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Abstract

   The dynamic situation understanding is indispensable for realizing computer systems

that autonomously work in the real world. This is because such computer systerns have to

understand dynamic situations in the real world, and adapt themselves to the situations

reactively. The dynamic situation understanding has been studied in Computer Vision

and many technologies have been developed. Some of them are applied to real-world

computer systems to increase their flexibilities.

   Tb realize the dynamic situation understanding, object tracking is one of the most

important and fundamental technologies. This is because most of dynamic situations

in the scene can be characterized by object motions. Therefbre, we should focus on

such moving objects and obtain the information of the focused objects to understand the

dynamic situation. To apply object tracking to real-world systems, the object tracking

method has to cope with complicated situations and conduct processing in real time.

   In this thesis, we propose a real-time flexible object tracking system. Our objective is

to realize the tracking system that can adaptively change its behavior depending on the

situation and task, and persistently keep tracking focused target objects.

   In order to realize real-time multi-target tracking in a wide-spread area, we employ ,

the idea of Cooperative Distributed vasion (CDV, in short). The CDV system consists of

comrnunicating Active Vision Agents (AVAs, in short), where an AVA is a logical model of

an Observation Station (real-time image processor with active camera(s)). For real-time

object tracking by multiple AVAs, we have to solve (1) how to design an active camera for

dynamic object detection and tracking, (2) how to realize real-time object tracking with an

active camera and (3) how to realize cooperation among AVAs for real-time multi-target

object tracking.

   First of all, for wide-area active imaging, we developed a Fixed-Vieurpoint Pan-Tilt-

Zoom (FV-PTZ, in short) camera. This camera is designed so that the projection center

is always placed at the rotational center irrespectively ofpan, tilt and zoom controls. This

property allows the system (1) to generate a wide panoramic image by mosaicing multiple

images observed by changing pan-tilt-zoom parameters and (2) to synthesize an image

taken with any pan･-tilt-zoom parameters from the wide panoramic image. With the FV-

PTZ camera, we can realize an active camera system that detects anomalous regions in

the observed image by comparing it with the generated background image (background

subtraction method).

   Next, fbr real-time object detection and tracking, we designed an Active Background

Subtraction method with the FV-PTZ camera, To successfu11y gaze at the target during

tracking, the system incorporates a flexible control system named the Dynamic Memory

Architecture, where multiple parallel processes share what we call the Dynamie Memory,

to dynamically integrate visual perception and camera action modules. The dynamic

memory enables parallel modules to asynchronously obtain the information of another

process without disturbing their own intrinsic dynamics.

   Finally, to implement the real-time cooperation among AVAs, we designed'a three-

Iayered interaction architecture:

lst layer (Intra-AVA layer): Visual perception, action and communication modules
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of an AVA work together by dynamically interacting with each other. Each module
exchange its information through the dynamic memory.

2nd layer (Intra-Agency layer): AVAs that track the same target object form a group
(Agency). AVAs in the same agency exchange the object information to coopera
tively track the target. Each agency has its own dynamic memory, and all the
member-AVAs exchange their information of the detected objects through the dy
namic memory. The dynamic memory allows the agency to obtain the reliable result
of object identification from multiple pieces of the object information asynchronously
observed by the member-AVAs.

3rd layer (Inter-Agency layer): In order to adaptively restructure agencies taking
into account targets' motions, agencies exchange the target and agency informa
tion with each other.

The dynamic interactions in each layer allow the entire system to track multiple moving
objects under complicated dynamic situations in the real world.

Throughout the thesis, experimental results are presented to demonstrate the effec
tiveness of our real-time flexible tracking system.
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Chapter 1

Introduction

1.1 Background
The dyriamic situation understanding is indispensable for realizing computer systems

that autonomously work in the real world. This is because such computer systems have

to understand dynamic situations in the real world and adapt themselves to the situations

reactively. The dynamic situation understanding has been studied in Computer Vision

and many technologies have been developed. Some of them are applied to real-world

computer systems to increase their flexibilities.

   To realize the dynamic situation understanding, object tracking is one of the most

important and fundamental technologies. This is because most of dynamic situations

in the scene can be characterized by object motions. Therefore, we should focus on

such moving objects and obtain the information of the focused objects (e.g., the number,

locations and behaviors of objects) to understand the dynamic situation.

   Flrrom a practical point of view, on the other hand, object tracking technology allows

us to develop various real-world vision systems such as

   e Visual surveillance and monitoring systems [NKI98] [MWM98a] [KZ99],

   o Remote conference and distance lecturing systems [KIMOO] [KKD+98],

   e ITS (Intelligent 'I]ransport System) [N092] [HIZOO],

   e Nayigation of mobile robots and disabled people [Ish97] [AB99],

   e 3D volume reconstruction and motion capturing systems [WWTMOe] [YATeO] [BDOO].

   rlb apply object tracking to these real-world systems, the object tracking method has

to cope with complicated situations and reactively conduct processing 'in real time. Most

of the proposed object tracking methods, however, have some restrictions on functions

and assumptions about the environment. These limitations reduce the effectiveness and

generality of object tracking for real-world systems.

   In this thesis, we propose a real-time flexible object tracking system. Our objective is

to realize the tracking system that can (1) adaptively change its behavior depending on

the situation and task and (2) persistently keep tracking focused target objects.

1
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   In what fo11ows, we first categorize object tracking systems into several classes and

review related previous works, We then discuss the advantages and disadvantages of each

class (Section 1.2). Based on this discussion, we address our strategy fbr realizing real-

time flexible object tracking (Section 1.3). We finally present an overview of the thesis in

Section 1.5.

1.2 Categories ofObject I]racking Systems

Real-time object tracking systemsi can be classified into several different types. For their

categorization, the fo11owing characteristics can be used:

Characteristic 1: How many objects in the scene?

Characteristic 2: How many target objects to be tracked?

Characteristic 3: Fixed camera or active camera?

Characteristic 4: How many cameras?

The first characteristic is an assumption on the scene. The second characteristic provides

a task given to a tracking system. The latter two characteristics are concerned with

a system architecture and its functions. These four characteristics define the task and

complexity of the tracking system.

How many objects in the scene? Depending on the number of objects in the scene,

     a design of the tracking system changes.

       e Single-object system: There is oRly one object in the scene.

       e Multi-object system: There are one or more objects in the scene.

     When the number of objects is assumed to be not more than one (i.e, single-object

     system), the detected object must be the target object. That is, the detected

     object is necessarily tracked by the system. The tracking system, then, need not

     discriminate between the target object and the non-target object. Thus, the design

     of the single--object system is simplified.

How many target objects to be tracked? Similarly, tracking systems can be classi-

     fied into two classes depending the number of target objects.

       e Single-target system: There is only one target object to be tracked.

       e Multi-target system2 : There are multiple target objects to be tracked.

  i There are also many researches on object tracking by batch processing, namely non-real-time object

tracking (see [LC831 [PDBSW92] [YM96], for example). This is one of the typical problems in distributed

artificial intelligence. We do not, however, take this issue into account because we put our focus upon

real-time object tracking.

 2 Obviously, the multi--target tracking system is included in the multi-object system.
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In the single-target system, the system keeps tracking a single target object, and

can ignore the information of all the other objects in the scene.

If the system has to track multiple target objects simultaneously, on the other hand,

it need to discriminate between all target objects continuously. That is, temporal

multi-object identification is required. The task of the multi-target tracking system,

therefore, becomes complex in contrast to that of the single-target tracking system.

Fixed camera or active camera?: By employing an active camera as an image sensor,
    the system can control the camera parameters (e.g, pan, tilt and zoom parameters)

    depending on the given task and the situation in the real world. With the active

    camera, the system can continue the foIlowing procedures.

      1. The system captures the image and analyzes the captured image.

      2. Based on the result of the image analysis, the system control camera parameters

         to capture a required view.

    This active scene observation allews the system to perfbrm tasks adaptively.

    In addition, controlling camera parameters gives the system the fo11owing advan-

    tages.

       e The system can observe a wider area by changing the gazing direction and

         location of the camera.

       e The system can dynamically adjust the visual field of the camera and the

         resolution of the captured image by changing the zoom parameter.

    As the system can obtain many advantages, we have to design a real-time and re-

    active camera controlling method. In this method, we change camera parameters
    depending on (1) dynamic situations in the real world and (2) mechanical charac･-

    teristics of the active camera.

How many cameras? The observable area by a single camera is limited. The single-

    camera system can, therefore, obtain little information simultaneously.

    Compared with the single-camera system, the multi-camera system has the fo11owing

    advantages:

     Simultaneous wide-area observation: By embedding many cameras in the scene,
         multiple different views can be observed simultaneously. The system can, there-

         fore, gaze at target objects that are distant from each other.

    Continuous wide-area observation: The arrangement of cameras in the wide
         area also enables the system to continuously track the focused target object

         even if the target object moves around the wide area.

    Reconstruction of 3D information: Ifthe external camera parameters (i.e., 3D

        positions of all cameras) are calibrated, 3D information of the object can be

        reconstructed from 2D information of the object observed by multiple cameras.
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    For example, a stereo vision method allows the system to reconstruct the 3D

    position of the object by employing the images observed from multiple direc-

    tions.

To make fu11 use of these advantages of the multi-camera system, we have to solve

the following camera-cooperation problems:

  1. To simultaneously track multiple objects with multiple cameras, the system has

    to identify each detected object among images observed by multiple cameras.

  2. To keep tracking the moving target object without a break, a camera need to

    request another camera to take over tracking of the target object.

  3. To robustly reconstruct 3D information of the object, 2D object information

    synchronized among multiple cameras is required. The system then need to

    integrate the object information observed by cameras.

Depending on how to realize the above cooperation among cameras, we establish

two types of distributed camera systems. We will describe the properties of these

systems in Section 1.3.

   As mentioned above, there are four basic characteristics of object tracking, and each

                                                      The complexity of thecharacteristic has two classes. In total, there are 16 ( = 24) classes.

system depends on combinations of the characteristics.
   A large number of works about single-target tracking have been reported:

   e Using a single fixed camera: [WADP97].

   e Using a single active camera: [MWM99] [MB94].

   e Using multiple fixed cameras: [CA99].

   e Using multiple active cameras: [MWM98a].

   On the other hand, the number of reported multi-target tracking systems is not as

many as that of the single--target tracking systems. Since the multi-target tracking system

                                                     recently concentrate onis required to apply the system to general purposes, researchers

multi-target tracking and the works about it has been increasing:

   e Using a single fixed camera: [IB98] [HHDOOa].

   e Using multiple fixed cameras: [N092] [NKI98].

   Nevertheless, there are few multi-target tracking systems using rr}ultiple cameras, In

::gti,c,u,iftr},h,a.rg,y,?ny.m,,gilkt,a,rg.egg,ra&Ein,gt,egsle.m,.t,h.2t;l{Igx,ioy,s,.m,yg.tigi2.aci,iv.e,,:a,m,e.r,a,s

hyfiie,t-.s6,gaefe,s,he.m.y,l･Iihtp,rg,gt,sr,azk,ln,g,sls.t.'gl,.w.i`.h,R21ti.'Le,e,egg'v.es,a.m,gr.2s,f.`Eag,gs{,fu'l
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               Figure 1.1: Types of multi-camera systems.

includes the properties of all other classes, it is the most powerfu1 way to cope with

various tasks and situations in the real world. We consider that this tracking system

is a technology worth being developed. Accordingly, we aim at developing a real-time

tracking system that can gaze at multiple target objects simultaneously by employing

multiple active cameras.

1.3 Real--time Cooperative Multi-target T)racking

1.3.1 Cooperative Distributed System Architecture

As mentioned in the last section, we concern a multi-camera system fbr real-time object

tracking. In general, we can design two types of multi-camera systems: centralized pro-

cessing system and distributed processing system. We should examine the advantages and
disadvantages of these systems, and choose the system which is appropriate for realization

of our tracking system.

Centralized processing (Figure 1.1 (a)): [[b integratethe object information observed

    by multiple cameras, a single processor gathers all the captured images through the

    network. This processor then analyzes all the images and obtains the integrated

    object information.

    Integrating the observed object information by a single processor causes the fo11ow-

    mg disadvantages:

      e Increasing network-load: Since all the captured images are transmitted to a

        single processor, a huge network-load is caused.
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e Increasing computational processing: Since all the captured images are ana-

  lyzed by a single processor, the computational load of the processor increases

  depending on the number of cameras.

These factors make real-time processing difficult. To solve these problems, Sogo-

Ishiguro-'Ilrivedi[SITOO] reduces the size of each image3 and enables a single pro--

cessor to conduct all required processes in real time. In this method, however, the

Iager the number of cameras becomes, the lower the image resolution is.

Besides these technological problems, the centralized processing system has an es-

sential limitation: a large variety of the observed situations have to be managed by

only the single processor. It has to, therefore, cope with all complicated situations in

the real world by itself. This expands the computational complexity of the process

that is conducted by one processor. Moreover, we have to design such a complex

behavior taking into account all combinations of predictable situations.

Distributed processing (Figure 1.1 (b)): To solve the problem that arises inthe cen-

    tralized processing system, each camera is coupled to its own processor. That is,

    tasks of a single processor in the centralized processing system becomes decen-

    tralized. In this distributed processing system, each processor analyzes the image

    captured by its coupled camera, and exchanges the result of the image analysis with

    the other processors.

    This distributed processing enables the system to solve the disadvantages in the

    centralized processing system as fo11ows:

e Decreasing computational processing: Since the image captured by a camera is

  analyzed by each processor, the computational complexity for each processor

  can be simplified rather than that of the centralized processing system,

e Decreasing network-load: Since the image is analyzed by each processor, all

  processors exchange only the result on this image analysis. The amount of

  these results are much smaller than that of the image itself. This property can

  reduce network congestion.

     By composing the system as a group of multiple processors, we can represent the

     complex behavior of the entire system through the interaction between processes.

     Designing the entire system can be, therefore, reduced to designing each process.

     Furthermore, the states and their transitions of the entire system increase enor-

     mously by combining those of all the processors. This property allows the system

     to cope with various and complicated situations in the real world. This is a great

     advantage of the distributed processing system in contrast to the centralized pro-

     cessing system. We believe that this property is indispensable to realize a flexible

     real-world system.

 3 All observed images are put together into a single image by a multi-to-one image converter. An image

processor can, therefore, manage all observations as a single image.



1.3 Real-time CoQperative Multi-target [I}racking 7

t

Figure 1.2: Cooperative distributed vision IMat98].

Accordingly, the distributed processing system is suitable not only for tracking the target

object in a wide-spread area but also for performing complex behaviors.

   For all processors in the distributed processing system to effectively work together

as an integrated tracking system, we consider that cooperation among the processors is

significant. In order to realize real-time fiexible tracking in a wide-spread area, we employ

the idea of Cooperative Distributed Vision (CDV, in short) [Mat98]. The CDV system

consists of a group of network-connected Observation Stations (real-time image processor

with active camera(s)) as shown in Figure 1.2, and realizes

  1. wide-area dynamic scene understanding and

  2. versatile scene visualization.

In the CDV system, each observation station possesses Visual Perception, Action and

Aretwork Communication functions. By dynamically integrating these three functions, the

observation station can behave as an intelligent autonomous system. With cooperation

among observation stations, the system as a whole works persistently as a real world

system,

   In addition to these advantages, the CDV system has the following advantages that

are the properties of a distributed system:

   e Robustness achieved by integrating multilateral information.

   e Flexibility of the system organization.
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   e Compensation for breakdowns.

