vortex street are investigated using analytical approach, and the applicability of the
non-linear k—& model to large scale vortices are examined. The Stuart vortex, which contains
both vortex and saddle patterns in its vorticity contour, is considered for this analysis. The
sensitivity of turbulent structures of the vortex street to the coefficient of eddy viscosity are
examined. The turbulent structures are also compared with the previous experimental results of
free shear flows.

In Chapter 5, the three-dimensional flow field is generated for different hydraulic conditions
using standard as well as non-linear k—¢ models, where the governing equations of mean
velocities and turbulent flow fields are discretized with the finite volume method based on a
staggered grid system. The interactions of horizontal vortices with secondary currents, and its
consequent effect to the prediction of flow as well as to the compound roughness of the channel,
are explained through the interpretation of simulated results with different models.

The turbulent characteristics of the large scale vortices in the compound channel are studied.
The formations of singular points (i.e. vortex and saddle patterns) in the coherent structures, and
the topological change of turbulent structures with the singular points are investigated. The
turbulent structures are compared with the results presented in Chapter 4.

The work presented in Chapter 6 can be classified into twofold. In the first part, 2D
numerical simulation with 3D velocity field is carried out for a trailing vortex (axial vortex) for

different swirl numbers using standard and Non-linear k—¢ models. The temporal decay of
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tangential and axial velocity, the effect of swirl numbers on vortex decay process, different
time-zones of generation and decay of turbulence, distribution of turbulent intensities etc. are
studied. The simulated results are compared with previous experimental and DNS results. In the
second part, the 3D numerical simulation is carried out for an idealized Rankine vortex using
Non-linear k& model and large eddy simulation (LES). The temporal changes in vortex
simulated by both the models are compared.

In Chapter 7, the three—dimensional numerical simulation is carried out to study the
fundamental properties of an open channel flow with a rectangular side cavity. A curvilinear
coordinate with a variable grid system is used in this study. The formation of coherent vortices
at the interface of mainstream and dead zone, as well as its interaction with the circulation and
water surface oscillation in the cavity are studied. The flow pattern and velocity profiles are
compared with previous experiments. Finally, Chapter 8 summarizes all the contributions of this

study.
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Chapter 2
NON-LINEAR k- MODEL

2.1 Introduction

It is well known that the RANS (Reynolds Averaged Navier Stokes) type turbulence models,
such as two equation model or Reynolds stress model, are the most popular tool used for
practical engineering applications (Kimura & Hosoda, 2003; Jaw & Chen, 1998). Because it
requires less CPU time and computer memory compared to LES and DNS. Therefore, the
clarification of the possibility, the limitation and areas of improvement of RANS models should
be still paid attention to. To resolve the Reynolds stress term appeared in the averaged
Navier-Stokes equations, the k—& model is one of the most frequently adopted one (Jaw & Chen,
1998). However, the standard k—¢ model cannot produce satisfactory results for the flow field
having high rate of strain and rotation because of its isotropic assumption of eddy viscosity
(Rodi, 1979). On the other hand, a non-linear model predicts superior result by capturing the
anisotropic turbulence.

The non-linear k—& model is a generalized eddy viscosity model, where additional
non-linear terms of mean strain rate are added in the Reynolds stress equation. In standard 4—¢

model, the value of the coefficient of eddy viscosity (c,) is assumed constant throughout the

-10 -
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turbulent flow field, that over predicts its value, especially in the case of large rate of strain and
rotation. If the strain is sufficiently large, the model may produce negative normal stresses (Shih
et al., 1996). Moreover, comparing the non-linear quadratic term in the Reynolds stress equation
proposed by Youshizawa (1986) with its another form proposed by Gatski and Spezile (1991), it
can be proved (shown in next section) that ¢, is a function of strain and rotation parameters. The
non-linear k—¢ model used in this study differs from the standard A—& model in two important
ways: 1) the eddy viscosity coefficient (c,)is not a constant; and ii) non-linear terms are added in
the Reynolds stress equation to account the anisotropy of normal stresses. Kimura and Hosoda
(2003) proposed some refinements in the model functions considering the realizability
conditions for different types of 2D basic flow patterns. They adopted the model to calculate the
3D flows around a cube, and the complex flow features with separation and reattachment at
each surface are qualitatively simulated. Hosoda et al. (1999) and Ali et al. (2007) calculated 3D
flow field in compound channels using non-linear model, and pointed out that the functional
form of ¢, affects the generation of horizontal vortices. However, the functional model
developed by Kimura and Hosoda (2003) contains some physical drawbacks (shown latter), and
hence it requires further refinement.

In this chapter, refinement of second order non-linear k—& model is proposed incorporating
some new functions for the coefficient of eddy viscosity as well as for that of quadratic term.
For tuning model constants, the flow field of a Simple Shear is considered first. The conditions
of realizability are derived for plane shear layer to determine the constrains of the functional
form of ¢, . The coefficients in the non-linear quadratic terms are determined considering the
anisotropy in turbulent normal stresses for shear layer. The anisotropy of turbulence is also
derived for some other basic flows including Plane strain, Axisymmetric Contraction and
Axisymmetric Expansion to tune the model constants as well as to ensure the realizability

conditions for these flows.
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2.2 Mathematical Formulation in 3D Cartesian Coordinate

2.2.1 Basic equations
The basic equations in a k—& model for an unsteady incompressible flow are as follows.
Continuity equation:

oU,

—L=0 2.1
x @.1)

Momentum equation:

- oU U, e U
%—i- L =g[—la—P i(—uiu,)—i—va Uz’ 2.2)
ot ox, p ox, O, / ox,

k - equation:

okU,  —— 09U,
%4‘ J Z—Miu- _’+i L+V ﬁ —-& (23)
o ox, Tox,  ox; |\ oy ox
& -equation:

oeU , — U, 2
L NP Srpplid BRI | IL/IS i SR (2.4)
o Ox, k' ox, oax; |\o, Ox k

where, x; : the spatial coordinates, U; and u; : the average and turbulent velocities respectively

in x; direction, P : the pressure, p : the density of fluid, v : the kinematic viscosity, k : the
averaged turbulent energy, & : the averaged turbulent energy dissipation rate, v, : the eddy
viscosity, oy, 0, , ¢4, C» : the model constants. Standard values (6= 1.0, 0= 1.3, ¢, = 1.44 and

¢, = 1.92) are used for these model constants.

2.2.2 Turbulence models

(a) Standard k—& model

In the standard k—¢& model, the Reynolds stress tensor wu,u; is solved by linear constitutive
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equations derived from Boussinesq eddy viscosity concept, which does not take into account the

anisotropy effect.

oy, v,

2
-uu,=vS. ——ko,, S.= 2.5
S T A A . o, 25)
Here, v, is determined from the dimensional consideration of k and £ and approximated by
2
v, =c, L . (2.6)
£

Here, ¢, is the coefficient of eddy viscosity bears a constant value of 0.09.

(b) Non-linear k— & model

Including the non-linear anisotropy term in the Reynolds stress equation introduced by

Yoshizawa (1984), the constitutive equations can be expressed in the following forms

— 2 koS 1
—uu, =v,S, —Ekdij —;thCﬂESﬁU. —gsﬁma,.jj (2.7)
p=1
oU, U, 8U, dU, aU, ouU, oU
LUy, g 10U, 00, AU, 0U g s, 29U 2.8)
ox, Ox, b 2( ox, ox, Ox; ox, T Ox; Ox;

here, ¢z (= ¢, ¢, ¢3) is the coefficient of non-linear quadratic term. In this equation, v, is also
determined by equation (2.6), but ¢, is no longer a constant but a function of strain and rotation
parameters.

The quadratic term in equation (2.7) is equivalent to the following non-linear viscosity model

derived by Pope (1976), and Gatski & Spezile (1993).
1 1
a, (8,9, +Q,8,)+a,(S,;S, - ESkmSmkéij) +a;(Q,Q, - Ekaka@j ) (2.9)

19 ji

where, the strain and rotation tensors are defined as

i 6xj Ox.

1

= an + an Q an aU./'
v ox, Ox

1

(2.10)

b

From Egs. (2.7) and (2.9), the relations between the coefficients of two forms of non-linear
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terms can be derived as

o ="20+a,-a;, c,=2a,+a;), ¢c;=20,+a,—a, (2.11)
The comparison between two forms of non-linear terms (the quadratic term in Eq. (2.7) and

Eq.(2.9)) inferred that the coefficient of eddy viscosity ¢, is a function of strain and rotation

parameters. The strain parameter (S) and rotation parameter (2) are defined in Eq. (2.12), as

used in the previous studies of Pope (1976), and Gatski and Speziale (1993).

k1 k /1
S:; ESi/Sii’ Q:; EQifQi/ (212)

For the coefficients of ¢4, following constant values are used in previous studies for flows
around bluff bodies (Kimura & Hosoda, 2003) :
¢, =040, ¢, =0.40, ¢, =-0.13 (2.13)

Comparing the analytical results for diagonal components of the anisotropic tensors with
that of experiments for simple shear flows, it is observed that the functional form of c¢; gave
better results instead of taking their constant values (shown later).Therefore, the coefficient of
quadratic term c; is also considered as a function of strain and rotation parameters.

Many kinds of model functions have been proposed for these coefficients. Some of them
consider only strain parameter, and rotation parameter is neglected (such as, Cotton and Ismail,
1993; Kato and Launder, 1993). Craft et al. (1993) and Kimura and Hosoda (2003) consider one
dominant parameter of two (either S or Q). Authors have also proposed a new function for the
coefficients, which is more generalized than the previous forms. The comparative features are
explained below in conjunction with the recent functional model of Kimura and Hosoda (2003).
i) Functional form by Kimura & Hosoda (2003)

The functional form for the model coefficients proposed by Kimura and Hosoda (2003) are

described as:

. 0.3
¢, =min|c, ,————— 2.14
g (“0 1+0.09c1>2j (2.19a)
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Cﬂ b
Cp=—"TT""+ 2.14
7 1+0.0207 (2140
where,
® =max(S,Q), ¢, =0.09, ¢, =040, c, =0.0, ¢, =-0.13 (2.15)

The model takes into account one dominant parameter of two (either S or 2). Moreover, the
model of ¢, is a discontinuous function that may cause sudden change of its values.
i) Functional form used in this study

The model proposed a continuous function for c¢,, and the strain (S) and rotation () —
both the parameters are taken activated in the functional form. The proposed functional model is
expressed as

o 1+ cmS2 +chQ2)

= 2 2 4 4 22
l+¢, S™+¢c,Q +¢,;650+ ¢, S™ +¢ 0, Q" +C 40 S Q

C, (2.16a)

Cpo
= , £=1,2.3 2.16b
1+m,S* +m,,Q d ( )

s
Here, ¢y, Cna, Cas, Caa, Cass Casts Cants Casar, Mas and mgq are the model constants. The values of ¢
in Eq.(2.16b) are same as given in Eq.(2.15). The functional form of ¢, assumed by Gatski and
Speziale (1993) can be obtained from the above equation [Eq.(2.16a)] simply neglecting some
higher order terms i.e. substituting c,q, Caq, Casi» and cgo; as zero. The more simplified
functional form of c¢,, suggested by Pope(1975) for two dimensional flows, can be obtained
neglecting some more terms from the above equation. Moreover, when the strain and rotation

effects are neglected i.e. S=Q=0, ¢, becomes equal to the standard value of 0.09. Neglecting

quadratic term, the model reduces to the standard k — & model.

Table 2.1. Estimated values for the coefficients of ¢, and ¢

l(\j/lodel Cu0 Cns  Cne Cis  Case  Cae  Cast a1 Ciso1 Mgy Mge
onst.

values 0.09 0.005 0.0068 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003
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2.3 Tuning of Model Constants

2.3.1 Tuning of coefficients in cg

The coefficients of non-linear quadratic term, cp (c;, ¢2, c¢3) in Eq.(2.6), should be
determined carefully because they are expected to influence the physical accuracy and
numerical performance of the model. In this study, these model constants are tuned considering
the anisotropy of turbulent normal stresses in simple shear flows.

For simple shear flow, the flow can be described as

U =Uly), U,=U, =0, %w (2.17)
y

The strain and rotation parameters are defined as

k dU
S=0Q=M=22"1 (2.18)
e dy
The diagonal components of the non-dimensional Reynolds stress tensors are
uu 2 ¢ (2¢, —c
it _ 2 #( ! 3)M2 (2.19)
k 3 3
0.6
04 O CHC
O HGe
(x=7.5h)
02 & HGC
(x=11h)
= —X— Eq. (2.1 3)
E
o —--—- Eq.(214b)
W Eq. (2.16b)
-02
-04
0.8 1 1.2 1.4 1.6 1.8 2

Fig. 2.1. Comparison of anisotropy of turbulence in plane shear layer using Egs. (2.22)

and (2.23) for the coefficient cg
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— — — — Non-negetivity condition

by Kimura & Hosoda (Eq. 2.14a)

- Condition for Schwarz' inequality
Present study (Eq. 2.16a)
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Fig. 2.2 Relation between c,and M in a simple shear layer

Fig. 2.3 Profile of ¢, (S, ) on an S — Q plane [Eq. (2.16a)]
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The anisotropic tensor m;; are defined by

wu, 2
m, = kj_§5” (2.22)

The ratio of the turbulent energy production term P; to the dissipation rate € is

P dU
P LR R VE (2.23)
£ e dy

The comparison between the experimental results and analytical solutions for the anisotropy
of turbulent normal stresses (m;) in plane shear layer is shown in Fig. 2.1 (o = the ratio of
turbulent production and dissipation rate). In the figure, CHC and HGC denote the experimental
results by Champagne et al. (1970) and Harris et al. (1977), respectively. The bold line indicates
the functional form for cs [Eq. (2.16b)], which gives better comparison with experiments than
Eq. (2.13). Eq. (2.13) shows the values of ¢; bearing constant values, where the effects of strain
and rotation parameters are neglected. The functional form by Kimura and Hosoda (2003) is

also shown in figure as dotted line.

2.3.2  Consideration of realizability for plane shear layer

Realizability can be defined as the requirement of the non-negativity of turbulent normal
stresses and Schwarz’ inequality between any turbulent velocity correlations. It is a basic
physical and mathematical principle that the solution of any turbulence model equation should

obey (Shih et al., 1996 ). The realizability inequalities for 3D turbulent flows are:

uu, 20 (2.24)

wu, - uu; = U, (i;tj) (2.25)

w, WU, Ul
det |u,u, w,u, u,uy|=0 (2.26)

Uiy Uz, UUy

Einstein’s summation rule is not applied in above Equations. In a two dimensional averaged
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flow, Eq. (2.25) coincides with Eq. (2.26). In this study, the restrictions on c,are derived from
the mentioned realizability equations for simple shear flow.
Applying Eq. (2.24) to plane shear layer, following two equations are derived for the

diagonal components of the Reynolds stress tensor (non-negativity condition)

wu, 2 c”(2cl—c3) 5

_2y M* >0 (227)
k3 3
wuy 2, 66a) s, (228)
K3 3 -

For plane shear layer, M=S=Q.

Applying Eq. (2.25), the following inequality equation can be derived for Reynolds stress

component, uu, (Schwarz’inequality condition).
{OM? +(2¢2 +2¢2 —5¢,c,)M* |- 2¢, (¢, +¢;)M* —4 <0 (2.29)

Since the value of ¢; is positive and c; is negative, Eq. (2.27) is satisfied regardless of M. Thus,
the restrictions on ¢,, derived from Eqgs. (2.28) and (2.29), are as follows:

< 2 (2.30)

= (cl _203W2

. < (c, +¢c3)M + \/(c1 +c )2M2 + 4{9 + (2c12 + 2c32 - 5clc3)M2} 2.31)
“ IM +(2¢ +2¢; —5¢,¢,)M° '
The model constants in the functional form of ¢, in Eq. (2.16a) are tuned to satisfy the
realizability conditions derived in Egs. (2.30) and (2.31).

For plane shear layer, the realizability conditions [Egs. (2.30) and (2.31)] as well as the
proposed functional form of ¢, [Eq. (2.16a)] are plotted in Fig. 2.2. The calculations are made

with the following values of model constants.

€ =009, ¢, +c,q=00118, c, +cy+cu0=0.009, ¢4y +Cho +Chan =0.00035,
my +my, =0.013 (2.32)

Using these estimated values, the analytical solutions are derived for the anisotropy of

turbulence in some other bench-mark flows and the individual values of model constants are
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determined to satisfy the realizability limit (see section 2.3.4). The approximate solutions for
swirl jet (in Chapter 3) are compared with the previous experimental results and the values of
model constants are finally determined by tuning their values for best-fitted comparison.
Table-2.1 shows the final values of constants obtained by such a trial and error method, and Fig.
2.2 confirms that the model obeys the realizability conditions with these values of constants.

In the log-law region, the assumed functional form of ¢, shows almost a constant value of
0.09. It can be noted that, instead of functional form, if a constant value of ¢, (=0.09) is used

through out the turbulent flow field, it fails to satisfy the realizability conditions. Fig. 2.3 shows

the distribution of assumed functional form of ¢,in S — Q plane.

Fig. 2.4. Profile of ¢, (S, Q) on S — Q plane for the function in (a) Eq. 2.14a ( by Kimura and

Hosoda, 2003), (b) Eq. 2.16a (proposed function)

2.3.3  Distribution of ¢, in S — Q plane

Figure 2.2 shows the comparison of ¢, profiles by Kimura & Hosoda (2003) and the
proposed function. Since the profiles are calculated along the line of S = Q, two profiles seem to
be very similar except the sharp change of Kimura & Hosoda’s profile at about S=5. However,
the 2D profiles of those two functions on S - Q plane are considerably different as shown in
figures 2.4(a) and 2.4(b). Because, in these figures the effects of both the parameters (S and Q)

are activated. The profile proposed by Kimura & Hosoda (2003) shows sharp edges around the
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region of S = Q, which means that the value of the function changes suddenly around that
region. These features seem to be physically unsound. A typical flow which satisfies S = Q is
plane shear layer. Therefore, the functional model by Kimura & Hosoda (2003) expressed in Eq.
(2.14a) is not suitable for flows with vortex formation from a shear layer due to K-H instability.
Another limitation in Craft et al. as well as Kimura & Hosoda’s functional form is that ¢, has no

dependency on €/S as shown by Gatski & Speziale..

2.3.4 Model performance in homogeneous strain

The anisotropy of turbulence is also derived for some other baseline flows including Plane

strain, Axisymmetric Contraction and Axisymmetric Expansion to tune the model constants as

well as to ensure the realizability conditions for these flows. The flow fields can be defined as

follows:

(1) Pure Shear Strain : U=aX, U,=U;=0

(i1) Plane Strain: U=alX;, Uy=-alX, Us=0

(i) Axisymmetric Contraction: U=alX, Uy=—(a2) X5, Us=—(a/2) X5 (a>0)
(iv) Axisymmetric Expansion: Ui=aX, U=—(a/2) X5, Us=—(@/2) X3 (a<0)

Since in pure shear strain S = €, the influence of individual model constants are not active;
and that’s why, tuning the model constants for plane shear the values of model constants are
determined in groups as shown in Eq. (2.32). The analytical solutions of other three baseline
flows are given below, in which the influence of individual model constants will be considered
through their predictability of anisotropic turbulent stresses to satisfy the realizability constrains.

Here, the anisotropic tensors are defined as

uiuj 1
bi/' 27—56}/ (233)

For plane strain:
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b, = _%c#s +§c# (¢, +c,)s? (2.34)
1 1 ,
b,, =EcﬂS+£c#(cl +¢;)S (2.35)
1 2
by, z—Ec#(cl +¢;)S (2.36)

For Axisymmetric Contraction:

1 5

b, =_Ec#5+£c# (¢, +¢c,)S? (2.37)

by, =by =——c 5 ( )s? 2.38
2 = 33_2\/50;1 _ﬂc;t ¢ +¢; (2.38)

For Axisymmetric Expansion:

b, :%C#S +%cﬂ(cl te,)s? (2.39)
1 1 )
b,, =by, = —mcﬂS — 275 (¢, +¢,)S (2.40)

The analytical solutions are plotted in Fig. 2.5 including the realizability limit along with the
solutions by Abe et al. (1997). It is observed that both for shear straining (Fig. a) and normal
straining [Figs. (b)—(d)], the normal stress separation is realistic and the realizability is obeyed
even at high strain rates. The present model shows better prediction than Abe’s model. It can be
noted that although the functional form for ¢, by Abe et al. (1997) accounts both the strain and
rotation parameters, the form is similar to Pope’s model which is based on a two-dimensional
flows. The ability of that model in predicting 3D flows is shown in Chapter 5 for simulation of
compound channel flows.

