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i

Preface

   This doctoral thesis is written on graph algorithmic approaches for structure infer--

ences in bioinfbrmatics. Since the double helix structure of DNA was first published

by J. Watson and F. Crick in 1953, molecular biology that is the study of biology at a

molecular level has been greatly developed. However, the drastical increase of gotten

data caused that computer calculations became essential to inferring their biological

meanings. Especially, the human genome that was completed to map down to the base

pair level by the Human Genome Project (HGP) in 2003 consists of 3 billion base pairs.

It is no doubt that theoretical construction of robust algorithms is necessary for these

computer calculations with vast data. Since graphs are data structures to represent

whether there is a specified relation between two objects or not, using graphs is one of

the most practical modeling methods in order to infer biological meanings from gotten

data. Then, effective graph algorithms play great roles in inferring various structures

in bioinformatics.

   The research after decoding of genomes is c'alled post-genome, However, it is still

important to sequencing new genomes. In order to research biological meanings of

base-pairs, objects of sequencing are needed to extend to specified structures. Our first

research is to infer probe orders with using PQ-trees as fo11ows: In STS-based mapping,

it is necessary to obtain the correct order of probes in a DNA sequence from a given

set of fragments or an equivalently a hybridization matrix A. It is well-known that the

problem is formulated as the combinatorial problem of obtaining a permutation of A's

columns so that the resulting matrix has a consecutive-one property. If the data (the

hybridization matrix) is error free and includes enough information, then the above

column order uniquely determines the correct order of the probes. Unfortunately this

does not hold if the data include errors, and this has been a popular research target in

computational biology. Even if there is no error, ambiguities in the probe order may

still remain. This in fact happens because of the lack of some information regarding the

data, but almost no further investigation has previously been made. In this research,

we define a measure of such imperfectness of the data as the minimum amount of the

additional fragments that are needed to uniquely fix the probe order. Polynomial-time

algorithms to compute such additional fragments of the minimum cost are presented.

A computer simulation using genes of human chromosome 20 is also noted.

In the research mentioned above, the measure of the imperfectness is the number
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of the additional fragments that are needed to uniquely fix the probe order. However,

there is a possibility that better measures exist. In our second research, we define an

other measure of imperfectness and construct polynomial time algorithms that calculate

minimum fragment sets. The second measure of imperfectness is the total length of the

additional fragments that are needed to uniquely fix the probe order. We also mention

cases that additional fragments are restricted to sub-fragments of existed fragments,

and that the lengths of additional fragments are limi~ed to 2.

Mendel's law, that was the trigger for the birth of genetics, was published in 1865.

Needless to say, every individual has two parents in this law. In the third research,
we infer this data structure that we call a pedigree graph. If every individual has only

one parent, the data structure becomes an extended phylogenetic tree. A phylogenetic
tree is a tree data structure which shows evolutionary interrelationships among species
which are believed to have a common ancestor. On the other hand, pedigrees can be
regarded as more informed phylogenetic trees. Phylogenetic trees can be represented
by directed trees, whereas pedigrees are represented by directed acyclic graphs whose
indegrees are at most two. In this research, we deal with a problem of enumerating

all pedigrees which satisfy a given matrix of genetic distances between all pairs of n
nodes. We show that the number of output pedigrees may be exponential, but they can
be represented by one directed graph with n nodes. Moreover, O(n3 ) time algorithm
which solves the problem is also given.

Although the Human Genome Project completed to decode human genome that
consists of 3 billion base pairs, the biological meanings of the sequences are not revealed

enough. We believe that our inferring algorithms would be of some help for revealing the
biological meanings of genomes. And, we also hope that every post-genome research in

the world would be supported by efficient algorithms that are constructed with robust
theory.

January, 2006
Takeyuki Tamura
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Chapter 1

Introduction

It is no doubt that theoretical construction of robust algorithms is necessary for com-

puter calculations with vast data such as the human genome. Since graphs are data

structures to represent whether there is a specified relation between two objects or not,

using graphs is one of the most practical modeling methods in order to infer biolog-

ical meanings from gotten data. Then, effective graph algorithms play great roles in

inferring various structures in bioinformatics.

   Our first research is to infer probe orders with using PQ-trees. A PQ-tree T consists

of P-nodes denoted by circles, Q-nodes denoted by rectangles, and leafnodes. P(T)

denotes a set of permutations of leagnodes that is defined by the following rules: (i)

Children of a P-node may be arbitrarily permuted. (ii) Children of a Q-node must be

consecutive but may be arranged in reverse order.

   A pedigree, in which every individual has two parents, is one of the most essen-

tial data structures in research of bioinformatics. However, it seems that there has

been almost no research about inferring pedigrees from theoretical and algorithmic

approaches. In this thesis, we infer this data structure, that we call a pedigree graph.

If every individual has only one parent, the data structure becomes an extended phy-

logenetic tree. A phylogenetic tree is a tree data structure which shows evolutionary

interrelationships among species which are believed to have a common ancestor. On

the other hand, pedigrees can be regarded as more informed phylogenetic trees. Phy-

logenetic trees can be represented by directed trees, whereas pedigrees are represented

1
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by directed acyclic graphs whose indegrees are at most two. In this research, we deal

with a problem of enumerating all pedigrees which satisfy a given matrix of genetic

distances between all pairs of n nodes. We show that the number of output pedigrees

may be exponential, but they can be represented by one directed graph with n nodes.

Moreover, O(n3) time algorithm which solves the problem is also given.

   The overview of this thesis is as follows: In Chapter 2, we define a measure of

imperfectness of PQ-trees as the minimum amount of the additional fragments that

are needed to uniquely fix the leafnode order. Polynomial-time algorithms to compute

such additional fragments of the minimum cost are presented. A computer simulation

using genes of human chromosome 20 is also noted.

   STS-based mapping is one of the most popular techniques for physical mapping

of DNA sequences. In this procedure, a DNA sequence S is cloned into many copies

and these are then cut into smaller, overlapped subsequences called ftagments. An

STS (sequence-tagged site), also called a probe, is used as a marker; each probe is

supposed to appear at a unique position in the entire DNA sequence S. We are given

a hybridization matrix, an HLmatrix in short, A = (aij) such that aij = 1 if probe

pj exists in fragment ft and atj･ = O otherwise. Our goal is to compute the order of

probes P :{pi,...,p.} in the original DNA sequence S from the given H-matrix A.

It is well-known that this can be formulated as the following combinatorial problem:

Given an H-matrix, obtain a permutation of the columns so that the resulting matrix

has the so-called consecutive-one property, i.e., all ls are consecutive in each row of the

matrix.

   We consider the problem that for a given H-matrix, obtain the minimum amount

of additional fragments such that there is only one order of columns for the augmented

H-matrix to have the consecutive-one property. There is an issue that should be taken

into consideration, that is, the minimum amount of fragments differs according to the

order of the probes to be selected as the unique one among possible different orders.

   Our main result is to provide polynomial-time algorithms that compute (1) for a

given H-matrix having a consecutive-one property, the minimum number of additional

fragments that are suMcient to fix the probe order to the current order (i.e., the order

of the columns in the given H-matrix), (2) for a given H-matrix not necessarily having

a consecutive-one property, the minimum number of additional fragments suflicient to
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uniquely fix the probe order (but the order itself may be arbitrary) so that the aug-

mented H-matrix has a consecutive-one property. We also note a computer simulation

using genes of human chromosome 20.

   In Chapter 3, we define another measure of imperfectness and construct polynomial

time algorithms that calculate minimum fragment sets. The second measure of imper-

fectness is the total length of the additional fragments that are needed to uniquely

fix the probe order. This measure sometimes conflicts to the first measure, that is

the minimum number of additional fragments. Moreover, the idea of edges cannot be

used in this measure any longer. We also mention cases that additional fragments are

restricted to sub-fragments of existed fragments, and that the lengths of additional

fragments are limited to 2.

   In Chapter 4, we deal with a problem of enumerating all pedigrees which satisfy

a given matrix of genetic distances between all pairs of n nodes. We show that the

number of output pedigrees may be exponential, but they can be represented by one

directed graph with n nodes. Moreover, O(n3) time algorithm which solves the problem

is also given.

   A phylogenetic tree is a tree showing the evolutionary interrelationships among

various species or other entities that are believed to have a common ancestor. Since

a phylogenetic tree doesn't include cycles, it cannot represent recombinations, that is,

there are no vertices whose indegrees are more than one. Vertices of phylogenetic trees

represent species. However, there are a huge number of individuals in each vertex and

they have blood relationships each other. If all individuals are represented by vertices,

indegrees of vertices should be two. However, since the number of individuals is finite,

there must be a node whose indegree is one or zero. Moreover, there is a possibility

that the number of vertices which don't have in-edges is more than one. Then, in this

chapter, we discuss problems to infer directed graphs whose indegrees are at most two

(We call them pedigree graphs). When genetic distances between any two individuals

are given, we discuss problems (i) to enumerate all pedigree graphs which satisfy a

given genetic distances. (ii) to validate whether there is a contradiction or not between

a given distances and a given pedigree graph.

Finally, Chapter 5 concludes this thesis.



Chapter 2

Imperfectness of Data for

STS-Based Physical Mapp .

Ing

2.1 Introduction

STS-based mapping is one of the most popular techniques for physical mapping of

DNA sequences. In this procedure, a DNA sequence S is cloned into many copies

and these are then cut into smaller, overlapped subsequences called fragments. An

STS (sequence-tagged site), also called a probe [55], is used as a marker; each probe

is supposed to appear at a unique position in the entire DNA sequence S. We are

given a hybridization matrix, an H-matrix in short, A = (aij･) such that aij = 1 if probe

pj exists in fragment ft and aij = O otherwise. Our goal is to compute the order of

probes P=={pi, . . . ,p.} in the original DNA sequence S from the given H-matrix A.

It is well-known that this can be formulated as the following combinatorial problem:

Given an H-matrix, obtain a permutation of the columns so that the resulting matrix

has the so-called consecutive-one property, i.e., all ls are consecutive in each row of the

matmx.

   The problem can be solved in Iinear time by using the famous data structure called

PQ-trees [13]. Unfortunately, there are several kinds of errors involved in experiments,

which makes the data, H--matrices in our case, imperfect. Typical errors include the

case that (i) an entry of the H-matrix changes from O to 1, and vice versa, and that (ii)

5
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two fragments, which are not consecutive in the DNA Sequence, are put together into

a "chimeric" fragment [5, 9, 19, 20, 40, 47]. In the presence of such noises, we can no

longer use PQ-trees; the problem now becomes one of several optimization problems

due to different assumptions of the noises. Not surprisingly, they are NP-hard in most

cases [5, 10, 19, 20, 30, 33,48].

Even if there are no such errors, there may still remain ambiguities in the probe

order. See for example Fig. 2.1 (a), which illustrates an example of an H-matrix

consisting of six fragments (rows) II to 16, and ten probes (columns) A to J. By
exchanging columns, the matrix can be transformed into the matrix in Fig. 2.1 (b)

which satisfies the consecutive-one property, (i.e., each row has a single block of con
secutive ones). However, one can see that there are several other orders ofthe columns,
say EGBFIADHCJ, which also achieve a consecutive-one property. Thus we cannot
uniquely fix the order of probes from the requirement of the consecutive-one property
in the case of this H-matrix, which is obviously due to the imperfectness of the data.

There are few reports mentioning the existence of this fact, e.g., [37, 57], but no further
investigation followed.

In this chapter, we propose a measure of such imperfectness in H-matrices. Recall
that the imperfectness is due to the lack of information. For example, if we add two
extra fragments to the H-matrix of Fig. 2.1 (a) as in Fig. 2.1 (c), then the order of
probes is now uniquely determined as shown in Fig. 2.1 (d). Thus the amount of
additional fragments needed to uniquely fix the probe order looks closely related to the
degree of the imperfectness. It appears convenient to know this quantity for conducting
STS-based physical mapping.

More formally we consider the problem that for a given H-matrix, obtain the min
imum amount of additional fragments such that there is only one order of columns for

the augmented H-matrix to have the consecutive-one property. There is an issue that

should be taken into consideration, that is, the minimum amount of fragments differs

according to the order of the probes to be selected as the unique one among possible
different orders. For example, we needed two additional fragments in Fig. 2.1 (d), but

three additional fragments are needed to fix the column order as BGEAIDHCFJ shown

in Fig. 2.1 (e).

Our main result is to provide polynomial-time algorithms that compute (1) for a
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Figure 2.1 : Permuting the (O,1)-matrix gotten by the experiment

given H-matrix having a consecutive-one property, the minimum number of additional

fragments that are suficient to fix the probe order to the current order (i.e., the order

of the columns in the given H-matrix), (2) for a given H-matrix not necessarily having

a consecutive-one property, the minimum number of additional fragments suflicient to

uniquely fix the probe order (but the order itself may be arbitrary) so that the aug-

mented H-matrix has a consecutive-one property. We also note a computer simulation

using genes of human chromosome 20.