Although we do not fbcus on these advantages in this thesis, they are also required func-

tions to realize a real world system that works persistently. In recent years, therefore, a

number of related researches are reported (see [Kan97], [SH97] and [CLK+OO], for exam-

ple).

   In this thesis, we propose a real-time cooperative tracking system that gazes at multiple

objects simultaneously based on the concept of the CDV system. The system consists of

communicating Active Vision Agents (AVAs, in short), where an AVA is a logical model

of an observation station. Fbr real-time object tracking by multiple AVAs, we have to

solve the fo11owing problems:

  1, How to design an active camera for dynamic object detection and tracking.

  2. How to realize real-time object tracking with an active camera.

  3. How to realize cooperation among AVAs for real-time multi-target object tracking.

In what follows, we propose our basic ideas to solve these problems.

1.4 Basic Ideas

1.4.1 Active Camera for Wide-area Imaging

The observation station fbr real-time object tracking should (1) keep tracking the moving

object, (2) detect the object information in the observed image in real time, and (3)

change its fbcusing visual field to effectively gaze at the target object. An active camera

of the observation station is, therefore, required to

Function 1: observe a wide (omnidirectional) area,

Iinnction 2: adjust its camera parameters to obtain the required information of a target

     object, and

Function 3: capture an image that facilitates quick and robust detection of object re-

     gions while changing camera parameters.

   With an active camera which can physically control its visual field, the above function 1

can be obtained. In previous active camera systems (e.g., Active Vision [AWB88] [Bal89],

Visual Servo [Bro90] [WSN87] and Robot Vision [RH90] [BT93]), function 2 was mainly

discussed. Without function 3, however, the system has to analyzes the complex observed

images which involve various 3D information (geometric and photometric information).

This makes real-time and robust processing difficult.

   'Ib solve this problem, we propose a well-calibrated rotational camera, where its op-

tical projection center is placed at the rotational center (i.e., an intersection of pan and

tilt axes). Wk) call this camera a Fixed-Vieurpoint Pan-Tilt camera. With this camera,
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appearance variations in the observed images are suppressed. This property greatly facil-

itates the image processing (e.g., detecting object region in the image while dynamically

changing the view direction).
   Usually, the projection center shifts according to zooming. It breaks down the fixed-

viewpoint rotation. We can however realize a Fixed-Viewpoint Pan-Tilt-Zoom (FV-PTZ,

in short) camera by adjusting the projection center to the rotational center while zooming.

1.4.2 Real-time Object Detection and Tracking

With an FV-PTZ camera, we can easily realize real-time object detection and tracking.

The tasks of the system are as fo!lows:

Task 1: Detect an object that comes into the scene,

Task 2: Track it by controlling pan and tilt parameters, and

Task 3: Capture object images in as high resolution as possible by controlling the zoom.

r]]ask ,1 'is the function of visual perception, and tasks 2 and 3 are the functions of action.

Since the action planning is determined based on image analysis by visual perception, the

integration of visual perception and action is significant. ,
   In many Active Vision systems, the visual perception and camera action modules are

activated alternately as shown in Figure 1.3. With this procedure, one of the modules is
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suspended while the other module is working. It degrades the reactive response of the

system. This disadvantage is fatal for real-time system that works in the real world.

   In Visual Servo, various dynamic control methods have been studied based on the

control theory. For example, visual feedback that takes into account both control and

perception delayslBro90] is employed as shown in Figure 1.4. In this system, the visual

perception and camera action modules work in parallel and exchange the information

with each other. Inter-module interactions, however, are simple and fixed. That is, this

system cannot adapt itself to the situation with unpredictable dynamic variations.

   rlb cope with unpredictable dynamic variations in the real world, more flexible dy-

namic interaction between the visual perception and action modules is required. We

introduce a novel scheme named Dynamic Vision, where the event driven asynchronous

interaction between the visual perception and action modules is realized. In dynamic

vision, each module has its own dynamics and asynchronously exchange information with

other modules as the occasion demands.

   rlb implement a dynamic vision system, the Dynamic Memory Architecture[MHW+eO]

is usefu1 as illustrated in Figure 1.5. In this example, the visual perception and action

modules share what we call the dynamic memory. In the dynamic memory, histories

of control signals as well as state variables such as pan, tilt and zoom parameters are

recorded as time-series data. The visual perception and action modules write into and

read from the dynamic memory depending on their objectives and dynamics. It enables

the modules not only to asynchronously exchange the information with other modules

but also to obtain the information observed at any time, ineluding prediction. Figure 1.5

illustrates the actual processing (i.e., image analysis and camera control) and information

flow in object tracking with dynamic vision.
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   In this thesis, we first show the active background subtraction with the FV-PTZ

camera for object detection and tracking, and then present real-time object tracking

system with the dynamic memory. By employing this real-time object tracking, each

observation station can track its target object independently.

1.4.3 Real-time Cooperative Multi-target [lracking

Finally, we design real-time cooperative multi-target tracking by communicating AVAs.

As mentioned before, for the system to effectively perfbrm distributed processing, coop-

eration among AVAs is most important. WkD therefore put our fbcus upon how to realize

real-time cooperation among AVAs.

   In our system, each AVA consists of a network-connected computer with a single

FV-PTZ camera. By employing the properties of the FV･-PTZ camera, each AVA can

detect objects and track its target object independently in real time. Many cameras are

embedded in the real world, and observe a wide area as shown in Figure 1.6, To effectively

observe the scene, we have to arrange the cameras depending on the task:

Effective camera configuration: In Cemputer Vision and Robot Vision, many camera-
    configuration planning methods for various tasks have been studied ['IAT95] [TTA95]

     [CK88]. In general, effective camera configuration is determined depending on the

    task given to the system. This is one ofthe most important problems fbr establishing

    multi-camera systems.

    In this thesis, although we do not concentrate on realizing the effective camera

    configuration fbr object tracking, we impose the constraint about the camera con-

    figuration on the system: visual fields of cameras are overlapping with each other in



12 Lintroduction

Camera

,Cam.era

(a) Overlapped configuration

  Figure 1.7: Camera configuration for

  (b) Isolated configuration

wide--area observation.

AVAI

lmage

AVA
Navigated! Detect!

 camera
 .  .  .  .   .    s    .q

       Objectsee$r

            t

,

n Navigated!n
(a) Gaze navigation

          Figure 1.8

AVAI
 t ･,C..o..operadng!

 .,.l. . .il

 1･[1,i,[.
 iii''Ii]IIi

 III:IIili･1

  tttt t x･i'I'l
 tttttt
Agency

& obj ect

AVA

v'

e't6:'11:'k'i･'l[ilj･illllii::::-//ii'Lii/1'ii･･111-1･illtt

AVAI

.:e,l(il}2.Shi3ani.iiiil,

Objectlt
w    '

･]÷i･i･

iiA, , ge..p,.g,y. 1.

AVA

(b) Cooperative gazing (b) Adaptive tracking

Basic scheme for cooperative tracking.

    order to keep tracking a target object in the observation scene without a break (Fig-

    ure 1.7 (a)). That is, in our system, the area of the observation scene is determined

    by the number of cameras and their visual fields.

   With the above system organization, we realize a multi-AVA system that cooperatively

detects and tracks a target object. Following are the tasks of the system:

  1. Initially, each AVA independently searches for an object that comes into the obser-

    vation scene.

  2. When an AVA detects an object, the AVA examines whether or not the information

    of the detected object is required to the given task. If the infbrmation is required,

    the AVA regards the detected object as a target object.



   3. If the AVA detects the target object, the AVA navigates the gaze of other AVAs

     towards the target object as illustrated in Figure 1.8 (a).

   4. An AVA, which is required to gaze at the target object by another AVA, decides

     whether it accepts the navigation or continues its current role depending on the

     situation.

   5. AVAs, all of which gaze at the same object, keep tracking the fbcused target object

     cooperatively without being disturbed by obstacles and other moving objects as

     illustrated in Figure 1.8 (b). A group of AVAs that track the same object is called

     an Agency. '
   6. Depending on the target motion, each AVA dynamically changes its target object

     as illustrated in Figure 1.8 (c).

   7. When the target object gets out of the scene, the AVA decides whether it searches

     for an object again or tracks another target object that is tracked by other AVAs

     depending on the situation.

   rlb realize the above cooperative tracking, we have to solve the following problems:

Multi-target identification: To gaze at each target, the system has to discriminate

     between multiple objects in the scene.

Real-time and reactive processing: Tb cope with the dynamics in the scene (e.g.,

     object motion), the system has to execute the process in real time and deal with

     the variations in the scene reactively.

Adaptive resource allocation: We have to implement a two-phased dynamic resource
     (i.e., AVA) allocation:

       1. To perform both object search and tracking simultaneously, the system has to

         preserve AVAs that search for a new object even if the system is tracking the

         target object.

      2. For each target to be tracked by the AVA that is suitable for gazing at, the

         system has to adaptively assign AVAs to their targets.

We solve these problems with real-time cooperative communication among AVAs and

     .agencles.

   In order to implement the reai-time cooperation, we propose a three-layered interaction

architecture. In each layer, parallel processes exchange different kinds of infbrmation for

effective cooperation. [[b realize a real-time information exchange and processing, we

employ the dynamic memory architecture. The dynamic interaction in each layer allows

the whole system to track multiple objects under complicated dynamic situations in the

real world. '
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1.5 Overview of Thesis

 In this section, we present the organization of the subsequent chapters in the thesis.

 Figure 1.9 shows a flow of the thesis.

   Chapter 2 presents a Fixed- Viewpoint Pan- Tilt-Zoom camera with the goal of estab-

 lishing an active camera which is possessed by the observation station. The FV-PTZ

 camera can control its gazing direction (pan and tilt parameters) and the resolution of

the image in its capturing (zoom parameter).

   An active camera of the observation station is required to (1) be able to observe the

wide area, (2) be able to adjust its camera parameters to obtain the required infbrmation

of the target object, and (3) capture an image that facilitates quick and robust detection

of object regions while changing camera parameters. We realize these functions with

the FV-PTZ camera. Experimental results demonstrate the practical effectiveness of the

FV-PTZ camera for the wide-area active sensing.

   Chapter 3 presents an Active Background Subtraction method fbr object tracking by

employing the FV-PTZ camera. In this section, we describe the basic idea fbr controlling

pan, tilt and zoom parameters to continuously gaze at the target object.

   'Ib efectively gaze at the target object during tracking, we have to design an integra-

tion ofvisual perception and action functions ofthe camera. We realize this integration by

the dynamic information exchange between the visual perception and action modules. We

prove the effectiveness of the active background subtraction by experiments in tracking a

moving object.

   Chapter 4 first introduces a novel dynamic system architecture named Dynamic Mem-

ory Architecture[MHW+OO]. This architecture can be applied for the system consisting

of multiple parallel processes. Through the dynamic memory, multiple parallel processes

can (1) exchange the information without synchronization, and (2) obtain the value which

are taken at arbitrary time by recording the information into the dynamic memory as the

time-series data.

   By employing the dynamic memory, we can dynamically integrate the visual perception

and action modules of the tracking system to realize a flexible temporal coordination

between them. As a result, the system can increase the tracking ability and obtain

intimate infbrmation of the target object with smooth camera motion. Experimental

results demonstrate the great improvement of the performance and stability of object

tracking with the dynamic memory.

   Chapter 5 proposes a Real-time Cooperative Multi-taTyet 71racking System based on

th concept of the CDV system, which is a main contribution of this thesis. This track-

ing system consists of communicating multiple AVAs. For real-time object tracking by

multiple AVAs, we put our focus upon how to realize real--time cooperation among AVAs.

   In order to implement the real-time cooperation among AVAs, we propose a three-

layered interaction architecture. With the real-time cooperation through the dynamic

interaction in each layer, the system as a whole can track multiple moving objects under

complicated dynamic situations in the real world.

   Experimental results demonstrate that the proposed real-time cooperation method
enables the system to (1) successfu11y acquire the dynamic object information and (2)
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adaptively assign the appropriate role to each AVA.
Chapter 6 presents an Observable-area Model of the scene for real-time cooperative

object tracking by multiple AVAs. It is one of augmentations of our cooperative tracking
system. We put our focus upon sharing knowledge of all the AVAs' abilities (i.e. observable
area in the scene) for efficient object tracking. With this knowledge, the tracking system
can plan an efficient role assignment to AVAs so that the system as a whole effectively
tracks all the target objects.

To realize this efficient role assignment, the system gathers the observable-area in
formation of all AVAs to incrementally generate the observable-area model (Le., scene
model) during tracking. We experiment to verify the effectiveness of the proposed scene
model for cooperative tracking.

Chapter 7 summarizes the work of this thesis and points out next steps for the future
real-world vision systems.

Chapter 2
Fixed-Viewpoint Pan-Tilt-Zoom Camera

for Wide-Area Active Imaging Chapter 4

(DynamiC MemoryJ
Architecture

Chapter 3 ~
Active Background Subtraction Real-time Object Tracking

for Object Tracking with the Dynamic Memory

ChapterS
Real-time Cooperative Multi-target Tracking

by Communicating Active Vision Agents

Chapter 6
Incremental Observable-area Modeling

for Cooperative Tracking

Figure 1.9: Flow of the thesis.



Chapter 2

Fixed-Viewpoint Pan-Tilt-Zoom
Camera for Wide-area Active
Imaging

2.1 Wide-area Active Imaging for Object Detection
      and backing

In this chapter, we present a Fixed-Vieurpoint Pan-Tilt-Zoom camera that has been de-

signed to achieve the goal of active control by an observation station for real-time object

tracking.

   The observation station for real-time object tracking should

  e monitor a wide-spread area,

  e detect object(s) from the observed image in real time,

  e keep tracking a target object as it moves around, and

  e change its visual field for effectively gazing at the target object.

Accordingly, a camera controlled by the observation station must perform the fo11owing

functions:

]tunction 1: Observe a wide area.

1ivnction 2: Focus on a target object to obtain a high-resolution object image.

Iinnction 3: Capture an image that facilitates quick and robust detection of object re-

    gions while camera parameters are changed.

That is, adaptive wide-area observation is required for real-time object detection and

tracking. We have realized these functions with the FV-PTZ camera.

                                 17
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2.1.1 Adaptive Wide-area Observation

We categorize wide-area observation methods into two classes.

Optical methods: Omnidirectional cameras using fish-eye lenses and curved mirrors

     [YY91] [YYY95] [PN97].

Mechanical methods: Computer-controlled active cameras that can change their visual

     field [IYT90] [MB94].

   In the optical methods, a fixed camera captures the omnidirectional image on the

curved mirror. Yagi et al.[YY91], Yamazawa et al.[YYY95], and Peri et al.[PN97] pre-

sented omnidirectional image acquisition methods using cone-shaped, hyperbolic-curved,

and parabolic mirrors, respectively. Since these methods capture the omnidirectional im-

age onto a single sensing element (CCD), they can provide video-rate wide-area image

capturing. Their image resolutions are, however, fixed and limited:

   e Since all of the omnidirectional view is captured onto a single CCD, the acquired

     appearance information is coarse.

   e Optical methods cannot control the zooming factor of the camera to acquire the

     high-resolution image of the focused object.

Moreover, since the camera observes through a mirror in these methods, objects beyond

the mirror cannot be observed.