The solutions are also prepared for standard k-¢ model and non-linear model with the
constant values of ¢z [Eq. (2.13)], and the plots are shown in Fig. 2.6. The deficiency of
standard model is clearly seen in the figure. Comparing with Fig. 2.5, it is observed that the
functional form of ¢z shows much sensible anisotropic behavior than their constant values for all

the basic flows.
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Fig. 2.5. Model performance in homogenecous strain considering the anisotropy of

turbulence and realizability limit.
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0.33

Non-linear model, Cg =constant

— — — Standart k—e model
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Fig. 2.6. The anisotropy of turbulence for the baseline flows in homogeneous strain predicted

by (i) Non-linear k-& model with cs=constant and (ii) Standard k—¢& model.
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2.4 Mathematical Formulation in 3D Curvilinear Coordinate

2.4.1 Basic equations

The 3D flow equations in a k—& model for an unsteady incompressible flow with
contravariant components of velocity vectors on an orthogonal curvilinear coordinate system
can be written as follows.

Continuity Equations:

ove
Lrte e

Jg oc

Momentum equation:

%+Vj[Vf(V«f —WH|+v'v Vv i =F —%gijvjp R ey

(2.42)
k-equation:
%wj[k(w WV T == g VIV —g+vj{a—'+nglfv[k} (2.43)

k

g-equation:
oe , , , £ - , &’ D "
LoV e -whHs ey Wi ==, Lg V'V VT —C, -tV .{(—tJerg”Vl.g}
o’ ! B koo

(2.44)

Here, V is the contravarient component of velocity vector of the flow and W is that of the grid
motion. g; and g" are covariant and contravatiant component of metric tensor.

The covariant derivative 1s defined as

V. A" = oA‘
i aé:l

+4°T,, (2.45)

Where, T/ is the Christoffed symbol defined as
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k og . _ oo .. k A2.p
I - o= lgkm g'/’_n + ag"'.' _ %8 05" 0 .x . (2.46)
! i 2 o0& oET O&" ox? 0&'0&’

2.4.2  Constitutive equations

The constitutive equation for 2nd-order non-linear k—& model described in Eq.(2.7) can be

written in the following form

— 2k k?
- =D,s" - Zkolg —;D,[ole1 +2,0, +a,0,] » D, =C, — (2.47)

here,

0, :S[agalQ[/ + S/ﬂg/f/Ql[’ 0, :Siagalsy _ésmgo{msmﬂg,@ké‘; v,

. 1 .
0,=0"g, Q' -39, 2" g,5]g" (248)

Strain and rotation tensors are defined as
SV =gV Vi+gvV Vi, Q=g vV Vi -g“V V’ (2.49)
Considering the coefficients of non-linear terms as a function of strain and rotation parameters,

their values can be determined from Egs.(2.11) and (2.13). Eq.(2.11) can be written as
1 1 1

a, =—(—cl+c3), a,=—(c,+c,+c;), oy =—(—c, +c, —c;) (2.50)
4 4 4

Substituting the functional form from Eq.(2.16b) with the values of cg from eq. (2.15), the

above equation shows the following from

a, =-0.1325f,,, a, =0.0675f,,, a,=-0.0675f,, s, - ! (2.51)

2 2
1+m, S +m;Q

Here, the functional form of ¢, is unchanged as Eq.(2.16a)

¢, (14+0,8% +¢,,Q%)

l—i-ca,sS2 +chQ2 —i—cdSQSQ+camS4 +chIQ4 —i-ca,SQ“S’ZQ2

(2.52)

Cu

However, the strain and rotation parameters are defined as

k 1 ia j k 1 ia )
§=-155 2,572, Q:;‘/EQ 2,078, - (2.53)
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2.5 Summary

The standard k—& model has the deficiency of isotropic assumption of eddy viscosity. In this

chapter, a second order non-linear k—& model is proposed incorporating some new functions for

the model coefficients to explore the model applicability to complex turbulent flows.

Considering the realizability principle and anisotropy of turbulence in some baseline flows , the

coefficient of eddy viscosity (c,) and the coefficients of non-linear quadratic term (cp) are

derived as a function of strain and rotation parameters. It is observed that the functional form of

the coefficient of quadratic term shows better comparison than their constant values.
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Chapter 3

TURBULENT ROUND JET WITH
AND WITHOUT SWIRL

3.1 Introduction

Due to the circumferential motion of jet, the flow field of a swirling jet is more complex
than that of a non-swirling one. However, this type of flow is observed in many natural
geophysical as well as anthropogenic activities. Tornado is an example of natural swirling flow.
Since the geometry, coherent structure, spreading, and dilutions of the jet fluid are highly
influenced by the presence of swirl in a jet, it is sometimes imparted to the flow to control its
development. The practical examples include flow through combustors, propulsion devices,
cyclone separators etc. Swirl jet can also be used in any environmental mixing devices, where a
faster spreading or rapid mixing of jet fluid is necessary.

Most of the previous experimental as well as computational works on swirl jet mainly
focused on the region close to the source. Examples are the experimental investigations
conducted by Panda and Mclaughin (1994), Billant et al.(1998), Ribeiro and Whitelaw (1980)
as well as Paschereit et al. (1999), where the interaction of coherent structures of swirl jet just

downstream of the nozzle was the main concern. On the other hand, Pratte and Keffer (1972)

-29.
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performed the experiments to study the turbulent field of the jet up to a well downstream
distance of 30 jet diameters. Although some numerical studies have been performed on near
nozzle region of turbulent swirling flows using Reynolds stress model (e. g. Gibson and Younis,
1986) and Large eddy simulation (e.g. Mcllwain and Pollard, 2002; Wang et al., 2004), to the
best of author’s knowledge, the k~—¢ model is yet to be applied successfully.

In this chapter, the approximate solutions are presented for the fundamental properties of a
swirl jet, such as spreading rate, distribution of turbulence intensities, turbulent shear stress,
turbulent kinetic energy etc., derived by using a non-linear k—¢ model. Neglecting the swirl
parameters from the derived solutions, the spreading rate and turbulent properties are calculated
for a round jet without swirl. The results are compared with the previous experiments. The
model constants in the assumed functional forms for the coefficients of eddy viscosity and
quadratic term, estimated in previous chapter considering 2D shear flow, will be determined by
tuning their values for best fitted comparison with previous experimental results. Finally, the

turbulent properties of swirl jet are predicted for different swirl numbers.

3.2 Governing Equations

The equations for 2nd order non-linear &—& model can be rewritten as follows:

Continuity equation: —-=0 3.1
ox;
oU U U, —\ U
Momentum equation: —-+——=g, — 1or i(— u, ].)+ V—y (3.2)
ot ox; p Ox; Ox, : ox
okU ; —0U,
k - equation: %+ L= —uiu.—’+i Yy ok - (3.3)
o ox, Tox,  ox; |\ o, X
oeU ; —0U, 2
& - equation: %-ﬁ- ! =—c£1£uiu.%+i Yy o2 —cgzg— (3.4
o ox, kmox,  ox, |\o, ox, k

_ 3
Turbulence model (Non-linear): —uu; =v,S, — %ké’ij - Evt Z Cp (Sﬂij —%Sﬂaa o j (3.5)
&
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Here,

? oU. oU, - oU,
y=e X g 20 T Q,./:%— / ,S:ﬁw/lsﬁs,,gzﬁ 19,..9,., (3.6)
e T ox; o Toox,  ox eV2 "’ N2 7t

1

In Equation (3.5),

oU, U, 1£8U7 oU, ou, aU,-J oU, aU, 67
W = AL AL 2 P2 T4 + > O3 = . :
Toox, ox, b2 ox; ox, Ox; ox, 7 ox, Ox;
c,, +c, 8% +c,,Q%)
Cu = 2 2 - l 4 4 22 (3-8)
I+c, 8" +¢,0QQ" + ¢85+, 8" + €y 2" + €y SR
! (3.9)

P m, S m O
The value of the model constants are: c,0= 0.09, c¢,;= 0.005, c,o= 0.0068, c;= 0.008, cso=
0.004, cg40=-0.003, c4; = 0.00005, cuo; = 0.00005, cy0;= 0.00025, c;0=0.40, c9=0.0, c3p=
-0.13, my= 0.01, myo= 0.003, 0;,= 1.0, 6= 1.3, ¢; = 1.44 and ¢, = 1.92. In standard k — ¢
model, ¢,=0.09 and ¢z =0.0.

For turbulent shear flows, the following assumptions are made (Jaw and Chen, 1998):

a) The pressure gradient is small i.e. Z—P ~0
X

b) Viscous shear stress is much smaller than the turbulent shear stress, and can be neglected.

¢) Diffusion in the direction normal to the flow (y- and z-directions) is much larger than the
diffusion in the direction of flow (x-direction).

Thus, the momentum equation in x-direction as well as the k and ¢ equations can be presented in

a simplified form as follows.

The momentum equation in x-direction:

oU oU oU
U, —+U ~+U, —= =£(—urux)+£(—uxu )+i(—uvuz) (3.10)
ox Yoy 0z ox° oy A A
k - equation:
- oU ou |
U %-FU ok U %z—u u U, —u.u U, —u.u %—u U —>—uu !

_J’_ )
tox oy oz Yo oy Yoz T ox T oy
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ou, ou, ou, ou, of(v,ok| 0fv, ok
—u,u, —Uu_u, —u_u, —u_u, = ——— |+t =|——=|-¢ (3.11)
S oz ox © oy 0z oy\o,0y) 0Oz\o, Oz
& equation:
N - S ou, ou
Uxa—g+U %+Uz%=cm£ —uu, U, —uxu<8Ux —uu, 6U“—u u,——uu, —=
ox oy 0z k Y ox 7oy 0z T ox T oy
ou, ——ouU, ouU. ou, | of(v, k) ofv, ok g’
_uvuz _uZ x__uzuv _uZuZ ~ | A ~ | A _c€2_
’ 4 X oy 0z ov\o,o0y) oz\o, Oz k
(3.12)

3.3 Procedure for the Solution

The functional forms of velocities and k—& distributions are assumed as a first
approximation. Using the integral equation of momentum conservation, the parameter
accounted for swirl (introduced in assumed velocity distributions in section 3.4.1) is derived as
function of non-dimensional swirl number, Sy. Substituting the mathematical expressions of the
assumed distributions into the continuity, momentum and non-linear k—¢& equations, a set of
algebraic equations are derived considering the relation of lowest order with respect to the
power of 1/x. Solving these simultaneous algebraic equations, the unknown coefficients in the
assumed distributions are determined as the function of the non-linear k—& model constants.
Approximate solutions for the distributions of turbulence characteristics such as distribution of
turbulence intensities, turbulent shear stress, etc. are derived using the constitutive equations of
the model. Neglecting the swirl parameters, the derived solutions for swirl jet are applied for a
round jet without swirl.

In the previous chapter, the coefficients in the functional forms of ¢, and ¢, are initially
estimated considering realizability conditions and anisotropy of turbulence in plane shear layer.
In this chapter, the approximate solution for a round jet with and without swirl are compared
with the previous experiments, and the model constants are finally determined by tuning their

values for best fitted comparison. The fundamental properties are then predicted for a jet with
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different swirl numbers.

3.4 Approximate Solution for Turbulent Swirling Jet

/ _—plane wall

Fig. 3.1 Definition sketch of swirl jet (Pratte and Keffer, 1972 )

Figure 3.1 shows the definition sketch of a swirl jet with Cartesian and Cylindrical
coordinate systems. Consider, U,, U,, and U. are the jet velocities in axial (x), lateral (), and
transverse (z) directions in Cartesian coordinate system and U,, U,, and Uy are the velocities in

axial (x), radial (7), and azimuthal (&) directions in Cylindrical coordinate system respectively.

3.4.1 Assumed profiles

In the self-similar region, the following relations can be obtained for the attenuation rate of
hydraulic variables of an axisymmetric swirl jet (Rajaratnam, 1976; Hosoda et. al., 1984).

Box, Umocl, koocLz, goocL4 (3.13)
X x x

Here, B is the jet width; U, is the centerline maximum velocity of the jet; ky and & are the
centerline values of turbulent kinetic energy and its dissipation rate respectively.

The following assumptions are made for the functional forms of velocity and i—¢
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distributions, which are compatible with the decaying power law of velocity and k—e& along the

centerline of jet.

2 2 2 2 2 2
U =% expl -2 "2 | BV T2 ol 2 T2 (3.14)
x 2 2 2 2 2.2
X yx X yx yox
by y2+zz]+az ( y2+zzj
U, =——exp| - —exp| — (3.15)
y X ]OC ( 7/2x2 }OC3 7/2x2
2 2 2 2
U :éiexp Yyt ﬂexp Yyt (3.16)
z 2.2 3 2 2
x VX » VX
1 y2 +z? y2 +z?
k:x_z(ko +k27 €xp —2727 (317)
1 y2 +z2 )/2+z2
Szx—4(€0 +€2 }/ZTJCXP(—3W (318)

Where, a;, as, b, 0, and y are the unknown coefficients of the velocity profile; and &, k,, &, and

& are that of the k-¢ distributions.

3.4.2 Swirl parameter

To define the swirl parameter, the cylindrical coordinate system is considered. Rajaratnam

(1976) showed that for the circular jet with swirl, integral of the pressure plus momentum (%)

as well as angular momentum (7) are preserved. They are defined by

0 U2
W= (Uj ——ngdr (3.19)
0 2
and T =[r’UU,dr (3.20)
0
respectively.

Considering U, >> Uy, Eq. (3.19) can be reduced to
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w=[Ulrdr (3.21)
0

Substituting the assumed velocity distributions into Eqs. (3.20) and (3.21), the following

relations are obtained (Uj is calculated from U, and U.).
7/2
W = ?(Zaf +2a,a, + af) (3.22)

3

T =%(a, +a,) (3.23)

A non-dimensional parameter combining W and T is used to represent the relative amount of
swirl present in the flow, called swirl number (Sy).

T
Wr,

S, (3.24)

where, 7y is the radius of the jet nozzle.

Using Egs. (3.22) to (3.24), the swirl number can be defined as

2

6ay

= 3.25
25br, (3.25)

N

Hence,

258 ,b
o= N9

3.26
6’ (3.26)

3.4.3 Derived solutions

Substituting the assumed velocity distributions [Egs. (3.14) to (3.18)] into the continuity

equation, the following algebraic relations are derived.
a,=—, a;=—— (3.27-a,b)
I 4

The integral equation for conservation of momentum flux also results as Eq. (3.28).
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2 2 2 2 2
M,=U 4, = 2;{‘“47 +2 “lagy + “3; j (3.28)

Where, A4y, U,, and M, are the area, velocity, and initial momentum flux of the jet at inlet
respectively.
Substituting Eq. (3.27) into Eq. (3.28), the coefficient of attenuation of radial velocity ‘b’ is

determined as a function of inlet conditions.

p=> Mo (3.29)

SV«

For the assumed velocity and k—¢ distributions, using the Reynolds equation in the
x-direction and k—e& equations, the following three algebraic expressions are derived as the
relations of lowest order with respect to the power of 1/x.

Reynolds equation in x-direction:

2
L}: -al 5§+lcdsk 4al +8b—
X 2 y?

k2 2V(2a, 2 ’
=2c, g,k &, +lcm—°2(4a12 +8b—2j (%—i;—%} (3.30)
2 7 g 4 v v
k-equation:
2
%: (—2a1k0+80){g§+lcd5k {4611 +8b—J}
X 2 y
c 2 2
_ gokg(@_%J{gg+lcm"—g(4af+sb—zj} (331)
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The values of b, a; and a; are determined from Egs. (3.27) and (3.29). Substituting the
values of ky and &), which are the k£ and & values at centerline, the development rate of swirl jet
(y) can be estimated by Eq. (3.30). For any known value of swirl number Sy, the value of ‘a’ can
be easily determined using Eq. (3.26). The coefficients of k£ and ¢ distributions are determined
by solving Egs. (3.31) and (3.32).

The radial distribution of turbulent intensities as well as turbulent shear stresses are derived

using non-linear constitutive equations. The derived equations are shown in Appendix-3.A.

3.5 Results and Discussions

Tuning the model constants (estimated from realizability considerations), the approximate
solutions are compared with the previous experimental results, and the values of model
constants are determined for best fitted comparison. Eliminating swirl parameter i.e. taking
swirl number (Sy) and hence the swirl parameter () as zero, the derived solutions for swirl jet is
applied to a round jet without swirl. The comparisons of results for swirl and non-swirl jets with

experiments are presented below.

3.5.1 Round jet without swirl

Figures 3.2, 3.3, and 3.4 show the radial distributions of turbulent intensities for axial, radial
and circumferential velocities. The results are compared with the experimental data by
Wygnanski and Fielder (1969), and Wang and Law (2002). In Fig. 3.5, the calculated shear
stress profile is compared with the range of experimental results by Fukushima et al. (2000),
where two experimental profiles represent the lower and upper boundary of a number of
measured profiles for different downstream distances.

The distribution of turbulent kinetic energy (k) normalized by U,,” is favorably compared with
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the experiment of Wygnanski and Fielder, and shown in Fig.3.6. The approximate solution for
normalized turbulent energy dissipate rate (&x/U,’) , compared with the experimental data of
Wygnanski & Fielder (1969) as well as with that of Sami (1967), is shown in Fig. 3.7. The
available experimental data on turbulent kinetic energy dissipation rate are quite scattered. The
present prediction coincides with the Wygnanski & Fielders’ data near the central region of jet,
and it is close to Sami’s data for higher radial distances. In comparison to experimental results,
a little deviation is observed in the spreading of & profile; it can be noted that this deficiency
may be due to the simple assumptions made in the exponential part of ¢ distributions in Eq.
(3.18). The values of k, and &, which are the center line values of k and ¢, are estimated by
tuning their values for best fitted comparison with experimental results.

Approximate solutions are also derived by using standard 4—& model and shown in the

figures by dotted line.
¢  Wang& Law
0.3 8 s © ©  Wygnanski & Fiedler
B SO Non-linear k- &€ model
¢ — — — — Standard k- & model
=]
002 -
)
E
-
So1 |
0.0 T~ada
0.0 0.1 0.2 0.3
r/x

Fig. 3.2 Distribution of turbulent intensity of the axial velocity in a round jet without swirl



Chapter 3. TURBULENT ROUND JET WITH AND WITHOUT SWIRL

0.3

(ll r) rms/ Um

Fig. 3.3 Distribution of turbulent intensity of the radial velocity in a round jet without swirl
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Fig. 3.4 Distribution of turbulent intensity of the circumferential velocity in a round jet

without swirl
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Fig. 3.5 Radial distribution of turbulent shear stress in a round jet without swirl
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Fig. 3.6 Radial distribution of turbulent kinetic energy in a round jet without swirl
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Fig. 3.7 Radial distribution of turbulent kinetic energy dissipation rate in a round jet without
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Fig. 3.8 Comparison of jet half-width
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Fig. 3.9 Distribution of turbulent intensity of the axial velocity in a swirl jet
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Fig. 3.10 Distribution of turbulent intensity of the radial velocity in a swirl jet

3.5.2  Swirl jet

In Fig. 3.8, the estimated jet half-width for a moderate swirl of Sy =0.3 is plotted against

downstream distances; both are normalized with initial jet diameter D. Here, the jet half-width
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(r12) 1s defined as the radial distance (), where the axial velocity is half of the maximum
centerline velocity. The present prediction shows a good agreement with the previous
experimental data by Pratte and Keffer (Sy=0.3) as well as with that of Rose (1962) (Sy=0.23).
The prediction of Reynolds Stress Model (RSM) by Gibson and Younis (1986), which is limited
to 15 jet diameters of downstream distances, are also shown for comparison. The swirl jet
reasonably spreads faster than the round jet. The value of jet half-width for swirl jet evaluated
by approximate solution is 0.144, which is about 21% higher than the estimated half-width of a
round jet without swirl. Gibson and Younis (1986) also reported similar comparison with a
difference of 25% between the jet-half width of swirl and non-swirl round jets.

The turbulent intensities for axial, lateral and circumferential velocities are calculated for the
swirl number of Sy=0.3. The results are compared with experimental data by Pratte and Keffer

(1972) in Figs. 3.9 to 3.11. In Fig. 3.12, the distribution of normalized turbulent kinetic energy

1 _
(;)E/Um (where, ¢° is twice the turbulent kinetic energy), is favorably compared with the

previous experiment. Figure 3.13 shows the radial distribution of turbulent Reynolds stress,

uu, ; due to unavailability of experimental data, this result is not compared with experiments.

The figurers show that the non-linear model well compared with experiments results. In
comparison to experimental results as well as non-linear model prediction, the standard k—¢&
model under predicts the turbulent intensities for axial direction and over predicts for radial and
circumferential directions. The discrepancy is higher for swirl jet case. Reasonably, the
non-linear model showed better comparison than standard one.