   As mentioned,

by using PQ-trees

if data are perfect, then the problem can be solved in linear time

[13]. Several possibilities of errors have been investigated including
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obtaining a sub-matrix that has a consecutive-one property [29, 34], obtaining most

likely probe orders in the presence of a false position and false negative hybridization

errors using a different data structure [20, 56], using the LP-relaxation for optimizing

the most-likely probe order [40], and exploiting the fact that each probe occurs at a
unique position by utilizing a more sophisticated way to handle errors such as chimeric

fragments [5]. Also see [9, 10, 19, 47, 77] for related work including parallelization of
the construction of PQ-trees [7].

There are various types of data that are used as inputs of problems including

mapping by non-unique probes [4, 60], mapping by unique probes [5,30,40]' mapping
by unique end-probes [19], mapping by non-overlapping probes [20], mapping from
restriction-fragment length data [23, 44], radiation-hybrid mapping [10, 68], optical
mapping [46, 50, 62], and a maximum-likelihood approach for the sampling-without
replacement protocol [47]. There are many probabilistic analyses of various approaches

[8, 49, 77, 78, 80] A wide variety of techniques have been suggested including greedy
algorithms [60], simulated annealing [4, 5, 61,74]' linear programming [19,20,40]' and
semidefinite programming [17].

2.2 PQ-trees

PQ-trees are a convenient data structure for our problem. Fig. 2.2 shows an ex
ample of a PQ-tree. A PQ-tree T consists of P-nodes denoted by circles, Q-nodes

denoted by rectangles, and leaf-nodes. P(T) denotes a set of permutations of leaf
nodes that is defined by the following rules: (i) Children of a P-node may be ar

bitrarily permuted. (ii) Children of a Q-node must be consecutive but may be ar
ranged in reverse order. For example, let To be the PQ-tree in Fig. 2.2. Then

P(To)={BGEJAIDHCJF, EGBJIADHCF, .. .}. Two PQ-trees T and T' are said
to be equivalent if P(T) = P(T').

There is a linear-time algorithm [13] that constructs a PQ-tree T from H-matrix A
such that (i) T's leaf-nodes correspond to columns of A and (ii) A has a consecutive

one property if A's columns are rearranged into an order in P(T). (If A cannot be

rearranged into any matrix having a consecutive-one property, then the algorithm can

detect it. If A is an H-matrix, this does not happen unless A includes errors.) Although
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Figure 2.2: After adding fragment 5
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Figure 2.4: Making a 1Q-tree

details are omitted, the algorithm constructs a target PQ-tree by transforming PQ-trees
step-by-step beginning with a PQ-tree of a single P-node. In each step, a row of the

H-matrix is selected and the PQ-tree changes so that the constraint from that row is
added by the templates shown in the appendix. For example, from the H-matrix in

Fig l(a), we can construct the associated PQ-tree as shown in Fig. 2.3 by selecting

rows II through 16 in each step. Note that the final PQ-tree is the same as To in
Fig. 2.2 and P(To) includes several different orders as mentioned before. For example,

BGEJAIDHCF in P(To) corresponds to the H-matrix in Fig. 2.3 (b) which has a

consecutive-one property.

If we add two new rows (fragments) 17 and is as in Fig. 2.1 (c), then the PQ-tree

is furthermore changed as in Fig. 2.4 and the final PQ-tree consists of a single Q-node.

(Such a PQ-tree is called a 1Q-tree.) This means that the probe order is uniquely fixed

(without its reverse order) by adding two extra fragments, which is exactly what we
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wanted to do. Thus our problem can be restated as follows.

   Problem FIX(T, a, tt): For a given PQ-tree T (made from H-matrix by the algo-

rithm of [13] ) and a probe order (leaf order) a, obtain a set of additional fragments of

a minimum cost such that T will change into a IQ-tree of leaf order a.

   If a is not given then the problem is denoted by FIX(T, -,#) which requires that

a set of additional fragments of a minimum cost be obtained to change T into some

IQ-tree. As the cost of a fragment set, we consider the size of the fragment set, i.e.,

the number of fragments. .

2.3 TemplatesofPQ-trees

The method in [13] that makes a PQ-tree from an H-matrix is as foIIows:

begin

   e 1: Make a universal tree that has as many elements as columns. A universal tree

     has a single P-node for its root and leaves for every elements.

   . 2: Repeat the following procedures for every row of the matrix.

       - 2-1: Put "Full" to leaves that are assigned 1. Put "Null" to leaves that are

         assigned O. '
       - 2･-2: Repeat the fbllowing procedures from leaves to the root.

           * 2-2-1: Put nodes "Full", "Null" or "Partial" according to the fbllowing

             definitions.

           * 2-2-2: Choose a template shown below.

             If any templates can't be applied, inputs are wrong and return an error,

            i.e., there is no feasible permutation.

end

   Definitions of "Null", "Full" and "Partial" are as fo11ows.
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Figure 2.5: Templates for PQ-trees
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NULL: There are no "Full" nodes in the subtree whose root is the current node.

FULL: The nodes in the subtree whose root is the current node are all "Full".

PAR[['IAL: The node is neither "Null" nor "Full".

   Instructions for the templates are as fo

A blank triangle means a Null node.

llows. A hatched triangle means a Full node.

Template PO, Pl The templates for a P-node that has no partial child nodes. The

     template PO is for a P-node whose child nodes are all "Null" . When the template

     PO is applied, the P-node is assigned "Null".

     The template Pl is for a P-node whose child nodes are all "Full". When the

     template Pl is applied, the P-node is assigned "Full" . In PO and Pl, the PQ-tree

     isn't transformed.

Template P2,P3 The templates for a P-node that has no partial child nodes. If there

     is no "Full" node outside of the subtree whose root is the current P-node, the

     template P2 is applied. The tree is transformed like in Fig. 2.5 (a).

     If there is a "Full" node outside of this subtree, the template P3 is applied. In

     these two cases, The PQ-tree is transformed. The tree is transformed like in Eig.

     2.5 (b).

[[lemplate P4,P5 The templates for a P--node that has only one "Partial" child node.

     If there are "Full" nodes outside of the subtree whose root is the current P-node,

     the template P4 is applied. The tree is transformed like in Fig. 2.5 (c).

     If there is a "Full" node outside of this subtree, the template P5 is applied. The

     tree is transformed Iike in Fig. 2.5 (d).

Template P6 The template for a P-node that has two "partial" child nodes. The

     tree is transformed Iike in Fig. 2.5 (e).

Tbmplate QO, Ql The template fbr a Q-node that has no partial child node. The

     template QO is for a Q-node whose child nodes are all "Null" . When the template

     QO is applied, the Q-node is assigned "Null".
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The template Q1 is for a Q-node whose child nodes are all "Full". When the

template Q1 is applied, the Q-node is assigned "Full". In QO and Q1, the PQ

tree isn't transformed.

Template Q2 The template for a Q-node that has only one partial child node. The

tree is transformed like in Fig. 2.5 (f).

Template Q3 The template for a Q-node that has two partial child nodes. The tree

is transformed like in Fig. 2.5 (g).

2.4 Minimizing the Number of Additional Fragments

In this section, we first discuss minimizing the number of additional fragments for
F I X(T, (7,~) (i.e., the probe order is to be fixed to (7 which is explicitly given) and
then for FIX (T, -,~) (to be fixed to an arbitrary order).

2.4.1 FIX(T,a,~)

Suppose that the PQ-tree is given so that the leaves are arranged in the order (7 =
PIP2 ... Pn of length n. Then we consider n+1 different positions, denoted by (- ,PI), (PI, P2),

... , (Pn-I,Pn), and (Pn, -). Thus, a position means a "between" of two consecutive
probes or the left (right) of PI (Pn)' A position denoted by (Pi,Pi+I) is called an inside

position, (-, PI) and (Pn, -) an outside position. See Fig. 2.4 again. An additional
fragment should have a consecutive sequence of probes, EJAIDH for example for the
first added fragment in Fig. 2.4, which can be designated by giving two positions,

its left end-position and right end-position ((G,E) and (H,C)) in the example). We
sometimes say that a fragment is terminated by its (left and/or right) end-positions.

In Fig. 2.4 (a), we selected two positions (G,E) and (H,C) to terminate the first

additional fragment. As can be seen later, this selection of (G,E) and (H,C) contributes

to efficiently converting the PQ-tree into the final 1Q-tree. Thus among all positions,

there are some "important" positions for our purpose. We call such positions "edges,"

since using these important positions as edges of additional fragments plays a major

role in minimizing the number of additional fragments. Edges are divided into three
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types and can be defined as follows: A position (x,y) is called (i) an Inside-P-type

edge if probes x and y are children of a single P--node, (ii) an Outside-P-type edge if

probe x (or y) is - and it is a child of the root P-node, (iii) a Q-type edge if both x

and y belong to a single Q-node which is not a root Q-node and which includes only

leafnodes. In Fig. 2.4 (a) for example, (A,I) is Inside-P-type, (F,-) is Outside-P-type

and (G,E) is Q-type. It should be noted that if we appropriately select two edges to

terminate an additional fragment, like (G,E) and (H,C) in Fig. 2.4 (a) then those two

edges `tdisappear" in the transformed PQ-tree ((G,E) or any other Q-type edge for the

Q-node BGE). Thus the key point is how to select such appropriate edges fbr additional

fragments.

   By definition, (B,G) is also a Q-type edge for the same Q-node. However, we only

need one Q-type edge for a Q-node for the fixing operation. In this case, {(B,G), (A,I),

(H,C), (F,-)} or {(G,E), (A,I), (H,C), (F,-)} is the edge set that should be used by the

fixing operation. Then, we say the number of edges that should be used by the fixing

operation is four in Fig. 2.4 (a).

Lemma 2.1 A PQ-tree includes no edge of and only of it is a le-tree.

Proof If a PQ-tree has two internal nodes, there is at least one edge by the definition.

If a PQ-tree has only one internal node and if it is a P-node, it includes at least one

P-type edge from the definition. D

Lemma 2.2
to terminate

Fbr any solution of FIX(T, q #),

additional .fragments.

every edge must be selected at least once

Proof

   e Inside-P-type:

    Assume that an Inside-P-type edge is not used to terminate additional fragments

    in a fixing operation and the IQ-tree is gotten. Since the probe order is not

    changed in FIX(T,o,n), the Inside-P-type edge never disappear. Then, this

     IQ-tree has an edge. It is a contradiction. Thus, Inside--P-type edges must be

    selected to terminate additional fragment in fixing operations.
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• Q-type:

Assume that Pi and PHI are leaves and that the parent node of Pi and PHI is
the same Q-node. Since we can assume that the given PQ-tree is not a 1Q-tree,

the position (Pi,PHd is the Q-type edge from the definition. At this point, the

PQ-tree has at least 2 internal nodes. If any (Pi, PHI) is selected to terminate

additional fragments in a fixing operation, the number of internal nodes does not

become 1. Thus, Q-type edges must be selected to terminate additional fragment

in fixing operations.

• Outside-P-type:

Suppose that the root of the given PQ-tree is a P-node and Pn (PI) is the rightmost

(leftmost) probe. Since the proof for Pn can be applied for PI, we discuss only

about Pn. If Pn is a child node of the root P-node, the position (Pn, -) is an

Outside-P-type edge from the definition. Suppose that the position (Pn, -) is

not selected to terminate additional fragments in a fixing operation and the lQ

tree is gotten. Although the probe order of the 1Q-tree must be PIP2 ... Pn in

FIX (T, (T, ~), there is a possibility that the probe order is PnPIP2 ... Pn-I. Then,
it is a contradiction. Thus, Outside-P-type edges must be selected to terminate

additional fragment in fixing operations.
o

In Fig. 2.4, the first additional fragment is terminated by edges (G,E) and (H,C).

After adding this fragment, edges 1 and 2 disappear. However, we cannot say that

every edge always disappears when a fragment terminated by the edge is added. For

example, if the first additional fragment is terminated by (A,I) and (H,C), two Inside-P

type edges seem to disappear. However, because (A,I), (I,D), (D,H) and (H,C) become

Q-type edges, the number of edges which are disappeared by this additional fragment

is actually only one. In Fig. 2.4 (a), edges 1 and 2 have another edge, edge 3, between

them. In fact, both edges always disappear in such a case as shown in the following

lemma.