   In the mechanical methods, on the other hand, the instantaneous visual field of an

active camera is limited, However, an omnidirectional scene can be observed by controlling

the camera parameters, and high-resolution images can be acquired by controlling the

zoom parameter.
   Visual surveillance tasks, including object tracking, require high-resolution image ac-

quisition because accurate information on the object is usefuI for reliable object identifi-

cation. Furthermore:

e An active camera can adaptively control the resolution to accommodate the dynamic

  situation in the real world,

e We can avoid the problem of a narrow instantaneous visual field by employing

  many cameras. That is, mukiple cameras can supplement each other to cover their

  unobservable fields.

For these reasons, we have adopted an active camera as the image sensor to realize func-

tions 1 and 2 described in Section 2.l (i,e., wide area observation and close observation

for gazing at the target object). Next, we discuss how to realize function 3, namely how

to capture images that facilitate image processing for object detection.
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2.1.2 Image Appearance Variations caused by Changing Cam-
        era Parameters

In active camera control, an observed image is first analyzed, and then camera parameters

are determined based on the result ofthe image analysis. For example, in object tracking:

  1. Detect the object region in the observed image.

  2. Determine the next camera parameters so that the object will be projected iR the

     center of the observed image.

Such an observation method is called Active Vision[AWB88][Bal89].

   By controlling the camera parameters, various appearance variations are caused in the

observed image:

   e Geometric variations: These are caused by changing the camera location, view

     direction and zoom.

   e Photometric variations: These are caused by changing focusi , iris, gain control

     and shutter speed.

When we employ an active camera to detect and track objects over a wide area, two

camera parameters, which produce the above types of variations, should be controlled:

   e Geometric camera parameters: These must be controlled to change the visual

     field of the camera for wide-area observation.

   e Photometric camera parameters: In general, when the visual field of the cam-

     era is changed, illumination conditions in the visual field are variable. In addition,

     since target objects move around the scene at various speeds, constant shutter speed

     is not enough to prevent motion blurs from being included in the observed image.

     Depending on the illumination conditions and the target motion, therefore, the pho-

     tometric camera parameters should be controlled to acquire the meaningfu1 object

     information. The fbllowing examples show how this is done:

       - Iris and gain control are used to adjust the dynamic range of the camera to

         the illumination.

       - If an object moves at high speed, the shutter speed is increased. Since a

         fast shutter speed darkens the observed image, iris and gain control should be

         controlled to acquire a meaningfu1 image.

In this thesis, we assume that the system does not control the photometric parameters

and concentrate on controlling the geometric parameters.

   rlb analyze images taken with different variations of geometric camera parameters, we

have to discuss the factors that cause appearance variations in the observed image (Figure

2.2 and Figure 2.3).

 i Strictly speaking, geometric variation is also caused by changing the focus parameter. However, this

geometric variation can be easily calibrated and is negligible with a telecentric lens. Hence, here we

simplify the camera model so that focus control only causes photometric variation.
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Figure 2.2: Images with parallax.

   We suppose a projection from a 3D scene to a 2D image to be a Perspective Pro2'ection[Fau93].

With this projection, all rays are projected onto the image plane through the projection

center (Figure 2.1). In a practical projection system, the projected image is reversed on a

CCD. To simplify this concept, we assume an imaginary image plane at the opposite side

of the projection center and let the image be projected onto the imaginary image plane

without reversal. Hereafter, we call such an imaginary image plane simply the image

plane.

   If the camera observes the 3D scene while changing its camera parameters, the object

appearance in the observed image changes. This variation is caused by the fo11owing two

factors, namely parallax and image deformation.
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2.1.2.1 Parallax

If the camera observes the 3D scene while moving its projection center, the camera ob-

serves objects in the scene from different vieW positions and angles. Consequently, object

appeatances in the observed images vary. These variations between the observed images

are called Parallax. Figure 2.2 shows examples of parallax. Observed images 1, 2, and

3 are captured while the projection center of the camera is moved. In these images, the

side of the object is visible or invisible depending on the geometric configuration between

the projection center and the object.

   By employing parallax infbrmation, several real-time stereo vision system reconstruct

3D information of the scene based on the concept of the triangulation [TWMOI] [SOOO].

These systems posses multiple cameras, and these cameras observe the scene simulta-

neously. In [TWMOI], 3D depth map is obtained from trinocular images based on the

multiple-baseline stereo method[YK86] [OK93]. These images are taken by the trinocular

lenses mounted on the pan-tilt camera head. The system can (1) detect a moving object

by comparing the input 3D map with the 3D map of the stationary scene and (2) track

it by controlling pan-tilt directions, without being interfered by variations of illumination

conditions. In [SOOO], the system with five cameras integrates the results of (1) active

region extraction, (2) multi-view stereo with occlusion handling, and (3) multi-view stereo

without occlusion handling, each of which is analyzed by different PCs. By effectively

integrating all the results, the system can acquire the precise 3D depth map at video-rate.

   If the projection center is fixed during observation, on the other hand, the geometric

configurations between the projection center and objects in the scene are unchanged. This

property is kept even ifthe location and the posture ofthe image plane change. We calla

camera whose projection center is fixed a Fixed- Vieurpoint camera (FV camera, in short).
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An FV camera enables us to observe and take images as shown by the examples in Figure

2.3. These images are observed while the location and posture of the image plane are

changed. Since the geometric configuration between the projection center and the object

is fixed, parallax does not occur in the observed images. These images facilitate image

processing with appearance based analysis.

   In the above camera configuration, variable camera parameters are restricted to the

view direction (pan and tilt angles) and the zoom. Such an FV camera is defined as a

Fixed- Viewpoint Pan-Tilt-Zoom camera (FV-PTZ camera, in short).

   Restricting variable camera parameters reduces the visual field of the camera because

the 3D location of the camera is fixed. This disadvantage can be overcome by employing

many cameras. That is, they can cover each others unobservable visual fields.

2.1.2.2 ImageDeformation

Even if the projection center of the camera is fixed, the geometric configuration between

the projection center and the image plane varies when the posture of the image plane is

changed. Therefore, while images observed by an FV-PTZ camera do not include any
geometric variations due to the 3D scene geometry, object shapes in the images vary with

the camera motion as shown in Figure 2.3. These variations are caused by the movement

of the image plane (i.e., variations in the location and posture of the image plane). Wk)

call this difference in the image appearance an Image Deformation. We cope with this

problem by employing a geometric transformation between images taken by the FV-PTZ

camera.

   In what follows, Section 2.2 first presents a geometric configuration of the projection

center for realizing the FV-PTZ camera and then describes a geometric property of im-

ages taken by the FV-PTZ camera (Section 2.2.1) and high-speed image transformation

between these images (Section 2.2.3). Section 2.3 shows (1) a scene model representation

with a group of images taken by the FV-PTZ camera and (2) aR image generation method

from this scene model. Section 2.4 proposes a practical camera calibration method to re-

alize the FV-PTZ camera system. In Section 2.5, experimental results demonstrate the

practical effectiveness of our idea for wide-area active sensing.

2.2 Fixed-Viewpoint Pan-Tilt

This section presents an active image sensing and

pearance variations in observed images.

Zoom Camera
processing method to cope with ap-

2.2.1 DesigningtheFV-PTZcamera
We realize the FV-PTZ camera configuration with the fo11owing practical active camera

design:

  1. Make pan and tilt axes intersect with each other. The intersection should be at a

    right angle to facilitate later geometric computations.
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Figure 2.4: Projection onto two different image planes from a 3D point.
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2. Place the projection center of the camera at the intersection point. The optical axis
of a camera should be perpendicular to the plane defined by the pan and tilt axes.

We call the above designed active camera the Fixed- Viewpoint Pan-Tilt (FV-PT, in short)
camera.

Zooming can be usually modeled by shifting the projection center along the optical
axis[LDPD97]. Therefore, to realize the FV-PTZ camera, either ofthe following additional
mechanisms should be employed:

• Design a zoom lens system whose projection center is fixed irrespectively of zooming.

• Introduce a slide stage that keeps the projection center fixed irrespectively of zoom
ing.

With the fixed-viewpoint camera, the reflection on the object and other photometric
appearances are also invariable between observed images. This is because the geometric
configuration between the projection center and the light source is fixed. This guarantees
that variations in the view point do not produce parallax, as do photometric variations
due to the 3D scene structure.

2.2.2 Imaging geometry of the FV-PTZ camera

If a 3D point is projected onto different multiple images by the FV-PTZ camera, the
projected 2D points can be transformed alternately irrespective of the location of the
projected 3D point. This property can be proven as follows.
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   Figure 2.4 illustrates a projection onto two different image planes (denoted by planeA

and planeB) from a 3D point (denoted by P) in the scene. In this figure, the origin of

the coordinate system denotes the projection center of the camera. PlaneA is an image

plane that is determined by the fo11owing parameters:

   e Distance firom the origin to planeA is pA (> O). pA is identical to the focal length of

     the camera (i.e., the zoom parameter).

   e 3D vector DA (= (kA, IA, mA)T) is a unit normal vector of planeA. DA corresponds

     to the view direction of the camera (i.e., the pan and tilt parameters).

   e PlaneA is expressed as kAx+ tAy+ mAz = pA･

PA, which is a 2D point projected from a 3D point P (D%P > O) onto planeA, is then

expressed by
                                     PA                              PA =: DT.pP･ (2.1)
A 3D point PA can be expressed as the 2D point pA in a 2D image coordinate system

whose origin is pADA.

                            pA =( IIEiAIA )pA, (2.2)

where XbA and YbA are the 3D orthogonal basis vectors of the image coordinate system.

                        XbA =k( -to£A) (2 3)

                                           -kA
                        YbA=k !,;kek-ilk/2} (24)

That is, XZAYbA = O, XZADA = O, Y-ZADA =: O and IIdX'bAl1 : llYbAH = 1･

   Conversely, the 2D point pA can be expressed as the 3D point PA:

                         PA=(XbAIYbA)pA+pADA (2.5)
   If a 3D point P is projected onto planeB, a 2D point pB is represented by the fo11owing

equation from equations (2.1), (2.2) and (2.5).

                      p. ( ;IEiBIB ) {( xbA ybA )p.4 + pApA}

                                                       , (2.6)                 PB= DT.{(XbAYbA)pA+PADA}

where planeB has a unit normal vector DB, distance from the origin pB, and 3D orthogonal

basis vectors (XbB, YbB)･

   From equation (2.6), it is obvious that pA and pB, each ofwhich are projected firom the

same 3D point P onto diffbrent image planes, can be mutually transformed independent

of P. By employing this property, we can rectify the image defbrmation between images

taken by the FV-PTZ camera. Thus, we can easily compare multiple observed images for

image processing and analysis.
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2.2.3 High-Speed Image Generation between Multiple Screens

Since 2D coordinate transformation between different planar screens is defined by equa-

tion (2.6), we can generate (1) a seamless wide panoramic image (described below) from

observed images and (2) an image taken with any pan-tilt-zoom parameters from the

panoramic image, by a transfbrmation between 2D coordinates. This transformation,

however, requires a complex non-linear computation and degrades real-time processing.

   rlb reduce the number of arithmetic operations in a transformation between two planar

images, we can exploit the fo11owing property (Figure 2.5): -
   For any combination of two planes A and B, there exists at least one set of planes

{C} whose member C satisfies the condition that two intersection lines A n C and B fi C

are parallel and C involves a fixed line P passing a point o.

Proof

e Planes A and B are not parallel, there exists an intersection line AnB.
  The planes A and B can be decomposed into two diajoint sets of parallel lines {LA}

  and {LB}, both of which are parallel to AnB. Let a line P passing the point o

  be parallel to A n B. A plane C involving Iine P makes two intersection lines A n C

  and BnC･

  Since plane C involves P and P is parallel to AnB, plane C is also parallel to

  AnB. Therefore, plane C can also be decomposed into diajoint set of parallel lines

  {Lc}, whose members are parallel tg A n B. Hence, the parallel Iine decompositions

  {LA}, {LB}, and {Lc} all consist of lines parallel to AnB. Aay two different

  lines chosen from {LA}U{LB}U{Lc} never intersect because all of these lines are

 parallel. That is, AnC = {LA}n{Lc} = LAc, and BnC = {LB}n{Lc} == LBc･
  Since LAc,LBc E {Lc}, An a and B fi C are parallel.
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  e Planes A and B are parallel, any plane C that is not parallel to these
    planes makes two intersection lines A n C and B n C, both of which are obviously

    parallel. Hence, {C} can be defined fbr any line P passing point o.

Q.ED.

   According to the above property, the projection between two planes A and B can be

decomposed into projections between two parallel lines AnC and BnC ( C E {C} )

by regarding point o as the center of projection. Since these two lines are parallel, the

projection between two lines is simplified to ID scaling. Thisstlan be implemented as linear
 C.ai".",,in.g.::ta,r,/i"ii..gF,OIII,,`illg.COpr.r,e,SdPOb",di."dgd:..Ogi",`.S.il6,.a.",d2ill6",S,u,b.S,e,(i3Iie"g.CdOrz'sieS,p.on,dhi,n,g

pomts:

                       xras･ 3., == nt + 7, xr;･ pl., = k + rt. (2.7)

   This means 4 additions are enough to compute one-to-one correspondence between
points in two different planes. However, there are initialization overheads to compute (1)
starting point pair lzf3 and Mi, and (2) scaling coeMcients. These overheads are equivalent

to computing two one-to-one correspondences between points in two planes, two vector

subtractions, and two scalar divisions per line pair. In the case of transformation to a

plane consisting of n. × ny elements, the overheads per point are estimated as: 16/pm
additions, 12/V7ill3ig multiplications, and 6/V7ilE7il divisions, where pm represents the

estimated number of lines on the plane.

2.3 Scene Model Representation for the FV-PTZ

era

Cam-

Rectifying the image deformation between images taken by the FV-PTZ camera allows

us to,integrate all observed images by projecting them onto a common virtual screen. On

the virtual screen, the projected images form a seamless wide panoramic image.

   For the integration, we can use arbitrarily shaped virtual screens. Sections 2.3.1 and

2.3.2 describe typical examples.

2.3.1 AppearanceSphere
When we observe the 3600 panoramic view by rotating the camera, a spherical screen can

be used (Figure 2.6). We call this spherical screen AI2pearance SPhere (APS, in short).

The omnidirectional image re-projected to the APS is called an APS image. In general,

omnidirectional images can be re-projected to any star-shaped closed screen. In the APS,

since the distances from the projection center to all positions on the virtual screen are

equal to each other, the image resolutions are uniform for all directions.

   We will first describe the APS image generation method. All pixel values in the APS

image are projected from observed images taken by the FV-PTZ camera. Figure 2.7
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Figure 2.6: Appearance sphere.

illustrates a projection onto an image plane and a spherical screen (APS) from a 3D

point. The 3D points PA and S(g',e") are projected points from a 3D point P onto

image planeA and a spherical screen, respectively. Let a 3D point PAs be a projected

point from PA onto a spherical screen.

   A spherical screen is expressed as foIIows:

                   S(q, e) == r(cospcos e, cosqsin e, sin g) , (2.8)

where r is a radius of the sphere and -g :E{I go S g, O f{ e < 2T. S(q'e") is then expressed

as follows:
                                      r                           S(g', e')= "p" P, (2.9)

where g" =: cos-i ( .2+Zy2+,,), e' == cos-i (pt) = sin-i (k)

   rlb generate the APS image from observed images, every pixel value at 2D coordinates

pA in the observed image is re-projected onto the APS. PA is expressed with pA by

equation (2.5). Therefore, PAs can be obtained by substituting the right side of equation

(2.1) for P in equation (2.9).