The distributions of turbulent intensities are found to be changed significantly depending
on swirl number. For different swirl numbers of Sy = 0.3, 1.5 and 2.5, the turbulent intensities
are calculated. The radial distributions of turbulent intensities for axial, radial and
circumferential velocities are shown in Figs. 3.14(a), (b), and (c) respectively. It is observed that,
with increasing swirl number the turbulent intensity is decreased for axial velocity component

and increased for lateral and circumferential velocity components. Also the pattern of profiles,
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especially for axial velocity, are changed significantly with the swirl numbers.
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Fig. 3.11 Distribution of turbulent intensity of the circumferential velocity in a swirl jet
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Fig. 3.12 Radial distribution of turbulent kinetic energy in a swirl jet



Chapter 3. TURBULENT ROUND JET WITH AND WITHOUT SWIRL

0.03

Ilnz

0.02 -

(ll xu r)/

0.01

0.00

\
\ — — — — Standard k- € model

Non-linear k- &€ model

0.0
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Fig. 3.14 Distribution of turbulent intensity for different swirl numbers (a) for axial velocity

(b) for radial velocity and (c) for circumferential velocity of jet

3.6 Summary

The model constants in a turbulence model are of major concern to its applicability. In this

chapter, approximate solutions for the fundamental properties of swirl and non-swirl jets are
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derived based on the non-linear k—¢& model. Tuning the model constants (estimated from
realizability considerations) the approximate solutions are compared with the previous
experimental results, and the values of model constants are determined for best fitted
comparison. The solutions of standard k—& model is also presented. Reasonably, the non-linear
model showed better comparison than the standard one.

The distribution of turbulent intensity is significantly influenced by the swirl number. It is
observed that, with increasing swirl number the turbulent intensity is decreased for axial

velocity component and increased for lateral and circumferential velocity components.
Appendix-3A: Derived Equations

Derived equations for the distributions of turbulent intensities in a swirl jet are given below.
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The derived equation for the turbulent shear stress is as follows.
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Chapter 4

SPATIAL DISTRIBUTION AND
TOPOLOGICAL CHANGE OF
TURBULENT STRUCTURES IN AN
IDEALIZED VORTEX STREET

4.1 Introduction

The large scale vortical structures, also referred to as coherent structures, are an intrinsic
feature of many turbulent flows. In turbulent shear flows, they play a vital role in the overall
development of flow through the entrainment, mixing and momentum exchange between fast and
slow speed fluids. Flows with large scale vortices caused by shear layer instability are often
observed in many natural, geophysical as well as anthropogenic activities. From engineering
application perspective, some examples are: turbulent jets, flow through hydraulic and flood
control structures (e.g. barrages), flows past an obstacle such as bridge piers, flows behind
spur/dykes, compound channel flows, open channel flows with vegetation zone or with an abrupt
expansion, flows with side cavity or dead zones etc. Considering the importance of
understanding the basics of vortical structures, the free shear flows has been given attention in
numerous research efforts since the past decades (Brown & Roshko, 1974; Browand & Weidman,

-51-
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1976; Hossain, 1986; Panides & Chevray, 1990 ). Hossain (1986) reviewed the studies of
coherent structures in several free shear flows, and focused on the state of understanding from

the view point of their spatial details of turbulence structures and dynamic significance.

Vortex boundary

Fig. 4.1. Sketch of a coherent vortex in plane mixing layer

Fig. 4.1 shows an example of the span wise cut of coherent structure, in particular in the
plane mixing layer (Hossain, 1986). The outer contour of coherent vorticity denotes the structure
boundary. It shows that there are two critical points in the structure: the saddle (S) characterized
by negligible spanwise vorticity, and the center of vortex (C) characterized by peak spanwise
vorticity. Based on the experimental results on turbulent structures of a plane shear layer,
Hossain (1986) reported that the structures of turbulent normal stresses at vortex point are
elliptical in shape; on the other hand, the turbulent shear stresses show hyperbolic profile. The
same patterns are also confirmed in further studies with turbulent axisymmetric jets and wakes.

It is reported that the standard k—& model cannot produce satisfactory results for the flow
field having high rate of strain and rotation because of its isotropic assumption of eddy viscosity
(Rodi, 1979). On the other hand, a non-linear model predicts superior result by capturing the
anisotropic turbulence. It is reported that the generation of coherent vortices in a shear layer is
influenced by the functional form of c¢,. For compound channel, it is observed that the flow

resistance in the channel is influenced by this function (chapter 5). Since this type of model has
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been using in calculating many turbulent flows that contain vorticity in the flow field, it is worth
to examine the model’s applicability to predict the spatial details of turbulent structures in an
idealized vortex street.

In this chapter, an approximate solution is derived for turbulent characteristics of an ideal
vortex street. The Stuart vortex, which contains both vortex and saddle patterns in its vorticity
contour, is considered for this analysis. The aim is to explore the model applicability to large
scale vortices, and to investigate the spatial distribution and topological change of turbulent
structures with singular points. The turbulent structures are also compared with the previous

experimental results of free shear flows.

4.2 Governing Equations
The equations for standard and 2nd order non-linear k&—& model are rewritten as follows :

ouU,

Continuity equation: ——=0 4.1

Ox;
- ouU.U, e U.

Momentum equation: oY, +—1—=g, _Lop i(— uu .)+ v 0 U2’ (4.2)

ot ox pox, O, / ox,
okU, ——0U.

k - equation: %+ 4 :—ul.u.%Jri L+v ok -& 4.3)

o ox, Tox,  ox; |\ o ox,
) os 0eU, g—oU, o |[v, oe &’

& - equation: —+ =—C,—uu;, —+—| —+v|—r—c,— (44

ot  Ox, k ox, ox; |\o, Ox; k
. ] — 2 K>
Turbulence model (linear):  —wuu; =v,S; —Eké'ij WV, =¢, — ¢,=0.09 4.5)
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In Equation (4.6),
_oU, U, 1(6@ ou, ou, 8U,} 8U, U, “5)
Wi = AL AL 0 P2 TS > O3y = : :
7oox, oOx, o2 ox, ox, Ox; ox, Toox, Ox
2 2
€ A+c, S +c,q7)
Cu = 2 2 4 3 22 4.9)
1+c¢,S™ +c,nQ° +¢;oSQ+c, ) S™ +0,0 Q" + 0405 Q
! (4.10)

8= 1+m,S* +m,,Q
Here, o0,=1.0, 0.= 1.3, ¢; = 1.44 ¢., = 1.92, ¢;0=0.40, ¢, =0.0 and c3y= -0.13, have their
standard values.

Table 4.1 shows two sets of model constants. The value of model constants determined in
previous chapter are given in Run-1. Run-2 shows a set of trial values that will be used to

investigate the sensitivity of empirical functions to the structural change of turbulent properties in

the vortex point (focus).

Table 4.1 Estimated and trial values of model constants

Model €0 Cns

Cno Cds Caise Cae Cds1 Ca1 CasQ1 Mgs Mge
Const.

Run-1 0.09 0.005 0.0068 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003
Run-2 0.09 0.01 0.007 0.008 -0.003 0.004 0.00005 0.00005 0.00025 0.01 0.003

4.3 Methods of Investigations

4.3.1 Stuart vortices

The stream function of Stuart vortex can be expressed as follows:

v = log(coshy + A4 cos x) (4.11)
here, 0 > A > -1 is a constant and indicates the eccentricity of the elliptic streamline of the vortex.

If A=0, the hyperbolic-tangent mixing layer is recovered; whereas 4=-1 shows a single row of
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co-rotating vortices, with circulation of -4m, periodically spaced along the x axis with a period of
2n. Fig. 4.2 shows the streamlines of Stuart vortices with various values of 4.

In this study, we examine the Stuart vortex as a simple model of Vortex Street. Eq. (4.11) is
substituted into k—¢& equations to derive the spatial distributions of turbulent intensities. Although
Stuart vortex is a solution of Euler equation, it is shown that the turbulence can be generated in
the fixed flow field of the vortex. A moderate eccentricity of 4=- (.5 is used to calculate the

turbulent characteristics of the vortex at vortex center and saddle point.

4.3.2  Approximations solution

For the approximate analysis of Stuart vortices, the viscous shear stress is assumed much

smaller than the turbulent shear stress. Therefore, the k£ and & equations [Egs. (4.3) and (4.4)] can

be simplified for a steady 2-D flow in the following forms.

k - equation:
ok ok ——oU, ——0oU, ou, ou, ofv, ok ofv, ok
U,—+U, —=-u.u, —uu, —uu, “u U, ——+——— [t —— ¢
ox T oy ox 7oy : ox Yoy oyl\o, oy) ox|\lo, ox
(4.12)
& - equation:
—oU, ——oU ou ouU
Ura—8+Uya—8= Elﬁ U U U ——— U U, —— Oy ok
T ox oy k ST Ox oy ox oy oy\ o, oy
2
LR /ALY (4.13)
ox\ o, Ox k

Here, the Reynolds stresses are determined using the constitutive equations of the turbulence
model.

Two separate solutions are derived for turbulent characteristics at vortex center and saddle
point using the stream-function of Stuart vortex to investigate the spatial distribution of turbulent

structures in a large-scale vortex. The stream function of Stuart vortex is expanded using the
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Taylor’s function, near the origin (0, 0) and at a periodic distance of (m, 0), for the flow field of
vortex center and saddle point respectively. The functional forms of £ and & distributions are
assumed as a first approximation. Substituting the assumed distributions into the non-linear £ and
& equations, a set of algebraic equations are derived considering the relation among the
coefficients with respect to the same power of variables (x and y). Solving these simultaneous
algebraic equations, the unknown coefficients in the assumed distributions are determined as the
function of the non-linear k—& model constants. The distributions of turbulent stresses for vortex
and saddle points are derived using the constitutive equations of the model. The turbulent
structures are compared to previous experiments of large scale coherent vortices in free shear

flows reported by Hossain (1986).

4.3.3 Numerical simulation

Using the model constants estimated by approximate solution, the numerical simulation is
carried out to determine the turbulent characteristics of Stuart vortices, and the structures are
compared with approximate solution.

The flow field of Stuart vortices is given as input to calculate the turbulent characteristics.
The code solves the k, ¢ and constitutive equations discretized with the finite volume method.
The hybrid central upwind scheme is used for £ and & equations. Time advancement is achieved
by Adam-Bashforth scheme of second-order accuracy, in each equation. The equations are
discretized as fully explicit forms and solved successively with the time increment step by step.
The wall functions are employed as the wall boundary conditions for £ and €. Periodic boundary

conditions are used in upstream and downstream ends of the flow domain.
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4.4 Turbulent Structures at Vortex Center (Focus)
4.4.1 Approximate solution

The equation of Stuart vortex expressed in Eq. (4.11) is expanded using Taylor function near
the origin, and the approximated stream function for the vortex point is expressed as follows

(eccentricity, A=- 0.5 is used):

1 1 1 5
v = ln(%)+5x2 +y2 —gx4 —Exzy2 —Ey“ Foenen (4.14)

The corresponding velocity field is approximated as

oy , 5 5
U =—=2y-x"y—— 4.15
£ =3 yoxXy=3y (4.15)
oy , 2
U =——=—x+xy"+—x 4.16
7 Ox 4 3 (4.16)

The contour of streamlines for vortex point approximated by Taylor function near the origin
(Eq. 4.14) is shown in Fig. 4.3.

As a first approximation, the following polynomial functional forms are assumed for the
distributions of k and ¢
k = kg +kyx + ko y ++ko, X7 +kyyy® +ky xy 4.17)
E=Ep +EGX T EWY +HERXT +E, Y + &)XY (4.18)
where, kpo, ko1, k10, koo, k2o, ki1 are the unknown coefficients for k; and &y, &, €10, 02 &0, €17 are
that for ¢ distributions respectively.

Substituting the assumed & and & distributions [Egs. (4.17) and (4.18)], into k—¢& equations [Egs.
(4.12) and (4.13)], the following algebraic expressions are derived considering the relations of
coefficients for the same power of variables (x, y) in each equation. To avoid complexity in
solving a large number of equations, the higher order terms of ky;, k;9, ko2, k20, k115 €015 E105 €025 E20

and &;; are neglected to form a set of linear equations.
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Fig. 4.2 Contour of streamlines for Stuart vortex with different eccentricity: (a) A=0 (b) A=-1/2

(c) A=-3/4 (d) A=-1.0 (e) two vortices with A=-1/2

k-equation:
c
0: C,uok()20 (1)0 - (2)0 + Oflu kgo {2k02 +2ky, }(1)0 =0 (4.19)
k
x: —kyy =4k, +B g, (4.20)

v 2ky =4k + B g, (4.21)
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xXP =k = Agkgy + B, +C sk, +hy )+ C (4.22)
¥ 2k = Agky, + B gy —C (kg +hy )+ C oy (4.23)
xy: kg —2ky = Ak, + B e, (4.24)
& -equation:
C
0: c,c, kgoggo (1)0 —C ‘930 (2)0 + ik(?O {2k02 +2ky, }(1)0 =0 (4.25)
o,
x: —&,=Cky +D,é& (4.26)
v 2&y =C ky+Dsg, (4.27)
X' =g, =Cky +Dey +C, (g4 +6y)+C (4.28)
V1 28, =Crky + Dy —Cryleg +65)+Cpy (4.29)
xy: 4y =26, =C,k,+D¢g, (4.30)

Fig. 4.3 Streamline contour at vortex center (focus) of Stuart vortex approximated by Taylor

function
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Fig. 4.4 Turbulent structures by approximate solution for vortex point (Run-1): (a) turbulent

kinetic energy, k (b) turbulent energy dissipation rate, & (c) turbulent normal stress in x

direction, u,u, (d) turbulent normal stress in y direction,u,u, (e) turbulent normal stress in

z direction, u,u, (f) turbulent shear stress in xy plane, u,u,
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Here,

A4, = lcyU 500k30 {(1)0 (zmds +18m,q )"‘ (4)0 (2Cns +18¢,o )} +2¢,, Egko (1)0 (4)0
— Egokoo (2)0 (2mds +18m )_ Eg0koo (4)0 {‘950 (2cd.\' +6¢,0 +18¢, )

4k (e +9¢ 40n +81eg ) {(2)(4),}
B, = |2, 5k {00 +(4),}+ ¢, ks (1), (@), — 202Dy, + 4 (4),
+ ki ()26, +6¢,0 +18c,0 1+ (2),(4) J]/A(2), (4), )
C = e, c. caoki (1) 2my, +18m,0)+(4), (2, +18¢,0 )1+ 2, ¢, £3oke (1), (4),
—, 82k (2)y (2my, +18myg )=, 2k (4), 12 (2cy, + 640 +18¢4)
+ 4k (g +9¢uan +81es /A2)o (@) Ko}
D, =[ac, e, ki (1), +(8)y}+2¢,, ¢, 2ooky (1, (4), — .. R(2) 25 + 425 (4),
+ eakey (4)y(2c, +6¢,0 +18¢,0 1+ 264(2),(4), 1/1(2), (4)y Koo §
C;, = |- ek (@) @my, ~18myg )+ &3 (4),(2c,, ~18¢, )+ 2¢,, 0k (1) (4),
¢, Eaokiy (D (2, —18m0 W gaokiy () e, (26, —18¢,6) = He sy —81eun IA2)0 @), )
Cpy = e0ok 2 (2)0 (= 8my, —36m 0 )= 2, (#), By +36¢,0+18¢,0 )-8, 0okl (1)o(4),
e, Eaokiy (0 (= 8my —36m )+ ggokiy (4), e, (<8¢, —36¢,4)
+4(4c,, +162¢,4, +27c,00 1/1(2), (4), }
Cpy = |- e, ek (20 @my, —18m0 )+ £3,(4), (20, ~18c,0 )+ 2¢, ¢, 23k (1 (4),
e, ki (1), (2my, —18my0 )+ e2 ks (@) e, ¢, (26, —18¢,0)
—dc, (cu —8lea )fH(2), (), }
Co =, ek (2)0(=8my —36m0)—52,(4),(8ey, +36c,+18¢,0 )}
—8¢,,¢, Eaokoo (1)s (4)o + ¢, €. koo (1)o (= 8m =~ 36m )

+ ggokgo (4)0 {C;to ¢, (_ 8¢,, —36¢,q )+ 4052 (4cdsl +162¢,0, +27¢ 40 )}J/{(z)o (4)0 koo}
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Cys = _2OC_#U gookgo {(l)o (2mds —18m,q )"' (4)0 (zcns —18¢,o )}:|/{(2)0 (4)0 }

k

Oy

Cre = _ﬂ ‘900k30 {(l)o (Smds +36m,, )+ (4)0 (8cns +36¢, )}}/{(z)o (4)0 }

€| b 0, 15 0o, 150 )6

&

2c

CfS = Gﬂo gookgo {(1)0 (8mds +36m,q )"‘ (4)0 (gcns +36¢,q )}}/{(2)0 (4)0 }

&

2 2 2
(l)o = &g+ C,koy +9¢,0kg
2 (.2 2 2 2 4
(2)0 =&y (‘900 + gy +3¢40k00 + 90k )+ kg (cdsl +9¢401 810 )

2 2 2
(4)0 = &gy +Mykoy +9m kg,

Solving the twelve equations from Egs. (4.19) to (4.30), twelve unknowns are determined in
terms of model constants. Substituting the obtained values of unknown coefficients into Egs.
(4.17) and (4.18), the k and & profiles are calculated. The distributions of turbulent intensities and
shear stresses are obtained by constitutive equations.

Figure 4.4 shows the turbulent structures at the center of vortex determined by approximate
solution using the model constants of Run-1. It is observed that, the profiles for turbulent kinetic

energy (k), dissipation rate (&) [Figs. (a) and (b)] as well as the turbulent normal stresses in x, y

and z directions (expressed asu,u, ,u,u, ,u,u, and shown in Figs. (¢), (d) and (e) respectively)

show elliptical structures. On the other hand, the turbulent shear stress in xy plane (u,u, ) shows

hyperbolic (saddle pattern) profile [Fig. (f) ] . These features of turbulent structures at the center

of vortex are consistent with the previous experimental results reported for free shear flows.
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Fig. 4.5 Profiles of ¢, (S, ) in the vortex field for Run-1 and Run-2.

The model constants for Run-2 are a trial set of model constants to investigate the influence of
functional form of ¢, on turbulent structures at the vortex center. The variation of ¢, between two
sets of model constants, plotted against the spatial distance from vortex center (x), is shown in

Fig. 4.5. Fig. 4.6 shows the turbulent structures at vortex center predicted by Run-2. It is found

that the turbulent kinetic energy (k), and turbulent intensities, u,u#, and wu,u, , show hyperbolic

profile instead of elliptical structures. This means that Run-2 failed to predict the actual turbulent
structures that are observed in the previous experimental studies. By comparing the results for
two sets of model constants, it can be concluded that the turbulent structures in a vortex is

sensitive to the functional form of c,.
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Fig. 4.6 Turbulent structures by approximate solution for vortex point (Run-2): (a) turbulent

kinetic energy, k (b) turbulent energy dissipation rate, & (c) turbulent normal stress in x

direction, u,u, (d) turbulent normal stress in y direction, u,u, (e) turbulent normal

stress in z direction, u,u, (f) turbulent shear stress in xy plane, wu,u,

4.4.2 Numerical simulation

In the previous section, approximate solutions are derived for the vortex point and the
turbulent characteristics are predicted. In this section, numerical simulations are carried out for
the same flow field, and the results are compared to approximate solution to assess the
effectiveness of the approximate approach.

The equation of actual Stuart vortex expressed in Eq. (4.11) gives the following velocity

field.
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U _Oy _ sinh y
* 0y coshy+Acosx @31)
oy Asin x
U ==
7 ox coshy+Acosx (4.32)

For this velocity field, the turbulent stresses as well as &k and ¢ profiles are determined. As
shown in Fig. 4.2(e), two vortices are considered in the flow domain with a periodic boundary
condition at upstream and downstream end.

The periodic turbulent structures simulated for Run-1 are shown in Fig. 4.7. Turbulent

kinetic energy (k), its dissipation rate (&) and turbulent normal stresses in x, y and z directions

expressed as u,u, ,u,u, and u,u. respectively) are showing the contours in elliptical shape at
p 14y, Uy Uy 3U; IESP y g p p

the vortex center. On the other hand, the turbulent shear stress in xy plane (u,u, ) is showing

hyperbolic profile (saddle pattern). The results satisfy the approximate solution, and prove that
the conditions derived for the constitutive law with the estimated model constants are applicable
to simulate large scale vortices.

In the approximate solution it is shown that, the turbulent structure is changed with the
change of the values of model constants; the evidence is also presented using the model constants
of Run-2. The simulation results for Run-2 are presented in Fig. 4.8. Considering turbulent
kinetic energy and turbulent normal stresses as shown in Fig. 4.8 (a), (c) and (d), the hyperbolic
profiles (saddle pattern) are observed instead of elliptical one. The results of numerical
simulation fully satisfy the approximate solution.

Figure 4.5 shows that at the center of vortex, where the strain and rotation parameters are
large, the value of ¢, is less than 1/2 of its far field value. However, in the standard k-& model,
the coefficient ¢, has no dependency on the rate of strain and rotation, and bears a constant value
(=0.09) throughout the turbulent flow field. This deficiency of standard k-& model causes an
inconsistent prediction of turbulent structures at the center of vortex. Fig. 4.9 shows the results

simulated by standard k-& model. The model failed to generate the elliptical structures (focus
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pattern) for &, ¢ and turbulent normal stresses. The result is consistent with Run-2 (Figs. 4.6 and

4.8), where the value of ¢, is not sufficient to count the effect of strain and rotation rates.