Lemma 2.3 Suppose that a PQ-tree TI has two edges el and e2, and T I is transformed
into T2 by adding the fragment terminated by el and e2. Then (i) at least one of el and
e2 disappears in T2 and (ii) if there is another edge, say e3, between el and e2, then
both el and e2 disappear in T2 (iii) Furthermore no new edges are created.
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Figure 2.6:Anadditional fragment terminated by ei and e2

Proof Let v be the lowest common ancestor of ei and e2. Let vi be the internal node

which is an ancestor of ei and a child of v. Let v. be the internal node which is an

ancestor of e2 and a child of v. Let li be the leftmost probe included in the subtree

whose root is vi. Let l, be the rightmost probe included in the subtree whose root is

v.. (See Fig. 2.6)

   By examining all templates for transformation of PQ-trees in each step defined in

[13], property (iii) can be proved. Assume that a fragment terminated by ei and e2 is

added and only one of the two edges disappear. By examining all templates of [13], it

can be proved that there are only the following two cases.

e Whenv is aP-node and there is not another edge except for ei and e2 in the

  position set between li and l., (If there is another edge, two edges disappear.)

e When v is a Q-node and there is not another edge except for ei and e2 in the

  positions included by the subtree whose root is v. (If there is another edge, two

  edges disappear.)

Hence, (i) and (ii) are shown.
o

   By using Lemma 2.3, we can remove two edges by adding one fragment, and thus

we can show that the number of necessary additional fragments for a fixing operation

is about a half of the number of edges. Note that, there must be at least three edges
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Figure 2.7: A PQ-tree in which ~ + 1 additional fragments are necessary
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I ••• .. •••• .. 1

Figure 2.8: One step before the lQ-tree

in order to apply Lemma 2.3. In fact, there exists a case that there are only two

edges, and two fragments are needed. As the result ofthis, there exists a PQ-tree that

has e edges and r~l + 1 additional fragments are needed. The PQ-tree in Fig. 2.7

is an example of this; it becomes the PQ-tree of Fig. 2.8 after adding r~l fragments
terminated by two.

In other words, when the number of edges is even, there are two cases, i.e., the

minimum numbers of additional fragments are ~ and ~ + 1. We can distinguish them
by using a simple characterization, as in the following theorem.

Theorem 2.1 Let e be the number of edges and n be the number of probes of (T, (J, ~).

The minimum number of additional fragments for FIX (T, O',~) is shown as follows:

1. 'When e is odd: e~l.

2. When e is even:

2-1. When the root node is a Q-node and there is only one internal child node of

the root: ~ + 1.

2-2. Otherwise: ~.

Moreover, a fragment set with the minimum number of additional fragments for

FIX(T,O',~) can be found in O(n3 ) time.
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For proving the theorem, we introduce the following Iemma.

Lemma 2.4 Consider a Pe-tree (T,a, tt) that includes at least three edges and does

not satiop the condition of 2-1 in [Z-7Leorem 2.1. 7H7iere exists a fragment satisLiving

the condition ofLemma 2.ge (ii? sttch that the resultant PQ-tree (T',a, tt) also does not

satistZt the condition of 2-1 in Theorem 2.1 ajter adding the fragment.

Proof of TheoTem 2.1.

e When e is odd:

  From Lemma 2.3 (ii), two edges can be decreased by adding one fragment if

  e 2 3. Hence, by iterating this process, only one edge remains after adding

  gE'l!i fragments, A PQ-tree including only one edge must satisfy all of the three

  conditions:

    - The root is a Q-node.

    - Every internal node has at most one internal child node.

    - The lowest internal node (the internal node which does not have an internal

      child node.) is a Q-node.

  It becomes a IQ-tree by adding a fragment.

e Wheneis even:

  By using the same discussion with the odd case above, a PQ-tree including only

  two edges can be obtained by adding g - 1 fragments. From Lemma 2.4, if the
  original PQ-tree does not satisfy the condition of 2-1, then the resultant PQ-tree'

  also does not. Hence, it is suMcient to consider the case where e = 2. It can be

  easily proved by examining all cases.

   Because we consider only the given order of probes, there are O(n2)

transformation by each additional fragment can be done in O(n) time.

fragments. A

N
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2.4~2 FIX(T,-,rt)

The result of Theorem 2.1 can also be used to solve FIX (T, -, ~). That is, FIX (T, -, ~)

can be solved by finding a leaf order (J in which the number of edges is the minimum.

The following Lemma 2.5 shows how to find such (J. In the lemma, v and l mean the

number of internal child nodes and the number of child probes, respectively, of the

noted P-node.

Lemma 2.5 Let al be the number of Q-nodes that don't have internal child nodes. Let

a2 be the total number of max{lll - Ivl - 1,O} for all P-nodes that are not the root.

Let a3 be max{lll -Ivl + 1, O} if the root is a P-node, or 0 otherwise. The minimum

number of edges for FIX(T, -,~) is al + a2 + a3.

It can be proved by definitions of the edges. In Fig. 2.2, the number of edges is
four. If probe J is moved to the space between AIDHC and F, the number of edges

becomes five.

Theorem 2.2 A fragment set for F IX(T, -,~) can be found in O(n3) time, where n

is the number of probes.

Proof It is clear from Lemma 2.3 and 2.5, and Theorem 2.1.

2.5 Computer Experiments

D

We presented algorithms for finding the "minimum" set of fragments that fixes the
order of probes. In this algorithm, the concept of edges introduced by us plays a

major role. For practical use, it may be difficult to make additional fragments as we

want. However, if fragments are concentrated to the part where edges exist densely, the

probability that fragments that our algorithm wants are generated becomes high. In
other words, the probability that edges disappear becomes high and fixing operations

are accelerated.

For example, one concrete method is as follows: We generate some relatively long

sample fragments at random. When the problem is FIX (T, (J, ~), we should find the



2.5. COMPUTEREXPERJMENTS 21

densest fragment that includes more edges than any other sample fragment. When the

problem is FIX(T, -, ti), the numbers of edges included by sample fragments depend

on the probe order. In this case, we adopt their maximum value for measuring the

density. By cloning and cutting the densest fragment, sub-fragments of this fragment

are obtained.･ The sub-fragments will be used as additional fragments. This method

will accelerate fixing operations in comparison with a naive method that randomly

generates additional fragments.

   We validate this method by computer experiments. The thin broken Iine in Fig.

2.9 shows the result of the former method, and the thick solid line the result of the

latter. The former method needs 7729 fragments (the average of 5 other fragment sets)

to decrease the number of edges to ifttT of the initial state. However, the Iatter method

needs only 4473 fragments. The ratio is 1.73.

   Data Used in the Computer Experiment

   Genes of human chromosome 20 are used as probes. We referred to data from

HGREP (http://hgrep.ims.u-tokyo.ac.jp/); however, this site is not available any longer,

though similar data are available from NCBI Human Genome Resources

(http://www.ncbi.nlm.nih.gov/genome/guide/human/). In principle, 2500 base pairs

from the beginning of the coding sequence of each gene are used as a probe. When more

.than 500 base pairs of probe 1' are included by the fragment i, (i,2') of the H-matrix is

L

   We compare the two methods mentioned by observing how the number of edges

decreases. In principle, fragments are generated at random and Their lengths are

normally distributed.

   Let N(pa,a, ti) be a normal distribution in which the mean is pa and the standard

deviation is a. In the computer experiment with the former method, fragments are ran-

domly generated and their lengths are by AI(250000, 50000). In the latter method, sam-

ple fragments are generated at random and their lengths are by N(1000000, 50000). Let

fi be the densest fragment that includes at most ei edges. Let fe be the second densest

fragment that includes at most e2 edges. Additional fragments are sub-fragments of fi

and the lengths are by N(250000,50000). When the number of edges in fi becomes

less than or equal to e2, new sample fragments are taken. We also take new sample

fragments after generating 10 sub-fragments of the densest fragment.
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Figure 2.9: With information of edge-density or not

2.6 Concluding Remarks

For the problem of fixing the probe order of a given PQ-tree, we presented polynomial
time algorithms that minimize the number of additional fragments. We solved not

only the problem of fixing probes in a given order, but also the problem to how to
determine the best order of the probes. By using an idea of "edges", we showed that

the minimum number of additional fragments are r~l or r~l +1, where e is the number
of edges.

For practical use, there is the possibility that H-matrices include errors. Then, a

future work of ours will be to consider STS-based mapping with errors.



Chapter 3

Minimum Fragments for Deciding
Probe Orders for DNA Strands

3.1 Introduction

In Chapter 2, we formulated problems FIX(T, 0", rt) and FIX(T, -, rt). These were
defined as follows:

Problem FIX(T,O",rt): For a given PQ-tree T (made from H-matrix by the algo

rithm of [13] ) and a probe order (leaf order) 0", obtain a set of additional fragments of
a minimum cost such that T will change into a 1Q-tree of leaf order 0".

Problem FIX(T, -, rt): If 0" is not given then the problem is denoted by FIX(T, -, rt)
which requires that a set of additional fragments of a minimum cost be obtained to
change T into some 1Q-tree.

The measure of the cost was the number of additional fragments in the previous

chapter. On the other hand, we discuss about the total lengths of additional fragments

in this chapter. Those two measures sometimes conflict. As a simple example, the

PQ-tree in Fig. 3.1 needs one fragment of length five (i.e., the fragment including

probes H, I, J, K and L) for the fixing operation. The same fixing operation is also

possible by using two fragments of total length four as shown in Fig. 3.2.

23
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I I

the additional fragment

Figure 3.1: The number of fragments = 1

the total length of fragments = 5

I I

--the additional fragments

Figure 3.2: The number of fragments = 2
the total length of fragments = 4

Our main result of this chapter is to provide polynomial-time algorithms for follow

ing problems:

Problem F IX(T, (J', ~): For a given H-matrix having a consecutive-one property,
the minimum total length of additional fragments that are sufficient to fix the probe
order to the current order (i.e., the order of the columns in the given H-matrix),

Problem FIX(T, -, ~): For a given H-matrix not necessarily having a consecutive
one property, the minimum total length of additional fragments sufficient to uniquely
fix the probe order (but the order itself may be arbitrary) so that the augmented
H-matrix has a consecutive-one property.

FIX (T, (J',~) is mentioned in section 3.2.1. FIX (T, -, ~) is mentioned in section
3.2.2. The case in which additional fragments are limited to sub-fragments of existed

fragments in FIX (T, (J',~) is mentioned in section 3.3. Cases in which lengths of addi
tional fragments are limited to 2 in FIX (T, (J'J) and FIX(T, (J',~) are mentioned in

section 3.4.

3.2 Minimizing the Total Length of Additional Frag

ments

3.2.1 FIX(T, (Y,~)

As shown in Fig.s 3.1 and 3.2, the smallness for the number of additional fragments

and the shortness for the total length of additional fragments may conflict each other.
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For a fixing operation, for every edge, there must be at least one fragment terminated

by the edges. However, there is a case that we can shorten the total length by using a
fragment which is terminated by two non-edge positions. The fragment which consists

of KL shown in Fig. 3.2 is an example of this. As shown in this example, "edge" is a

concept related to the number of fragments, and there is scarcely any relation between
edges and the total lengths of fragments.

We propose an algorithm, which scans from the leaves to the root and is based on

a dynamic programming, for this problem. We explain the basic ideas by using simple
examples. Before the explanation, we introduce some notations as follows. A fragment

covers position (i, j) if the fragment includes both i and j. A set F offragments covers
a set P of consecutive probes if for each neighbor probes i, j E P, F has a fragment
that covers position (i,j). If a set F of fragments doesn't cover a set P of consecutive
probes, then there is at least one "cut" defined as follows. A cut of F for P is a position
(i, j) such that i, j E F and the position is not covered by any fragment in F.

We consider a PQ-tree shown in Fig. 3.3 (c). It consists of only one P-node and
leaves. The lengths of fragments are 2,3,3,3, ... ,3,3,3,2. The numbers of Is assigned
to each probes are 1,2,1,2, ... ,2,1,2,1. The set of fragments covers the set of all
probes. If additional fragment set doesn't cover the set of all probes as Fig. 3.3 (d),
the fixing operation can't be completed. However, if this is a subtree of the given

PQ-tree, although the additional fragment set doesn't cover the set of all probes, there
is a case that the fixing operation can be completed. In many cases, it causes to save
the total length of additional fragments.

For example, the additional fragment set shown in 3.3 (g) doesn't cover all probes by
a path in the subtree whose root is V2. However, the subtree is also fixed by assigning

fragments to A and I which are next to the subtree as in the figure. Here, we pay

attention only to the subtree V2 (the subtree rooted by V2) of Figures 3.3 (e)-(g). If
additional fragments on the subtree are given as Fig. 3.3 (g), order of BeDE, E, and

FGH cannot be fixed yet. Thus fragments A and I, which are neighbors of the subtree,

must be covered by fragments. In other words, a naive procedure such as to find the

optimal solution in each subtree and to build them up from leaves to the root simply

may not to obtain an optimal solution.