                            r                                       {(XbAYbA) PA + pADA} (2.10)            PAs ==
                  ]1 (XbAYbA)p. + pADAll

XbA) YbA, pA and DA are given depending on the posture of the observed image plane.

For every pA, PAs is determined by employing the above equation. A pixel value at pA

is re-projected onto the corresponding PAs in the APS.

   Next, we will describe the image generation method using the generated APS image,

Pixel values in the APS image are projected onto the image plane. rlb generate an image

from the APS, a transfbrmation between pA and S(g'e") is required. Here again, equation

(2.10) can be used. Since PAs is the 3D point on the APS (i.e., S(q"e")), S(g"e') is

determined for every pA by employing equation (2.10). A pixel value at S(q*e") is

projected onto the corresponding pA in the image plane.
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Figure 2.7 : Projection onto an image plane and a spherical screen from

 a 3D point.

   Depending on r (i.e., radius) ofthe APS, the surface area ofthe APS changes. As the

surface area is increased, the accuracy of the APS image increases. We can adjust the

radius of the APS depending on the task as foIIows:

Large radius: If high resolution is required: surveillance in a large space, inspection of

    precise parts.

Small radius: If high resolution is not required: Surveillance in a narrow area.

2.3.2 AppearancePlane
When the rotation angle of the camera is limited and all observed images can be re-

projected to one side ofabounded plane, we can use aplanar screen (Figure 2.8). We

call this planar screen APpearance Plane (APP, in short). The panoramic image on the

APP is called an APP image.
   Since both the APS screen and the observed image plane are planar, the transformation

between them is expressed as in equation (2.6). As we proved in Section 2.2.3, this

transforrnation can be quickened. This property allows the system to establish real-time

processing in contrast to the image generation method using the APS.

   By combining multiple APPs, we can utilize the fo11owing virtual screens:

   e With multi-view APPs, an omnidirectional virtual screen identical to the APS can

    be generated.

   e By adjusting the distance from the projection center to each APP, variable image

    resolution can be implemented. This enables us to change the quality of the image

    resolution depending on the direction of the camera.
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   Since the image generation from the APP is a 2D coordinate transformation between

two image planes, we can utilize the high-speed image transformation technique described

in Section 2.2.3. This technique greatly improves the real-time image processing.

2.4 Calibration fbr Realizing the FV-PTZ Camera

The omnidirectional image representations mentioned in Section 2.3.1 and Section 2.3.2

are equivalent to those in [Gre86] and [Che95] in Computer Graphics and Virtual Reality,

Our objective, however, is not to synthesize panoramic images natural to human viewers

but to develop an active camera system that facilitates image analysis for wide area

surveillance. That is, in our case both the image acquisition and the projections on/from

virtual screens should be accurate enough to closely match physical camera motions. To

attain such an accuracy, we have to develop sophisticated camera calibration methods.

2.4.1 FixingtheViewpoint

In this section, we explain how to place the projection center and the intersection of pan

and tilt axes for proper setup of an FV-PTZ camera.

   'Ib confirm the geometric configuration of the projection center and the rotation cen-

ter of the camera, the equipment illustrated in Figure 2.9 is used. Since a laser beam

passes through two translucent screens, bright spots appear on both screens. The camera

observes them while rotating its pan and tilt angles2 .

   We employ the foIlowing two properties to adjust the position of the projection center

to the rotational axes:

Property 1: If a ray passes through the projection center, all 3D points along the ray

    are projected to the same point on the image plane.

2 Fbr simplification, only the pan angle is rotated in Figure 2.9



30 Flixed-Vievvpoint Pan-[TVIt-Zoom Camera for Widearea Active imaging

+

]
l

tlltll

IMItt

Rotation center

   o
    i'

    l-tl t"lll

lll±Jl lltlle

lll"-

111tlll

1
l
l
l
M

lmttt 1
ellHt

!11tltll

,

l

t

1"M NlllN 1 Ulltl Mtll[

I

I

1

l

l

1

-mmttt- Ttranslucent screen

Ill l･
           tlmt tltutl

l
1111: MIIIi

i
,
l

D Beam light source

  MiD  iIl  :tiuitii tmtit l ttmtim"ti

     i ll'

  ,il
  i l i:

lll"1 1MU I "tlit?tllltl]

  .il
  iIll
        l  II

R
 i
ttinilNttn]

 l

"ltll llllll

D

1tiM IIe"1

l
1

l

t

l

1

1

l

E

]

l
t

I

 I
tltlt llHllSl

 l

l
l

i
i

l

l
ll
･

l

I

 Image

(a) Calibrated

t

l

l

1

l

f fo) Notcariblated (case 1) (c) Not cariblated (case 2)

Figure 2.9: Calibration using laser beam.

Property 2: If the projection center is placed precisely on the rotational axes, a ray

     passing through the projection center always passes the point while the camera is

     rotated. All 3D points along the ray are necessarily projected to the same point on

     the image plane.

Because of the above properties 1 and 2, if the projection center is placed exactly at the

intersection of the rotational axes, both bright spots are always projected onto the same

position, even while the camera angle is rotated. That is, only one bright spot appears

in the image (Figure 2.9 (a)). With other arrangements of the projection center and the

rotation center, on the other hand, each bright spot is projected onto different positions

in the image plane while the camera angle is rotated. In Figure 2.9 (b), the projection

center is between the scene and the rotational axis. In Figure 2.9 (c), the rotational axis

is between the scene and the projection center.

   We actually establish the above calibration with a linear slide stage mounted on a

rotational stage and a laser beam oscillator. The foIIowing procedures are applied for

calibration:

Step

Step

1: Set a laser beam so that it passes through the projection center. A bright spot

appears on a translucent screen by the laser beam as shown in Figure 2.10, Step 1.

If the beam passes through the projection center, two spots on translucent screens

are projected to the same position on the image plane.

2: Rotate the camera stage to the left side and measure the distance between beam

spots in the observed image while sliding the linear stage (Figure 2.10, Step 2). The
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Figure 2.10 : Calibrating the geometric configuration of the projection
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     same measurement is performed fbr the same angle to the right side (Figure 2.10,

     Step 3).

Step 3: The stage location, which minimize the sum of the distances between beam

    spots, is considered to be optimal.

These procedures place the projection center of the camera at the pan axis. The same

procedures enable adjustment of the tilt axis.

2.4.2 Calibrating Internal Camera Parameters

In general, both the projection center and the image plane shift along the optical axis

while the focal length (i.e., the zoom parameter) is changed. In the FV-PTZ camera

system, however, the projection center is fixed, This enables us to consider the variation

in the focal length as only a shifting of the image plane.

   If the camera captures images while the focal length is changed, the captured images

are enlarged or reduced around a specific position in the image. This position is called a

,Fbcus of depansion (FOE, in short). The FOE is alwacys placed on the optical axis of the

camera, even while the focal length is changed.

   In accordance with the above discussion, we define a camera model of the FV-PTZ

camera as fo11ows:

Camera model of the FV-PTZ camera: An optical axis is equivalent to a straight
    Iine between the projection center and the FOE in the image plane. Depending on

    the zoom parameter, the position of the FOE shifts along the optical axis, and the

    position and posture of the image plane changes. The x and y axes of the image
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     plane are parallel to the tilt and pan axes, respectively. Figure 2.11 illustrates

     variations in the image planes while the zoom parameter is changed.

Based on this camera model, we define the internal camera parameters required for an-

alyzing images taken by the FV-PTZ camera. We establish a two-phased calibration
procedure for estimating the internal camera parameters:

  1. Initially, the FOE is estimated.

  2. Next, all other parameters (i.e., radial distortion, aspect ratio, and CCD slant angle)

     are estimated simultaneously.

   The FOE is estimated by analyzing images taken with varying zoom parameters. The

2D points, which are projected from the same 3D point onto the image plane while the

zoom is changed, are on a straight line in the image plane. This straight line necessarily

passes through the FOE. Therefore, we can estimate the FOE as fo11ows:

  1. Draw multiple points randomly on a 3D plane that is at a right angle with the

    optical axis of the camera (Figure 2.13 (a)).

  2. 0bserve these points and capture images while the zoom is changed (Figure 2.13

    (b)).

  3. Estimate straight lines that are each determined by 2D points projected from the

    same 3D point (Figure 2.13 (c)).

  4. 0btain the intersection point of all straight lines. This point is considered to be the

    FOE (Figure 2.13 (c)).
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   'Ib realize the FV-PTZ camera, we suppose a projection from a 3D scene to a 2D image

to be a perspective projection. In a practical lens system, however, the actual projected

image is different from the image generated by the perspective projection due to various

distortion factors. Because of these factors, the assumption about the projection is not

accurate enough to facilitate image analysis.

   In [Tsa86], the following factors were employed to correct the observed image with

distortion.

Rndial distortion: A projection point (x., y.) on a perpendicular plane to the optical

    axis will be shifted to (x.d, y.d) by the radial distortion:

                        if;,d;'[if.U:y",O))((i.+.KAA22))++yX,O,' (2.ii)

    where K represents radial distortion coefficient, and

                         A2=(x.-xo)2+(y.-yo)2 . (2･12)

Aspect ratio: The aspect ratio only affects x coordinate values, and the point

    will be shifted to (xad, ysd), where

                           Xad = or(Xsd - Xc) + Xc ･

(Xsd7 Ysd)

(2.13)

   rlb increase the calibration accuracy, we additionally introduce slant angles of the

image plane (CCD) as illustrated in Figure 2.12.

CCD slant angle: The point (x.d, y.d) will be shifted to (x,d, y,d) by the CCD rotations

    (ec, ip,, q.) around the x-axis, y-axis and z-axis.
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Figure 2.14: Image stitching based calibration with APP.

                   (;:,d)-pcoseccosipcA...(i'r/1,,ii.,g:))+(t)･ (2i4)

     where (x,, y.) represents the rotation center, p the focal length, and

              A - (&9.S8,c8.0g,ips.'8,i:,es,Sue::1:$s -,8,OZ9c,ggnesc),

             D, .. (-CO,SigceS.i"ipc> (2.ls)

                     N cos e, cos ip. /
                                                                       '
   In order to estimate xo, yo, rc, cu, ec, ipc, and gc, we employ the properties of the

FV-PTZ camera. If images taken by the perspective projection FV--PTZ camera system

are projected onto the same virtual screen (e.g., APS and APP), the projected images

are seamless on the virtual screen. Accordingly, if we have correct camera parameters

as denoted above (i.e., pan, tilt, fbcal length, aspect ratio, radial distortion coeflicient,

radial distortion center, and slant angles of CCD plane), a seamless image stitching can
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be realized. In other words, these camera parameters can be calibrated in such a way as

to achieve seamless image stitching. According to this scheme, camera parameters can

be calibrated by minimizing the image difference in the overlapping area on the virtual

screen shown in Figure 2.14.

   We set the internal camera calibration as fo11ows:

  1. We capture a set of partially overlapping images of a stationary scene by changing

     pan and tilt angles with a fixed zoom parameter.

  2. We give appropriate initial parameters.

  3. Based on equations (2.11) AJ (2.15), we obtain the corrected images (x., y.) from the

     observed images (x.d, y,d). We then project the corrected images onto the virtual

     screen.

  4. The image difference in the overlapping area should be minimized. We evaluate

     the similarity between images by the normalized correlation and maximize it by

     employing non-linear optimization. Let f and g be the overlapping areas of the

     different observed images projected onto the virtual screen. If pixels (xi,yi) and

     (x2, y2) in f and g, respectively, are projected to the same position in the virtual

     screen, the normalized correlation of these pixels (denoted by S) is computed as

                         s.. :f(XbYi)'9(X2,Y2) . (2.16)
                                          Z) g2 (x2, y2)                               X f2 (x,, yi)

     The range of S is O S S S 1. Let P be the combination number of image pairs that

     are overlapped in the virtual screen. We calculate all Si(i = 1,･･･,P) and obtain

     the evaluation value for non-linear optimization.

                                      p2
                                     2 s, ･ lvk

                            D= 1- ic=i, ;' (2'17)
                                       2Ala

                                       k=1

    where Alle(i = 1,･･･,P) denotes the total sum of pixels that overlap with another

     image in the virtual screen.

  5. If the value of equation (2.17) is small enough, optimization is finished. Otherwise,

    values of all parameters are adjusted, and go back to 2.

   The advantages of this calibration method are:

No Calibration Object: This method does not require any specially designed calibra-

    tion object.

No Human Inspection: Since this method only uses observed images taken by chang-

    ing view directions, it will not be affected by human mistakes.
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No External Camera Parameters: Most camera calibration methods (e.g., [Tsa86])

    estimate internal and external camera parameters simultaneously. In these methods,

    internal and external parameters may interfere with each other, and inconsistent

    internal parameters may be obtained depending on the calibration object. In our

    method, however, only the internal camera parameters are obtained.

2.4.3 Pixel-wise Image Calibration

Even ifthe above two calibrations work out satisfactorily, it is difiicult to attain the exact

pixel-wise alignment between the observed image and the scene image generated from the

APS/APP. Various factors cause this alignment error:

Imprecise calibration: Depending on the precision of the calibration result, the accu-

    racy of the generated image changes. For example, since we estimate the internal

    camera parameters by the optimization method so that the total error is minimized,

    the precision the generated image varies at each position in the APS/APP. Further-

    more, a divergence of the camera's projection center may occur during extended

    utilization.

Quantization error: In practical camera systems, the quantization error in the observed

    image is caused by the A-D conversion done for image capturing. This produces the

    difference between each observed image and the generated image.

Mechanical limitation: In general, the camera angle and the zoom are also included

    in the internal camera parameters that should be estimated for active imaging with

    the FV-PTZ camera.

     Camera angle: The camera angle is represented by the pan (e) and tilt (q) angles.

         In equation (2.1), the view direction is expressed by a unit vector D.

     Zoom: The zoom of the camera is represented by the focal length p.

     We control pan, tilt and zoom parameters to observe the wide area and acquire

     the required object information. Since we employ a computer-controlled active

     camera, we can obtain current values of these parameters during observation. The

     accuracies of the obtained parameters depend on the mechanical characteristics of

     the camera (i.e., the resolution of the rotational angle and the zooming factors).

     If its performance is not high enough to generate an image that is identical to an

     observed image, the result of image analysis becomes unreliable.

Active control: In particular, ifthe camera captures the image while changing pan-tilt-

     zoom parameters with smooth (non-stop) camera motion, it is diMcult to align the

    observed image exactly with the image generated from the APS/APP,

   Tb obtain a reliable result of image analysis, an accurate rotational angle is especially

required. This is because the distance from the projection center to the image plane is

much longer than the pixel size in most cases, and hence a small angular error produces
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a crucial geometric error in generating images from the APS/APP. To obtain the actual

(accurate) rotational angle, therefore, we examine the difference between the observed

image and images generated with different combinations of pan-tilt parameters. Let
image. whose rotational angle is (e., g.) have the minimum error with the observed image.

(eo,qo) is then considered to be the current actual rotational angle.