Fig. 4.7 Turbulent structures by numerical simulation (Run-1): (a) turbulent kinetic energy, & (b)

turbulent energy dissipation rate, & (c) turbulent normal stress in x direction, u,u, (d)

turbulent normal stress in y direction,u,u, (e) turbulent normal stress in z direction, u,u,

(f) turbulent shear stress in xy plane, wu,u,
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Fig. 4.8 Turbulent structures by numerical simulation (Run-2): (a) turbulent kinetic energy, & (b)

turbulent energy dissipation rate, & (c) turbulent normal stress in x direction, u,u, (d)

turbulent normal stress in y direction,u,u, (e) turbulent normal stress in z direction, u,u,

(f) turbulent shear stress in xy plane, wu,u,
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Fig. 4.9 Turbulent structures by numerical simulation by Standard k-& model: (a) turbulent
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kinetic energy, £ (b) turbulent energy dissipation rate, & (c) turbulent normal stress in x

direction, u,u, (d) turbulent normal stress in y direction,u,u, (e) turbulent normal stress in

z direction, u,u, (f) turbulent shear stress in xy plane, u,u,

0.5 r

-1 -0.5 0 0.5 1

X
Fig. 4.10 Saddle point of Stuart vortex approximated by Taylor function

4.5 Turbulent Structures at Saddle Point

In a Stuart vortex, two vortices are separated in the saddle point at a periodic distance of ©
from the vortex point [Fig. 4.2(e)]. Therefore, the equation of Stuart vortices expressed in
Eq.(4.11) is expanded using Taylor function at a periodic distance of (,0), and the approximated

stream function for the saddle point is expressed as follows (eccentricity, A=- 0.5 is used)

I, I, 1 5,5, 1 4
wzln(%)—gx +§y +§x v —gy F e (4.33)

The corresponding velocity field is approximated as

oy 2 1, 1

e AR e (4.34)
0 1 1

U =——l//:—x——xy2 (4.35)

g ox 3 9

The contour of streamlines for saddle point approximated by Taylor function (Eq. 4.33) is shown
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in Fig. 4.10.
Similar to previous analysis for vortex center, the following polynomial functional forms are

assumed for the distributions of k£ and ¢ in saddle point

k =kyy +kox+ky++ky,x” +kyy® +kxy (4.36)

=gy tEGX T EQY +HERX + 8V + 8 XY (4.37)
Applying the same procedure as vortex point, the following algebraic expressions are derived

considering the relations of coefficients for the same power of variables (x, y) in k£ and ¢

equations [Egs. (4.12) and (4.13)].

k-equation:
c
0: ¢, k(?o (1)0 - (2)0 + fkéo {Zkoz +2ky }(l)o =0 (4.38)
k
x: ky,=A4k, + B¢, (4.39)
yi 2ky = Ak + By, (4.40)
X’ ki = Aky, + Bgy, +Cs5(k02 +k20)+CS1 (4.41)
yz D 2k, = Ak + Bogy, +Cs6(koz +k20)+cs2 (4.42)
xy: 4ky, +2k,, = Ak, +B,é&,, (4.43)
& -equation:
C

0: CeCu k(fogoo (1)0 —Cg, €00 (2)0 + fkgo {2‘902 +2&y, }(l)o =0 (4.44)
x: &y=Cky, +Dg (4.45)
yi 2¢&y =Cikyy+ D&y (4.46)
x*: &y =Ciky + D&, +Cs7(802 +520)+ C,, (4.47)
¥ 26, = Cihyy + Dysy, +Cx8(‘902 +820)+C34 (4.48)
xy: 4ey, +2¢,, =C,k, + D&, (4.49)

Here,
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2 2
4 = |:c;40 gookgo {(l)o (2mds + Emng + (4)0 [chs + ach j} +2¢, &gk (1)0 (4)0

2 2 2
= Egoko (2)0 (2mds + Emdn j = Egoko (4)0 {530 [2cds + gcdm + Ecdn j
) 1 1
+ 4k, [Cm + gcdsﬁl + Ecdm jH 3.0 /{(2)0 (4)0 }

B = I_zcyo ggokgo {(1)0 + (4)0 } +C, kéo (l)o (4)0 - {2(2)0 5(?0 + 4‘930 (4)0

2 2
+ ggokgo (4)0 (chx + Ecdm + ECdQJ + (2)0 (4)0 H 3.0 /{(2)0 (4)0 }
2 13 2 2 )
C = {Cyl, ¢, Eo0ko {(1)0 [2mds + Emdnj + (4)0 (2%5 + §CnQ J} + 2‘7”0 ¢, Eookoo (1)0 (4)0
2 2 2
—C, ‘9501‘700 (2)0 (2mds + Emdﬂj —C, 5§okoo (4)0 {‘930 (chs + Ecdsﬂ + gcdﬂj
) 1 1
+ 4k, (cdsl + Ecdsﬂl + gcdﬂl jH 3.0 /{(2)0 (4)0 koo }

D, = |_20y0 C, ‘9301‘7020 {(1)0 + (4)0 }+ 2’6/10 C, gookozo (1)0 (4)0 —C, {2(2)0 530 + 4‘930 (4)0

+ 530k§o (4)0 (2%5 + %cdsﬁ + %ch J"’ 28, (2)0 (4)0 }} 3.0 /{(2)0 (4)0 Koo }

9 9 27 27

2 2 1 1 2
¢, = {_ ‘900k§0 {(2)0(_’"015 +Emdgj + 2‘930 (4)0(_%5 +--Cw t 75 Cua J}

2 2 2
+§C,uo‘900k§0 (1)0 (4)0 + Cﬂogookgo (1)0[§mds +EmdQJ

2 2 4 4 8
+ gookgo (4)0 {cﬂo (_Cns +_Cn0}_( ¢ +_3ch1 +acdsﬂl}}:| 3~0/{(2)0 (4)0}

9 27 PR

8 4 4 2 5
C,, = {_ gookozo {(2)0(_5"% _Emdﬂj + 2‘930 (4)0(_§Cds _Ecdﬂ _Ecdsﬂ j}

8 8 4
- gcyn 500"30 (1)0 (4)0 tc, 500"30 (1)0 (_ My — _mdgj
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8 4 4 2 5
+ 500k30 (4)0 {Cyo (_ = Cu _chj + 4(_%31 = Cao T 57 Cuan )}} 3-0/{(2)0 (4)0}

9 27 9 243 81

2 2 1 1 2
Cy;= {_ C., 5§0k§0 {(2)0 (amdx +Emd9] + 25(?0 (4)0 [acds +Ecd§z +Ecdm )}

2 2 2
+ gc;tocsl 550"(?0 (1)0 (4)0 +c,C. 5(?0"30 (l)o [Emds + 2_7mdQJ

2 2 4 4 8
+ ‘950]‘30 (4)0 {csl Cu [_ Cps T EchJ —C,, [ Cast T == Caar T 57 Cusa J}:l 3.0 /{(2)0 (4)0 }

9 9“7 043 81
8 4 4 2 5
C, = {_ ., ggokozo {(Z)o (_gmds _Emdg)+2ggo (4)0 [_acds _Ecdgz _Ecdsﬁj

8 8 4
- 50;10 ¢, ggokgo (1)0 (4)0 +c,C. 5(?0"30 (1)0 (_ §mds - _mm]

8 4 4 2 5
+ 5501‘:0 (4)0 {c#n ¢, (_ <Cu T 5500 }' 4c,, (5 Can T ﬁchl + gcdsﬂl jH 3.0 /{(2)0 (4)0 koo}

9 27 4

[ 2c¢ 2 2 2 2
Cys = _0_7:0 gookéo {(I)o 5 my, + ?7 muq j"’ (4)0 [9 Cos T ?7 Cra )}} 3-0/{(2)0 (4)0 }

(
c. - 20 gook&){(l){—
(
(

[2¢,
C; = Gmgookgo{(l)o

Cy = ﬂugookgo{(l)o -
L (o2

2 » 1 2

(l)o = &4 + ¢,k +§Cngkoo

1 1 1 1
(2)0 = 5(?0 (‘9(?0 +cd5k020 +§cd§2k§0 +§Cdst§0J + kgo (cdsl +§cdx91 +§cd§21j

1
(4)0 = &0 + My ko +§mdﬂk§0

Solving twelve equations from Egs. (4.38) to (4.49), twelve unknowns are determined in

terms of model constants. The calculated profiles for &, £ and turbulent stresses are shown in Fig.
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4.11. It demonstrates that the turbulent energy and dissipation rate as well as turbulent normal
stresses show hyperbolic profile (saddle pattern) in a saddle point. However, the shear stress

shows elliptic structure.

0.25

Fig. 4.11 Turbulent structures by approximate solution for Saddle point (Run-1): (a) turbulent

kinetic energy, k (b) turbulent energy dissipation rate, & (c) turbulent normal stress in x
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direction, u,u, (d) turbulent normal stress in y direction, u,u, (e) turbulent normal

stress in z direction, uu, (f) turbulent shear stress in Xy plane, u,u,

From the analytical solution, it can be concluded that the turbulent structures are changed
with the spatial distance depending on the structures of singular points. The turbulent normal
stresses show elliptical structure near the vortex center, which are changed to hyperbolic profile
near saddle point at a stream-wise periodic distance of z. On the other hand, the shear stresses
show hyperbolic structures at vortex center and changed to elliptical at saddle point. The spatial
change of turbulent structures for turbulent kinetic energy and dissipation rates are found similar
to turbulent normal stresses. These features are consistent with the previous experiments of
coherent vortices in plane shear layer and turbulent jets (Hossain, 1986).

Coherent vortices are generated due to shear layer caused by velocity gradient. In a river
flow, such velocity gradient is observed when the water flows in an out of bank condition, which
is a common feature of a natural river. Generally, the velocity in the flood plain is lower than that
in the main channel. Therefore, the coherent vortices are formed at the junction between the main
channel and the flood plain. Due to shear layer instability, the vortices are generated with the
vertical axis at the interface. In the next chapter, the spatial distributions and topological changes
of turbulent structures in coherent vortices at the interface of a compound open channel will be

investigated and compared with the present findings in an ideal vortex street.

4.6 Summary

Based on a realizable non-linear k—& model, approximate solutions are derived for the
turbulent properties of an idealized vortex street to explore the predictability of the model for
large scale vortices. The spatial changes of turbulent structures with singular points in the

vortices are investigated. The qualitative results are compared to previous experiments to assess
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the models applicability. The findings are summarized below :

(1) The Stuart vortex, which contains both vortex and saddle patterns in its vorticity contour, is
considered as an ideal simple vortex street. The turbulent structures at vortex center and
saddle point obtained by approximate solution are found to be consistent with the previous
experimental results of large scale coherent vortices in free shear flows.

(i1) The turbulent structures of the vortex street are found to be sensitive to the functional form of
the coefficient of eddy viscosity, c,..

(ii1)) The numerical simulation verifies the accuracy of approximate solution, and reveals that the
conditions derived for the constitutive law with the estimated model constants are applicable
to simulate large scale vortices.

(iv) In the standard k-& model, the coefficient ¢, has no dependency on the rate of strain and
rotation, and bears a constant value (=0.09) throughout the turbulent flow field. That’s why it
is observed that, the standard model fails to predict the turbulent structures accurately at the
center of vortex.

(v) The turbulent structures are found to be changed with the spatial distance depending on the
structures of singular points. It is observed that the turbulent normal stresses show elliptical
structure near vortex center, which changed to hyperbolic profile near saddle point at a
stream-wise periodic distance of m. However, the shear stress show hyperbolic structure at
vortex center, and the structure changes to elliptical at saddle point.

(vi) The topological changes of turbulent kinetic energy and dissipation rate with stream-wise
spatial distance are found similar to turbulent normal stresses.

In the next chapter, the spatial distributions and topological changes of turbulent structures in
coherent vortices at the interface of a compound open channel will be investigated and compared

with the present findings of an ideal vortex case.
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Chapter 5

UNSTEADY 3D COMPUTATION OF
COMPOUND OPEN CHANNEL
FLOWS

5.1 Introduction

Compound channel is a common feature of natural rivers, where the water in main channel
flows in an out-of-bank condition. Since the water level in flood plain is shallower and the
roughness is higher (due to more vegetation) than the main channel, the flow velocity in the
flood plain is generally lower than that in the main channel. Because of this velocity gradient, a
shear layer is observed at the junction, and large-scale vortices are generated with the vertical
axis at the interface of main channel and flood plain. The vortex formation causes momentum
transfer in the lateral direction from the main channel to the flood plains, resulting a decrease in
channel conveyance, and hence, the flow resistance in the channel is increased. The vortices
also significantly distort the velocity and shear stress pattern. A sketch of flow pattern in a
compound channel by Shiono and Knight (1991) is shown in Fig. 5.1. In addition to the
coherent vortices at interface, the generation of secondary currents due to anisotropy of
turbulence makes the flow very complex, and the flow field shows strong three dimensional

characteristics.

-76 -
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A single channel method, in which the compound channel is considered as a single channel,
gives an under predicted discharge; on the other hand, the divided channel method predicts a
higher discharge than the actual. Thus it is necessary to estimate effect of horizontal vortices

on the flow resistance that directly affects the channel conveyance. Since the turbulent

Local welocitics Shear layer
Momentum transler Depih-mean
welocithes

Interface A
VOTiDE

River channel

Dhrection of Aow |

Fig. 5.1 Sketch of 3D flow structure in a compound channel (Shiono and Knight, 1991)

characteristics of this type of flows are highly non-linear, the nonlinear terms and empirical
functions in a non-linear /—& model plays an important role to generate the horizontal vortices
and secondary currents by accounting the anisotropic turbulent behaviors. In this study, the
flow field in a compound channel is generated using standard as well as non-liner (2nd and 3rd
order) k—& models. The interaction of horizontal vortices with secondary currents and its effect
on the prediction of compound roughness are investigated. The contribution of vortices and
secondary currents evaluated by different models are assessed from the view point of
calculated discharge, secondary flow pattern and predicted roughness coefficients. The model

is validated by comparing the depth averaged velocity and shear stress profiles as well as
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secondary flow patterns with previous experiments.

Although the vortex characteristics in a compound channel are studied by many
researchers both in experimental and numerical means, all are concentrated mainly on the
effect of vortices to the cross-sectional flow or turbulence profiles, or to the channel resistance
properties. However, as far as in author’s knowledge, the spatial change of turbulent structures
with the singular points of large scale vortices are not reported for compound channel flows. In
this study, in addition to general flow features, the formations of singular points (i.e. vortex
and saddle patterns) in the coherent structures, and the topological changes of turbulent
structures with the singular points are investigated and compared with the results of the ideal

vortex street presented in previous chapter.

5.2 Governing Equations

The 3D unsteady flow equations for open channel with linear, 2nd order and 3rd order
non-linear k—¢ model are given below, which are used to simulate the compound channel flows

in this study.

oU,
Continuity equation:. ——=0 (5.1
Ox;
oU, oU U, — o0’U,
Momentum equation: —-+——=g, — 1or + i(— uu .)+ V—ry (5.2)
ot ox p Ox, Ox; ! ox,
okU, — 98U,
k - equation: %4— ! :—ul.u.—’Jri Yigy ok - (5.3)
o o, Tox,  ox; |\ oy ox

. os 0&U, g—oU, 0o |[v, & &g’
& - equation: —+ =—C, —u; ——+—| —+v|—f-c,— (54)
ot ij k axj 6xj k
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(a) Standard k& model

— 2 k*

-uu.=vS. ——ko,, v,=c,—, ¢,=0.09 (5.5)
[ t=y 3 ij t u 7!
£

(b) 2nd order non-linear k—& model

— 2 kS 1
—uu; :v[Sij—Eké'ij ——v,Zcﬂ(Sﬁij——Sﬁm@.jj (5.6)
£ 5o 3
(¢) 3rd order non-linear &—& model

e 2 k< 1
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(5.8)
In Equation (5.6) and (5.7),
_8U, oU, 1[8U7 o, au, aU,} oU, aU, 59
T AL AL 0 P2 T > D3y = : :
7oox, ox, o2 ax, ox, Ox; ox, Toox, ox
€ 1+ cmS2 + chQz)
C# = 2 2 4 4 22 (510)
I+c;S™ +c,nQ° +¢oSQ+ ) S™ + 040 Q7 + €y S Q
c
¢, fo c, C40 ,cs Cso (5.11)

Tlam, ST am 2 am, St mg Q0 Tem, St +m

The used values of the model constants are: c,o= 0.09, c,;= 0.005, c,o= 0.0068, c4=
0008, Cio = 0004, CisQ = -0003, Cis] = 000005, Ciol = 000005, CisQl = 000025, Cio :0.40, Co0
=0.0, c3p= -0.13, c49= -0.02, c50= 0.0, my= 0.01, myo= 0.003. Standard values are used for

other model constants: 6;,= 1.0, 6,= 1.3, ¢;; = 1.44, and ¢, = 1.92.
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5.3 Numerical Procedure and Flow Configurations

5.3.1 Numerical schemes and boundary conditions

The code solves the governing equations for mean velocities and turbulent flow field
discretized with the finite volume method and is based on a staggered grid system. The
arrangements of variables in a staggered grid for 3D computations are shown in Fig. 5.2. For
the momentum equation, convection and diffusive fluxes are approximated with Quick and
central difference schemes respectively. The hybrid central upwind scheme is used for the &
and ¢ equations. Time advancement is achieved by Adam-Bashforth scheme of second-order
accuracy, in each equation. The basic equations are discretized as fully explicit forms and
solved successively with the time increment in step by step. The pressure field is solved using
iterative procedure at each time step. The free surface elevation is solved by continuity

equation integrated over the control volume of the surface layer.

p. ke

Fig. 5.2 Arrangements of variables in a staggered grid in the 3D computations
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Fig. 5.3: Cross-section of compound open channel

The wall functions are employed as the wall boundary conditions for £ and &. The frictions
near the bed and side walls are estimated by log-law. Periodic boundary conditions are used in
upstream and downstream ends of the flow domain. Near the free surface, the eddy viscosity is
multiplied by a damping function for the rapid attenuation of turbulent intensities in the depth

wise direction. The turbulent dissipation rate for the surface layer is evaluated by the
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expression proposed by Sugiyama et al (1995). The damping function (f;) and the dissipation
rate (&) for surface layer are shown in the following equations; the subscript represents the

value of surface layer (here, B; =10).

Yo b

(h—y)g cﬂ Akc :
=l—exp| - B, ——|, &, =—"— 5.12
.fs p( s kf/z j s 04vyv ( )

Table 5.1: Channel properties and hydraulic conditions of compound channel

Geometry Cases B b H h Long. ;
Ty (cm) (cm)  (cm) (cm) slope lme i
Al 7.5
A A2 200 75.7 10.0 5.0 0.001 0.01  0.028
A3 12.5
B1 19.8
B B2 405 180 176 15.0 0.001 0.01106
C Cl 315 X2 180 17.7 15.0 0.001 0.01106

5.3.2  Flow configuration and test models

Considering the availability of experimental data, numerical simulations are performed for
three types of geometry. For Geometry-A (having no side slope and different roughness for
main channel and flood plain, shown in Fig. 5.3(a)), the laboratory experiments have been
performed by Fukuoka at al.(1989) to determine the compound roughness of the channel. For
this geometry, the numerical simulations are performed for three cases with different flood
plain to main channel depth ratios. The Geometry-B is a trapezoidal section with a side slope of
1:1 (shown in Fig. 5.3(b)). For cases B1 and B2, the laboratory data are available for depth
averaged velocity and shear stress profiles (Knight, 1992). All the cases from Al to B2 consist
of single flood plain. In order to compare the secondary currents (considering the availability of
experiments), the simulation is performed for Case C1, which contains two flood plains. The
details of hydraulic conditions are shown in Table-5.1. The reported experimental results for

geometry B and C are from the first phase experiments of Wallingford Flood Channel Facility
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(FCF), UK (Shiono and Knight, 1991; Wormleaton, 1996; Bousmar, 2002). Among nine series,
Case Bl and B2 belong to series-06, and Case- C1 belongs to series 02 in that phase of
experiments.

For geometry-A, the flow domain consists of 200 grids in stream-wise (x), 42 in transverse
(y) and 11 in depth-wise (z) directions. For Cases B1 and B2, numbers of grid for x, y and z
directions are 200, 50 and 11 respectively; for Case C1, 200 x 72 x 11 grids are used. It can be
noted that, since the ratio of depth (H/h) is one of the dominant factor for the formation of
vortex at the interface, for case A, the simulation work is performed for three cases of depth

ratios varying from 1.5 to 2.5 as shown in Table 5.1.
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Fig. 5.4: Plan view of flow pattern (case-Al, t=110 sec, a part of domain is shown)



84 Chapter 5. UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS

100
- &
> 60+
40 \ l \ \ l l l l \ l \
0 50 100 150 200 250 300 350 400 450 500 550
X (cm)
) ® I €
N N~ ~ &

Color scale

Fig. 5.5: Water surface distribution near the interface for the flow field shown in Fig. 5.4 (b)

(case-Al, Run NLKEV, t=110 sec)

The numerical tests are performed using both standard and nonlinear k—& models. The
simulations are run both including vortex and excluding vortex conditions to study the effect of
vortices in the flow field. To distinguish the effect of nonlinearity of eddy viscosity, the
non-linear k—¢ model without quadratic term is also applied. For all the three different cases of

geometry A, as shown in Table 5.1, each of the following models and simulation conditions are

used.