For example, if the cut is moved to F as Fig. 3.3 (f), the total length increases from
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Figure 3.3: Minimizing the total length of additional fragments
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10 to 11.

Hence, let us say that the pair of such subtree and such fragment assignment is

B-type (B means "both sides" .The precise definition will be done later). Moreover,

if the fragment assignment on the subtree V2 are given as Fig. 3.3 (h), we have to

assign a fragment to B which is the left neighbor of the subtree. Hence, let us say that

the pair of such subtree and such fragment assignment is L-type. R-type is defined
symmetrically. More precisely, they are defined as follows: (Note that a pair of a

subtree and a fragment assignment can be two or three types at a time. )

• R-type A pair of a subtree and a fragment assignment, such that if there is 1
at the right neighbor probe of the subtree, the subtree can be transformed into
lQ-tree and connected to the right side.

. • L-type A pair of a subtree and a fragment assignment, such that if there is 1
at the left neighbor probe of the subtree, the subtree can be transformed into
1Q-tree and connected to the left side.

• B-type A pair of a subtree and a fragment assignment, such that if there are Is
at the both neighbor probes of the subtree, the subtree can be transformed into

lQ-tree and connected to the both sides.

The minimum value of the total length of feasible fragment assignments for each
of the three types can be calculated in polynomial time, since if the cut is fixed, then

the minimum value can be obtained easily. By memorizing the minimum values of
the total length of additional fragments for each of the three types for every subtree,

we can also calculate the minimum values of them for the upper subtrees. Now, we
establish an algorithm, which examines all candidates of the cut and finds the optimal
fragment assignments in the three types for every sub-tree, in order to find the minimum

fragment set of the whole PQ-tree.

The following example explains the algorithm more in detail. Fig. 3.3 (i) can be

replaced with Fig. 3.3 (j) by calculating the optimal fragment assignments for the three

types for every subtree except for v. Let b, land r be the minimum values for the total

lengths of the additional fragment sets of B-type, L-type and R-type, respectively.

How to calculate b,l, and r
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Figure 3.5: Assignment for a subtree which has child nodes and the root is a P-node

From figures 3.4 (a) to (f), the cut is moved from the left side to the right side, in
order to examine every case. When the location of the cut is fixed, the optimal fragment
assignment and the type, B, L, or R, are automatically calculated. Moreover, in the
Fig. 3.4 (g), we look for the optimal fragment assignments for the three types, and
replace with Fig. 3.3 (j). In this way, we gradually investigate the optimal fragment
assignments in the three types for upper subtrees.

Our algorithm processes every internal node. For every two internal nodes which
are in parent-child relation, the child node must be processed before the parent node,

e.g., the post-order of DFS. The processes for subtrees in which the roots are P-nodes
are simply explained by using the examples above. Details are as follows:

1. processes for each subtree whose root is a P-node

(a) fix a cut

A root P-node can have at most one cut. The cut is located either on a child

ofthe P-node or on a space between children ofthe P-node. Let PI,PZ,··· ,Pd

be the children of the root P-node. The cut can be located at PI,PZ,· .. ,Pd,

(-,PI), (PI,PZ),···,(Pd-I,Pd) and (Pd'-).

(b) algorithms for leaves that are children of the root P-node

Assign fragments whose lengths are 2,3,2,3, ... ,2 as shown in Fig.s 3.3 (c)

or (d). The number of Is that are assigned to each fragment is 1,2,1,2, ... , 1,2.
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Figure 3.6: Assignment for consecutive children nodes of a Q-node

(c) algorithms for internal nodes that are children of the root P-node.

Since the cut is already fixed at this point, the type of each subtree whose
root is a child of the P-node is automatically determined. For example, in
Fig. 3.5, the subtree that is the left neighbor of the cut should be assigned

L-type. The other subtree that are children of the P-node should be assigned
B-type.

The processes for each subtree whose root is a Q-node are as follows: Let PI, P2, ... ,Pd

be children of the Q-node.

1. the processes for PI and Pd.

Since processes for Pd can be applied for PI, we discuss only about Pd· When Pd is
a leaf node, we examine both 0 and 1. When Pd is an internal node, we examine
R-type, L-type and B-type.

2. The processes for P2,P3,·· . ,Pd-I

Let Pi be the root of the subtree that we want to assign fragments.

(a) the processes for the part in which internal nodes are consecutive

We assign R-type, L-type or B-type according to the location of the cut.

When there is a cut on the right neighbor of the part, we assign the L-type.

When there is a cut on the left neighbor of the part, we assign the R-type.

In the other cases, we assign the B-type. For example, in Fig. 3.6, the left

neighbor node of the cut is assigned L-type, the right neighbor node of the

cut is assigned R-type, and the other nodes are assigned B-type.

(b) The processes for the part in which there are internal nodes and
leaves alternately
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Figure 3.7: A Q-node which has a part in which there are internal child nodes and
leaves alternately

We assign the minimum assignment of R-type, L-type and B-type, from the
left side to the right side. If there are two types in which the total lengths

are the minimum, we use the following criteria:

• State 1 (the initial state) The priority order is as follows: R-type,
L-type and B-type. When we assign R-type or B-type, we go to state
2. When we assign L-type, we remain state l.

• State 2
The priority order is as follows: L-type, R-type and B-type. When we
assign L-type, we go to state 1. When we assign R-type or B-type, we
remain state 2.

(c) The processes for the part in which there are two leaves between
the internal nodes We can treat them separately.

By using the algorithm, we obtain the following theorem.

Theorem 3.1 A fragment set for FIX(T, 0", 2::) can be found in O(n2
) time, where n

is the number of probes.

Proof.

When the minimum fragment set is assigned to each subtree, we can determine

whether each subtree and fragment assignment are L-type or not, whether each subtree

and fragment assignment are R-type or not, and whether each subtree and fragment
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assignment are B-type or not. If a subtree and corresponding fragment assignment

do not belong to either L-type, R-type, or B-type, the fixing operation cannot be

completed. Then, our dynamic programing algorithm can find the minimum fragment

set correctly. The proof for the computational time is as follows. Let di be the degrees

for each internal nodes Xi. Since, the computational time for each internal node is at

most O(d/), the whole computational time is at most 2:Xi O(d/) = O(n2
). 0

3.2.2 FIX(T, -,~)

In FIX(T, -, ~), since there is no distinction between L-type and R-type, they are
called LR-type. Let lr be the smaller one of land r. Although, in F IX(T, a,~) a cut
is scanned from left to right, in FIX(T, -,~) a cut is fixed. However, the algorithm has
to examine all candidates of nodes for both adjacent sides of the cut and the leftmost

node and the rightmost node of the subtree. For the other nodes, the B-type assignment
in which the total length of fragments is less than any other B-type assignment is used.
Since the position of the cut and whether there is a cut or not are assumed in advance,
the algorithm is not allowed to make a new cut by assigning fragments to nodes.
However, if the B-type assignment is replaced by another assignment which is not
B-type, a new cut is created.

Leaves and internal nodes should be ordered alternately as far as possible. Although
the algorithm has to examine more cases, the order of the computation time doesn't

become large.

Theorem 3.2 A fragment set for FIX(T, -,~) can be found in O(n5) time, where n

is the number of probes.

Proof·

Let di be the degrees for each internal nodes Xi. The number of combinations of

candidates for both adjacent sides of the cut and the leftmost node and the rightmost
node of the subtree is O(di 4). Since the algorithm has to scan the subtree in order to

assign fragments, the computational time for each internal node is O(di 5), Then, the

whole computational time is at most 2:x i O(di
5

) = O(n5
). 0
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Figure 3.9: The nearest common ancestor

3.3 Minimizing the Number of Additional Sub-Fragments

In this section, additional fragments are limited to sub-fragments of existed fragments

for fixing operations. The criterion is still to minimize the number of additional frag
ments. What is the difference between the general case and in this section? It is clear
that more additional fragments are needed in this case than the general case. We dis

cuss about how many fragments are more needed in this section than in the general
case.

Now, we define to cover all probes by a path. Let (i,j) be neighbor probes. When

a fragment set is given, if there is a fragment that includes both of i and j on every

(i, j), let us say that the fragment set covers all probes by a path. For example, in Fig.

3.8, the fragment set covers all probes by a path.

Next, we define the nearest common ancestor node of two edges. Suppose that a

fragment is terminated by two edges, el is the left edge and e2 is the right edge. Let

h be the right probe of el, and l2 as the left probe of e2 (See Fig. 3.9). When v is the
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nearest common ancestor of hand 12, v is also called the nearest common ancestor of

el and e2. The ancestor nodes of h are called the ancestor of el' The ancestor nodes

of 12 are called the ancestor of e2'

In Chapter 2, two edges are disappeared by an additional fragment that is con
structed by the method of Lemma 2.3. The next lemma shows that this method can

be used also in this section. However, existing fragments should include at least 3

edges.

Lemma 3.1 If a fragment set can cover all probes by a path and there is a fragment

that includes at least 3 edges, the number of edges can be decreased by 2 by an additional

sub-fragment.

Proof.

It can be proved by Lemma 2.3 and Theorem 2.1. o

If there is no existing fragment that includes 3 edges, the method of Lemma 2.3

cannot be used any longer. However, the next lemma shows that even if there is no
fragment that includes 3 edges, the number of edges can be decreased at least by one.

Lemma 3.2 If a fragment set can cover all probes by a path and there is a fragment

which includes 2 edges, the number of edges can be decreased at least by one by an

additional fragment.

Proof.

1. when the distance of two edges is greater than or equal to 2

The number of edges can be decreased by at least 1 by an additional fragment
terminated by these two edges.

2. when the distance of two edges is 1

Suppose that there are two Q-type edges that are neighbors each other. It is not

necessary to use both edges in the fixing operation. Since there is a fragment
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set that covers all probe by a path, there is no Outside-P-type edge. Then, both

edges are Inside-P-type.

Since there are 2 edges, the length of the existing fragment is greater than or

equal to 3. Then, a new sub-fragment that is terminated by an edge and that the

length is greater than or equal to 2 can be constructed. Because of assumptions of

templates, an Inside-P-type edge can be disappeared by an additional fragment

that is terminated by the edge and that the length is greater than or equal to 2.

Thus, the lemma is proved. o

The previous lemma showed that when there is an existing fragment that includes

2 edges, the number of edges can be decreased at least by one by an additional sub

fragment. Next, we discuss about the case that all fragments include at most 1 edge.

The next lemma shows that all edges can be decreased by adding sub-fragments.

Lemma 3.3 Suppose that there is a fragment set that covers all probes by a path. If

every existing fragment has at most one edge, the fixing operation can be done by only

adding sub-fragments.

Proof.

1. When the edge is Inside-P-type.

The length of an existing fragment that includes an edge is greater than or equal

to 2 from the assumption.

(a) When the length of the existing fragment that includes an edge is 2:

1. When the number of children of the parent vertex of the edge is 2:

A P-node that has only 2 children can be treated as a Q-node.

ii. When the number of children of the parent P-node of the edge is more

than 2:

Since there is a fragment set that covers all probes by a path, there is

an existing fragment that is terminated by the edge. When the number

of children of the parent node of an Inside-P-type edge is greater than

2, the edge should have been disappeared by the fragment terminated

by the edge. Thus, this case does not occur.
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(b) When the length of the existing fragment that includes the edge is greater

than 2:

1. When the number of children of the parent node of the edge is 2:

The P-node can be treated as a Q-type node.

11. When the number of children of the parent node is greater than 2:
A sub-fragment that the length is 2 and that is terminated by the edge

can be constructed. The edge can be disappeared by this fragment.

2. When the edge is Q-type.

If there are sub-fragments that cannot disappear any edges but transform the

PQ-tree, we continue to add such fragments. When templates Q2 or Q3 are
applied, the number of nodes decreases. Q-type edges never become Inside-P
type or Outside-P-type. If the edge disappears or the lQ-tree is gotten, our aim

is achieved. If the edge does not disappear and the lQ-tree is not gotten, the
same situation remains. Since the number of nodes is finite, this situation does
not continue infinitely. Then, the situation occurs in which it is impossible to
add sub-fragments that can transform the PQ-tree.

If an additional fragment is terminated by the Q-type edge and another end is
outside of the parent Q-node, the PQ-tree is transformed. Then, this case does
not occur. At this point, every probe in this existing fragment is child of the
same Q-node. Then, this Q-type edge can be moved into the overlapping part

of this fragment and the neighbor fragment. If a fragment which includes two
edges is created by this movement, the same process of the former case should be
applied. By using the same discussion in the neighbor fragment, this edge will
be disappeared or the lQ-tree is gotten by the spreading of this Q-node.

3. When the edge is Outside-P-type.

Since there is a fragment set which covers all probes by a path, there are no

Outside-P-type edges.