   Although an accurate angle can be found by minimizing the error, this procedure is

computationally expensive. This is because all synthesized images compared with the

observed image are generated from the APS/APP. Fortunately, since a small angle of

the rotation can be approximated by the translation, it is suflicient to find the optimal

translation minimizing the error.

   The angle resoiution 6(x) corresponding to the pixel resolution at x on the plane is

represented as:

                  6(x) = tan-i (X +p0 5) -tan-' (X -p0 5) , (2.ls)

where p represents the distance from the projection center to the plane (Figure 2.15 (a)).

The angular error w that produces 1-pixel image distortion satisfies the equation

                 p× tan (g) -tan (g-w) -2tan (l;) == 1, (2･19)
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e
e

tw ew

Figure 2.16: Developed FV-PT camera head.

where e represents the view angle of the camera (Figure 2.15, (b)). Accordingly, if the

error of the rotational angle is less than w, we can approximate the angular error by the

translation of the image without any errors.

2.5 Experiments

We actually developed two types of fixed-viewpoint cameras (FV-PT camera and FV-PTZ

camera). In this section, we demonstrate (1) the accuracy of our calibration method for

implementing the proper setup of a fixed-viewpoint camera and (2) the effectiveness of

the image generation methQd from the scene model (i.e., APS and APP).

2.5.1 DevelopingtheFV-PTCamera

2.5.1.1 Hardware Specification

We experimented to verify the effectiveness of our idea by using a pan-tilt rotation camera

head. Figure 2.16 shows the FV-PT camera head we developed, where the pan and tilt

axes intersect at a right angle and a video camera is mounted on a group of adjustable

slide and slant stages. 'fable 2.1 shows the mechanical specifications of the camera head.

Rotational angles of the camera head can be controlled via RS-232C by a computer.

   We mounted a SONY camera XC-O03 with a C-mount lens VCL-08WM on this camera
head. By using this camera head, any (compact) video camera with any lens system can

be calibrated to realize a fixed-viewpoint camera. In this experiment, the focal length

was fixed. With these resources, we developed an FV-PT camera.
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rfable 2.1: Specification of the FV-PT camera head.

Panrotation -1800Av1800
Tiltrotation OOrv450

Maximumrotationalvelocity 1000/sec

Maximumrotationalacceleration 100e/sec

Arigularresolution O.O120

Backlash lessthanO.1670

2.5.1.2 FixingtheViewpoint

For the calibration to realize the FV-PT camera system, we employ the calibration method

described in Section 2.4.1. All of the observed images were projected onto a single screen

(i.e., APP) to evaluate the image differences in the overlapping areas of different images.

   Figure 2.18 shows the calibration result. We turned the pan and tilt angles by 60 and

100 in either direction (i.e., pan: left and right directions, tilt: up and down directions),

respectively. The horizontal and vertical axes represent the linear stage location and the

distance between the projected bright spots, respectively. From the calibration result, the

optimal location of the slide stage for realizing the FV-PT camera was determined to be

5.45 [cm] for pan axis and 1.55 [cm] for tilt axis.

2.5.1.3 Calibrating Internal Camera Parameters

We captured l8 images by panning and tilting the camera. Figure 2.19 shows the observed

images. The size of each image is 320 × 240 [pixel]. Pixel values in the observed images
are darkened due to the vignetting distortion[AAB97]. We can cancel the vignetting

distortion in the observed image by the fo11owing procedures:

  1, Capture a white plane illuminated uniformly. The vignetting distortion appears in

    the captured image.

2. Compute rates of pixel values between the brightest pixel and all other pixels. Each

  rate shows the relative extent of the vignetting distortion for each pixel.

3. Correct the vignetting distortion based on the analysis achieved in 2.

   In this experiment, although the focal length was known as a physical length, we need

the focal length as a pixel length to integrate all of the observed images and generate a

scene iinage model. This is because 2D coordinates in the observed image are represented

by pixels, and so the unit length is also represented by pixels in equations (2.1) AJ (2.15).

   We estimated the internal camera parameters (i.e., focal length p, radial distortion

rc, xo, yo, aspect ratio ev, and slant angle of CCD e,, ¢,, g.) by the calibration method
described in Section 2.4.2. In this calibration, all of the observed images were re-projected
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Figure 2.17: Experimental environment.
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onto a single planar screen (i.e., APP). During optimization of the parameters, the rota-

tional angle of the APP screen is fixed (OO,OO). The distance from the projection center

to the APP screen, on the other hand, is dynamically changed so that it is equal to the

optimizing focal length of the observed image. Ifollowing are the given initial parameters:

   e Initial parameters:

     Focal length p: 1090.0 [pixel]

     Radial distortion coeMcient rc: O.O[(×10-8) pixel-2]

     Radial distortion center (xo, yo)': (159.5 [pixel], 119.5 [pixel])

     Aspect ratio oc 1.0

     Slant angle of CCD (e,, ip,, q,): (O.OO, O.OO, O.oo)

The initial fbcal length (1090.0 [pixel]) is determined by the following procedures:

  1. Determine a landmark in the observed scene,

  2. Rotate the pan angle of the camera so that the landmark is projected in the right

    edge of the image. Let this angle be a.

  3. Similarly, rotate the pan angle so that the landmark is projected in the left edge of

    the image. Let this angle be 6.

  4. The geometric configurations between the above two image planes (as illustrated in

    Figure 2.20) are represented by

                              e+ e' = s- or , (2.2o)
                                        &-C
                               tane =                                             , (2.21)                                         fl
                                        C
                              tan e' :7/, (2.22)

    where St and C denote the image size and the coordinates of the FOE, respectively.

    We assume C == Sle/2 (= 320/2) and solve the above equations.

  Following are the estimated optimal parameters:

  e Optimal parameters:

    Focal length p: ,1086.86 [pixel]

    Radial distortion coeflicient K: -1.24[(×10-8) pixel-2]

    Radial distortion center (xo,yo): (158.55 [pixel], 118.67 [pixel])

    Aspect ratie cu: O.994

    Slant angle of CCD (e,, ¢,, g,): (O.1090, O.1630, O.O140)
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Figure 2.20: Determining the initial focal length.

   After all of the observed images were corrected based on the above estimated parame-

ters, we generated an APS (Figure 2.21). This APS image consists of 180 observed images.

By employing it as a scene model, we can generate a scene image taken with arbitrary

combinations of pan, tilt and zoom parameters3 . Figure 2.22 shows the panoramic image

generated by re-projecting all of the observed images onto an image plane.

   In this experiment, from equations (2.18) and (2.19) and the estimated focal length

(p = 1086.86), we can obtain the following values: 6(O) = O.05270 at the image center,

6(256) = O.05160 at the image frame, and w = ±O.38e which corresponds to ±5.574-pixel
translation. That is, if the rotational stages have a small angle step of less than O.060,

it is not required to correct the view direction. Furthermore, if the angular error is Iess

than O.380, we can obtain the optimal scene image by translating a generated image.

2.5.1.4 PerformanceEvaluation

rlb verify the accuracy of camera calibrations and the generated APS, we compare the

observed image with the image generated from the APS.

   Figure 2.23 (a) shows an observed image at (30,150), (b) is the generated image at

the same pan-tilt angles, and (c) is the difference between (a) and (b). This result shows

that the generated image is approximately identical to the observed image.

   rfo obtain the more accurate detected result, several shifted versions of the observed

image are generated and their differences from the background image were computed.

When the observed image was shifted to (-1lpixel], -1lpixel]), the least overall gray level

difference was obtained. Figure 2.23 (d) shows the image with the least difference. As

we can see, the shifting of the observed image is adequate to match it with the generated

 3 In this experiment, the rotational tilt angle of the camera head was limited. Therefore, we could not

generate a fu11y spherical virtual screen.
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Figure 2.21: APS representation of Kyoto University Clock Tower scene
(Dome-shaped APS).

Figure 2.22: Panoramic representation of the APS image.

image when the view directions of these image are roughly the same.

2.5.2 Developing the FV-PTZ Camera

2.5.2.1 Hardware Specification

Here, we show experimental results for internal parameter calibration and image genera
tion by using an off-the-shelf active video camera, SONY EVI-G20, which we found to be
a good approximation of an FV-PTZ camera. Figure 2.24 shows the appearance of EVI
G20. Table 2.1 shows the mechanical specifications of EVI-G20. The rotational angles
and zooming factor of EVI-G20 can be controlled via RS-232C by a computer. Pan-tilt
rotations are designed as a gimbal mechanism (Figure 2.25).
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(a) Observed image (b) Generated image (c) Difference

    (3o, lso) (3o, lsO) (1 (a)-(b) 1)

      Figure 2.23: Comparison between the observed image

                ated image

(d) Precise difference

and the gener-

Tlible 2.2: Specification of SONY EVI-G20.

Panrotation -300,.300

Tiltrotation -15e,v150

Horizontalviewangle 150N440
Maximumrotationalvelocity 2450/sec

Maximumzooming(changingviewangle)velocity 40/sec

Angularresolution O.OO1930

   The fo11owing descriptions give the diffk)rences between the experiments in this section

and those in Section 2.5.1.

Bounded (narrow) horizontal view angle: The pan-rotation and horizontal-view an-

    gles of EVI-G20 are -300 S pan rotation S 300 and 150 S horizontal view S                                                                   44o,
    respectively. The total horizontal and vertical view angle of the camera are 1040

    and 590 (< 1800), respectively. This allows us to represent the entire scene model

    as a single APP.

Viziriable zoom: Since the zoom parameter of EVI-G20 can be controlled from a com-

    puter, we can obtain a high-resolution APP by controlling the zoom during obser-

    vation.

With EVI-G20, we can realize a high-resolution APP.

1

2.5.2.2 Viewpoint Calibration

Tb utilize EVI-G20 as an FV-PTZ camera, we must first confirm that it is a good approx-

imation of the FV-PTZ camera. We experimented to verify the geometric configuration

of the projection center by the laser-beam-based calibration described in Section 2.4.1.

1
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Figure 2.24: Off-the-shelf FV-PTZ cam
era: SONY EVI-G20.

Figure 2.25: Gimbal mechanism.

The experimental results showed that the projection center is about 1.1 [em] off the
rotation center along the optical axis when the zooming factor is set smallest, and that
as the zooming becomes large, the former comes closer to the latter. This displacement,
however, does not cause serious problems in detecting anomalous regions in a wide area;
image deformation is kept to less than 2 pixels when the observed scene is farther than
2.5 [m].

The above verification allows us to model EVI-G20 as an FV-PTZ camera.

2.5.2.3 Calibrating Internal Camera Parameters

Since we control the zoom parameter in this experiment, the position of the FOE is
needed to generate the APP by integrating observed images taken with multiple zoom
parameters. We estimated the FOE of EVI-G20 by the calibration method described in
Section 2.4.2.

Figure 2.26 shows the estimated result of the FOE. From this figure, it is confirmed
that 2D positions projected from a specific 3D point are in a straight line and that all of
the straight lines cross each other at a point. From this result, we considered the position
of the FOE to be (322.825,228.215).

Next, in order to estimate other internal camera parameters, we observed six images
(Figure 2.27). The size of each image is 640 x 480 [pixel]. These images were taken at the
following combinations of the pan and tilt parameters: (-30°,10°), (0°,10°), (30°,10°),
(-30°, -10°), (0°, _10°) and (30°, -10°). The focal length was fixed so that the view angle
was the widest one. The vignetting distortions of all observed images were corrected by
the procedure proposed in Section 2.5.1.3.

We re-projected the images onto an APP and performed the calibration method de
scribed in Section 2.4.2. In this experiment, we used the following initial values for internal
camera parameters:
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Estimated result of the FOE.

Focal length p: 80e N 910 [pixel] (every 10 pixels)

Radial distortion coefiicient K: O [pixel-2]

Radial distortion center (xo, yo): (319.5 [pixel], 219.5 [pixel])

Aspect ratio a: 1

Slant angle of CCD (e,,¢,,g.): (oo, oo, oo)

During optimization, the rotational angle of the APP screen is fixed at (OO,OO). The

distance from the projection center to the APP screen, on the other hand, is dynamically

changed to synchronize it with the optimizing fbcal length of the observed image. The

optimization results are shown in rfable 2.3.

   The smallest evaluation value was obtained when the initial value of the focal length

was 880 [pixel]. We considered the fo11owing results estimated from this initial value to

be the optimal parameters for images taken with the widest view angle:

1focal length p: 830.746 [pixel]

Radial distortion coeMcient K: -10.26050 [(×10'8) pixel-2]

Radial distortion center (xo, yo): (295.594 [pixeli, 222,853 [pixel])

Aspect ratio a: O.99926

Slant angle of CCD (e,, ip,, g,): (O.169000, -O.122190, O.206830)

  Figures 2.28 and 2.29 show the generated APPs and the subtraction iinages in the

overlapping areas. The images in Figures 2.28 and 2.29 were obtained with the initial and
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thble 2.3: Estimated results of the internal camera parameters

the widest view angle).

           Initial value of p [pixel]

(with

800.000 810.000 820.000 830.000 840.000 850.000

Estimated parameters
p[pixel] 824.167 824.628 822.651 825.712 827.856 827.189

rc[(×10-)pixel-] 1.28871 -O.91411 -O.10969 -1.34124 -4.70199 -4.58066
xo[pixel] 317.832 318.823 319.529 319.335 330.391 318.939
yo[pixel] 233.228 238.544 239.475 239.982 242.843 238.924
qc[degree] O.17505 O.21363 O.18359 O.19752 O.21267 O.21842
e.[degree] -O.13269 -O.03613 O.06012 -O.02292 O.03743 -O.02453
ipc[degree] -O.08613 O.05345 -o.o7g4e -O.13657 -O.06581 O.03032

a O.99847 O.99927 1.00138 O.99815 O.99845 e.99905

Value O.OO0878 O.OO0685 O.OO0808 O.OO0677 o.oeo447 o.ooe447

Initial value of p [pixel]

860.000 870.000 880.000 890.000 900.000 910.000

Estimated parameters
p[pixel] 828.236 829.776 830.746 869.297 885.749 902.773

K[(×10-8)pixel-] -5.75362 -8.94146 -10.26050 -4.16316 -2.94475 -1.90708
xo[pixel] 320.335 327.315 295.594 319.540 312.649 321.092
yo[pixel] 248.540 236.692 222.853 245.173 242.828 235.821
qc[degree] O.21356 O.21781 O.20683 O.26423 O.22791 O.211e2
e.[degree] -O.O1601 -O.06926 O.16900 O.02403 -O.07008 -O.13933
ipc[degree] O.06843 O.12875 -O.12219 -O.16378 O.11192 -O.94443

a O.99876 O.99921 O.99926 O.95158 O.93295 O.91564

Value 0.000377 O.OO0252 o.eoo232 O.O09550 O.Oll132 O.O13109
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Figure2.27: Observed images (with the widest view angle: p =
          830.746).

optimal parameters, respectively. Since the APP generated with the optimal parameters

is seamless, the estimated parameters are confirmed as appropriate.

   Similarly, as with the above procedure, we estimated the internal camera parameters

for other zoom parameters. To control the zoom parameter of EVI-G20, we assign a value,

which we call the zoom command parameter, to EVI-G20. The domain of the value is

from O (the widest view angle) to 16384 (the narrowest view angle). The relationship

between this value and the focal length, however, is not known. Tb control the view angle

of the camera based on the image analysis (e.g., the region size of the detected object), the

relationship between the physical value (i.e., the focal length) and the zoom parameter

must be determined.

   rlhble 2.4 shows the estimated optimal parameters for each zoom command parameter.