(1) 3rd order non-linear k—& model considering horizontal vortices

(i1) 3rd order Non-linear k—& model without considering horizontal vortices

(ii1) 2nd order non-linear k—& model considering horizontal vortices (Run NLKEV)
(iv) 2nd order Non-linear k—& model without horizontal vortices (Run NLKE)

(v) Standard i—& model considering horizontal vortices (Run SKEV)

(vi) Standard k—¢& model without considering horizontal vortices (Run SKE)
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5.4 Results and Discussions

5.4.1 Plan view of flow pattern

Present work is dedicated to the modelling of periodic turbulent structures, such as large
scale vortices with vertical axis, which are observed at the interface between the main channel
and flood plain of a compound channel. To quantify the effect of these vortices on
characteristics of channel flow as well as on its flow resistive properties, the flow fields are also
generated by omitting the vortices. For all the cases of geometry A with H/h from 1.5 to 2.5,
the horizontal vortices are found to be generated both by standard and nonlinear &- € models.
Figure 5.4(b) shows the plan view of flow pattern generated with the horizontal vortices using
2nd order nonlinear k&—& model for case Al. Fig. 5.4(a) shows the flow field without horizontal
vortices. The water surface distribution corresponding to the flow field in Fig.5.4(b) is
presented in Fig. 5.5. It demonstrates that a depression in water surface is formed at the centre
of each vortex. The depth gradually increases in up- and down-stream of vortex centre and

becomes maximum at saddle points of the flow field.

During simulation, the instability in the initial uniform flow is started at about t = 70 to 90
sec, and clear periodic vortices are appeared at about t= 100 to 150 sec. After the initial vortices
completely developed, two or thee neighbouring vortices are found to be merged together to
form a larger one. However, after about t=250 seconds, the merging process stops and vortices
size remains approximately constant with respect to time. Such temporal change in the plan
view of flow pattern is shown in Fig. 5.6. For case-Al, flow fields near the interface region is
shown for t=110, 140, 170, 220 and 320 secs. Water surface fluctuations in the merged vortices
are found higher than the initial small vortices. Such phenomena of vortex merging were also
observed by Bousmar (2002) in his numerical simulation. He reported that the non-merged
vortices better matched with experimentally observed vortices than the merged one. The

variation of water depth along the interface is shown in Fig. 5.7. It is observed that, although
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water surface variation is very regular for case Al (Fig. 5.7a), they show some discrepancy for
cases A2 and A3 (Fig 5.7 b and 5.7¢). This indication reveals that the periodic vortices are not
clearly observed as the relative depth (H/h) increases. This feature concerning the relative depth

has also pointed out by Fukuoka et al. (1989) in their laboratory tests.
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5.4.2  Characteristics of secondary currents

In addition to horizontal vortices, the helical secondary currents are considered to be
another main source of momentum transfer on the flood plains. The flow exchange between
main channel and flood plain due to the interaction of secondary currents and horizontal
vortices are explained in Fig. 5.8. In the figure, the pattern of secondary currents is shown at
different sections in a coherent vortex. The plan view of the vortex is shown in Fig. 5.8(a),
where the positions of sections are shown. The plan view shows that the vortex lies between
1300 to 1500 centimetres of stream-wise distances. The secondary currents are shown for the
sections at x= 1300, 1340, 1360, 1380, 1420, 1440, 1460 and 1500 cm distances. The first and
last sections are situated in saddle point region; 4th section is near to vortex centre; sections at
x=1340 and 1440 cm contain the maximum tangential velocity with two opposite directional
flow; and other sections are transition between adjacent sections. The plan as well as sectional
view of vector plots show that, in the sections upstream side of vortex centre (first three
sections) the flow is moving from flood plain to main channel. A reverse movement is shown
in downstream three sections. This flow exchange between main channel and flood plain is
minimum at saddle and vortex center, which gradually increases spatially and reaches its peak
in between two critical points. Although the surface and bottom circulation cells in the left end
of main channel secondary current are observed as a common feature in all the sections, the
secondary circulation at the interface region is observed only in the sections near the vortex
centre and saddle points.

Figure 5.9 shows the spatially averaged cross-sectional flow pattern of secondary currents.
The pairs of surface vortices as well as the corner vortices in main channel are clearly depicted
by all the models. The inclined upwelling currents are generated from the edge of the junction
toward the surface. Due to unavailability of experimental results, the calculated secondary

currents for these cases are not directly compared with the experimental results. But the
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qualitative features of the secondary flow patterns are found well comparable with other
experimental results such as Tominaga and Nezu (1991).

Comparing the prediction of 3rd order model [Fig. 5.9(b)] with that of 2nd order [Fig.
5.9(a)], it is observed that 3rd order model predicts superior results than 2nd order model. The
circulation cell width of both the surface vortices is under predicted by second order model.
Although the downward vectors at the centre of main channel predicted by 3rd order model are
well agreed with experiments, the 2nd order model shows an upward flow. The direction of
secondary flow in the upper part of flood plain simulated by 2nd order model contradicts with
previous experiments, however 3rd order one predicts accurately.

The interaction of horizontal vortices with the secondary currents at the interface of
subsections is clearly depicted in Figs. 5.9(b) and (c). The magnitude of upwelling secondary
currents at the interface, for the flow field having horizontal vortices, is slightly smaller than
that of without vortex condition. It indicates that the secondary currents near the junction are
suppressed by the influence of flows caused by the vortices. The secondary currents for higher
depth ratios (H/h) are found higher in magnitude compared to lower depth ratios. It is seen that
with increasing the flood plain depth, the scales of surface vortices are increased. The
magnitudes of secondary currents are also increased significantly with the flood plain depth.
Compared to case Al, a stronger circulation cell is observed at the right end corner of flood

plain for cases A2 and A3 [in Figs. 5.9 (d) and (e)].

g o N
e \\\R\\
%//7 o m\t&\ \\\\\
T
: /szwts\s ///
: //5“:::\ /
» \(/’/’~f////// /4§§/ ?zﬁzia”f
) N N
"™ \\ \\Hw/i,/// /%//7/ S /ﬁ
e T I e //////’/’/’/’ / /W’
\mb\}.;\i\\}m\ /D/’/”/’/V/ /WD

1300 1340 1340 1420 1460 1500

(a) Plan view of a single vortex with different sections for which the instantaneous profiles
of secondary currents are given below



90 Chapter 5. UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS

10.0 -

W
4
.
i
.|
.
.
4
1

—————p. — — — -
o w ae R L ﬁ'ﬂ“‘\r"!é'h'l-l- - . - - - - - - - - - " F o

7.5 LI TS - - - W ™ om ‘H——\"“h —— - ES - - E] - Ll - Pa—
—_ T e am - M ‘KF - o= e - = - . - a - - PR
E —— g Ay Ty Ty W — g g - - - - - - - - - - L] L
oS M0
< e — e Ay Ty

L S — H mizec
P 4 (b) Section at x=1300 cm

Ve — 0.03

T A e —— -\4"

- -
0o == T T T T T T

u] 20 40 &0 &0 100 120 140 160 1&0 200
¥ [cm)
10.0 4 — A— L e S - - - *}"'
T L T £ - - - r o

7.5 4 T— f— e A - - - x 1 =
. - - e - s - - - 1
g 50 — - - - - - - T v o
2 s

se ] (c) Section at x=1340 cm mises

— 003
oo T T T T T
0 100 120 140 180 180 200
y {om)
10.0 7 ——p e — g = - - - - P N
w ma q e -u — — - e - - L LI |

?_S—L: A a e — — - - - - 1w
— e g dpm e — A= a=  a= - N a x - A
= L—-q— e wm — p— - - - l - - iy =
PN N — v W
rd Bmo e g o e

e (d) Section at x=1360 cm mises

) [ A

A ———0.03
Tl d - -
0.0 T = T T T T T
1] 20 100 120 140 160 1a0 200
¥ [crm)
1000 - . am am = e e e e
_‘_‘—\-D"'lq_ LY - -— -— - - a . - - - r L]

F | B T T SR
— N P - 3 — — S r - - - r . P
= o o . . R
Ssoq_” < 1
rd b — . .-

P =~ % - = . MiSEC
254" oo (e) Section at x=1380 cm
f = —— 003
p o e — —
oo = T T T T
1] 20 120 140 160 1a0 200
10-0_/" — —_— e e == e - - - - = alE-
{_..__.__1;.__ —_ —_— = - e e e e e e woa

T | . S e e e
— I\- 1 - — = - - = - - - * - - -, o
E e w e — A T
=2 50 _1;1 > L S —
r4 f, r o mey — v

T (f) Section at x=1420 cm mizec

el ﬁ —— 003
00 ™ T T T L T T T T T
u] 20 40 EN a0 100 120 140 160 180 200

y [em]



91

Chapter 5. UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS

- '4‘!3"-

L T
L
L =
- o o

— —p =

200

misec
— 003

1440 cm

i

(g) Section at x:

freaptftis

.w___.....q.p:

Bopmoag oy oyt

10.0 - pm;

Wy P W W L] =
T T T
u = w o
- uy [} =
o) z

¥ (em)

LAY =
&,;__r =
+ X 4 4 [np]

o
ovvr.r &_UIW
o or oL g .,_"_J.m.u_A E
L I
IBERE =
Tttt

IRE g
= - F
T1 < =

A

il
f| Z g
k5 =

o

.2

e
2 Ls
@ =
b
T

|

i {4 '
RERETRRNS, i
REEEEE "y
[N B I R 7y
f -
ﬂ-...__.._J.a .u.__
rwmmﬂ‘. rs
”fqu\m_mnvu
— =
g = 3 5 3

fwa) z

¥ (cmj

-———

mizsec
— 003

(i) Section at x=1500 cm

I I I I
120 140 160 180 200

T
100
y (&)

Fig. 5.8: The instantaneous profiles of secondary currents at different sections of a single

vortex (Case-A2)

i
‘ 1]
[l

R
PRy

IR

TrTTY N
TrYY N
Trry
Trry A
Trey
TrrY N
TTrY ¥
i T
.__,.._.41
PR

.—__.__._1
savrr
ITRER

[ERRE
HREL
T

misec
— 0.01

-
e

FEEE
phda R

Tiddha

Lhbdh gy o,

Lhkkp

LR

TFddyy g

TFFEYF

Tay

L)

F oA

L]

i

1;441--&-;::."‘
- o w m kgl

>

PR Y

-

"\

- - -i-q--u-—o—q-ay

g 4‘=:=,_

t e

2-!'—4-

200

o.m

misec

Pl P R Y
PRSI B
rhiqdq v A

n L

::

)

b
- -!-;‘1“

-
-«

-
-

w o N O

-

-

200

AEB z

D — =
Ei g

y (em)



92

Chapter 5.

UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS
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Fig. 5.9: Spatially averaged cross-sectional flow pattern of secondary currents: (a) Case-Al,

2nd order model (b) Case-Al, 3rd order model (c) Case-Al, 3rd order model without

considering horizontal vortex (d) Case-A2, 3rd order model (e) Case-A3, 3rd order model

5.4.3 Prediction of discharge

The simulated discharge in a compound channel predicted by all the models for all three

cases of geometry-A are plotted against time and shown in Fig. 5.10. The predicted discharges

with and without including vortices indicate the contribution of vortices. On the other hand, the

model performance between standard and non-linear k—¢ model are clearly depicted. For all the

cases, the linear model predicts higher discharge over non-linear one, and the simulated flow
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field without vortices also over predicts the discharge compared to a flow field with vortices.
Thus the maximum and minimum discharges are predicted by a standard model without
vortices and a non-linear model with vortices condition respectively; the comparisons show

about 5% to 8% difference in discharge computations for case Al to case A3 respectively.
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Fig. 5.10: Discharges computed by different models for (a) case-A1, (b) case-A2, and (c)

case-A3 (here, NLKE indicates second order model)

5.4.4 Prediction of flow resistance

The roughness coefficient for compound channel is calculated by numerical simulation,

and compared to experimental as well as other semi-analytical results.
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Fig. 5.11: Comparison of normalized compound roughness coefficient for different depth ratios



Chapter 5. UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS 95

(a) Prediction Methods

(i) Method 1 (Separate Channel Method): The use of Manning’s formula for discharge
calculation is restricted to channels with an almost uniform velocity distribution in the
cross-section. Thus, to use the equation for a compound channel, the cross-section is divided
into two independent sections. Although the dividing line between main channel and flood
plain can be either vertical, horizontal or diagonal, a vertical line is used here (dotted line in Fig.
5.3a), which is the most common and practical one. In this method the interaction of flows in
two sections are completely neglected. The total discharge is evaluated as summation of the
discharges in two sections as

% 7%
QZ@(@J 1}%+ﬁ(i} 1) (5.13)

nﬁ; S_/j) nmc mc

where, [, is the bed slope and ‘n’ is the Manning’s coefficient, A and S are the
cross-sectional area and wetted perimeter respectively. The subscripts ‘mc’ and ‘fp’ are used to
denote the parameters for main channel and flood plain respectively.

The magnitude of the flow resistance is estimated as a compound roughness coefficient,

N,, which is defined as follows

3
A +4 AAS2/3+AAS2/3A
ch—mCQ LRI, R. = e '"Cj +Afp( »/55) (5.14)
me fp

(ii) Method 2 (Computation with k-& model): The definition of compound roughness

coefficient in equation (5.14) can be written in the following form

Ne _ Qe . "p o
nmc Q nmc Q

(5.15)

Using the standard and non-linear k- € model as described in Egs. (5.1) to (5.7), the discharge
in main channel and flood plain are computed to calculate the compound roughness coefficient

using the above relations.
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(b) Comparison of roughness coefficient

For different depth ratios, the compound roughness coefficients evaluated by different
methods and using various models are plotted in Fig. 5.11, along with the experimental results
by Fukuoka et al. (1989). It is shown that the separate channel method, where the flow
interaction between two subsections is not taken into account, shows the worst comparison with
experimental result. The figure indicates that the standard and non-linear k—& model can
reproduce the increase of roughness coefficient due to lateral momentum transfer. The
contribution of vortices in the momentum transfer, and thus to the channel roughness, can be
quantified by the difference in their magnitude predicted by the models with and without
vortices. The non-linear £~ € model shows best result over standard one. Slight improvement is
observed in the prediction of third order model over that of second. Comparing the results for
case A3, it is observed that the numerical result improves the resistance coefficient by about
21% over the separate channel method, where the vortices contribute about half of that and
the rest is due to secondary current and associated three-dimensional turbulent structure.

However, the value still about 9% underestimated than the experimental value.

1.0
—Cal. (1)
0.8 —Cal (2)
) O  Experiment (Knight, 1992)
g 0.6
)
Z 04
_8 [oNaYaYa) NN
[}
> 02+ (a) ON
0.0
0 100 200 300 400

Transverse distance, y (cm)



Chapter 5. UNSTEADY 3D COMPUTATION OF COMPOUND OPEN CHANNEL FLOWS 97

2.0
00°° o
. O 0O — Cal(1)
g 13 ' —Cal2)
& O Experiment (Knight, 1992)
210
2
5
Q
= 0.5
=
O
[an)
0.0 ‘
0 100 200 300 400
Transverse distance, y (m)
1.2
—Cal (1)
1.0 ——Cal. (2)
—~ 08 O Experiment (Knight, 1992)
E
Q
5 06
&
§ 0.4
o
” 0.2
' ©
0.0
0 50 100 150 200 250 300 350 400
Transverse distance, y(m)
20
000 _ . —Cal (1)
<€ —Cal. (2)
2 15 O Experiment (Knight, 1992)
*<|7>' 1.0
5
5 000000 oqy
- 05
@ —=
(d)
0.0
0 100 200 300 400

Transverse distance, y(m)
Fig. 5.12: Spatial averaged cross-sectional profiles for (a) stream-wise velocity for case Bl
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Fig. 5.13: Comparison of spatial averaged cross-sectional profiles with Abe et al.(1997)

for (a) stream-wise velocity for case B1 (b) boundary shear stress profile for case Bl

5.4.5 Velocity and shear stress profiles

The depth averaged velocity and bed shear stress profiles are computed by 3rd order
non-linear model for cases B1 and B2. The calculated profiles are compared with the laboratory
experiments of Knight (1992). In Figure 5.12, Cal. (2) represents the profile without

considering transverse momentum transfer due to horizontal vortices. It is observed that the
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simulation results by the non-linear model (Cal.-1) are in good agreement with experiments.
However, Cal. (2) under-predicts the velocity and shear-stress values at least near the interface
region. The comparison reveals that, the well agreed profiles are obtained when the effects of
vortices are considered.

The flow field is also calculated using the model by Abe et al. (1997) and shown in Fig.5.13
as Cal. (3) with comparison to previous experiments as well as the prediction of present model.
Present model (Cal. 1) shows better comparison than Abe’s model. Cal. (3) under-predicts the

velocity and shear-stress values near the interface region.

5.4.6 Compound Channel with two flood plains

Numerical simulation is performed for the same condition of experiments reported by
Shiono and Knight (1991) for first phase of FCF-02 experimental series having two-flood plain
in the geometry with B/b=4.2 and (H-h)/H=0.157. The temporal change of coherent vortices at
interfaces of main channel and flood plains are shown in Fig. 5.14. The vortex merging
observed for geometry A is also observed here. For a particular time, the instability vortices at
two interfaces are found to form at the same downstream distances.

The spatial and depth averaged velocity profile is compared with experiment in Fig. 5.15.
An excellent agreement is observed. In Fig. 5.16, the simulation of spatial averaged secondary
current is compared with experiments. The patterns as well the magnitudes are found in close
agreement with each other. Near the interface region, three counter rotating secondary flow
cells are observed. Among two surface cells, the first one is at the top edge of flood plain,
which contains the scale as same as flood plain depth. The bottom secondary flow cell has the
size of main channel depth. The comparison of bed shear stress profiles also shows very good

agreement in Fig. 5.17.
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Fig. 5.15 Comparison of depth averaged velocity profile for case C1 (two flood plain),

calculation is made using 3rd order model.
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calculation is made using 3rd order model): (a) Experimental (Shiono and Knight, 1991)
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Fig. 5.17: calculated spatially averaged boundary shear stress profile for case C1 compared

with the experimental results by Shiono and Knight (1991)

5.4.7  Turbulent properties of coherent vortices in compound channel
In the previous chapter, approximate solutions are derived for the turbulent characteristics
of Stuart vortices, and the spatial distributions and topological changes of turbulent structures
with singular points are evaluated. In the previous section of this chapter, it is showed that in a
compound channel the horizontal vortices are generated at the interface of main channel and
flood plain due to turbulent shear layer. In this section, the characteristics of coherent vortices
are analyzed from the view point of the formation and spatial change of turbulent structures
with respect to singular points. The properties are compared with the approximate analytical

solution (presented in chapter 4) as well as with the previous experiments.
Fig. 5.18 shows the plan view of flow patterns for case-Al at t=300 sec. The generated
horizontal vortices are observed in the figure clearly. The turbulent structures near the vortex
point at two different spatial distances are shown in Figs. 5.19 and 5.20. The flow vectors of

two individual vortices are shown in Figs. 5.19(a) and 5.20(a) for the stream-wise distances of
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x=200 to 380 cm and x=760 to 920 cm respectively. The figures indicate that the turbulent
normal stresses in x, y and z directions, expressed as ﬁ,uzu2 and wu,u, respectively, show
the contours in elliptical structure at the vortex center [Figs. (d), (e) and (f) respectively]. The

structures of turbulent kinetic energy (k) and dissipation rate (¢) [Figs. (b) and (c)] are similar

to turbulent normal stresses. On the other hand, the turbulent shear stress in xy plane (u,u, )

shows hyperbolic profile [Fig. (g) ].
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Fig. 5.18 Plan view of flow vectors showing the horizontal vortices at the interface of main
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Fig. 5.19 Turbulent structures near the center of a vortex (x =200~380 cm): (a) plan view of
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The turbulent structures for saddle point are shown in Fig. 5.21. It is found that the
turbulent kinetic energy and dissipation rate as well as turbulent normal stresses show
hyperbolic profile (saddle pattern) in the saddle point. However, the shear stress shows
elliptical structure.

Therefore, the changes of topological structures of turbulent stresses in the large scale
vertices of a compound channel are found compatible with analytical solution of the idealized
vortex street. The features are also compatible to the previous experimental results on large
scale coherent vortices in free shear flows (Hossain, 1986).