Thus, the previous lemma showed that the number of edges always can be decreased

at least by one by an additional sub-fragment. Since the number of edges is finite, the

fixing operation can be done by adding finite sub-fragments. The next theorem shows

that the fixing operation can be done by only sub-fragments.
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Theorem 3.3 When there is a fragment set which covers all probes by a path, the

fixing operation can be done by only adding sub-fragments of existing fragments.

Proof.

From Lemmas 3.1 and 3.2, the number of edges can be decreased to less than or
equal to 1. Then, this theorem can be proved by Lemma 3.3. 0

Every Q-node that does not have child nodes has Q-type edges. When an additional
fragment is added, there is a possibility that a Q-node spread, that is, the number of

probes that are children of the Q-node is increased. An additional fragment should
be terminated by spaces that one is under the Q-node and the other is outside of the
Q-node in order to spread the Q-node as shown in Fig. 3.10. In the next lemma, we
discuss about the number of probes that are children of a Q-node that is spread by an
additional fragment.

Lemma 3.4 Let v be the nearest common ancestor of the left end and the right end

of the additional fragment. When a fragment that is terminated by a Q-type edge and

the other end is outside of the parent Q-node (See Fig. 3.10), the probe set under the

Q-node is as follows after the PQ-tree is transformed:

1. When v is a P-node.

Let VI be the node that is the ancestor of the left end of the fragment and the child

of v. Let Vr be the node that is the ancestor of the right end of the fragment and

the child of v. Let h be the leftmost probe included in the subtree whose root is VI·

Let ir be the rightmost probe included in the subtree whose root is vr . The probe

set whose leftmost is II and rightmost is ir will be under the Q-node.

2. When v is a Q-node.

Every probe under the subtree whose root is v will be under the Q-node v.

Proof.
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the additional frag-

Let vq be the Q-node that is the parent of the left end of the additional fragment.

Suppose that VI, vz, ... ,Vk be the nodes that are influenced by the additional fragment.
The nearest common ancestor of VI, Vz, ... , Vk-l, and Vk is v. When a fragment is added,
templates are applied to VI, Vz, .. . ,Vk-l, and Vk from bottom up. Let Vi be the node
that a template is going to be applied.

1. when Vi i= V

When templates are applied except for v, P2, P4, P6 and Q3 can't be applied.

Then, only P3, P5 and Q2 can be applied. Suppose that either P3, P5 or Q2

is applied to the PQ-tree. Let Pl,PZ, ... ,Pd be probes that are children of Vi.

PI, Pz, ... ,Pd will be the children of vq after the template is applied.

2. when Vi = V

At this point, templates for VI, VZ, ... ,Vk except for V are finished to be applied.
Every probe that was included in the subtree whose root was VI is a descendant

of the VI. Moreover, VI is a Q-node. The same discussion can be applied to Vr .

Since an end of the additional fragment was Q-type edge, either VI or Vr is partial.

Thus, either P2 or P3 can't be applied. Since every 1 is under v, P5 can't be

applied. Thus, only P4, P6, Q2 and Q3 can be applied. When either P4 or P6
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Figure 3.12: The nearest common ancestors of additional fragments

is applied, the condition is satisfied. Similarly, when either Q2 or Q3 is applied,
the condition is satisfied.

o

Lemma 3.4 shows the number of probes that are descendant of the Q-node that
is spread by an additional fragment. Next, we discuss about the case in which the
fragment is divided into 2 as shown in Fig. 3.11. The next lemma shows that 2 divided
additional fragments can make the same probe set that are descendant of the Q-node.

Lemma 3.5 Suppose that an end of additional fragment is Q-type edge and the other

end is outside of the parent Q-node. When the additional fragment is divided into 2

with a overlapping, the same probe set will be under the parent Q-node after the PQ-tree

is transformed.

Proof

The fragment that is not divided is called fragment 1. Let el and e4 be ends that

terminate fragment 1 as shown in Fig. 3.12. The fragments that can be made by

dividing fragment 1 are called fragment 2 and fragment 3. Let el and e3 be ends that

terminate fragment 2. Let e2 and e4 be ends that terminate fragment 3. Let v be the

nearest common ancestor of el and e4.
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1. when v is a Q-node

When fragment 1 is added, every probe that was descendant of v will be the

descendant of v from Lemma 3.4. Let VI be the nearest common ancestor of el

and e3. Let V2 be the nearest common ancestor of e2 and e4.

(a) when v = VI

Let P23 be the probe set that are descendant of the Q-node after adding

fragments 2 and 3. Let PI be the probe set that are descendant of the Q
node after adding fragment 1. When fragment 2 is added, every probe that
was descendant of v will be the descendant of the Q-node. At this point,

el, e2, e3, and e4 are descendant of the Q-node. Then, when fragment 3
is added, the number of probes that are descendant of the Q-node is not

changed. Thus, P23 = Pl·

(b) when v =I- VI

If e4 was a descendant of VI, VI is the nearest common ancestor of el and e4.

Although VI is a child of v, V is the nearest common ancestor of el and e4.

It is a contradiction. Thus, e4 is not in the subtree whose root is VI. An end
that terminates fragment 3 is under the Q-node. The other end is outside
of the Q-node. Since V is a Q-node, every probe that was a descendant of V

will be a descendant of the Q-node after adding fragments 2 and 3. Thus,

P23 = Pl'

2. when V is a P-node

Suppose that fragment 1 is added. From Lemma 3.4, the leftmost child of the

Q-node is the leftmost probe of the subtree whose root is VI' Similarly, the
rightmost child of the Q-node is the rightmost probe of the subtree whose root is

V2. Since VI is the nearest common ancestor of el and e3, VI is the final node that
a template is applied after adding fragment 2. Then, additional fragment 2 never

change v. Then, V is still a P-node. At this point, VI is the ancestor of e2 and

the child of V. V2 is the ancestor of e4 and the child of v. The probe set which

comes under the Q-node by additional fragment 3 is the same as by additional

fragment 1.

o
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Suppose that fragment 1 is efficient for a fixing operation, that is, the fragment

can disappear 1 or 2 edges. Suppose that fragments 2 and 3 can be made by dividing

fragment 1 and they have an overlapping part. The next lemma shows that it is also

efficient for a fixing operation to add fragments 2 and 3 instead of fragment 1.

Lemma 3.6 When an edge is disappeared by an additional fragment, 2 divided frag

ments whose lengths are at least 2 can disappear the same edge.

Proof.

1. when the edge is Inside-P-type

(a) when the degree of parent vertex is 2

A P-node whose degree is 2 can be treated as a Q-node whose degree is 2.

Then, we treat it as a Q-type edge.

(b) when the degree of parent vertex is equal to or more than 3

Let dvp be the degree of the parent vertex. If dvp is equal to or more than 3

and the additional fragment whose length is at least 2 is terminated by the

Inside-P-type edge, the Inside-P-type edge will disappear.

2. when the edge is Q-type

The parent P-node of the edge includes same probe set before dividing and after

dividing from Lemma 3.5. There are two methods in order to disappear the

Q-type edges.

(a) the case in which the Q-node has a new internal child node (as templates

P4, P5 and P6)

Additional fragment 1 cannot disappear e2 and e3. However, fragment 3

can disappear e2 and e3. After the PQ-tree is converted, el, e2, and e3 are

children of the parent Q-node of el. If el is not disappeared and either e2 or

e3 is disappeared, there is a possibility that either e2 or e3 is a Q-type edge.

(b) when the Q-node includes another Q-type edge (as template Q3)

After fragment 1 is added, there are no edges between these two edges.

Then, neither e2 nor e3 is disappeared. Thus, both of these Q-type edges
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remam. If el is disappeared and e4 is not disappeared, el can be moved to

e4·

3. when the edge is Outside-P-type

It is clear. o

Theorem 3.4 Suppose that there is a fragment set which consists of n fragments. If

it can cover all probes by a path and the number of edges is e, the fixing operation can

be done by adding r~l + n sub-fragments of existing fragments.

Proof.

From Lemmas 3.1, 3.2 and 3.6, and Theorems 2.1 and 3.3. o

In this section, only sub-fragments of existing fragments can be used. It is clear that

this case needs more fragments to fix a PQ-tree than the general case. The problem
was how many fragments are more necessary to fix a given PQ-tree. The algorithm has
to investigate how many existing fragments are needed to cover all probes by a path.
If there is a fragment set which can cover all probes by a path, the fixing operation
can be done by r~l +n additional fragments. If any fragments can be used, the fixing
operation can be done by r~l additional fragments. Then, n fragments are more needed
in the restriction of this section. Moreover, we can make the minimum fragment set in
polynomial time from the same reason of the general case.

3.4 Minimizing the Number of Additional Fragments

of Length Two

In this section, lengths of additional fragments are limited to 2 in the fixing operation.

Since an additional fragments whose length is 1 cannot transform a PQ-tree, a fragment
whose length is 2 is the shortest fragment for fixing operations.

First, we discuss the case in which the simplest PQ-tree is given as shown in Fig.

3.13. The next lemma shows that what kind of additional fragments whose lengths are

2 are necessary to fix the simplest PQ-tree.
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Figure 3.13: The simplest PQ-tree

Figure 3.14: Additional fragments for the
simplest PQ-tree

Figure 3.16: Only one method to add l - 1

Figure 3.15: A PQ~tree that has 2 P-nodes fragments

Lemma 3.7 When a PQ-tree which has l leaves and one root P-node is given (l 2:: 3),

1. the fixing operation can be done by adding (l -1) fragments whose lengths are 2.

2. the fixing operation cannot be done by adding less than (l - 1) fragments whose

lengths are 2.

Proof.

1. The lengths of additional fragments are limited to 2. Thus, if the left end of

a fragment is decided, the right end is automatically decided. Since the given
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Pj
1
I

p.
I
Pl-l

Figure 3.17: After 1l-2 is applied Figure 3.18: When there is a cut between Pi

and Pj

PQ-tree has I leaves and one P-node, there are only (I-I) ways to add fragments
as shown in Fig. 3.14.

Since it is meaningless to add same fragments, the method for adding (I - 1)

fragments whose lengths are 2 is uniquely determined. Let iI, 12,· .. ,it-I be the
additional fragments for the simplest PQ-tree as shown in Fig. 3.14. When the
first fragment h is added to the PQ-tree, the template P2 is applied and the
converted PQ-tree is as shown in Fig. 3.15.

A P-node that has 2 children can be treated as a Q-node that has 2 children.
Thus, the PQ-tree as shown in Fig. 3.15 can be treated as the PQ-tree as shown
in Fig. 3.16.

While fragments 12, ... ,it-2 are added, the template P4 is applied again and
again. The number of probes that are children of the Q-node increases one by

one. After it-2 is added, the gotten PQ-tree is as shown in Fig. 3.17. After 1l-1

is added, the template Q2 is applied and the lQ-tree is gotten.

o

2. Since the minimum fragment assignment for the simplest PQ-tree is as shown in
Fig. 3.14, (l- 1) fragments whose lengths are 2 are necessary to cover all probes

by a path. If there is not an additional fragment that does not include both of

Pi and, Pj, the sequence of the probe sets PI rv Pi and Pj rv Pl cannot be decided.
There is a cut between Pi and Pj as shown in Fig. 3.18. Thus, (I - 1) fragments
whose lengths are 2 are necessary to fix the PQ-tree.

The previous lemma shows what kind of additional fragments whose lengths are

2 are necessary to fix the simplest PQ-tree. In the next lemma, we discuss about a

PQ-tree that is a little more complicated than the simplest PQ-tree.
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Figure 3.19: The second simplest PQ-tree
Figure 3.20: With a Q-node child

Lemma 3.8 Suppose that a given PQ-tree whose internal nodes consist of 1 root P

node and Q-nodes that are children of the P-node. Let l be the number of children of

the root P-node. When the length of additional fragments are 2)

1. the fixing operation can be done by (l- 1) additional fragments whose lengths are

limited to 2.

2. (l- 1) additional fragments whose lengths are 2 are necessary to fix the PQ-tree.

Proof.

1. when every child is a leaf

The case is same as Lemma 3.7.

2. when there is a Q-node that is a child of the root node

Let Q1 be the only one children of the root node as shown in Fig. 3.20. An
additional fragment in which an end is inside of Q1 and the other end is outside

of Q1 should be added as shown in Fig. 3.21.

(a) when the left neighbor probe of Q1 is a leaf

Let h be the left probe of Q1' Let l2 be the leftmost probe of Q1 as shown in

Fig. 3.21. The fragment that includes Q1 and Q2 should be added. Then,

the template P4 is applied and the converted PQ-tree is as shown in Fig.