We deduce the fo11owing properties of the internal camera parameters from this result:

e The focal length p changes linearly in proportion to the zoom command parameter

  as illustrated in Figure 2.30.

e The radia l distortion coeMcient

 4 lf the radial distortion coeMcient

disregarded.

   rc becomes smaller4 as the view angle narrows.

is less than 10-9, the effect of the radial distortion can be
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Figure 2.28 : Upper: APP image generated with the initial parameters

 (p = 880 [pixel], image size = 1036 × 585 [pixel]). Six
 observed images taken with the widest view angle are re-

 projected. Lower: Gray level difference in overlapping

 area. l
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1

Figure 2.29 : Upper: APP image generated with optimal parameters

 (p = 830.746 [pixel], image size = 1036 × 595 [pixel]).
 Six observed images taken with the widest view angle are

 re-projected. Lower: Gray level difference in overlapping

 area.
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Table 2.4: Estimated results of the internal camera parameters

nine kinds of zoom command parameters).

         Zoom command parameter

(with

                      Initial value of p [pixel]

880.000 1060.000 1240.000 1450.000 16so.ooe

Estimated parameters
p[pixel] 830.746 1034.436 1240.532 1450.434 1674.187

KI(×10-)pixel-] -10.26050 -5.01263 -O.05896 -O.04233 -1.80669

xo[pixel] 295.594 329.148 319.499 319.472 319.977
yo[pixel] 222.853 245.286 239.499 239.513 241.053

qc[degree] O.20683 O.20056 O.17184 O.20055 O.21095

e,[degree] O.16900 -O.03004 O.09698 O.O1854 -O.10951

ipc[degree] -O.12219 -O.OOO05 -O.10632 -O.03674 -O.26838

or 0.99926 O.99872 1.00059 1.00079 O.99563

Value O.OO0232 O.OO0210 O.OOO145 O.OOO077 O.OOO035

Zoom command parameter
10240 12288 14336 16384

Initial value of p [pixel]

1880.000 2080.000 2290.000 2500.000

Estimated parameters
p[pixel] 1879.794 2080.520 2290.162 2500.622

rc[(×10-)pixel-] -O.08400 e.17395 O.13470 O.26613

xo[pixel] 319.490 319.497 319.519 319.535

yo[pixel] 239.510 239.517 239.513 239.570

q.[degree] O.17008 O.17086 O.17986 O.16592

e,[degree] -O.06010 -O.06500 -O.09137
--
O.17498

ipc[degree] -O.14444 O.O1277 O.15575 O.17341

or O.99668 1.00092 1.00102 1.00280

Value o.oeoo34 o.ooeo23 O.OOOO17 O.OOOOII
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Figure 2.30: Relationship between the zoom command parameter and

          the focal length.

   e The estimated result of the radial distortion center (xo, yo) becomes inaccurate with

     the decline in the view angle.

   e Other parameters (i.e., e,, ip,, q, and or) are nearly constant.

   Based on the above properties, we define the variations in internal camera parameters

while the zoom command parameter changes:

Focal length p: This changes linearly in proportion to the zoom command parameter

     as illustrated in Figure 2.30.

Radial distortion coeMcient K: The value estimated with the widest view angle is
     considered to be the optimal value, and this value changes linearly in proportion to

     the zoom command parameter.

Radial distortion center (xo, yo): The value estimated with the widest view angle is

     considered to be the optimal value, and the value is constant irrespective of zooming.

Other parameters e., ip,, q, and or: These parameters are constant irrespective ofzoom-

     ing. The average of the estimated values fbr all zoom command parameters is con-

     sidered to be the optimal value.

By employing the above analysis of the internal camera parameters, we can generate an

APP that is consistent with all zoom parameters.

   Figure 2.31 shows the APP that is generated by integrating the observed images taken

with nine kinds of zoorn command parameters (i.e., O, 2048, 4096, 6144, 8192, 10240,

12288, 14336 and 16384). Since the generated APP image is seamless, it is confirmed
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Figure 2.31: High resolution APP (p = 2500.622 [pixel], image size =

6332 × 3684 [pixel]): the images taken with various zoom
parameters are re-projected onto an APP.

/
that the internai camera parameters of EVI-G20 are eMciently integrated among all zoom

parameters. This APP is synthesized by re-projecting the images taken with the narrow

view angle, namely when the camera zooms in. The high-resolution APP is, therefbre,

obtained.

1

/

2.5.2.4 PerformanceEvaluation

To verify the accuracy of the obtained camera model and the generated APP, we compared

the observed image with the image generated from the APP.

  These experiments were conducted with the fo11owing camera parameters:

Figure 2.32: Pan, tilt and zoom command parameters were -20.00, 4.00 and 4096, re-

    spectively.

Figure 2.33: Pan, tilt and zoom command parameters were --12.00, 6.00 and 12288,

    respectively.

Figures 2.32 and 2.33 show the observed images, generated images, and subtraction image.

F}rom these results, we can verify that (1) the estimated internal camera pararneters were

･
l
i1

j
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Observed image generated image Subtraction image

 Figure 2.32: Comparison between the observed image and the gener-

           ated image (Generated image: zoom = 4096, View direc-

           tion = (-2o.oo,4.oo)).

      Observed image Generated image Subtraction image

       Figure 2.33: Comparison between the observed image and the gener-

                 ated image (Generated image: zoom = 12288, View di-
                 rection = (--･12.00,6.00)).

appropriate and (2) images taken with arbitrary combinations of pan, tilt and zoom

parameters could be generated from an APP.

   However, the observed image was not completely identical to the generated image.

The difference between the observed and generated images was caused by the fo11owing

factors:

  e Although the employed camera (SONY EVI-G20) is a good approximation of an
    FV･-PTZ camera, the position of its projection center is not placed precisely at the

    rotation center as described in Section 2.5.2.2.

  e Since the accuracy ofthe camera control from a computer was not adequate, the view

    direction of the observed image did not closely approximate that of the generated

    image. The influence of this difference can be canceled by translating the generated
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image as described in Section 2.4.3.

2.6 ConcludingRemarks
We proposed an active camera for wide-area observation, which we call an FV-PTZ carn-

era. With the FV-PTZ camera, we can realize the fbllowing functions.

   e By changing the view direction, the camera can observe a wide area.

   e By adjusting the zoom parameter, the camera can dynamically control the image

     resolution. This increases the adaptability and flexibility of the camera system.

   e By mosaicing multiple images observed by changing pan, tilt and zoom parameters,

     the appearance model of the scene (i.e., APS and APP) can be easily generated.

While the instantaneous visual field of the FV-PTZ camera is limited, we can solve this

problem by incorporating a group of distributed cameras.

   Hereafter in this thesis, although we apply images generated from the scene model

(i.e., APS/APP) only to the background subtraction method for object detection5 , our

method can be employed for many other vision tasks with active sensing. We, therefore,

regard the FV-PTZ camera as a fundamental mechanism fbr Active Vision.

5 We wiil address the object detection and traeking method using the APP in the next chapter.



Chapter 3

                                                                'Active Background Subtraction for
Object Tteacking

3.1 Object Thracking using an Active Camera

3.1.1 Task ofthe 11racking System

This chapter proposes an active vision system fbr object detection and tracking using an

active camera. We employ an FV-PTZ camera as an active camera.
   The tasks of the tracking system using the FV-PTZ camera are defined as follows:

  1. Detect an object that comes into the scene. This task is required to search for an

    object in the scene. In this chapter, we assume that there is only one object at most

    in the scene.

  2. 'Ilrrack the object by controlling the pan-tilt parameters of the camera. To continue

    to track the focused target object, the system has to control the view direction of

    the camera towards the target object.

  3. Capture images of the object in as high resolution as possible by controlling the

    zoom parameter of the camera. High resolution images are required to acquire the

    precise information about the object and achieve robust object identification.

Tb fu1fi11 these tasks, the system has to incorporate image capturmg, image processing,

and camera control functions. This is because these functions need to be implemented

based on the results of the other types of processing.

3.1.2 Object Detection Methods

Comparing a fixed camera, an active camera makes object detection diflicult. This is

because various appearance variations are caused in the observed image by varying camera

parameters. The system, therefore, has to discriminate between these variations and

object regions to properly detect object regions in the observed image.

57
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   We solve this problem with the FV-PTZ camera. Employing the FV-PTZ camera
enables rectifying image variations caused by varying the camera rotation and zoom,

With this ability, the system can detect object regions in the observed image taken while

changing pan-tilt-zoom parameters by utilizing the same method as object detection with

a fixed camera.
   Tb detect object regions in the observed image, we can use the following methods:

Background subtraction: In this method, the observed image is compared with a sta-

    tionary backgrotind image that is taken in advance. The regions different from the

    background image are considered to be object regions: if the gray level difllerence

    between pixels in these images is larger than a threshold, this pixel in the observed

    image is considered to be in object regions.

    To utilize this method, the stationary background image has to been taken in ad-

    vance.
    In addition, the effectiveness of the background subtraction method is limited be-

    cause the stationary background scene assumption does not always hold in the real

    world:

Variations in the scene

      e Variations in an object's shape and posture: A fluttering leaf and flag, and

       the flickering of a CRrlr display (continuous small variations). Movements

       of a background object (intermittent large variations).

      e Variations in'the illumination: Sunlight fiuctuations caused by sun and

       cloud movements and room--light variations.

rlb cope with variations in scenes, many works have been reported [SG99] [HHDOOb]

[SMKUOO] [MOHOO]. To cancel variations in a scene, [SG99] and [HHDOOb] employ

probability distribntions to model the intensity variations at each pixel. Fbr ex-

ample, in [SG99], the pixel intensity is modeled as K Gaussian distributions (for'

continuous small variations). In [SMKUOO], the background scene image is adap-
tively renewed by employing M--Estimation (for intermittent large variations). In

[MOHOO], non-stationary objects in the scene are modeled by (1) variations in the

overall lighting conditions, and (2) local image pattern fluctuations, and so on.

These methods solve the problem of variations in the scene.

Subtraction between consecutive images: By comparing images taken attandt+
     1 with each other, the variations between the two images can be detected. The

    detected regions are considered to be moving objects.

    This method cannot detect stationary objects.

    In [MB94], the system can detect moving objects by subtracting consecutive images

    even if the camera is rotated during the observation. The implementation of back-

    ground image compensation allows the system to apply motion detection techniques

    for the fixed camera to images taken with different camera rotations.
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Optical flow: By comparing the window regions in the images taken at t andt+1
     with each other, the window regions projected from the same object in the scene

     are identified with each other between these consecutive images, and their motions

     between the images are estimated. The window regions showing different motions

     from those of the background region are are considered to be moving objects. Since

     appearance information has to be compared between images, it is diMcult to detect

     objects with poor surface textures.

     Similar to the above subtraction between consecutive images, this method cannot

     detect stationary objects.

     In [MWM98b], moving objects are detected by an FV･-PT camera. Since optical flow

     pattems caused by combinations of pan-tilt rotations can be estimated, the system

     can detect moving object regions by extracting those patterns that are different

     from the flow pattern of the background scene.

Template matching: This method is used for detecting the target region in the observed

     image. The target region is recorded as a target model called a template. By

     comparing the template with each region in the observed image, we can find the

             .     target reglon.

     The template needs to be acquired in advance. Therefore, only the target recorded

     as the template can be detected.

     In [HB96], a defbrmable template image and illumination basis for the target ap-

     pearance are employed to cope with changes in the geometry and shading of the

     target object. With this knowledge, the system can track the target object without

     interference by variations in (1) the object's location and posture and (2) illumina-

     tions. In [WADP97], a multi-class statistical color and 3D shape model is used to

     obtain a 2D representation of a person's head and hands in a wide range of view-

     ing conditions. The obtained 2D appearance is compared with the region in the

     observed image, and the object shape and posture can be recognized.

As mentioned above, each method has its own advantages and disadvantages, and we

should select the appropriate method depending on the task.

   In our system, we employ the background subtraction method for object detection.

This is because if the background image is taken in advance, the background subtraction

method can detect all object regions without any prior knowledge about target objects

whether they are in motion or still.

   rlb detect object regions while changing the camera rotation and zoom, the system has

to perform the background subtraction method with input images taken with arbitrary

combinations of pan, tilt and zoom parameters. We realize such an active background

subtraction method by comparing the input image with the background image generated

from a background image model (i.e., APS/APP).

   In what follows, we first present our active object detection and tracking method with

the FV-PTZ camera (Section 3.2). Then, experimental results are shown to demonstrate
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Figure 3.1: Object detection and tracking by the

subtraction with an FV-PTZ camera.
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that the proposed object detection and camera control meth

object motions and keep tracking a moving object in a wid

od allows the system to detect

e area (Section 3.3).

3.2 Active Backg

camera

round Subtraction with the FV --PTZ

:

3.2.1 BasicScheme
Figure 3.1 shows a basic scheme for moving object detection and tracking using the FV-

PTZ camera.

       Generate a background image model; with the FV-PTZ camera, a panoramicStep 1:
    background image (i.e., APP) can be easily generated by integrating multiple images

    observed by changing pan-tilt-zoom parameters.

Step 2: Extract a window image from the panoramic background image according to the

    current pan-tilt-zoom parameters and regard it as the background image; with the

    FV-PTZ camera, one-to-one mappings exist between the positions in the panoramic

    background image and pan-tilt-zoom parameters of the camera.

Step 3: Compute the differences between the generated-background image and an ob-

    served image.

/
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Figure 3.2: Time chart of the system cycle.

Step 4: If object regions are detected in the difference image, select one and control the

    camera parameters to track the selected target (the system is then in the tracking

    mode). Otherwise, move the camera along the predefined trajectory to search for

    an object (the system is then in the search mode).

   Figure 3.2 shows the time chart of the system cycle. Suppose the image acquisition

is initiated at to. The right vertical bar in Figure 3.2 illustrates the video cycle, which is

not synchronized with the system; the camera repeats its own video cyclei .

   Note that the image capturing should be done after the camera stops. The reasons

why the camera should stop fbr image capturing are as follows:

Exact alignment between the observed image and the background image: It is
    necessary for object detection by the background subtraction method to align the

    observed image exactly with the background image. As we mentioned in Section

    2.4.3, however, it is hard to attain pixel-wise exact alignment between the observed

    image and background image generated from the APS/APP under a smooth (non-

    stop) camera motion. 'Ib guarantee good conditions for the background subtraction

    method, therefore, the camera should be made to stop to observe the scene and

    maintain its pan-tilt-zoom parameters until the image capturing is finished.

Motion blur avoidance: A fast camera motion causes motion blurs in the observed

    image and they incur many false alarms in the background subtraction method.

 i If the camera can accept external triggers, the system can capture images whenever required.



62 Active Background Subtraction for Object [I]racking

The degree of motion blurs depends on the shutter speed and the rotational velocity

of the camera:

e A fast shutter speed can avoid motion blurs in the observed image. To perform

  such image acquisition, (1) the camera has to possess a mechanism for control--

  ling the shutter speed and (2) bright illumination is required to observe the

  scene with a short exposure time. That is, the restrictions about the camera

  function and the scene condition are required.

e The rotational velocity in the observed image is determined depending on the

  following factors: (l) the focus length of the camera, (2) the rotational velocity

  of the camera, (3) the distance between the camera and the object, and (4) the

  velocity of the object motion. Only the above factors 1 and 2 (i.e., the focal

  length of the camera) can be adjusted by the system. If the focal length is

  short (namely, the view angle of the camera is wide), the rotational velocity of

 the camera decreases because it is enough to keep tracking the target object.