Hossain (1986) reported that the turbulence production is an important criterion to explain
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the roles of ribs and vortex stretching in a coherent vortex. Fig. 5.22 shows the structures of
turbulence production at vortex center [Figs. (a) and (b)] and saddle point [Fig. (c)] for
different spatial distances. Comparing the turbulent structures for both the vortex and saddle
points with Figs. 5.19 to 5.21, it is found that the turbulence productions follow the structures
of turbulent shear stresses. The quantitative comparison indicates that the turbulence
production at the vortex center is very small, but is larger in the upstream and downstream
directions, being the maximum at the saddle on either side. This feature is also consistent with

the measurements of coherent structures in free shear flows.
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Fig. 5.22 Contour of turbulence production: (a) near the center of a vortex for x =200~380

cm (b) near the center of a vortex for x =760~920 cm (c) at saddle point for x

=350~480 cm

5.5 Summary

The flow field in a compound channel is generated using standard as well as non-linear
k-&¢ models with including and omitting the horizontal vortices. The numerical results are
assessed from the view point of coherent structures, such as horizontal vortices at the interface
of subsections and secondary current of second kind. The predicted discharges by different
models are compared and the contribution of eddy viscosity and quadratic term in non-linear
model is evaluated. Comparing the predicted roughness coefficients with previous experimental
results as well as with other methods, the contribution of vortices and secondary currents to the
prediction of roughness coefficients are quantified. Based on simulated results following
conclusions are made:

(i) The velocity and shear-stress profiles are found to be distorted significantly due to

generation of coherent vortices at the interface of main channel and flood plain. It is
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observed that the velocity and shear stress values are under-predicted near the interface
region, if momentum transfer due to horizontal vortices is not considered. The well
agreed profiles are obtained when the effects of vortices are taken into account.

(i) The magnitudes of secondary currents as well as the qualitative features of the flow
patterns are found to be well comparable with previous experimental observations.
Although the pairs of surface vortices as well as the corner vortices in main channel are
clearly depicted by both the non-linear models, the 3rd order model shows better
agreement with experiments than 2nd order model. It is seen that the magnitude of
upwelling secondary currents at the interface are suppressed by the influence of flows
caused by the coherent vortices. The secondary currents for higher depth ratios (H/h) are
found higher in magnitude compared to lower depth ratios. It is noted that with increasing
the flood plain depth, the scales of surface vortices are increased. The magnitudes of
secondary currents are also increased significantly with the flood plain depth.

(ii1)) The flow exchange between main channel and flood plain is found to be minimum at
saddle point and vortex center, which gradually increases with streamwise distance and
being the maximum in between two critical points.

(iv) The resistance of compound channel is increased due to generation of coherent structures.
The numerical result improves the prediction of compound resistance coefficient by about
21% over the separate channel method, where the vortices contribute about half of that
and the rest is due to secondary currents and associated three-dimensional turbulent
structures.

(v) For symmetrical two flood plain case, the instability vortices at two interfaces are
generated at the same downstream distances in a particular time. The simulated results of
sectional depth averaged velocity and bottom shear stress profiles show an excellent
agreement with experiment. The pattern as well as the magnitude of secondary current is
also found in close agreement. Near the interface region, three counter rotating secondary

flow cells are observed. Among two surface cells, the first one is at the top edge of flood
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(vi)

plain, which contains the scale as same as flood plain depth. The bottom secondary flow

cell shows the size of bank-full depth of main channel.

The turbulent structures are found to be changed with the spatial distance depending on
the structures of singular points. It is observed that the turbulent normal stresses show
elliptical structure near vortex center, which changed to hyperbolic profile near saddle
point. However, the shear stresses show hyperbolic structures at vortex center and the
structure changes to elliptical at saddle point. The topological change of turbulent kinetic
energy and dissipation rates with stream-wise spatial distance are found similar to

turbulent normal stresses.

(vii) The turbulent structures of horizontal vortices generated at the interface of main channel

and flood plain are well agreed with that of approximate solution of an idealized vortex
street. The structures of turbulent stresses at vortex center and saddle point are found

consistent with previous experiments of coherent structures in free shear flows.

(viii)) Comparing the topology of turbulence production both for vortex center and saddle

5.6

1))

points, it is seen that they follow the structures of turbulent shear stresses. The
quantitative comparison indicates that the turbulence production at the high vorticity point
(vortex center) is very small, but is larger in the upstream and downstream directions,
being the maximum at the saddle on either side, where the vorticity is minimum. This

feature is also consistent with the measurements of coherent structures in free shear flows.
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Chapter 6

THE STRUCTURE AND DECAY OF
TURBULENT RANKINE VORTEX
WITH AND WITHOUT AXIAL FLOW

6.1 Introduction

The basic types of plane vortices can be classified into two categories: one with slower
velocity at center and maximum at sides; and the other with maximum at center and minimum
velocity at edges. The rotary fluid motion of the first one is called the solid body rotation, since
it is similar to the fluid motion filled in a rotating hollow box. On the other hand, if a long
circular rod rotates in a fluid with constant velocity around its axis, the fluid velocity is found
highest and equal to the velocity of rod at the rods surface (due to adhesion); and with
increasing distance from the rod, the velocity is diminished in inverse proportional to the
distance. Such a fluid motion is called a potential vortex (Fig. 6.1). Fluid motion composed of a
potential vortex and solid body rotation is called Rankine vortex after the fluid dynamicist
Rankine. The radial distance from the center to the maximum tangential velocity is called the
radius of vortex core (Fig. 6.1(c)). For a steady circular motion without a velocity component
normal to the plane of rotation, the rankine vortex in the only possible vortex whose velocity is

-113 -



114 Chapter 6. TURBULENT RANKINE VORTEX WITH AND WITHOUT AXIAL FLOW

zero at the center as well as far away from it. In addition to these basic vortices, there are other
time-dependent rotary motions that have azimuthal velocity component as well as radial and
axial components.

The pressure in a vortex is not uniformly constant with the radial distance. We know the
distribution of pressure for a solid body rotation, for instance in a rotating box, is parabola
(Laugt, 1983). The minimum pressure exists at the center and increases towards the wall of the
box [Fig. 6.2(a)]. On the other hand for a potential vortex, the pressure increases from wall to
outwards distance in a concave manner [Fig. 6.2(b)]. Therefore, the combination of these two
gives the pressure distribution of Rankine vortex as shown in Fig. 6.2(c).

. velocity
velocity velocity

Al

distance

[
»

core radius, rg

(b) (©)
Fig. 6.1 Velocity distribution in (a) solid body rotation (b) potential vortex (c) Rankine vortex
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SR e
T % - .
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(a) (b) ©

Fig. 6.2 Pressure distribution in (a) solid body rotation (b) potential vortex (c) Rankine vortex

The existence of such vortices is not limited to natural phenomena but also in many
engineering applications. The Rankine vortex has been used extensively in various studies; for

instance, to predict the decay of wing-tip vortices, to estimate the noise level produced by
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vortices and vibrations, and to model the natural phenomena such as hurricanes and tornados.
Current aircraft spacing in and around airports is partially governed by the vortex wake hazard
caused by the possible interaction between leading aircraft’s trailing wake and vortices and

following aircraft. However, the vortex behavior behind a lifting vehicle is still a topic of debate.
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Fig. 6.3 Types of Rankine vortex based on far-field behavior (Uberoi, 1979); here, uy and u.
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The understanding about the internal structure as well as the mechanism of turbulence growth
in the vortex core is also debatable. Vortex flows are the major cause of cavitation and
underwater acoustics in marine propellers. Cavitation and hollow core due to pressure deficit at
vortex center causes air-entraining vortices, which is an important part in hydraulics. Therefore,
the emphasis on present topic is not only due to academic interest, but due to its practical

importance as well.

Fig. 6.4 A smoke picture of wing-tip vortex observed in the wake of an agricultural aircraft

(Courtesy NASA/JPL- Caltech)

Uberoi (1979) reported that in the far field such vortex is nearly independent of initial
conditions and may take one of the four forms. Figure 6.3 shows the sketch of four possible
flow profiles. Author considered that the line vortex and trailing vortex classification are the
most relevant to study their properties. The line vortex is a time dependent, infinitely long
region of concentrated vorticity with one non-zero velocity component, Vy. Here Vg=I'¢/2nr
contains zero circulation at r =0, and non-zero net circulation for large r. A trailing vortex is a
time dependent vorticity concentration created at the tip of a semi-infinite wing with two
non-zero velocity components, Vo and Vz , and constant circulation at infinity. Therefore, the
main difference between the trailing and line vortex is the presence of axial velocity component.

As an example, a photograph of a trailing vortex generated at the wing tip of an agriculture
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aircraft is shown in Fig. 6.4.

Other two vorticity concentrations, line swirl and trailing swirl, have zero circulation
outside of some finite radius. They are unstable by Rayleighs criteria and are not considered in
this research.

The work presented in this chapter can be classified into twofold. In the first part, unsteady
numerical simulation with 3D velocity field is carried out for turbulent trailing vortex with
different swirl numbers using non-linear &—& model. Although 3D flow equations are solved, the
simulation is carried out based on 2D numerical grid. The trailing vortex without axial velocity
(i.e. line vortex) is also simulated. The general features of vortex decay as well as the different
time periods of turbulence growth/decay captured in simulation result are discussed. The self
similarity in radial distribution of tangential velocity and circulation profiles are tested for
trailing vortex. Well-grown vortex field is compared with previous DNS data. The simulation is
also performed using standard k—& model, and comparison is shown with non-linear model.

In the second part, the 3D numerical simulation is carried out for an idealized Rankine
vortex using non-linear k&~ model and large eddy simulation (LES). 3D staggered grid is used
both for RANS and LES. The general flow features such as temporal change of vortex decay,

distribution of water surface etc., predicted by both the models are compared.

6.2 Nonlinear k—¢ Model

Following 3D flow equations are used in unsteady RANS calculation for all the cases of

turbulent trailing and idealized Rankine vortex.

o . oU.
Continuity equation: ——=0 6.1)
Ox;
_ U ouU, — U.
Momentum equation: —-+—"—=g, — 10,9 (— uu,; )+ V—rg (6.2)
ot ox; pox; Ox; X
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okU — U,
k - equation: %+ L= —uiu.—’+i Ygy ok - (6.3)
ot ox; Tox,  ox; |\ o, x;
oeU - AU, 2
& - equation: % +—2L=—, ﬁuiu "9, +i Yty e | _ C,s £ (64
o ox, kmlox,  ox; |\o, ox, k
o — 2 k@ 1
Turbulence model (Non-linear): —uu;, =v,S; —Eké'ij - ;vt ;cﬁ S g _ESW“ o, (6.5)
Here,

: ou. oU. - oU.
v=e, X 5, =Y T gt g kL =K laa, 66
"g 4 ox;, o Y ox.  ox e\2 "7 e\V2 Y

i J i

In Equation (6.5),

ouU, oU , oUu,oU, 00U, aUu, ou, oU
Slij :_l_ja 2if :l[ L L+ - l} 3 = e (6-7)
ox, 0Ox, 2( ox, ox, ox; 0Ox, ox; Ox;
c, (1+c, S*+c,,Q%)
Cu = 2 2 = ‘ 4 4 22 (6.8)
14+c¢, 8" +¢c,00" +¢,;65Q+ ¢, S™ + ¢ 0 Q" + €y S Q
! (6.9)

cp=c
s po 2 2
1+m,S* +m,Q

The value of the model constants are: c,g= 0.09, c,;= 0.005, c,o= 0.0068, c4= 0.008, cio=
0004, CisQ = -0003, Cds] = 000005, Canl = 000005, CisQl = 000025, Cjo :0.40, Coo :0.0, C30=
-0.13, mg= 0.01, myo= 0.003, 0,= 1.0, 0= 1.3, ¢;; = 1.44 and c., = 1.92. In the standard £ — ¢

model, ¢,= 0.09 and c¢; = 0.0.

6.3 Large Eddy Simulation

The basic equations used in LES are three-dimensional, time-dependent, filtered Navier
stokes equations. In the model, the grid itself is used as a spatial filter to separate the velocity
field into a resolved and sub-grid part. The eddies larger than the mesh size is the resolved part,

and the effects of small scale motions on the resolved field are calculated through sub-grid scale
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model. Therefore, the resolved part, generally denoted with an over-bar, is basically the
averaged quantity over the control volume formed by the numerical mesh.
The filtered equations are developed from the Navier-Stokes equations. Consider, U; is a

velocity in i direction contains resolved scale part U; and sub grid scale part u;, then
U, = U, +u,, similarly for pressure P = p+ p'. Substituting these two decompositions into

Navier-Stokes equations, the filtered equations of LES can be obtained as follows

Continuity equation:

oU, _

—=0 6.10
. (6.10)

Momentum equation:

oU. oU U, 1oP 08U, Ot

L =g __8_ V—i— ! (6.11)
ot ox; p Ox, ox,”  Ox,

Here, 7; is the subgrid scale Reynolds stress defined by

T, = Ul —ZZ (6.12)

The most commonly used subgrid-scale turbulence model is Smagorinsky model proposed by

Smagorinsky (1963). In this model, the residual stress takes the Boussinesq eddy viscosity form.

. —%rkké' =—2v,8; (6.13)

ij ij

Here, the resolved strain rate S, = —| —+ .
T2 ox; 0O

The eddy viscosity v, is determined by the Smagorinsky model

v, =(C,A) 25,5, (6.14)

i
A is the filter width related to grid size calculated as the geometric average of the grid spacing
in three directions, A=( Ax;Ax;Ax;)"?. C, is the Smagorinsky model constant, whose value varies

from 0.065 to 0.20 (Ferziger & Peric, 1999); 0.15 is used in the present simulation.
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6.4 Simulation Details and Flow Configurations of Test Cases

The turbulent trailing vortex formed by the rolling up of vortex sheet have been studied
previously both experimentally and numerically. The experimental results and theoretical
observations by Phillips (1981), the DNS numerical study by Qin (1998) as well as by
Duraisamy and Lele (2006) are used here to compare the non-linear k—& model predictions.
Phillips (1981) described the Rankine vortex as a multi-layered structure. The innermost region
is called vortex core (Region-I). The tangential velocity is zero at the center of the core where
viscosity produces nearly solid body rotation. The outer most region (Region-III) can be
described by the wake diffusion but extended inward to include turbulent diffusion. Region-II is
a buffer region between the nearly potential outerflow and the solid body rotation of core. This
region contains the point of maximum tangential velocity where the inertial effects are
negligible but high strain rate exists. Hoffmann & Joubart (1963) reported that this region is
very similar to that of turbulent boundary layer near wall, and is believed to follow a behavior
of log law.

In this study, following test cases with different swirl numbers (q) are considered. Non-linear
k—&model is used for all the cases. LES is performed for case-4 to compare with RANS results.
(a) Case-1: trailing vortex with axial velocity for q =1.0

(b) Case-2: trailing vortex with axial velocity for g=0.5

(c) Case-3: trailing vortex without axial velocity, i.e., q = oc

(d) Case-4: 3D simulation of Rankine vortex without axial velocity using both LES and RANS

model

6.4.1 Initial conditions

(a) Case-1: For this g-vortex, the direct numerical simulation results are reported by Qin (1998).
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The simulation is performed with the same initial conditions of Qin. Since the axial velocity of
this vortex is not a function of axial distance but of radial distance, 2D numerical grid becomes

applicable to simulate 3D flow field. The details of the flow field is given below.

. .V 2
Tangential velocity, —Z = q—o(l —e”’ ) (6.15)
Ve r
y
Radial velocity, ~=0 (6.16)
Vo
V. 2
Axial velocity, —= € (1 —e’ ) (6.17)
Vo 4

Here, V, is the scaling velocity, related to the initial mean tangential flow, defined as
V, = M,y - (6.18)
9 il —e’ ’

M, =0.009 and y =1.1209 are used in Qin’s (1998) DNS simulation. As discussed by Lessen et
al. (1974), the stability of g-vortex can be related to the value of swirl number q. They found
that for any value of qe<\2, the vortex is initially unstable and the addition or subtraction of a
constant velocity to the axial velocity profile, or an inversion of a velocity deficit to a velocity
excess, does not change the temporal stability of the vortex. In this case, to make the vortex
initially unstable, the initial swirl number g, is chosen to be unity.

The time is non-dimensionalized by T = 2ary/Vg, at t = 0. Here, 1 is the radial distance
where the tangential velocity contains the peak value in the initial flow field (at t = 0).
(b) Case-2: For cases-2 and 3, the results of direct numerical simulation are reported by

Duraisamy and Lele (2006). The initial condition of the vortex is given below.

V >

Tangential velocity, —% =— ! (1 —e ) (6.19)
VO r{a
%

Radial velocity, ~=0 (6.20)
Vo

Axial velocity, £ =— 1 (e’a a ) (6.21)

Vo 9
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Here, o = 1.25643 (Lamb’s constant), which makes the initial core radius (the radial location of
maximum tangential velocity) is ro =1. For case 2, go=0.5.

(c) Case-3: This case does not contain any axial velocity. Therefore, it can be considered as line
vortex. In consideration of g-vortex, this case has a value of qy = o in axial velocity distribution
(Eq. 6.21).

(d) Case-4: All the three cases explained above are simulated using 3D flow equations with 2D
numerical grid. However, in Case-4 simulation is performed using 3D Cartesian grid for an
idealized Rankine vortex.

The initial condition of the vortex is given below.

v, >

Tangential velocity, —% =— 1 (1 —e’ ) (6.22)
Vs r

: . v,

Radial velocity, ~=0 (6.23)

Vo
. . V.
Axial velocity, VZ =0 (6.24)

6.4.2  Flow domain and computational schemes

The governing equations for mean velocities and turbulent flows are discretized with the
finite volume method based on a staggered grid system. For the momentum equation,
convective and diffusive fluxes are approximated with Quick and central difference schemes
respectively. The hybrid central upwind scheme is used for the & and & equations. Time
advancement is achieved by Adam-Bashforth scheme of second-order accuracy, in each
equation. The basic equations are discretized as fully explicit forms and solved successively
with the time increment in step by step. The pressure field is solved using iterative procedure at

each time step.
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(a) 2D grid (for Cases-1 to 3): The numerical simulations for 3-D unsteady flows are performed
under the same conditions of DNS computations (Qin, 1998 for case-1; Duraisamy and Lele,
2006 for next two cases). Variable grid spacing is used with dense grid at centre and coarser
towards the boundary. The computational domain consists of 100 grids in each of lateral (x and
y) directions for all the cases. The size of domain is taken sufficiently large (12 ry x12 1p) to
overcome the interference of boundary in the vortex decay process. Cartesian grid is used for
computation, and the results are presented in cylindrical coordinate using the geometric
conversion.

(b) 3D grid (for Case-4): The flow domain consider here is 12 ry x12 1, (in two lateral, x and y
directions) x1 1, (in axial /depth-wise, z direction). For LES 140x140x15 grids are used in X, y
and z directions respectively. For RANS simulation the grid no is reduced to 70x70x10 grids.

Variable grid system is used for two lateral directions.

6.5 Simulation of Turbulent Trailing Vortex with Swirl Number q =1.0

The distribution of tangential velocity, axial velocity and corresponding pressure
distribution in the vortex are shown in Fig. 6.5 for simulation time t=3.72T. The case of trailing
vortex considered here contains the axial velocity with a minimum magnitude at vortex center
(at center, V, =0 at t=0) that gradually increases in outward direction and became constant at a
far distance from the center. In the simulated results, the axial velocity in the center region is
found to increase with time in order to reduce the gradient with far field. The tangential velocity
also decays with time. The details of temporal change in flow characteristics are explained in
the next sections.

The basics of pressure distribution in a Rankine vortex are described in Fig. 6.2. The
distribution of pressure in a trailing vortex is found similar to the line vortex regardless the

presence of axial velocity. The figure shows that the pressure at vortex center is minimum and
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gradually increases in outward direction and becomes constant at a far distance from the center.
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(b) Distribution of axial velocity
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Pressure

(b) Distribution of pressure

Fig. 6.5 Simulation result for q =1 vortex at t =3.72T

6.5.1 Decay of Trailing vortex

Figs. 6.6, 6.7 and 6.8 show the profiles of tangential velocity, axial velocity and circulation
for different times calculated using Non-linear k- model. Figs. 6.9, 6.10 and 6.11 show those of
the standard k-& model. It is observed that the standard model shows faster decay of tangential
and axial velocity than the non-linear model.

The circulation is zero at the vortex center line and is found to increase toward the radial
direction that reached a free stream value at some radius outside the vortex core (at ry/ro>5). A
circulation overshoot is observed after the adjustment of initial conditions and when the vortex
comes in self similar stage (at about t >3.0T). Qin’s DNS simulation also shows a brief
overshoot after the vortex adjusts itself to the unphysical initial conditions. Saffman (1974)
claimed that the circulation overshoot is a general feature of turbulent vortices. However,

Phillips argued that the circulation overshoot is unlikely. Some researches pointed out that the
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overshoot does not appear to be enough to produce a visible instability. Uberoi (1979) added
that overshoot is possible if vortex diffusion rate is greater than that for a laminar vortex.