3.22.
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fragment

···A

Figure 3.21: Adding a fragment from Ql to

the left side

B··········

fragment

Figure 3.22: After adding the fragment

······A

Figure 3.23: When the left side of Ql is a Figure 3.24: After adding the fragment

Q-node

(b) when the left neighbor of Ql is a Q-node

Let Q2 be the Q-node that is the left neighbor of Ql' The fragment which

includes the rightmost probe of Q2 and the leftmost probe of Ql should be
added. Then, the template P6 is applied and the converted PQ-tree is as
shown in Fig. 3.24.

(c) when Ql does not have a left neighbor

Nothing should be done.

Similar operations can be applied to the right neighbors of Ql. The 1Q-tree is

gotten by adding (l-l) fragments whose lengths are limited to 2 by this method.
D

Lemmas 3.7 and 3.8 show what kind of additional fragments whose lengths are 2

are necessary to fix very simple PQ-trees. The two simple PQ-trees that we discuss in
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previous lemmas do not include subtrees. When there is a subtree in a given PQ-tree,

more complicated algorithm is necessary to make additional fragment sets. Since the
lengths of additional fragments are limited to 2 in this section, adding (l-l) fragments

can fix the PQ-tree which has a root P-node and l leaves. Then, the total length of

additional fragments which are necessary to fix the PQ-tree is 2(l-1). However, if any
length of additional fragments can be used, the total length of additional fragments

which are necessary to fix the PQ-tree is ~(l - 1). In the former case, the lengths of
additional fragments are all two. However, in the latter case, the lengths of additional
fragments are two and three. A half of them are two, and the other half of them are

three.

3.5 Concluding Remarks

First, for the problem of fixing the probe order of a given PQ-tree, we presented
polynomial time algorithms that minimize the total length of additional fragments.
We solved not only the problem of fixing probes in a given order, but also the problem
to how to determine the best order of the probes. The idea of "edges" cannot be used
any longer in these problems.

Second, we discuss problems in which additional fragments are limited to sub
fragments of existing fragments. Suppose that there is a fragment set which consists

of n fragments. If it can cover all probes by a path and the number of edges is e, the

fixing operation can be done by adding r~l + n sub-fragments of existing fragments.
We also mention problems in which lengths of additional fragments are limited to 2.



Chapter 4

Inferring Pedigrees from Genetic
Distances

4.1 Introduction

A phylogenetic tree is a tree showing the evolutionary interrelationships among various

species or other entities that are believed to have a common ancestor. Various methods
to infer phylogenetic trees from genetic information have been researched [3, 11, 24,

27, 31, 66, 70]. Since a phylogenetic tree doesn't include cycles, it cannot represent
recombinations, that is, there are no vertices whose indegrees are more than one. Then,
data structures which are slightly different from phylogenetic trees have been also
researched recently [58].

Vertices of phylogenetic trees represent species. However, there are a huge number

of individuals in each vertex and they have blood relationships each other. If all

individuals are represented by vertices, indegrees of vertices should be two. However,
since the number of individuals is finite, there must be a node whose indegree is one

or zero. Moreover, there is a possibility that the number of vertices which don't have

in-edges is more than one. Then, in this chapter, we discuss problems to infer directed

graphs whose indegrees are at most two (We call them pedigree graphs). When genetic

distances between any two individuals are given, we discuss problems (i) to enumerate

all pedigree graphs which satisfy a given genetic distances. (ii) to validate whether

49
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there is a contradiction or not between a given distances and a given pedigree graph.

Genetic distances can be calculated from the number of differences of SNPs (Single

Nucleotide Polymorphisms). If any distances between two adjacent vertices are given,

the solution can be constructed very easily. Then, from a theoretical interest, we

assume that a genetic distance is gotten as the shortest path of blood relationships.

Phylogenetic networks [75] are very similar to pedigree graphs. Then, it can be

said that our problem is a special case of problems to infer phylogenetic networks. A

phylogenetic network is a directed graph in which degrees of vertices are at most two
and there is only one vertex whose indegree is zero. Problems to infer or compare

phylogenetic networks have been researched recently: Inferring phylogenetic networks
when 0-1 sequences are given for every species [15, 32, 75], constructing phylogenetic
networks from phylogenetic trees [39, 42], finding similar sub-graphs from phylogenetic

networks [18, 43], and so on. In these problems, they have a firm precondition that
there is only one vertex whose indegree is zero in a phylogenetic network. However,
in the problems to infer pedigree graphs, if an individual has no information about its
ancestors, the indegree of the corresponding vertex should be zero. Then, in pedigree
graphs, the number of vertices whose indegrees are zero may be more than one.

There are projects to develop drugs by determining genes which cause diseases
from pedigrees and medical records [59]. However, there is a possibility that there are

errors in given pedigrees. In this chapter, we also discuss problems to detect errors in
pedigrees.

Distance Realization Problem is a problem to infer graphs or networks from given
distance matrices [35]: problems to minimize the total length of edges [35], problems to

minimize the number of adding vertices [6], problems in which solutions must be trees

[28, 66], and so on. Most of Distance Realization Problems seem to allow adding new
vertices. If adding new vertices is not allowed, one of the solutions is a complete graph

which can be trivially made from the given distance matrix. However, if a triangle

inequality is not satisfied, there are no solutions. If the length of the edge ViVj is equal

to the sum of the lengths of the edges VjVk and VkVi in a solution, the graph gotten by

removing the edge ViVj is also a solution. Our problem is regarded as a kind of Graph

Realization Problems. Adding new vertices are not allowed in our problems. Solutions

are directed graphs in which indegrees are at most two. The number of vertices whose

indegrees are zero (or one) is not limited.
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Many algorithms to generate a particular class of graphs, without repetition, are

known[12, 54, 64]. If every solutions are really enumerated, the computation time

should be at least the number of solutions. However, there is a case that computation

time is drastically improved by using some techniques for compressing the represen

tation of the solutions [65]. In this chapter, we discuss problems in which there is a

possibility that the numbers of solutions are exponential of the inputs. However, since
the outputs of the problems are defined as a digraph which represents a set of pedigree

graphs which satisfy the given distance matrix, the computation times are polynomial.

Related Works

There are many papers that use pedigrees as inputs of problems. For example,
the problem of haplotype inference under the Mendelian law of inheritance on pedi

gree genotype data is studied in [16] and [79]. The problem of finding a mini-mum
recombinant haplotype configuration (MRHC) is in general NP-hard [53]. [52] and
[51] discuss about the case with missing alleles. Even if the input pedigree is loopless,
MRHC is NP-hard [22]. [72] provides a tool for finding errors of given genotypes or
phenotypes in a specified pedigree structure.

[1] deals with consistency checking problems as follows: given a pedigree and in
formation on the genotypes of some of the individuals in it, the aim is to determine
whether these data are consistent with the classic Mendelian laws of inheritance. There
are also problems to count the number of complete consistent assignments. [69] provides
polynomial time algorithms for loopless pedigrees. Pedigrees are treated as outputs in
drawing and visualizing problems [76]. [71] provides a tool for drawing pedigrees with

complex haplotypes.

4.2 Pedigree Graphs

Pedigrees are often represented as shown in Fig. 4.1. In this chapter, they are repre

sented by directed graphs as shown in Fig. 4.2. A pedigree graph is a directed graph

whose indegrees are at most two. The number of vertices whose indegrees are one or

two is not limited.



52 CHAPTER 4. INFERRING PEDIGREES FROM GENETIC DISTANCES

child 1 child 2 child3
child 1 child 2

motherfathermotherfather

Figure 4.1: A pedigree

~?
8
~

(a)

Figure 4.2: A pedigree written by a di

rected graph

(b)

Figure 4.3: Direct distances and indirect distances

distance: The length of an edge of a pedigree graph represents the genetic distance

between two vertices which are incident to the edge. For example, in Fig. 4.3 (a), the

length of the edge between VI and V4 is two (VI is denoted by 1 and V4 is denoted by 4

for simplicity). Then, VI is one of the parents of V4 and their genetic distance is two.

Since we assume that a genetic distance is the shortest path of blood relationships, we
define distances of pedigree graphs by using direct distances and indirect distances as

follows: The direct distance between Vi and Vj is the length of the shortest directed path

between Vi and Vj' The indirect distance between Vi and Vj is the minimum sum of two

directed paths which are initialized by a common ancestor of Vi and Vj' For example,

in Fig. 4.3 (a), the length of the shortest path between V3 and V4 is 5. Then, the direct

distance between V3 and V4 is 5. On the other hand, V3 and V4 have a common ancestor
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(b)

(c)

Figure 4.4: If a birth order is not given, they cannot be distinguised.

VI' The length of the path between VI and V3 is 1. The length of the path between
VI and V4 is 2. Then, the indirect distance between V3 and V4 is 1+2=3. The distance

between Vi and Vj is defined as the smaller value of the direct distance of ViVj and the
indirect distance of ViVj. Then, in Fig. 4.3 (a), since the indirect distance is shorter

than the direct distance, the distance between Vi and Vj is 3.

In Fig. 4.3 (b), there is an undirected path between V3 and V5. However, V3 and V5

are not in blood relationships (i.e., they have no common ancestor).

distance matrix: When neither direct distances nor indirect distances exist, we
say that the distance is 00. From the definition, the distances between two vertices are

symmetric. The matrix in which the element (i, j) corresponds the distance between

ViVj (i < j) is called a distance matrix. A distance matrix is denoted as shown in
Fig. 4.6 (a) for simplicity.

birth order: When (i, j) (i < j) of the given distance matrix is j - i, the pedigree

graph as shown in Fig. 4.4 (a) saisfies the condition. However, pedigree graphs as shown

in Fig. 4.4 (b) and (c) also satisfy the given distance matrix. In Fig. 4.4 (a), VI is the
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Figure 4.5: A redundant edge

oldest individual and Vn is the youngest individual. On the other hand, in Fig. 4.4 (c),
V n is the oldest individual and VI is the youngest individual. Thus, there is a case that
even the oldest individual and the youngest individual cannot be distinguished. Then,
we asuume that a birth order is given in our problems. When a birth order is given, if

there is an edge between Vi and Vj (i < j), Vi must be the parent of Vj' In the case of
Fig. 4.4, if a birth order is given, Fig. 4.4 (a) is the only one solution. We use a birth

order only for determining edge directions, that is, which is the parent and which is
the child. Since a rigorous birth date or birth time is not needed, there are a lot of

methods of getting a birth order.

redundant edges: The pedigree graph as shown in Fig. 4.5 (c) satifies the
distance matrix as shown in Fig. 4.5 (a). However, the pedigree graph as shown in

Fig. 4.5 (b) which can be made by adding an edge between VI and Vs also satisfies
the distance matirix. Moreover, if the length of the edge between VI and Vs is 3 or

more than 3, the pedigree graph satisfies the distance matrix. In such a case, it is

impossible to determine the length of the edge between VI and vs. When pedigree

graphs GI = (V, E) and G2 = (V, E - el) (el E E) are given, if the corresponding

matrices of GI and G2 are same, el is called a redundant edge and not included by

solutions.



4.3. PEDIGREE GRAPH ENUMERATING PROBLEM

4.3 Pedigree Graph Enumerating Problem

At first we discuss the following trivial problem:

• Input: A distance matrix and a birth order.

55

• Output: A set of pedigree graphs, in which lengths of edges are one, which satisfy
the distance matrix and the birth order.

Since lengths of edges are one, two vertices are adj acent if and only if the corre
sponding element of the distance matrix is one. Moreover, since the birth order is
given, directions of edges are ditermined uniquely. Then, the solution is gotten in

O(n2
) time. The number of solutions is only one. Thus the case in which lengths of

edges are one can be solved easily. Then, we discuss the case in which the lengths of
edges are positive real values.

Pedigree Graph Enumerating Problem

• Input: A distance matrix and a birth order.

• Output: A set of pedigree graphs, in which the lengths of edges are positive real

values, which satisfy the distance matrix and the birth order.

A directed graph in which there is just one edge between any two vertices is called

a tournament [67]. When a distance matrix and a birth order are given, a tournament,

in which weights are corresponding to the distance matrix and directions of edges are
corresponding to the birth order can be uniquely obtained, and which is called a basic

tournament and denoted by Gin. Moreover, a pedigree graph which doesn't contradict

Gin and doesn't have redundant edges is called a feasible pedigree graph denoted by

Gout· gout is the set of Gout·

For example, Gin which corresponds to the distance matrix shown in Fig. 4.6 (a)

is the tournament shown in Fig. 4.6 (b). Since both pedigree graphs shown in Fig. 4.6

(c) and (d) are consistent with Gin, they are elements of gout.



56 CHAPTER 4. INFERRING PEDIGREES FROM GENETIC DISTANCES
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Figure 4.6: An example in which the solution can't be determined uniquely

We will show the following Theorem 2.1. For proving this theorem, we show some
lemmas.

Let us denote the length of a directed edge (Vi,Vj) by "length(vi,Vj)".