 Then, motion blurs can be prevented. However,'the camera cannot observe a

 high resolution image of the object. If the focal length is long (namely, the

 view angle of the camera is short), on the other hand, the rotational velocity

 of the camera increases to keep tracking the target object, and then motion

 blurs appear. Motion blurs, therefore, cannot be prevented to keep obtaining

 the meaningfu1 target image as long as the camera captures the image while

 changing the camera parameters.

While we can solve the problem of motion blurs by analyzing them and removing

their effects from the observed image[WGCM96], this analysis unfortunately makes

real-time processing dificult.

Hence, in our tracking system, the camera repeats a `stop and motion' process to stably

detect object regions by the background subtraction method without the strong restric-

tions about the camera and the scene.

   In the basic scheme of active background subtraction, image capturing, image process-

ing, and camera control are, in turn, activated by the information managed by the other

functions:

Image capturing: After the camera stops, the image is captured.

Image processing: After the

    the captured image.

newest image is captured, the system detects objects in

Camera action: After the information of the detected

    determines and starts the next camera action.

object is obtained, the system
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3.2.2 ObjectDetectionAlgorithm

3.2.2.1 Generating the Panoramic Background Image

For active background subtraction, we utilize our earlier proposed APS/APP image model

as the background image model. The reliability of object detection with the APS/APP

image depends on the fo11owing factors: '

  1. Accuracy of the fixed-viewpoint.

  2. Precision ofthe estimated (geometric and photometric) internal camera parameters.

  3. Differences in the camera parameters between the observed image and generated-

     background image.

To guarantee the reliability of the detected result, we proposed (1) a calibration method

for fixing the viewpoint, (2) an internal parameter calibration method, and (3) active

camera parameter estimation and correction functions in chapter 2.

   In addition, to increase the accuracy of object detection, we adaptively change the

threshold for the background subtraction method depending on the coordinates in the

APS/APP. The practical procedure for the variable threshold is as fo11ows:

  1. Generate the APS/APP image.

  2. Capture the stationary background image while changing the pan-tilt-zoom param-

    eters.

  3. Re-project all captured images onto the APS/APP screen, and compute the gray

    level diflerences between the re-projected images and the APS/APP image for each

    pixel.

  4. Record the maximum difference fbr each pixel into a virtual screen whose data

    structure is identical to that of the APS/APP screen.

The pixel values in the above new virtual screen are considered to be the thresholds for

the background subtraction method. We call this newly generated image the Threshold

APS/t4PP image.

3.2.2.2 Image Capturing and Correction

A captured image can be affected by various image distortion factors. On the other hand,

the background image generated from the APS/APP image is a good approximation of

the perspective projection, because the APS/APP image is corrected by the estimated

internal camera parameters. This difference between the captured and generated images

incurs detection errors.

   Tb solve this problem, the captured image also needs to be corrected by the estimated

internal camera parameters. The image correction is implemented by the same method

as the generation of the APS/APP image,
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Figure 3.3: Directions of the Camera view and the target object.

3.2.2.3 Background Subtraction

The system repeats the fo11owing steps for objec£ detection:

  1. Capture the imagejust after the camera motion is stopped. Let the image capture

    time be to,

  2. Correct the distortions of the captured image.

  3. Generate the background and threshold images from the APS/APP and threshold

    APS/APP images, respectively, according to the current pan-tilt-zoom parameters.

  4. Compute the gray level difference between the captured and generated-background

    lmages.

  5. CoMpare the difference with the threshold image. If a pixel value of the difference

    is larger than that of the threshold image, this pixel is considered to be in an object

    reglon.

  6. Compute (1) the centroid of the detected object region and (2) the number of pixels

    considered to be in the object region (this number is denoted by Nlli). The 2D

    vector from the image center to the computed centroid is denoted by (xd, yd)･

  7. Based on the information of the target object (i.e., (xd,yd) and NI]Z), the system

    determines the next camera parameters (mentioned later).
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3.2.3 CameraControl

3.2.3.1 ViewDirectionControl

The system determines the next view direction ofthe camera based on the detected object

information (i.e., (xd, yd)). We define a straight line from the projection center to the FOE

on the image plane as the view direction of the camera2 . rlb gaze at the target object,

the system turns the view direction of the camera towards (xd, yd) in the observed image

taken at to. Let (4..(t),7}..(t)) and (Fbbj(t),[T},b,･(t)) denote the pan-tilt directions of

the camera view and those of the target object, respectively, and f(t) denote the focal

length of the camera at t. The direction from the projection center to the target object

( ElgjE,`g)' ) - ( E::.mE,`g)' ) + ( gr,z`,zn.[x,://f((l,oj)' )
(3.1)

as illustrated in Figure 3.3.

   Then, to capture the target object at the image center in the next capturing time

(denoted by ti), the current view direction of the camera (4..(t),7L..(t)) should be

changed by (arctan(xd/f(to)), arctan(yd/f(to))). That is,

( Eii:.mE,`l)' )- :( il:.mE,`g)' )+( g',:`,z".[x,gif((S,oj)) )- ( El;:},eE,`g)) )
(3.2)

   For the background subtraction to obtain a succes.sfu1 result, the camera has to stop

before the image is captured. The system, therefore, controls the view direction and holds

it at (R)bj(to),71,bg･(to)). To confirm the camera motion, the system continues inquiring

about the camera's current view direction (i.e., (a..(t),7b..(t))) until the difference

between (.PZ..(t),[Tb..(t)) and (R,bj(to),71,bj(to)) is less than the threshold. When the

current camera parameter satisfies this criterion, the system starts image capturing and

object detection again. Let the time when the system captures the next image to + tp3 .

The time spent in controlling the view direction (i.e., ti - (to + tp)) is determined by

(arctan(xd/f(to)), arctan(yd/f(to))) and the motion characteristic of the camera.

3.2.3.2 ZoomControl

The objective of view direction control is to track the target object while keeping its

captured silhouette atthe center of the observed image. On the other hand, the zoom is

controlled to accomplish the fo11owing two tasks:

Stabilization of tracking: To keep capturing the object's silhouette in the image with-

    out failure, the zooming factor should be controlled so that the view angle becomes

    wider.

 2 Namely, the view line is identical to the optical axis of the camera.

 3 See, Figure 3.2.
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Acquisition of precise object information: To observe a high resolution image of

    the object, the zooming factor should be controlled so that the view angle becomes

    narrower.

The zoom controlling method is designed to take into account the above confiicting tasks.

   We evaluate the degree of achievement of the above two tasks by the centroid of the

detected region (i.e., (xd,yd)) and the pixel count of the detected region (i.e., NRi). If

the distance between the image center and the centroid of the detected region is smaller

than the threshold Constd (namely, ll(xd, yd)II < Constd), the system considers that the

current view angle is wide enough to keep tracking the targe£ object and controls the
zoom parameter to zoom in. Let the total number of pixels in the observed image be
NItr. The zoom parameter is then adjusted so that the rate of NRt (namely, NRi/IVI2r)

becomes the predefined constant. Otherwise (namely, ll(xd,yd)ll ) Constd), the camera

zooms out to increase the tracking stability.

   In the above discussion, we do not address the time spent in changing the zoom
parameter. Although all of the camera parameters are controlled at the same time (to + tp

in Figure 3.2), the intervals spent by them might differ from one another. rlb track the

target object persistently, the view direction control should have a higher priority than

the zoom control, Accordingly, the system stops zooming when the view direction reaches

the destination (i.e., (Pbbj(to), 71,b,･(to))) even if the zooming has not finished,

3.3 Experiments

3.3.1 SystemOrganization

We conducted experiments with the fo11owing architecture:

Active camera: SONY EVI-G20: When the camera angle and the zooming factor were
    changed for tracking, both of them were controlled at the maximum speed4 .

PC: Sun Microsystems Sun Ultra2-1300,

Image capturing board: Active Imaging Snapper: We calibrated the internal camera

    parameters of EVI-G20 for a 640 × 48e [pixels] image as discussed in chapter 2.

    In this experiment, however, we resized the gray image from 640 × 480 [pixels] to

    320 × 240 [pixels] in order to cancel the effect of interlace scanning. The internal
    camera parameters were adjusted to the image size:

       e p, (xo, yo) and FOE: a half of the original values.

       e rc: four times of the original value.

       e (ec, ipc, gc) and cu: No transfbrmation.

 4 The mechanical specifications of EVI-G20 are shown in Section 2.5.2.1.
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Figure 3.4: Generated APP image (left) and threshold APP image
(right).

3.3.2 Tracking Results

To demonstrate the effectiveness of our active background subtraction method, we con
ducted experiments to detect and track a radio-controlled toy car. The car was manually
controlled by a human; it moved around on a 4[m] x 4[m] flat floor while avoiding sev
eral obstacles and sometimes stopped and changed directions. The FV-PTZ camera was
placed about 2.5[m] above the floor corner looking downward obliquely.

We first generated the APP and threshold APP images. Figure 3.4 shows these images.
In the threshold APP image, high thresholds are given especially at the edges of objects.
The threshold image, therefore, enables the system to cancel quantization errors caused
by the A-D conversion in the image capturing.

Figure 3.5 and Figure 3.6 show sequences of observed images and detected target
silhouettes. We gave a number to each observed image in the order of capture (from No.
1 to No. 40). In this experiment, the zooming factor was controlled so that the ratio of
the pixel count of the detected object region to the total pixel count of the image was 0.15
to 1. Figure 3.7 and Figure 3.8 illustrate the histories of the pan-tilt and pan-tilt-zoom
controls during tracking, respectively. The type of the history line denotes the system
state. The dotted and solid lines denote the search and tracking modes, respectively.

In images No. 1 f'V 4, the system moved the camera view along the predefined trajectory
with the widest view angle to search for an object. After the system detected an object
in the 5th observed image, the system considered it to be the target object, and the
camera was controlled to capture the centroid of the detected region at the image center
during the 6th f'V 11th observations. When the system observed the 12th image, the target
object stopped its motion. The system then started capturing the target object's image
in a high resolution by controlling the zoom. The view angle of the camera became the
closest in the 22nd observed image. When the target object started moving again, the
system zoomed out to track it stably. In particular, from the 36th to 40th observations,
the view angle became wider because the target object moved at a higher speed.
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No.1 No.2 No.3 No.4 No.5

Figure 3.5: Images observed during tracking (upper: input images,
lower: detected object silhouette).
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   The entire tracking period was 22 seconds (i.e., about 1.8 image-observations/second

on average). The interval between observations was not short enough to stably track

the target object and satisfactorily acquire the object information. The reason why the

interval was this long was because the image capturing could not be done while the camera

was moving in order to avoid motion blurs. That is, the long interval between observations

was caused by the mechanical characteristic of EVI-G20 (71, > [Zlo)5 .

3.4 ConcludingRemarks
We proposed an object tracking system with an active camera. We employ an active back-

ground subtraction method with the FV-PTZ camera fbr object detection and tracking.

The system keep tracking a target object persistently as follows:

   e The system detects object regions in the observed image taken with any combina-

    tions of pan--tilt-zoom parameters by the active background subtraction method.

   e The system controls the camera not only to keep tracking the target object but

    also to capture the object image in as high resolution as possible while taking into

    account the information of the detected target object.

   In order to augment this tracking method, the fo11owing technical problems remain:

   e Study on an object detection method that can work independent of the camera's

    actions (e.g., employing optical fiow analysis[MWM98b]).

   e Consideration of the target motion and camera motion. As mentioned in Section

    3.3.2, the time spent in controlling the camera is longer than the time for the other

    processes. This long interval makes reactive tracking diflicult. rlb solve this problem,

    a type of prediction-based camera control that takes into account the target motion

     and camera motion might be effective. Such a method is described in the next

     chapter.

   e Realization of more flexible system dynamics. A sequential perception-action cy-

     cle is too simple to reactively cope with dynamic object motion. For the flexible

     system dynamics, therefore, both the perception and action functions should be

     implemented as parallel modules. In the next chapter, we propose a Dynamic Vi-

     sion, where the perception and action modules work together while dynamically

     interacting with each other,

 5 In this system, the image capturing, generation and subtraction processes are completed in less than

one video cycle (i.e., 1130 [sec]).



Chapter 4

Real-time Object with

4.1 Dynamic Integration
Camera Action

of Visual Perception and

In the last chapter, we proposed an active background subtraction method fbr object

detection and tracking. The basic scheme for this method is to simply repeat the steps

described in Section 3.2.1.

   'Ib improve the dynamics of this tracking system, a prediction-based active vision

system using an active camera is proposed in [MWM99]. The system incorporates a so-

phisticated temporal coordination mechanism among image capturing, image processing,

and camera control. That is, the functions of the system's perception and action mod-

ules are well-coordinated to work together. Figure 4.1 shows the dynamics of the system

developed in [MWM99]. For object tracking, the system incorporates a prediction-based

dynamic control method (1) to cope with delays involved in the image processing and

physical camera motion and (2) to synchronize the image acquisition and camera motion.

With this prediction-based method, the system adaptively controls both the camera pa-

rameters and the next observation timing so that a `best-looking' object image can be

captured. Whi}e this system employs a sophisticated prediction-based camera control, its

fundamental dynamics is still limited to the sequential one; the activations of the percep-

tion and action modules are just interleaved on the temporal axis (Figure 4.1). That is,

one module stays idle while the other is activated.

   Such sequential control introduces non-smooth camera motions and intermittent ob-

servations. Furthermore, the system dynamics realized by the sequential steps is too

simple to cope with dynamically changing situations as fbund in the real world. To over-

come these disadvantages, a fiexible system dynamics to control visual perception and

camera action should be incorporated into the system. That is, we should introduce a

dynamic system architecture, where perception (image capturing and image processing)

and action (camera control) modules run in parallel. Such an architecture would allow

the system to adapt itself to dynamically changing situations in the real world.

73



L

74 Real-time Object [Ilracking with Pynamic Memory

Action ' ' '

Perception ' ' '

g
b
et
sH
aU

e
g
8

3o

e
e
k
U

Il,gMf･i/l.l･si･i,Igi,ll/il;･il'IIIEgl/I･lnlil

     £,g
     s, g･

IEIil±II･l'E::･l:･]ll:tjll:l:l'i･]ae;ililillllili ' '

---

    iElllU[,INMasmuIIUMUi,igliUfi

time

    lliisgiiiisi

e
e
an

U

time

Action
(Camera action)

Perception

(Background image generatioR)

Perception

(Background subtraction)

Perception

(Object detection)

Figure4.1: Dynamics of the object tracking system proposed in
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4.1.1 DynamicVision

The fundamental functions of the tracking system are summarized as follows:

Image capturing: When a meaningfu1 image can be observed, the system captures the

     image.

Image processing: The system analyzes the captured image to detect an object.

Camera Action: Based on the information of the detected object, the system deter-
     mines the next camera parameters (i.e., pan-tilt angles and zooming factor). The

     system then starts controlling the camera.

   Since the camera parameters at the time when the image is captured are required

to analyze the observed image taking into account the camera motion, the perception

module has to require them from the action module. Similarly, in order to determine the

next camera parameters to gaze at the target object, the action module has to request

the target object information from the perception module.