In the tangential velocity, maximum decay occurs at the point of maximum velocity, while
for axial velocity the maximum decay is at the center of vortex. Figure 6.12 compares the
percentage changes of axial velocity and peak tangential velocity with initial time. It is observed
that the decay rate of axial velocity is much higher than the tangential velocity. Since the vortex
takes some time to adjust with initial condition, it is observed that the decay rate is small at
initial times, approximately t< 1.25T. For both velocities, the high decay rate is observed in
intermediate time period of 1.25T> t <4.25T. After that the decay slows down, and the slope of

trajectories shows to proceed towards minimum.

06 - —o—t =0
——1=2.36T
——+t=3.72T
——1t =5.00T
s 0.4 ——t=7.013T
fus)
>
0.2
0.0
0 1 2 3 4 5 6
r ’)’/ro

Fig. 6.6 Radial distribution of tangential velocity and its decay with time (Non-linear ki—¢&

model)
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Fig. 6.7 Radial distribution of normalized circulation for different times (Non-linear k&—& model)
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Fig. 6.8 Time decay in radial distribution of axial velocity (Non-linear k&—& model)
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Fig. 6.9 Radial distribution of tangential velocity and its decay with time (Standard A—¢

model)
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Fig. 6.10 Radial distribution of normalized circulation for different times (Standard A—&

model)
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Fig. 6.11 Radial distribution of axial velocity and its decay with time (Standard /¢ model)
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Fig. 6.12 Comparison between time decay of axial velocity and tangential velocity
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Fig. 6.13 Self-similar profile of tangential velocity compared with Phillips’ model
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Fig. 6.14 Self-similarity in the circulation profile compared with Phillips’ model
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6.5.2  Self-similarity of profiles

From dimensional analysis Hoffmann and Joubart (1963) showed that for fully-developed

1

N 2 R
a_f(”lj I f(

Here, r;is the radial distance of maximum tangential velocity V4, . I is the circulation defined

LJ (6.25)
7,

as I = 27[7”V9 and I'; is the value at a radial distance of r;,

By plotting experimental results of Vy/ Vj,, versus r/r;, Phillips (1981) also showed that for a
fully developed flow the data collapsed in a single curve, and independent of the outer flow
characteristics.

Comparing with the experimental results, Phillips proposed the following equations to fit

the self-similar profile.

Region-I:

V 3 5

2o 177200 L | —1.0467) | +0.2747| = (6.26)
Vo n n n

F 2 4 6

2177200 | —1.0467| Z| 402747 = (6.27)
[ r] g r]

Logarithomic part of Region-II:

LA R (6.28)
I n

In Fig. 6.13, it is observed that for tangential velocity the self similarity solution embraces
all the regions I, II and III. Here the profiles are shown for t > 3.0T. Eq. (6.26) proposed by

Phillips is perfectly fitted with the simulation results by non-linear k-& model. For t<3.0T,
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region I and II are found to show self similarity, but region III does not collapse with the data
shown in Fig. 6.13. Therefore, region IIl shows the similarity form only for a particular flow
conditions and in the fully developed flow case.

Figure 6.14 shows the self-similar circulation profile. It is seen that although the simulated
results for region I and region II collapse in a single curve, region III does not show the self
similarity form. Eqgs. (6.27) and (6.28) are also showing excellent fitting with the simulated data.
From previous studies it is found that region I is weakly dependent on initial and hydraulic
conditions. Phillips noted that this self-similar profile exists in region I and II, regardless the
presence of axial velocity component. Present result also support the argument and reveals that
this region shows self-similarity form for all the times including t<3.0T. The logarithmic region
near r/r; =1 is reported as truly universal region. Dissimilarity in region III is observed in figures
also reported in previous studies. Due to circulation overshoot, there does not seem to be any

scope for the self-similarity solution in region III.

6.5.3  Instability vortices

The non-linear model shows the occurrence of instability in a well grown vortex field ( at
t >3.0T for this case) after the self-similar form of flow field is attained. Figure 6.15 shows the
flow field of vortex (fig. a) and the instability vortices (Fig. b) at t =7.013T. Note that the
instability vortex field is calculated by subtracting a mean velocity field from the main vortex
field. Phillips’ multi-layered structure is seen in this figure. Due to tangential velocity gradient
between region I and II, as well as between II and I1I, instability vortices are found to form in
those regions. In this figure, the instability vortices are observed at a radial distance of 0.7r; and

1.2 1y respectively.
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Fig. 6.15 Non-linear k—& model prediction of (a) vortex flow field and (b) instability in the

flow field (t="7.01T)

6.5.4 Temporal growth/decay of turbulence

Production of turbulence in the vortex field is due to the tangential and axial velocity

gradients. In the vortex lifetime, five different growth/decay rates of turbulent kinetic energy as

reported in DNS calculation (Qin, 1998) are also reflected in the simulation of non-linear k-&

model. Figure 6.16 shows the growth/decay of turbulence kinetic energy with approximated five

different time periods. Initially (zone (i)), the vortex changes very slowly, as it requires
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adjustment of any unphysical nature of initial conditions. In time zone (ii), an exponential
growth of turbulent kinetic energy is seen. The growth slows down in the next time period of
zone (iii). It is found that the growth of axial velocity is significantly high in time zone (ii) and
(ii1). The turbulent kinetic energy reaches its peak value and remains about constant throughout
the short period of zone (iv). It reveals that in this stabilization period the flow field becomes
saturated and cannot support additional turbulence. Finally, the decay of turbulence is started as
predicted by most of the previous researches (such as, Uberoi, 1979; Bachelor, 1964; etc.). The
logarithmic plot shows that the decay rate in zone (v) is much slower than the growth rate in

zone (ii). It shows that the decay of velocity field slows down as the turbulence decay period

starts.
0.1
Giy L W) ™)
001 |
NO
>
< 0001 |
0.0001
0 2 4 6
tT

Fig. 6.16 Growth of turbulent kinetic energy with different time periods (Non-linear &—& model)

Figure 6.17 shows the radial distribution of turbulent normal stresses (R;;) in axial, radial
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and tangential directions for different times; the stresses are noted as wu_,u,u, and w,u,

respectively. Here, the radial distance is normalized by r; =ry(t), which is the radial distance of

maximum tangential velocity. For a round jet in a stagnant surroundings, w.u, >u,u,>u,u

over the radius of jet (Ali et al., 2006; Wygnanski & Fielder, 1969). However, in the matured
stage of a trailing vortex, the turbulent normal stresses show two types of anisotropy depending

on the radial distance. Inside the vortex core (1/r;<1) up to certain distance from center, the

relation is w u, >u,u,>u_u_ ; and beyond that distance the stresses follows w.u >u_u. >uyu, .

The latter case is the situation where turbulence production is significantly less than diffusion,
such as in the central region of an axisymmetric wake. These anisotropic behaviors of
turbulence are also reported in previous studies by Devenport et al. (1996) and Phillips &

Graham (1984).
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Fig. 6.17 Radial distribution of turbulent intensities at three directions at (a) t =3.72 T
(b)t=5.0T (¢) t=7.013T

In the growth stage of time zone (ii), all the normal stresses are found to increase
simultaneously. In Fig. 6.17, the distribution of turbulent normal stresses are shown for different
times (t= 3.72 T, 5.0 T and 7.13T), those are belongs to time zones (iii), (iv) and (v),
respectively. Comparison of turbulent intensities between time zones (iii) and (iv) indicates that
only the axial velocity component shows significant decay. On the other hand, comparison
between (iv) and (v), shows the simultaneous decay of turbulent intensities in all the velocity

components.
It is observed that at the center of vortex (i.e. at r =0), uu,=u, u, throughout the

simulation time. It confirms the axisymmetric condition of the flow field.

6.5.5 Comparison with Qin’s DNS data

Circumferential velocity, circulation and axial velocity are compared with the DNS
calculation of Qin (1998) at time t =3.72 T as shown in Figs. 6.18, 6.19 and 6.20 respectively.
At this stage the vortex already overcame the effect of initial conditions and shows self-similar
behavior. Also, the turbulent flow field became saturated and stabilized gaining a peak value of

turbulent kinetic energy after passing its growth periods. In the figure, the non-linear model
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shows well agreement with DNS data. Although the axial velocity decay is fitted well, the
magnitude and position of maximum tangential velocity shows slightly faster decay than DNS
data. A very high decay rate is found for the standard model in comparison to the non-linear
model and DNS simulations. Such discrepancy is also seen in the comparison of circulation
profile. By comparing the turbulence kinetic energy in Fig. 6.21, it is observed that the
non-linear model shows much better comparison over standard model. However, the model
over-predicts the kinetic energy near the maximum point, and this is the cause of faster decay of

tangential velocity than DNS as observed in Fig. 6.18.

—— DNS(Qin, 1998)
—B8— Standard k-e model
—oe— Non-linear k-e model

ry/rg

Fig. 6.18 k—gmodel prediction of tangential velocity profile compared with Qin’s DNS results

(t=3.72T)
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My/( Vo)

ry/ry

Fig. 6.19 k—& model prediction of circulation profile compared with Qin’s DNS results (t =

3.727T)

—— DNS (Qin, 1998)
—8— standard k-e model

0.8 -
[
—o— Non-linear k-e model

0.6

VZVo

04 &

0.2 T T T T

ry/rg

Fig. 6.20 k—¢ model prediction of axial velocity profile compared with Qin’s DNS results ( t =

3.727)
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0.025
— DNS(Qin, 1998)
—8— Standard k-e model
0.020 —o— Non-linear k-e model

0.015
S
< 0.010
0.005
0000 T T T T
0 1 2 3 4 5 6
ry/ro

Fig. 6.21 k—&model prediction of turbulent kinetic energy with Qin’s DNS results (t =3.72T)

6.6 Simulation of Turbulent Trailing Vortex with a Swirl Number q = 0.5

Calculated flow profiles for radial distributions of tangential velocity, axial velocity and
circulations are shown in Figs. 6.22, 6.23 and 6.24 respectively. Non-linear model is used in
these calculations. The initial flow profiles are also included in the figure. It can be noted that
the initial radial distribution of axial velocity profile as shown in Fig 6.23 for the case of q = 0.5
is different from that for g=1 (shown in Fig. 6.8). Comparison of results at time t =2.9T is shown
in the figures with the DNS calculations of Duraisamy and Lele (2006). At this stage the
turbulent flow field became saturated after the exponential growth period of turbulent kinetic
energy. The figure indicates that the predicted profiles are well agreed with DNS data. Since the
circulations are non-dimensionalized by their initial maximum values, the overshoot is clearly

seen in the figure (Fig. 6.4) both in non-linear &—& and DNS simulations.
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Fig. 6.22 Non-linear k—¢& model prediction of tangential velocity profile compared with DNS

results of Duraisamy and Lele (2006) for g = 0.5
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Fig. 6.23 Non-linear &—& model prediction of axial velocity profile compared with DNS results

of Duraisamy and Lele (2006) for q = 0.5
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Fig. 6.24 Non-linear k&—&model prediction of normalized circulation compared with DN'S

results of Duraisamy and Lele (2006) for q = 0.5
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Fig. 6.25 Time decay of maximum tangential velocity (at r = ry(t)) compared with DNS results

of Duraisamy and Lele (2006) for q =0.5
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—o— Cal.
O DNS data

V2/Vo

Fig. 6.26 Time decay of maximum axial velocity (at r = 0) compared with DNS results of

Duraisamy and Lele (2006) for q = 0.5
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Eﬁ? —O— Axial velocity
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Fig. 6.27 Comparison of time decay in maximum axial and maximum tangential velocities (the

velocities are normalized by their initial maximum values)

Figure 6.25 shows the calculated time decay of maximum tangential velocity (velocity at r =
1o(t)) for q = 0.5 along with DNS results of Duraisamy and Lele (2006). Such comparison for

maximum axial velocity (velocity at r = 0) is shown in Fig. 6.26. The simulations show good
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agreement with DNS results. To study the comparative temporal decay between tangential and
axial velocities, their maximum radial values are normalized by the initial maximum, and
plotted in Fig. 6.27. In the initial period as well as the period after vortex stabilization (i.e. in the
decay phase of turbulent kinetic energy, explained in Fig. 6.16), the decay rate is about same.
However, in the turbulence growth periods, the decay of axial velocity is much higher compared
to that of tangential velocity. The phenomena is same as the results for qo =1.0 as explained in

Fig 6.12.

6.7 Simulation of Turbulent Trailing Vortex with no Axial Velocity

Figure 6.28 shows the comparison of time decay in tangential velocity for different swirl
numbers; The DNS results of Duraisamy and Lele (2006) for no axial flow case is also shown to
compare with calculated decay profile. The figure reveals that, the rate of temporal decay in
tangential velocity increases with decreasing the swirl number q. Therefore, if no axial velocity
is present in the flow field, which is the situation for q = o , the temporal decay of tangential

velocity should be smaller compared to the vortex filed with axial velocity.

0.7
06 > T O —e,
< 05 r
é Cal. (No axial flow, q = infinity) S~o
g 04 O  DNS data (No axial flow) Tt -
Cal. (with axial flow, g= 1.0) T~ L
0.3 [ —---Cal (with axial flow, g= 0.5)
0.2
0 1 2 3 4 5
t/ T

Fig. 6.28 Comparison of time decay of tangential velocity for different swirl numbers; the DNS
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results of Duraisamy and Lele (2006) for no axial flow case is also shown to compare with

calculated decay profile.

0.30

0.29

Al
/

0.28

U (m/sec

0.27

0.26
20 30 40 50 60 70 80
t (sec)

Fig. 6.29 Comparison of temporal fluctuations of velocity at a point by RANS and LES

simulations.

6.8 3D Simulation of Rankine Vortex with no Axial Velocity using LES and RANS

For the case of trailing vortices, the axis of rotation is horizontal as shown in Fig. 6.4 as an
example of a wing-tip vortex. However, in the present 3D simulation, the vortex flow field is
given to rotate with the vertical axis in a free surface rectangular domain. Therefore, although
the tangential flow equation for the present case is similar to previous cases, it differs from
g-vortex from the view point of flow orientation, and thus, from boundary conditions. In natural
flow such vortices can be found in whirlpools in tidal currents, dust whirls on the street or the

coherent vortices in shear layer.
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The temporal change of velocity at a point is shown in Fig. 6.29 both for LES and RANS
simulations. In addition to temporal decay of velocity, the typical velocity fluctuations are
observed in LES results; on the other hand, RANS simulation shows a mean decay profile. In
Fig. 6.30, plan view of velocity vector also shows some spatial fluctuations of velocity in LES
simulations, which are absent in RANS results.

Figure 6.31 shows the radial distribution of tangential velocity at t = 3.06 T both by LES
and RANS. They showed a good comparison. The comparison of circulation profile predicted
by both the models for t = 3.06T and 4.84T is shown in Fig. 6.32. At t= 3.06T no circulation
overshoot is visible. However, a very small overshoot (compare to previous cases of g-vortex) is
observed at t = 4.84T both in LES and RANS results.

The variation of water surface for different times predicted by RANS and LES is shown in
Fig. 6.33. The water surface found to be depressed near the central area with minimum water
depth at the center of vortex. Since the strength of vortex decreases due to the decay of

tangential velocity, the amount of depression in water surface is also decreased with time.

0.6
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— RANS
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o
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Radial distance (r)

Fig. 6.31 Radial distribution of tangential velocity calculated by RANS and LES (t = 3.06T)
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Fig. 6.32 Radial distribution of tangential velocity calculated by RANS and LES (t = 3.06T and

448T)
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Fig. 6.33 Radial distribution of depth calculated by RANS and LES (symbols show LES

prediction, and lines show corresponding RANS prediction)
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Fig. 6.34 Time decay of maximum tangential velocity calculated by RANS and LES
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Figure 6.34 shows the calculated time decay of maximum tangential velocity both for LES
and non-linear k—& model. It is found that although the prediction of RANS model shows good
agreement with LES in initial times, some deviation is observed at t> 3.0T. Such discrepancy in
the decay phase of turbulence is also observed in previous cases (in Fig. 6.27). From these
comparisons, it is observed that in the growth phase as well as in stabilized phase of turbulence,
the decay rate of tangential velocity by RANS model is well comparable with LES and DNS.
However, in the decay phase of turbulence, RANS model shows slight faster decay of tangential
velocity due to its slower decay of turbulence compared to LES and DNS.

The secondary currents calculated by both the models are shown in Fig. 6.35. The flow
vectors of secondary current shows three circulation cell in both side of centerline. Secondary
current inside the vortex core is found relatively weaker than the out side of core. It is explained
that (Fig. 6.1) the Rankine vortex is a combination of nearly solid body rotation and potential
vortex. For both type of vortices, the patterns of secondary currents are reported by Lugt (1983).
The LES as well as RANS predictions are found well agreed to that. In the vortex core, the
secondary current shows the pattern similar to that of solid body rotation; and out side the core,
the pattern is similar to that of potential vortex. The patterns as well as magnitudes of secondary

currents predicted by two models are well comparable to each other.

6.9 Summary

The unsteady numerical simulations are performed for an isolated turbulent axial vortex
using standard and non-linear k4—& models. Since the rotational effects of vortex are not captured
by a standard k- model, it predicts extremely rapid and strong turbulence growth and causes a
rapid decay of tangential and axial velocity. However, the non-linear model shows good
agreement with DNS data. For the tangential velocity, the self similarity solution embraces

regions I and II (defined by Phillips) for all the time periods, however region- III collapses in a
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single curve only for fully developed flow. Phillips’ model equations for similarity solution of
velocity and circulation profiles are perfectly fitted with the simulated results. Circulation
overshoot is found in the well grown vortex field. Due to this overshoot, the self similarity
solution seems hardly possible in region III.

It is observed that the decay rate of axial velocity is much higher than the tangential velocity.
Since the vortex takes some time for initial adjustments, it is seen that the decay rate is small at
initial times. For both the velocities, the high decay rate is seen in intermediate time period.
After that the decay slows down, and the slope of decay proceeds towards minimum.

Five different time periods are observed in the growth/decay profile of turbulent kinetic
energy. Initially the vortex changes very slowly to adjust with initial conditions, then an
exponential growth is found that slows down before gaining its peak value. The peak value of
turbulent kinetic energy remains about constant for a short period that finally follows the period
of turbulence decay.

After the maturity of vortex, the turbulent normal stresses show two types of anisotropic
behavior depending on the radial distance. Although the radial component is always greater than
other two, the tangential component is greater near the center and smaller around the region of
maximum tangential velocity in comparison to axial component. The decay rate of energy after
the period of stabilization is much slower than the growth rate in the time zones before the
stabilization. The decay of velocity field slows down as the turbulence decay period starts.

In the initial period as well as the period after vortex stabilization (i.e. in the decay phase of
turbulent kinetic energy), the decay rate of axial and tangential velocity is about same. However,
in the turbulence growth periods, the decay of axial velocity is much higher compared to that of
tangential velocity.

The result reveals that the rate of temporal decay in tangential velocity increases with
decreasing the swirl number q. Therefore, if no axial velocity is present in the flow field, which
is the situation for q = oc , the decay of tangential velocity with time should be smaller compared

to the vortex filed with axial velocity.
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3D numerical simulation is carried out for an ideal Rankine vortex using both RANS and
LES. For the case of trailing vortices, the axis of rotation is horizontal. However, in this 3D
simulation, the vortex flow field is given to rotate with the vertical axis in a free surface
rectangular domain. The prediction of vortex decay by RANS model shows good agreement
with LES. The water surface found to be depressed near the central area of the vortex with a
minimum water depth at center of it. Since the strength of vortex decreases due to the decay of

tangential velocity, the depression in water surface is also decreased with time.
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Chapter 7

3D UNSTEADY SIMULATION OF
OPEN CHANNEL FLOWS WITH A
RECTANGULAR SIDE CAVITY

7.1 Introduction

The floodplain encroachment in a river, such as embayment, spur-dykes, lateral intake etc.,
are constructed along the river for various hydraulic reasons such as flood protection, navigation,
land reclamation, approach roads, bridges or other hydraulic structures. Besides the hydraulic
reasons, such structures play an important role to increase the biodiversity of aquatic species by
creating habitat and providing shelter for them. The main stream of a river, where the velocity is
high, is not suitable for all kinds of aquatic species to live, especially for weak, small and young
fishes. Such arrangement of shelter with the placement of embayment along the banks of the
river is shown in Fig.7.1. In Japan, these inlets are called “Wando” and generally used to create
a good habitat for natural lives there.

Since the flow velocity inside a dead zone is lower than that of main channel, a shear layer
is formed at the interface due to velocity gradient. In a turbulent flow, this shear layer causes the

generation of coherent vortices. In river engineering, turbulent flows with coherent vortices are
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observed in compound channel flow, in a flow with vegetation zone, in open channel flow with
abrupt expansion, etc. The turbulent characteristics of coherent vortices and their spatial
distributions with singular points are studied in previous chapters. The characteristics of such
large scale vortices in a compound channel, and its contribution to the channel roughness as
well as to the flow properties are also studied in chapter 5. However, in an open channel with a
dead zone, the interaction of coherent vortices with other dominating flow structures makes the

flow field complicated.