Lemma 4.1 Let (Vj, Vi) be the shortest edge whose terminal vertex is Vi of Gin- Then
a directed edge (Vj,Vi) also exists in Gout.

Proof.

There is no edge which is shorter than (Vj,Vi) and is terminated by Vi in Gout.

Assume that there is not (Vj, Vi) in Gout. Since the birth order is given, there is not

(Vi, Vj). Since lengths of edges are positive, the distance between Vj and Vi is longer
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Figure 4.7: A distance matrix and the tournament
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than length(vj, Vi)' It contradicts the assumption. Since the direction of the edge VjVi

is determined uniquely, there is a directed edge VjVi in Gout· 0

Lemma 4.2 Let d be the length of the shortest edge terminated by Vi in Gin. Then,

the number of edges which is terminated by Vi and whose length is d is at most two in

Gin'

Proof.

Asuume that there are three such edges. By Lemma 4.1, such edges also exist in

Gout. Since indegrees of pedigree graphs are at most two, it is a contradiction.

Lemma 4.3 The indegree of Vj of Gout is zero if and only if all distances between ViVj

(i < j) are 00 in Gin'
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Figure 4.8: The relation among GI , G2 , G3 and G4

Proof Assume that the distance between ViVj is finite (i < j). ViVj is either by the
direct distance or the indirect distance. However, by the birth order, the path between

Vi and Vj must include the edge terminated by Vj' Then, the indegree of Vj is not zero.

Moreover, if the distance between any ViVj (i < j) is 00, the indegree of Vj is zeroO

Theorem 4.1 claims that the Pedigree Graph Enumerating Problem can be solved

in O(n3
) time. The outline of the algorithm is as follows: At first, Gin is made from

the given distance matrix. Next, Gout is gotten by removing unnecessary edges. We

have to choose two edges for each vertices of Gin from O(n) edges and use them as the

edges of Gout. However, if all cases are explored, the exponential time will be needed.

For example, in a basic tournament shown in Fig. 4.7 (b), both edge pairs, {(VI, V4),

(V2,V4)} and {(V2,V4), (V3,V4)}, terminated by V4 satisfy the distance matrix. A naive
algorithm separating these two cases before the choosing operations at other vertices
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may increase the computation time exponentially. However, the following lemma shows

that the choosing operations can be done separately. Let 1!;;mall = {VI, V2, ... , vn}
and Vlarge = {VI, V2, .. " Vn+k}' Moreover, let GI = (1!;;mall, Ed, G2 = (1!;;mall, E2 ) be
pedigree graphs. Let length(P) be the length of a undirected path P. Let Vi', Vj' E 1!;;mall

and Vi", Vj" E Vlarge.

Lemma 4.4 When distances between any Vi'Vj' of GI and Vi'Vj' of G2 are same, for

any E3 which makes G3 = (Vlarge, E I + E3 ) and G4 = (Vlarge, E2 + E3 ) pedigree graphs,

distances between any Vi"Vj" of G3 and Vi"Vj" G4 are same.

Proof.

The proof shown here is about when Vi, Vj E Vlarge -1!;;mall. This case can be applied

to the other cases by putting ¢ to Pa, Pc, Pd and Pf'

Let P3 = Pa+Pb+Pc be the shortest path between ViVj in G3 . Let P4 = Pd+Pe+Pf
be the shortest path between ViVj in G4 (Fig. 4.8). Let Pb ~ E I , Pe ~ E2 , and
Pa' Pc, Pd,Pf ~ E3 . (There is a possibility that Pb and Pe are ¢). Assume that
length(P3h~length(P4)' (The generality is not lost by length(P3»length(P4)). By
the assumptions of GI and G2 , there exists Pg , whose initial node and terminal node

are same as Pe, which satisfies length(Pg)=length(Pe) and length(Pg)~ EI . Then,
Ps = Pd+ Pg+ Pf satisfies Ps ~ E I + E3 and length(Ps)<length(P3). If Ps is a direct
distance of ViVj or an indirect distance of ViVj, it contradicts that length(P3) is the
shortest path of ViVj, and length(P3) = length(P4) can be proved.

The following proof shows that Ps is a direct distance of ViVj or an indirect distance

of ViVj'

• When P3 is composed of a directed path:

The generality is not lost by assuming that each of Pb, Pc is composed of a directed

path and Pa = ¢. Moreover, Pg is composed of at most two directed paths. Then,

at the connection between Pg and Pf in Ps = Pg+Pf, the directions of two edges

are same. By the birth order, once a directed path goes out from Vsmall, it never

comes back inside 1!;;mall' Then Ps satisfies the condition.

• When P3 is composed of two directed paths:
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Each of Pa, Pc, Pd and Pf is composed of a directed path. H is composed of two

directed paths. Then, Pg is composed of at most two directed paths.

1. When Pg is composed of a directed path:

The directions of edges are different either at the connection of Pd and Pg ,

or at the connection of Pg and Pf' Then, Ps is an indirect distance of ViVj'

2. When Pg is composed of two directed path:

Since the directions of edges are same at the connection of Pd and Pg , and

Pg and Pf, Ps is an indirect distance of ViVj'

Then, length(P3) = length(P4 ).
D

In the following part of this chapter, we show PedigreeEnumerate which can output
the solution of Pedigre Graph Enumerating Problem in O(n3 ) time as a directed graph
in which the number of vertices is as same as the basic tournament. Before explaining
the algorithm formally, we use examples in order to explain it intuitively.

Suppose that a distance matrix as shown in Fig. 4.7 (a) is given as the input of
Pedigree Graph Enumerating Problem. The correspondig basic tournament is as shown
in Fig. 4.7 (b). The algorithm should select two in-edges .at each nodes. From Lemma
4.4, the selections can be done independently. For the simplicity of the explanation,

the algorithm treats vertices in the ascending order, that is, VI, V2, . .. ,Vn .

From Lemma 4.3, the indegrees of VI and V2 are zero. Moreover, the parents of V3

are VI and V2 (Fig. 4.7 (c)).

Next, the algorithm selects two edges which are terminated by V4. In the basic

tournament shown in Fig. 4.7 (b), the lengths of edges which are terminated by V4 are

8, 3, and 5. From Lemma 4.1, if there exists a solution, (V2, V4) whose length is 3 must

be included in Gout. Actually, as shown in Fig. 4.9 (a), (V2,V4) doesn't contradict the
distance matrix.

Then, as shown in Fig. 4.9 (b), the algorithm investigates whether the solution con

tradicts the distance matrix or not when (V3' V4) is included by the solution. Although

the distance of VIV4 is 6 in the pedigree graph shown in Fig. 4. 9 (b), the correspoinding

value in the distance matrix is 8. When an edge is added to the solution, there is a
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Figure 4.9: Selecting edges at V4 and V5
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case that the distance of two vertices are shorter than the corresponding value of the

distance matrix. In such a case, the algorithm can avoid the contradiction by increas

ing the length of the edge using the method shown in Lemma 4.5. In this example, the

contradiction is eliminated by making the length of (Vg, V4) 7 as shown in Fig. 4.9 (c).

Thus, when the selected edges terminated by V4 are (V2, V4) or (Vg, V4), it is shown that
the condition of the distance matrix is satisfied.

From Lemma 4.1, (V2' V4) should be included by the solution. There is a possibility
that the condition of the distance matrix is satisfied when (VI, V4) is selected as the

another edge terminated by V4. In fact, there is no contradiction when (VI, V4) and
(V2, V4) are selected as the two in-edges terminated by V4. In other words, at the point
of time shown in Fig. 4.9 (d), PedigreeEnumerate should keep three in-edges terminated
by V4. This means that the shortest edge (V2, V4) must be included by the solution and

that both (VI, V4) and (Vg, V4) can be the candidate for the other in-edge terminated by

V4·

Next, the algorithm selects edges terminated by V5' The lengths of edges terminated
by V5 are 2, 5, 3 and 2. From Lemma 4.1, when there exists a solution, the shortest

edges (VI, V5) and (V4' V5) should be included by the solution. Since the pedigree graph
shown in Fig. 4.9 (e) which includes (VI, V5) and (V4, V5) satisfies the condition of the
distance matrix, edges termiated by V5 are (VI, V5) and (V4' V5).

Thus, PedigreeEnumerate outputs a directed graph shown in Fig. 4.9 (e) as the
solution. As explained above, there is a possibility that an indegree of a vertex of the
directed graph made by the algorithm is more than two. In such a case, solutions can

be made by selecting the shortest edge and selecting the other edge arbitrary at each
vertices. Details of PedigreeEnumerate are as follows:

algorithm PedigreeEnumerate

begin

1. Sort in-edges by lenghts in the ascending order at each vertices.

2. By the method of Lemma 4.3, find vertices whose indegrees are zero. Apply

following procedures to vertices, denoted by vi(i = 1, ... ,n), whose indegrees are
not zero.
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(a) From Lemma 4.2, length(el) yflength(e3)'

when length(ed=length(ez), eliminate all ee (e ;::: 3) and finish the process

for Vi' Since there is a possibility that the distance matrix does'nt have a
solution, investigate whether there is a contradiction or not when edges ter

minated by Vi are el and ez. When length(el)yf length(ez), apply following

procedures. Caluculate the shortest distances which use eil between Vi and
the other vertices. Aplly following procedures to eij (j ;::: 2).

1. Calculate the shortest distances which use eij between Vi and the other
vertices.

ii. Calculate the shortest distances between Vi and the other verrtices by

comparing the case which uses eil and the case which uses eij' If the
shortest distance is longer than the corresponding value of the distance
matrix, since it is a contradiction, eliminate ei

J
' On the other hand,

if the shortest distance is shorter than the corresponding value of the
distance matrix, increase the length of the edge by the method of Lemma

4.5. If the contradiction still exists, eliminate eij'

end

Suppose that edges terminated by Vi in Gout are eil and eij' Let (dgivenl' dgiven2' ... , dgiveni_l)

be the distances which Vi should satisfy for VI, Vz,· .. ,Vi-I. Let (d I1 , d I2 ,· .. ,dIi_J be
the distances which use eil between Vi and VI, Vz,· .. ,Vi-I' Moreover, let (dj1 , d h ,· .. ,dji_J

be the distances which use eij between Vi and VI, Vz,· .. ,Vi-I.

Then, the algorithm compares d Ik , d jk and dgivenk(l ~ k ~ i-I). In other words,
the algorithm compares distances which use eil or eij and the corresponding values of

the distance matrix. If d jk is longer than dgivenk' the algorithm memorizes "+". If d jk

is as long as dgivenk' the algorithm memorizes "=". If d jk is shorter than dgivenk' the
algorithm memorizes "-". (Fig. 4.10 shows an example.)

From Lemma 4.1, there are no "-" in (d I1 , d 12 , ... ,dIi _ 1). If (d I1 , d I2 ,· .. ,dIi_J

are all "=", since edges except for eil are redundant, the algorithm should eliminate all

edges terminated by Vi in Gout except for eiI' Then, we discuss only the case in which

(dIp dI2 ,.·., d Ii _ 1) are composed of "=" and "+". (djp d h , ... , dji_J are composed of

"=", "+" and "-".



64 CHAPTER 4. INFERRING PEDIGREES FROM GENETIC DISTANCES
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Figure 4.10: Comparing distances

Lemma 4.5 When djk (1 ~ k ~ i-I) includes "-", eij is included by Gout only if the

length ofeij is modified to length(ei)+max{dgivenk - djk l1 ~ k ~ i -l}.

Proof·

If length(eiJ is shorter than the value shown above, djk(l ~ k ~ i-I) still includes
"-". Then, it contradicts the distance matrix when eij is included by Gout. On the

other hand, if length(eij) is shorter than the value shown above, djk (1 ~ k ~ i-I) are

all "+". (dIll d12 , ... ,d1i_J includes at least one "+". Then, if eij is included by Gout,

the distance becomes too long and it is a contradiction. 0

PedigreeEnumerate outputs a directed graph which means pedigree graphs which

satisfy the given distance matrix and the birth order. Now, we explain the method of

seeing the directed graph. Let eil be the only one shortest edge terminated by Vi.

• When the indegree of Vi is zero:

It means that the given distance matrix doesn't include any information about

ancestors of Vi.
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• When the indegree of Vi is one:

It means that the given distance matrix doesn't include the information about

ancestors of one parent of Vi, but ancestors of the other parent of Vi.

e When the indegree of Vi is two:

If the lengths of two edges terminated by Vi are same, both parents of Vi are

uniquely determined.

• When the indegree of Vi is more than two:

Gout must include eij. The second edge can be selected arbitrary.

Theorem 4.1 When Gin is given, the set of Gout which satisfies Gin can be found in

O(n3
) time by PedigreeEnumerate.

Proof.