Fig. 7.1 Embayment with rock dykes in Yodo river, Japan (Muto et al., 2002)

Previous studies show that the interactive flow fields in and around the embayment largely
depends on main stream Froude number. Kimura and Hosoda (1997) studied the fundamental
properties of flows in a compound channel with dead zone both experimentally and numerically
with 2D open channel flow equations. They reported that a circulation and free surface
oscillation is observed inside the dead zone; and along the interface of mainstream and dead
zone, the flow is characterized by formation of coherent vortices. They reproduce the flow
features numerically by plane two-dimensional open channel flow equations. Mizumura and
Yamasaka (2002) studied the 2D steady flow in an open channel embayment and concentrated

only on mean circulation flow inside the cavity. They reported that a 2D flow model cannot
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express the 3D flow structure at the interface of embayment.

In this chapter, the three—dimensional numerical simulation is carried out to study the
fundamental properties of an open channel flow with a rectangular side cavity. A curvilinear
coordinate with a variable grid system is used in this study. The formation of coherent vortices
at the interface of mainstream and dead zone, as well as its interaction with the circulation and
water surface oscillation in the cavity will be studied. The flow pattern and velocity profiles will

be compared with the experiments of Kimura & Hosoda (1997).
7.2 Non-linear k—& Model in 3D Curvilinear Coordinate

The 3D flow equations in a k—& model for an unsteady incompressible flow with
contravariant components of velocity vectors on a curvilinear coordinate system can be written
as follows.

Continuity Equations:

LOV{I‘E:Q

Vg o

Momentum equation:

(7.1)

aa—Vt+vj[V"(Vf — W+ ViV W VIV = F —%g"f'vjwvj[— o |r 2w et

(7.2)

k-equation:

ol — , - D, ),
ij[k(w — W+ kv T == g VIV Y —g+vj{(a—+ngfvik} (7.3)
k

g-equation:
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2nd-order non-linear turbulence model:

2
V=D 8" -2kslg” LD [0 +an0, +a,0)] D, =C, (7.5)
& &
Here,
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1+myS* +m,QF
Coo I+ cnsS2 + chQz)
(7.9)

e e O tc S0+, St Q 1o 8O
Cys Can Casa Casi Can1 Casal

The values of model constants are given in Table.2.1.
7.3 Computational Scheme and Flow Domain

The governing equations for mean velocities and turbulent flows are discretized with the
finite volume method based on full staggered boundary fitted coordinate system. The
arrangement of hydraulic variables on staggered grid in a 3D field is shown in Fig. 7.2. For the
momentum equation, convective and diffusive fluxes are approximated with Quick and central
difference schemes respectively. The hybrid central upwind scheme is used for the k and &
equations. Time advancement is achieved by Adam-Bashforth scheme of second-order accuracy,
in each equation. The basic equations are discretized as fully explicit forms and solved
successively with the time increment in step by step. The pressure field is solved using iterative
procedure at each time step. The free surface elevation is solved by continuity equation

integrated over the control volume of the surface layer.
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The wall functions are employed as the wall boundary conditions for £ and &. The frictions
near the bed and side walls are estimated by log-law. An inflow velocity is prescribed in
upstream end, and fixed depth with zero velocity gradient is used as boundary condition at

downstream end of the flow domain.

¢
VC
o
p. ke v L
¢ o
L Ty gy g

Fig. 7.2 Arrangements of variables in a staggered grid in the 3D computations

(Curvilinear coordinate system)

Table. 7.1 Hydraulic parameters for the simulation of open channel with dead zone

O v Froude  Bottom At
Run (em’/s) he (cm) (cm’/s) no. slope  (sec)
1 747.0 2.02 ?(1953 0.83 1/500  0.0001

The numerical simulations for 3-D unsteady flows are performed under the same conditions
of laboratory experiments conducted by Kimura and Hosoda (1997). The plan view of the
computational domain is shown in Fig. 7.3. It consists of 76 grids in longitudinal (stream-wise,
x), 42 in transverse (width-wise, y) and 10 in perpendicular to bed (depth-wise, z) directions.

The hydraulic conditions are shown in Table 7.1.
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7.4 Numerical Results and Discussions

7.4.1 Time averaged flow properties

The unsteady flow in a dead zone is characterized by three important flow criteria: the
circulation and oscillation inside the dead zone, and the coherent vortices at the interface of
main stream and dead zone. However, the time averaged flow does not show instability
characteristics. Fig. 7.4 shows the time averaged (averaging for 10 secs) velocity vector, which
mainly characterized by the circulation inside the dead zone. The simulated vector field and the
circulation pattern are very similar to the previous experimental and 2D numerical studies
(Kimura and Hosoda, 1997; Takemoto et al.,1984).

Fig. 7.5 shows the time averaged profile of stream-wise velocity (u) along the transverse
cross-section at centerline of dead zone (the section is shown in Fig. 7.3 as Ty-T;). The

comparison of simulated result with experiment shows good agreement.

7.4.2  Temporal variation of flows

The formation of instability vortices at the interface of main channel and dead-zone and its
interaction with the dead zone circulation can be described by considering the temporal change
of velocity vectors as shown in Fig. 7.6. In the figure, the flow vectors are presented at a
periodic interval of 0.2 sec. It indicates that the vortices formed at the upstream end of the
interface (just after x =0) moves downwards with increasing time. The deviation of velocity
vectors from the main circulation near the interface shows the position of instability vortices.
The center point of dead zone circulation (i.e. the location of minimum tangential velocity) is
also found to be changed slightly depending on the location and maturity of instability vortices.
Fig.7.7 shows close-up view of vector plot near the upstream corner of shear layer. The vortex
formation and its temporal changes at an interval of 0.2 sec are illustrated in this figure. It is

found that the instability vortex observed at upstream corner of interface moves downstream
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with gradual amplification with time, and the process continues repeatedly with a constant
periodic interval. The velocity vectors at t = 57.2 sec and t = 58.0 sec show the instability
vortices of about same maturity, it gives an estimation about the vortex period as about 0.8 sec.
The temporal variations of water surface distribution are demonstrated in Fig. 7.8, for the
same time periods as discussed for vector plots. Two important phenomena can be explained
from these figures. One is seiche inside the dead-zone, and another is hollow water surface at
the center of instability vortices. The hollow of the free surface moves downward with time
along the interface, as observed in the movement of large vortices in vector plots (in Fig. 7.6).
In the present flow domain two to three hollows in water surface can be seen in an instantaneous
flow field. Since, the vortices at the upstream corner are premature and those near the
downstream corner are decayed due to merging with main circulation, the large vortices at the
middle part of the interface are most matured and show highest depression in the surface. The
feature can be further explained using a water depth profile along the interface. Fig. 7.9
describes the spatial distribution of water surface near the interface regions. The effect of
instability vortices on the water surface as discussed above is clearly depicted in this figure. The
depressions in the profile, that indicate the position of instability vortices, is gradually
increasing with down stream distances and show maximum depression in the middle half of the
interface.
The second important phenomenon described in Fig. 7.8 is the oscillation inside the dead zone.
If we look beyond the interface it can be seen that, Figs. (a) and (b) show minimum depth at
downstream end and maximum depth in upstream end of dead zone; on the other hand, Figs. (c)
and (d) show reverse phenomena. Finally, in Fig.(e) the depth distribution returns to its nearly
starting phase (as Fig.(a)) after 0.8 sec. A periodic change in the depth difference between

upstream and down stream end of dead zone indicates the existence of oscillation in the cavity.
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Fig. 7.9. Temporal change of water depth distribution along the interface
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Fig. 7.13. Temporal variation of transverse-velocity component (v) at the interface (x =5 cm)
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Fig. 7.14. Instantaneous pattern of secondary current at (a) S-S section (b) To-T; section (c)
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section (t = 57.2 sec)

This oscillation of water surface is clearly demonstrated in Fig. 7.9. In this figure, the
spatial water depth distribution in the dead zone along the section S-S (as shown in Fig. 7.3) is
shown for different time intervals. It explains that the node of oscillation, that contains the
lowest seiche mode with a direction parallel to the main flow, is located near the center of the
circulation. The wavelength of the oscillation is about twice the dead-zone length. Fig. 7.8
depicts that the water depth distribution at t = 57.2 sec and t = 58.0 sec show about same
orientation of instability vortices as well as same seiche mode. It gives an estimation of the
period of instability vortex , which is about the same as the oscillation (approximately 0.8 sec).

Comparing with Fig. 7.9, it is observed that the depth variation inside the dead zone is
mainly due to the seiche, and near the interface it is governed by the instability vortices.

Figure 7.11 shows the calculated results for temporal free surface oscillation at point A and
B. The period of oscillation is found as 0.75 sec, which is slightly smaller than the
experimentally observed value of 0.87 sec. The temporal variation of stream-wise velocity (u) is
compared with experiment in Fig. 7.12. The calculated magnitude of velocity variation is well

agreed with experiment. The period of oscillation in the temporal changes of u-velocity is found
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same with the periodic oscillation of water surface.

The temporal change of transverse velocity component (v) at a point on the interface (x =5
cm, y =0) is shown in Fig. 7.13. It is observed that, each cycles of temporal velocity variations
consists two components of oscillations. The long one is due to seiche and has a time period of
0.75 sec. The period of short oscillation component is about 0.15-0.25 sec, which is caused by
the instability vortices. This phenomenon is also reported in previous experimental

observations.

7.4.3  Secondary currents

Although the depth of the flow is small, strong secondary currents are found to be generated
at inside the dead zone as well as near the interface area. Figure 7.14 shows the pattern of
instantaneous secondary current at S-S section, T(-T; section as well as the sections just
upstream and downstream of T,-T; for t = 57.2 sec. Some flow exchange between main-channel
and dead zone is observed in Figs. 7.14(c) and (d).

The secondary currents in time-averaged flow filed are presented in Fig. 7.15 (for the
sections perpendicular to main stream flow direction and across the dead-zone, T-T ) and in Fig.
7.16 (for the longitudinal sections of the dead-zone, S-S). The sectional locations are shown in
Fig. 7.15(a) for T-T sections and in Fig. 7.16 (a) for S-S sections. In the figure, Surface and
corner circulation cells near the boundaries of dead-zone are clearly depicted. Although, several
circulation cells are observed at the middle of dead-zone in T,-T, section with the size equal to
the depth, the circulation cell/cells near the interface region are found to be much stronger and
seems to be a general feature of the dead zone flow (as it is seen in all the T-T sections).

Flow field with higher water depth and smaller grid size may give a better and improved

presentation of secondary flow in such a complicated flow field.
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7.5 Summary

The flow field in an open channel with a rectangular side cavity is investigated by
three-dimensional unsteady RANS computations. The time averaged flow properties and
temporal change of velocity profiles are well compared with previous experimental results. It is
found that the flow in a dead zone is characterized by three types of flow phenomena: the
circulation inside the dead-zone, periodic coherent vortices at the interface of main stream and
dead zone, and the water surface oscillation inside the dead zone. In this study all these
characteristics are successfully reproduced by numerical simulation.

It is denoted that the instability vortex generated at upstream corner of interface moves
downstream with gradual amplification with time that finally merges with the dead-zone
circulation at the downstream corner. The process continues repeatedly with a constant periodic
interval.

The temporal variation of water surface shows a depressed water depth at the center of
coherent vortices. This hollow of the free surface moves downward with time along the
interface, as observed in the movement of large vortices in vector plots.

In the calculated result, a periodic change in depth difference between upstream and down
stream end of dead zone indicates the existence of oscillation in the cavity. The period of
oscillation is found same as that of instability vortex.

It is observed that, each cycles of velocity variations consists two components of
oscillations. The long one is due to seiche and has a time period of 0.75 sec. The period of short
oscillation component is about 0.15-0.25 sec and caused due to instability vortices. This
phenomenon is also reported in previous experimental observations.

Although the depth of the calculated flow field is small, strong secondary currents are

found to be generated at inside the dead zone as well as near the interface area.
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Chapter 8
CONCLUSIONS

8.1 Summary of the findings

The standard 4—¢& model has the deficiency of predicting the flow field with high rate of
strain and rotation due to its isotropic assumption of eddy viscosity. Therefore, a second order
non-linear &-& model is proposed incorporating some new functions for the model coefficients to
explore the model applicability to complex turbulent flows. Firstly, the refinements are proposed,
and model constants are turned considering some basic turbulent flows. Considering theoretical
approach, the analytical solutions are derived for predicting the turbulent properties of these
flows. After that, numerical simulations are carried out for several complex turbulent flows
governed by coherent vortices, secondary circulation as well as water surface oscillations. The
findings of this research are summarized below headed with sub-topics.

I. Refinement of the model

Considering the realizability principle and anisotropy of turbulence for some baseline
turbulent flows, the coefficient of eddy viscosity (c,) and the coefficients of non-linear quadratic
terms (cp) are derived as a function of strain and rotation parameters. The simple shear layer,
plane strain, axisymmetric contraction and axisymmetric expansion are considered as baseline

flows to tune the model constants. It is observed that, both for shear straining and normal
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straining, the predicted normal stress separation is realistic, and the realizability is maintained
even at high strain rates.
IL. Round jet with and without swirl

Approximate solutions for the fundamental properties of swirl and non-swirl jets are derived
based on the non-linear k&~ model. The approximate solutions are compared with the previous
experimental results and further tuning of model constants are performed for best fitted
comparison. The solutions of standard i—& model is also presented. Reasonably, the non-linear
model showed better comparison than standard one.

III.  Turbulent structures in a coherent vortex

Based on the proposed non-linear k—& model, approximate solutions are derived for the
turbulent properties of an idealized vortex street to explore the predictability of the model for
large scale vortices. The spatial changes of turbulent structures with the singular points in a
coherent vortex are investigated. The qualitative results are compared to previous experiments
to assess the models applicability.

The Stuart vortex, which contains both vortex and saddle patterns in its vorticity contour, is
considered as an ideal simple vortex street. The turbulent structures at vortex center and saddle
point obtained by approximate solution are found consistent with the previous experimental
results of large scale coherent vortices in free shear flows. The turbulent structures of the vortex
street are found sensitive to the functional form of the coefficient of eddy viscosity, c,.

The turbulent structures are found to be changed with the spatial distance depending on the
structures of singular points. It is observed that the turbulent normal stresses show elliptical
structure near vortex center, which changed to hyperbolic profile near saddle point at a
stream-wise periodic distance of m. However, the shear stresses show hyperbolic structures at
vortex center, and the structure changes to elliptical at saddle point.

The topological change of turbulent kinetic energy and dissipation rates with stream-wise

spatial distance are found to be similar to turbulent normal stresses.
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IV. Compound open channel flows

The flow field in a compound channel is generated using standard as well as non-linear k- ¢
models both including and omitting the horizontal vortices. The numerical results are assessed
from the view point of coherent structures, such as horizontal vortices at the interface of
subsections and secondary current of second kind. The predicted discharges by different models
are compared and the contribution of eddy viscosity and quadratic term in non-linear model is
evaluated. Comparing the predicted roughness coefficients with previous experimental results as
well as with other methods, the contribution of vortices and secondary currents to the prediction
of roughness coefficients are quantified.

The velocity and shear-stress profiles are found to be distorted significantly due to the
generation of coherent vortices at the interface of main channel and flood plain. It is observed
that the velocity and shear stress values are under-predicted near the interface region, if the
momentum transfer due to horizontal vortices is not considered. The well agreed profiles are
obtained when the effects of vortices are taken into account.

In the prediction of secondary current, although the pairs of surface vortices as well as the
corner vortices in main channel are clearly depicted by both the non-linear models, the 3rd order
model shows superior comparison with experiments than 2nd order model. It is seen that the
magnitude of upwelling secondary currents at the interface are suppressed by the influence of
flows caused by the coherent vortices. The secondary currents for higher depth ratios (H/h) are
found higher in magnitude compared to lower depth ratios. It is observed that with increasing
the flood plain depth, the scales of surface vortices are increased. The magnitude of secondary
currents also increases significantly with the flood plain depth.

The resistance of compound channel is found to be increased due to the generation of
coherent structures. The numerical result improves the prediction of compound resistance
coefficient by about 21% over the separate channel method, where the vortices contribute about
half of that and the rest is due to secondary currents and associated three-dimensional turbulent

structures.
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The turbulent structures in coherent vortices at interface are found to be changed with the
stream-wise distance depending on the structures of singular points. The structures of turbulent
stresses at vortex center and saddle point are found consistent with that of an idealized vortex
street (Stuart vortex) as well as previous experiments of free shear flows.

V. The structure and decay of a turbulent Trailing vortex

The unsteady numerical simulations are performed for an isolated turbulent axial vortex
using standard and non-linear &—& models. Since the rotational effects of vortex are not captured
by a standard &—& model, it predicted extremely rapid and strong turbulence growth and caused a
rapid decay of tangential and axial velocity. However, the non-linear model shows good
agreement with DNS results. For the tangential velocity, the self similarity solution embraces
regions I and II (defined by Phillips) for all the time periods, however region-III collapses in a
single curve only for fully developed flow. Phillips’ model equations for similarity solution of
velocity and circulation profiles are perfectly fitted with the simulated results. Circulation
overshoot is observed in the well grown vortex field. Due to this overshoot, the self similarity
solution seems to be not possible in region II1.

It is observed that the decay rate of axial velocity is much higher than tangential velocity.
Since the vortex takes some time for initial adjustments, the decay rate is small at initial times.
For both the velocities, the high decay rate is seen in intermediate time period. After that the
decay slows down, and the slope of decay proceeds towards minimum.

Five different time periods are observed in the growth/decay profile of turbulence kinetic
energy. Initially the vortex changes very slowly, then an exponential growth is seen that slows
down before gaining its peak value. The peak value of turbulent kinetic energy remains about
constant for a short period that finally follows the period of turbulence decay.

After the maturity of vortex, the turbulent normal stresses show two types of anisotropic
behavior depending on the radial distance. Although the radial component is always greater than

other two, the tangential component is greater near the center and smaller around the region of
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maximum tangential velocity in comparison to axial component. The decay rate of energy after
the period of stabilization is much slower than the growth rate in the time zones before the
stabilization. The decay of velocity field slows down as the turbulence decay period starts.

The result reveals that the rate of temporal decay in tangential velocity increases with
decreasing the swirl number q. Therefore, if no axial velocity is present in the flow field, which
is the situation for q = o, the decay of tangential velocity with time should be smaller compared
to the vortex field with axial velocity.

3D numerical simulation is carried out for an ideal Rankine vortex using both RANS and
LES. For the case of trailing vortices, the axis of rotation is horizontal. However, in this 3D
simulation, the vortex flow field is given to rotate with the vertical axis in a free surface
rectangular domain. The prediction of vortex decay by RANS model shows good agreement
with LES. The water surface found to be depressed near the central area of the vortex with a
minimum water depth at center of it. Since the strength of vortex decreases due to the decay of
tangential velocity, the depth of depression in water surface is also decreased with time.

VI.  Open channel flow with a rectangular side cavity

The flow in a dead zone is characterized by three types of flow phenomena: the circulation
inside the dead-zone, periodic coherent vortices at the interface of main stream and dead zone,
and the water surface oscillation inside the dead zone. In this study all these characteristics are
successfully reproduced by numerical simulation.

It is found that the instability vortex generated at upstream corner of interface moves
downstream with gradual amplification with time that finally merges with the dead-zone
circulation at the downstream corner. The process continues repeatedly with a constant periodic
interval.

The temporal variation of water surface displays a depressed water depth at the center of
coherent vortices. This hollow of the free surface moves downward with time along the
interface, as observed in the movement of large vortices in vector plots. A periodic change in

depth difference between upstream and down stream end of dead zone indicates the existence of
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oscillation in the cavity. It is observed that the period of oscillation is same as that of instability
vortex.

It is found that, each cycles of velocity variations consists two components of oscillations.
The long one is due to seiche and has a time period of 0.75 sec. The period of short oscillation
component is about 0.15-0.25 sec and caused due to instability vortices. This phenomenon is

also pointed out in previous experimental observations.

8.2 Recommendation for Further Studies

Based on the analysis and results of the worked out problems as well as comparison of
results with previous investigations, the following works are recommended for future studies
concerning the further knowledge about the investigated problems.

In this study, all the analytical and numerical investigations are mainly based on a 2nd order
non-linear k—¢ model. A 3rd order model is also used in Chapter 5 as a trial case. It is observed
that the secondary current predicted by 3rd order model is slightly better than the 2nd order.
Detail investigations are necessary to estimate the coefficients of third order terms for further
improvement of the model.

For the simulation of Rankine vortex, a Cartesian coordinate system is used in this study. A
Cylindrical coordinate instead of Cartesian may give a better presentation of the flow field.

Flows in an open channel with a rectangular dead zone is studied for only one case.
However, the change of hydraulic parameters such as Froude number, aspect ratio of the dead
zone is necessary for better understanding of such a complicate flow field. The water surface
oscillations found in the present 3D modeling is slightly smaller than the prediction of 2D
model (Kimura & Hosoda, 1997). Although, such problem of 3D simulation is reported in
previous researches (Kimura et. al., 2006), further study is required to identify the reasons

behind this problem.
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