The distances which use eil (or eij) between Vi and the other vertices can be cal
culated by adding length(eiJ (or length(eij)) to the distance tables owned by adjacent

vertices of Vi· 0

In Theorem 4.1, we showed that PedigreeEnumerate can solve Pedigree Graph
Enumerating Problem in O(n3

) time. The inputs of this problem are a distance matrix
and a birth order. The output of this problem is a set of pedigree graphs which satisfy
the condition. On the other hand, Pedigree Graph Validating Problem is as follows:
The inputs of the problem are a distance matrix, a birth order and a pedigree graph.

The output is whether there is a contradiction or not.

Pedigree Graph Validating Problem

• Input: A distance matrix, a birth order, a pedigree graph.

• Question: Does the pedigree graph satisfy the given distance matrix and the

birth order?

This problem can be solved in O(n2
) time by applying the PedigreeEnumerate.
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child 3 child 4
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Figure 4.11: Genotypes of the blood type gene in the ABO blood system

Theorem 4.2 When a distance matrix, a pedigree graph and a birth order are given,

we can check whether there is a contradiction or not in O(n2
) time.

Proof

PedigreeEnumerate investigates O(n) edges which are terminated by each vertices
of Gin whether they satisfy the distance matrix or not. Since the pedigree graph is
given in Pedigree Graph Validating Problem, the numbers of edges which should be
investigated at each vertices are two. Then, the algorithm can investigate whether

there is a contradiction or not in O(n2
) time. 0

4.4 Inferring Pedigrees from Similarities of DNA

In the previous section, we dealt with problems to infer pedigrees from direct distances

and indirect distances. However, there is a possibility that the number of output

pedigrees is exponential of inputs and problems are made by theoretical interests.

Then, the future works are as follows: (i) We want to determine the output pedigree

graph uniquely. (ii) Problems should be applied to the practical use. In this section,

we introduce some results for the future works.

The human genome has 20000~30000genes. Each gene is composed of two alleles.
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Pairs of two genes are called genotypes. The total physical appearance that is caused
by the genotype is called the phenotype.

For example, there are 3 alleles of the blood type gene: A, B, and O. In Fig. 4.11,

the genotype of the father is (A, 0). Since A is dominant and 0 is recessive, the
phenotype of the father is A. Similarly, the genotype of the mother in Fig. 4.11 is (B,

0). Since B is dominant and 0 is recessive, the phenotype ofthe mother is B. Children
of the parents receive one gene from the father and the other gene from the mother.

Then, genotypes of children can be (A, B), (A, 0), (0, B), and (0, 0) in this case.

Each genotype occurs with the same probability from Mendel's law. Each allele of the
parent is received by the child with probability 1/2. For example, in Fig. 4.12, an

allele of node 1 is received by node 2 with probability 1/2. Numbers that are weighted

to edges represent generations between nodes. Then, node 1 is a parent of node 2 in

Fig. 4.12. If there is not another edge, an allele of node 1 is received by node 2 with

probability 1/2a in Fig. 4.13. Moreover, node 2 has a same allele that node 3 has with

the probability 1/2a+b in Fig. 4.14.
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Although the ABO blood system has only 3 alleles, our inference method needs

much more alleles. Then, we consider sets of genes or SNPs instead of using one gene.

Although details are explained in the next paragraph, we can assume that Node 3 does
not have same alleles that node 2 or node 5 have in Fig. 4.15.

In Fig. 4.16, the ancestor has an allele (A, B). Since there are 2 edge-disjoint

paths, the descendant can have the following alleles: (A, A), (B, B), (A, -), (-, B),

and (-, -). "-" means alleles that do not come from the ancestor. Moreover, there
is a possibility that "-" is "A" or "0". Although our purpose is to infer a pedigree
graph from similarities of DNA that are approximated by the ratio of same genotypes

between two individuals, the number of alleles, that is 3 in this case, is too small. Then,

we consider direct products of genes. For example, suppose that genes 9i (i = 1, ... , k)
have ai alleles. Then, the direct product of genes S = 91 X 92 X ... X 9k has a genotype
that has a1 x a2 x ... x ak alleles. If k is large enough, we can assume that every node
in which the indegree is zero has different genotypes, and does not have same alleles

each other. Thus, the ratio of same genotypes between two nodes that are connected
by only one a-length path is 1/2a.

However, pedigree graphs have cycles. If a pedigree graph has many cycles, it needs
exponential times of inputs to validate whether the solution is feasible or not. Suppose
that there are 2 node that are connected by 2 different paths as shown in Fig. 4.17.
Suppose that the length of one path is m and the length of the other path is n. This
pedigree graph is called (m, n)-paths. For example, the pedigree graph shown in Fig.

4.18 is (1,4)-paths.

Since m + n is very large in every (m, n)-paths included in a pedigree graph in
general, it is quite rare that node 2 receive either (A, A) or (B, B) from node 1.

Then, in Fig. 4.16, the ratio of same genotypes between node 1 and node 2 can be

approximated by 1/2m + 1/2n
.

From the approximation, the similarity between Vi and Vj, that is denoted by

S(Vi,Vj) = DS(Vi,Vj) + IS(vi,vj), is defined as follows: When Vi and Vj are con
nected by p different direct paths and the length of each direct path is lk (k = 1, ... ,p),
the direct similarity between Vi and Vj, that is denoted by DS(Vi, Vj), is 2:k=11/2Ik.
For example, in Fig. 4.17, DS(Vi, Vj) = 1/2m + 1/2n . Moreover, in Fig. 4.19,
DS(V1,V4) = 1/2a+c+d + 1/2a+c+e + 1/2b+c+d + 1/2b+c+e.
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Although there is a possibility that the number of different paths is exponential of

nodes, the direct similarity between 2 nodes can be calculated in polynomial times by

using the topological order.

Next, we define indirect similarity. When Vi and Vj are connected by p different
indirect paths and the length of each indirect path is lk (k = 1, ... , p), the indirect

similarity between Vi and Vj, that is denoted by IS(Vi, Vj), is I:f=11/2 Ik . For example,
in Fig. 4.20, IS(v5, V6) = 1/2d+f + 1/2g+e + 1/2d+b+c+e + 1/2g+c+b+f .

Our goal is to infer the corresponding pedigree graph from given S(Vi, Vj). The
following lemma plays one of the most basic part of the inference.

Lemma 4.6 If Vi andvj have one of the following relationship, S(Vi,Vj) ::21/2: (i) Vi
is a parent of Vj, (ii) Vj is a parent of Vi, and (iii) Vi and Vj are brothers.

Proof.

When either (i) or (ii) is satisfied, S(Vi,Vj) ::2 DS(Vi,Vj) > 1/2. When (iii) is

satisfied, S(Vi,Vj) ~ IS(vi,vj) ::2 1/22 + 1/22 = 1/2. 0

The inversion of Lemma 4.6 is not true. Suppose that a pedigree graph includes
(2,2)-paths as shown in Fig. 4.21. Although node 1 and node 4 do not satisfy any

condition of Lemma 4.6, S(Vl, V4) = 1/22 +1/22 = 1/2.

However, if (m + n) of each (m, n)-paths is large enough, there is a possibility that
the inversion of Lemma 4.6 is satisfied. In the following lemma, we discuss about the
case in which m + n ~ 5.

Lemma 4.7 Suppose that m + n ~ 5 and m, n =1= 1 in every (m, n)-paths. Vi and Vj

have one of the following relationships if and only if I S(Vi, Vj) ~ 1/2: (i) Vi is a parent
of Vj, (ii) Vj is a parent of Vi, and (iii) Vi and Vj are brothers.

Proof.

We can assume that Vi is an ancestor of Vj without loss of generality. Let Vk

be a descendant of Vi and an ancestor of Vj' I S(Vi, Vk) can be calculated by using

the topological order as following: Suppose that Vkp is only one parent of Vk. Then,
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I S(Vi, Vk) = IS(V~,Vkp). Similarly, let Vkj and Vkm be parents of Vk, Then, I S(Vi, Vk) =
IS(Vi,Vj) IS(Vi,Vm) Th ( ) b 1 1 t d Fl' F' 4 222 + 2 . us, Vi, Vj can e ca cu a e. or examp e, mIg. . ,

• IS (VI , V2) = 2~'

• IS (VI ,V3) = 2a~b + 2
1
.,

• IS (VI ,V4) = 21c (2a~b + ie) + 2a~ j, and

In order to prove the lemma, we construct binary trees that correspond these math

ematical formulas. For example, the binary tree shown in Fig. 4.23 corresponds to the

formula of IS (VI, V5). The calculations are done in a topological order from bottom up

in the binary tree. Since m + n ~ 5 and m, n i= 1, calculations between leaf nodes are
1 1 1

2m + 2n < 2'

Since indegrees are at most 2 in a pedigree graph, neighbor nodes of "+" are never

"+". Then, if a child node of "+" is an internal node, the result of the calculation

at the child node is less than 1/4. Since m, n i= 1, children of "+" are at most 1/4.

Then, calculation results of "+" are less.than 1/2. Since every "x" is done after "+",
calculation results of "x" are less than 1/4. Thus, since every calculation result is less

than 1/2, the lemma is satisfied. 0

Let GIS be a graph and Vi, Vj E V(GIS )' If IS(Vi, Vj) ~ 1/2, GIS has an edge
between Vi and Vj' From Lemma 4.7, we can infer a pedigree graph by finding pseudo

cliques that are defined as follows: Let l/;; ~ Vis. Let GIS[l/;;] = (l/;;, Ec) be an induced

subgraph of GIS by l/;;. Let KlVcl = (Vk,Ek) be a complete graph that has Il/;;l vertices.

When (Vk,Ek) = (l/;;,Ec+e), GIS[l/;;] is called a pseudo clique (e = vfvm and vf,vm E

1Ic). For example, the graph shown in Fig. 4.24 is a pseudo clique. (vf, vm ) is either

(VI, V2) or (V2, VI)'

Moreover, a pseudo clique of GIS corresponds to a nuclear family. For example, a

pseudo clique as shown in Fig. 4.24 corresponds to a nuclear family as shown in Fig.

4.11. Vf is the father and Vm is the mother.

However, for practical use, we cannot get IS(Vi, Vj) but S(Vi, Vj). Then, we want to

use S(Vi, Vj) instead of IS(Vi, Vj) for Lemma 4.7. However, there are counterexamples.
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Figure 4.24: A pseudo clique
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Figure 4.25: A counterexample m which Figure 4.26: A counterexample m which

S(V3,V6) = 1/2 S(V3,V6) = 17/32

Although node 3 and node 6 do not have any relationship of Lemma 4.7 in Fig. 4.25,

S( ) - 1 1 - 1 M S() _ 1 9 _ 17
V3, V6 - 4" + 4" - 2"' oreover, V3, V6 - 4" + 32 - 32

4.5 Concluding Remarks

In this chapter, we formulated problems to infer pedigrees from genetic distances and

a birth order as Pedigree Graph Enumerating Problem. We also formulated problems

to investigate whether there is a contradiction or not among given genetic distances, a
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birth order and a pedigree graph as Pedigree Graph Validating Problem.

We showed O(n3
) time algorithms for Pedigree Graph Enumerating Problem and

O(n2
) time algorithms for Pedigree Graph Validating Problem.



Chapter 5

Conclusion

In this thesis, algorithms that infer structures in bioinformatics from graph algorithmic
approaches.

In Chapter 2, for the problem of fixing the probe order of a given PQ-tree, we pre

sented polynomial time algorithms that minimize the number of additional fragments.
We solved not only the problem of fixing probes in a given order, but also the problem
to how to determine the best order of the probes. By using an idea of "edges", we

showed that the minimum number of additional fragments are r~l or r~l + 1, where
e is the number of edges. For practical use, there is the possibility that H-matrices
include errors. Then, a future work of ours will be to consider STS-based mapping
with errors.

In Chapter 3, we define another measure of imperfectness and construct polynomial
time algorithms that calculate minimum fragment sets. The second measure of imper

fectness is the total length of the additional fragments that are needed to uniquely fix

the probe order. We also mention cases that additional fragments are restricted to

sub-fragments of existed fragments, and that the lengths of additional fragments are

limited to 2.

In Chapter 4, we formulated problems to infer pedigrees from genetic distances and

a birth order as Pedigree Graph Enumerating Problem. We also formulated problems

to investigate whether there is a contradiction or not among given genetic distances, a

birth order and a pedigree graph as Pedigree Graph Validating Problem. We showed

75
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O(n3 ) time algorithms for Pedigree Graph Enumerating Problem and O(n2
) time al

gorithms for Pedigree Graph Validating Problem.

Throughout this thesis, we discussed about the algorithms that infer structures

in bioinformatics from graph algorithmic approaches. We believe that our inferring

algorithms would be of some help for revealing the biological meanings of genomes.

And, we also hope that every post-genome research in the world would be supported
by efficient algorithms that are constructed with robust theory.
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