   The above information flows between the perception and action modules are illustrated

in Figure 4.2. The perceptioR and action modules are activated alternately, and their

functions depend on each other. We therefore have to design temporal interaction between

the two modules.

   The integration of visual perception and camera action has been studied in Active Vi-

sion [AWB88] [Ba189] and Visual Servo [Bro90] [WSN87]. In the former, although many

studies have been done on the ljVhere to Look problem (i.e., geometric camera motion

planning based on image analysis), only a few analyses have been done on the system

dynamics. Weiss-Sanderson-Neuman [WSN87] called this dynamics the `static look and

move structure' where visual perception and camera control modules are activated se-
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Figure 4.3: Information flows in dynamic vision.

   In visual servo, on the other hand, various dynamic control methods have been studied

based on the control theory. For example, Brown[Bro90] showed that prediction-based

control is effective for coping with delays.

   In visual servo systems, visual perception and camera control modules work in parallel

and the information flows continuously through the signal lines connecting the modules.

However, the inter-module interactions are rather simple and fixed, First of all, the types

of information exchanged between the modules are exactly the same as those of active

vision. Second, the interactions are continuously synchronized by analog and discrete

time parameters and no asynchronous interaction mechanisms are incorporated. In fact,

asynchronous events usually happen in the real world. That is, the world itself has its

own dynamics, which exhibits asynchronous features as its complexity increases. 'Ib make

a system work adaptively in such complexity, we should develop more flexible dynamic

interaction mechanisms between visual perception and camera control modules.

   Based on the above discussions, Matsuyama[Mat98] proposed a novel scheme named

Dynamic vasion, where event-driven asynchronous interactions are realized between visual

perception and action modules. The distinguishing characteristics of dynamic vision are

as fo11ows.

   e In a dynamic vision system, complicated information flows are formed between
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visual perception and action modules to solve the W7}en to Look and How to Look

problems as well as the common Mihere to Look problem (Figure 4.3).

Where to look problem: Based on the result of an image analysis, the system
    decides the next gazing location and the viewing trajectory. The system then

    starts controlling the camera.

When to look problem: The next camera action gives the system the subsequent

    image capturing timings. These timings are determined by taking into account

    both the object motion and the mechanical characteristic of the camera. For

    example, the image capturing timings should be determined depending on the

    camera motions, because quick motions can degrade observed images.

How to look problem: When the image capturing timings are determined, the

    system is also endowed with the appropriate way to detect object regions.

    Actual examples are given in the fo11owing:

     - If the interval until the next capturing is long enough for the camera to

       gaze the goal direction and stop its motion, the background subtraction

       method is suitable for object detection.

     - If the camera cannot achieve the above stop-and-sensing observation due
       to mechanical limitations, another object detection method is requiredi .

    That is, the image analysis should be facilitated by the camera parameters

    (focus, iris, zoom as well as motion parameters).

    In this thesis, however, we do not focus on the `how to look problem' in order

    to concentrate,on designing the system dynamics, and detect object regions,

    only by the background subtraction method.

e The system dynamics is represented by a pair of parallel time axes, on which the

  dynamics of visual perception and action modules are represented. The dynamic

  interactions between the modules are represented by inter-time-axes coordinations.

4.1.2 Dynamic Memory Architecture:
Interaction

Asynchronous Inter-Module

Tb realize dynamic vision systems, we hewe to make the

develop an asynchronous dynamic interaction mechanism

asynchronous interactions cause the fo11owing problems:

modules run in parallel and

between the modules. The

Problem 1: A reactive response from the other module is not guaranteed due to the

    asynchronization between the modules; when a module requires the other module

    to transmit its information, the requested module might not reactively respond to

    the requirement because it is executing its own task autonomously.

 i in [MWM98b], object regions are detected while a camera is rotated based on the optical flow anaiysis.
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Problem 2: The required information at a certain moment is not necessarily obtained

    because each module repeats its own cycle autonomously; if a module requires the

    information at T from the other module, the requested module might not have the

    information at T.

   Tb support such asynchronous inter-module interactions, Matsuyama et al.[MHW+OO]

proposed a novel dynamic system architecture named the Dynamic Memory Architecture,

where parallel modules share what they call the Dynamic Memory. The dynamic memory

architecture maintains not only temporal histories of state variables such as camera pan-

tilt angles and target object locations but also their predicted values in the future. The

modules are implemented as parallel processes that dynamically read from and write into

the dynamic memory according to their own individual dynamics. The dynamic memory

supports asynchronous dynamic interactions (i.e., data exchanges between the modules)

without wasting time for synchronizatioR. This no-wait asynchronous module interaction

capability greatly facilitates the implementation of real-time reactive systems such as a

moving object tracking system.

   We, therefore, can solve the above two problems by employing the dynamic memory:

  1. The dynamic memory mediates between all of the modules for the asynchronous
     information exchanges. Each module writes/reads shared information to/from the

     dynamic memory.

  2. Reading the values from the dynamic memory enables the system to obtain infor-

     mation at an arbitrary time,

   Based on the above discussion, we define the organization ofthe dynamic vision system ,

with the dynamic memory as fo11ows (Figure 4.4):

   e The parallel perception and action modules read the image from the camera and

    control the camera, respectively, according to their own individual dynamics.

   e The system contains the dynamic memory, which records the information about the

    system (e.g., the state of a camera action) and the scene (e.g., an object location).

   e Each module interacts with the other modules through the dynamic memory.

   In this chapter, we propose an active vision system for real--time object tracking, where

perception and action rpodules are dynamically integrated with the dynamic memory.

While the basic contents of the information exchanged between the modules are the same

as those of the tracking system proposed in the last chapter, the modules exchange their

information through the dynamic memory as illustrated in Figure 4.4. The system controls

the camera to reactively adapt itselfto dynamic variations in the scene by employing not

only the prediction-based control method but also flexible information exchange without

synchronization.

   In what fo11ows, we first introduce the general concept and functions of the dynamic

memory in Section 4.2. Section 4.3 proposes a real-time object tracking system with
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Figure 4.4: Real-time object tracking system using the dynamic mem-

         ory.

the dynamic memory. In Section 4.3.3, a practical implementation of the dynamic mem-

ory for object tracking is presented. In Section 4.3.4 and Section 4.3.5, we describe an

object detection method that copes with dynamic camera motions and the design of a

sophisticated prediction-based camera control method, respectively. A quantitative dy-

namic characteristic of our system is given to demonstrate its performance in Section 4.4.

Our experimental results demonstrate that the proposed dynamic control method greatly

improves the perfbrmance of the system in terms of stability and fiexibility for object

tracking.

4.2 Dynamic Memory
In general, an intelligent system such as an AVA consists of multiple modules with difllerent

functionalities and dynamics. Thus, a key issue to design and implement an intelligent

system rests in the functional and dynamic integrations of the modules. Here we focus

on the dynamic integration ofthe modules, since the functional decomposition of an AVA

is rather straightforward: visual perception, camera action, and network communication
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information flows

modules.

   Tb implement an AVA, we have to integrate three modules with different intrinsic

dynamics:

  1. Visual Perception: video rate periodic cycle,

  2. Camera Action: mechanical motions involving rather large inconstant delays, and

  3. Network Communication: asynchronous message exchanges, where inconstant
     delays are incurred depending on communication activities over the network.

   Figure 4,5 illustrates infbrmation flows among these modules. The problem we study

here is how we can design and implement fiexible dynamic information flows, i.e., dynamic

interactions among the modules.

4.2.1 BasicOperations

In the dynamic memory architecture, multiple parallel processes such as perception, ac-

tion, and communication modules, share the dynamic memory. Each module writes its

state variable such as pan-tilt angles of the camera and the target object location. This

information is shared among all the modules through the dynamic memory. Since the
shared information is written as a temporal history (i.e., time-series data) and shared

among the modules, the time information in all the modules have to been consistent with

each other. To guarantee the time consistency among the modules, one of the fo11owing

conditions is required:

   e All the modules share a single clock.

   e Each module has its own time: all of the clocks are set with each other, or the offSet

    between them are known.
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 memory.

of a time varying variable in the dynamic

In our system, all the modules work in a single processor and share the same clock in the

processor.
   The read/write operations from/to the dynamic memory are defined as fo11ows (Figure

4.6):

Write operation:

    When a process computes a value v ofa variable at a certain moment t, it writes (v, t)

    into the dynamic memory. Since such computation is done repeatedly according to

    the dynamics of the process, a discrete temporal sequence of values is recorded

    for each variable in the dynamic memory (a sequence of black dots in Figure 4.6).

    Note that since the speed of the computation varies depending on input data, the

    temporal interval betweell a pair of consecutive values becomes irregular.

Read operation:

     7lemporal interpolation: A reader process runs in parallel to the writer process and

    tries to read from the dynamic memory the value of the variable at a certain moment

    according to its own dynamics: for example, the value at [Z-1 in Figure 4.6. When no

    value is recorded at the specified moment, the dynamic memory interpolates it from

    its neighboring recorded discrete values. With this function, the reader process can

    read a value at any temporal moment along the continuous temporal axis.

    ,F}tLture prediction: A reader process may run fast and require data which are not

    written yet by the writer process (for example, the value at CTb in Figure 4.6). In

    such case, the dynamic memory predicts an expected value in the future based
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on those data so far recorded and returns it to the reader process. Note that as

illustrated in Figure 4.6, multiple values may be defined by the interpolation and

prediction functions, fbr example, at NOW and 7- > in Figure 4.6. We have to define

the functions to avoid such multiple value generation.

   With the above described functions, each process can get any data along the temporal

axis freely without waiting (i,e., wasting time) for synchronization with others. That is,

the dynamic memory integrates parallel processes into a unified system while decoupling

their dynamics; each module can run according to its own dynamics without being dis-

turbed by the others. This no-wait asynchronous module interaction capability greatly

facilitates the implementation of real-time reactive systems.

   Since a variable in the dynamic memory represents a state of some dynamics of an

object (e.g. pan--tilt-zoom parameters of an active camera), the interpolation and predic-

tion functions associated with the variable should be designed to well model the dynamics

of the object. As will be shown later, therefore, off-line modeling and calibration of the

object dynamics should be done a priori to define the functions.

4.2.2 ComparisonwithPreviousWorks

While the system architecture consisting of multiple parallel processes with a common

shared memory looks similar to the `white-board architecture[SST86]', the critical dif

ference rests in that the dynamic memory maintains variables whose values change dy-

namically along the temporal axis spanning the period continuously from the past to the

juture.

   Little-Kam[LK93] proposed an idea of the smart bwfer, where virtual values are syn-

thesized to dynamically coordinate parallel processes with different processing speeds.

Their idea, however, does not include variables with dynamically changing values or their

temporal interpolation and prediction.

   Zhang-Mackworth[ZM95], on the other hand, proposed constraint nets, where vari-

ables with dynamically changing values were introduced. Their major interest, however,

was in designing dynamic systems and did not refer to the dynamic integration of multiple

parallel modules like the white-board system. Thus, the dynamic memory architecture

can be regarded as an advanced dynamic system architecture integrating the white-board,

the smart buffer, and the constraint nets.

4.3 Real-Time Object Tlrracking System using the Dy-

namic Memory
We design a real-time object tracking system based on the idea of dynamic vision. Basi-

cally, this system is an extension of the active background subtraction system proposed

in the last chapter, and the tasks of the system are the same as those defined there:

1. Detect an object that comes into the scene.
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  2. rllrrack it by controlling the pan-tilt parameters.

  3. Capture its images in as high resolution as possible by controlling the zoom param-

    eter,

   In our system, the camera control (i.e., tasks 2 and 3 above) is implemented as smooth

camera motions. This is a diflerence of the system behavior from the system proposed in

the last chapter.

4.3.1 SystemOrganization

The system consists of an image processor (PC) with an active camera (FV-PTZ camera).

We employ SONY EVI-G20 as an active camera. The perception and action modules and

the dynamic memory are implemented by threads on a PC.

   Figure 4.4 illustrates the system organization, where the pan-tilt angles of the camera

and target object location are dynamically exchanged between the perception and action

modules through the dynamic memory. The information fiows between the modules'are

summarized as follows:

            Ioformation vaiter Reader
   Pan-tilt angles and zooming factor Action module - Perception module

         Objectinfbrmation Perceptionmodule - Actionmodule

4.3.2 Basic Scheme of Real-time Active Background Subtrac-
        tion

The basic scheme of active background subtraction is divided into two types of processes,

each of which is executed by the perception and action modules, as illustrated in Figure

4.7.

Perception module: Detect object regions in the observed image.

Action module: Control the camera rotation and the zooming factor to capture a sil-

    houette ofthe target object at the image center.

   Figure 4.8 illustrates the real-time active background subtraction implemented by the

dynamic interactions between the perception and action modules.

4.3.3 Implementation of the Dynamic Memory for Real-time
        Object Tbeacking

Here, we present a practical implementation of the dynamic memory for our real-time

active background subtraction system.
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information in the dynamic

4.3.3.1 Describing Time Varying Information

Based on the idea illustrated in Figure 4.6, the fo11owing descriptive method is employed in

the system. The information written into the dynamic memory is a set of temporal discrete

values. We represent this information as a set of functions, each of which is defined for

every interval between the consecutive values. The temporal infbrmation INFOi, which

is valid from ti to ti+i (where i denotes the ith updating cycle), is represented by the

interpolation function fi(t) (Figure 4.9):

                            INFOi : [ti, ti+i)

                                      fle (t)

   Let t. be the time when the newest value is written into the dynamic memory. To
implement future predictions in the dynamic memory, the prediction function h(t) that

is valid after t. is required (Figure 4.10):

                            INFOn : [tn, OO)

                                     f}i(t)

   Since each module writes the newest value into the dynamic memory while working,

the information should be renewed. Suppose that a module has observed data about
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information INFO at ti (i = 1,･･･,n) and the new (n+1)-th data is obtained at t.+i.

The module writes it into the dynamic memory to update the infbrmation maintained in

the dynamic memory as fbllows:

               INFOi : [ti,ti+i)

                         ,fli (t)

              (i= 1,･･･,n- 1)

                INFOn : [tn, OO)

                        fh(t)

where h(t) (i = 1, ･･･,n- 1) and sly (t)

f}z(t) and gn+i(t) prediction functions.

==>

INFO,･ : [t,･, t,･+i)

        9j(t)

(j' --- 1,･･･,n)

INFOn+1 : [tn+1, oo)

        9n+1(t),

(j' --- 1,･･･,n) denote interpolation functions, and

4.3.3.2 Target Object Information

The information of the target object that is exchanged through the dynamic memory

should satisfy the fo11owing properties:

e The shared information has to be obtained from the object iinage observed by the

  perception module.

e To write the information into the dynamic memory as time-series data, the infor-

  mation has to be numerical values.

e The object infbrmation is utilized by the action module to control the camera for

  object tracking2 . The shared target object information should, therefore, be mean-

  ingfu1 fbr the action module to determine the next pan-tilt-zoom parameters.

   In this system, the direction and the scale of the object are regarded as the object

information shared by the dynamic memory (Figure 4.11):

Object direction ((Pbbj., Zbbj.)): The direction is determined by the projection center

    of the camera and the centroid of the detected object region in the observed image.

    This infbrmation is required for controlling the pan--tilt angles towards the target

    object.

Object scale ((Ilsobj., 7lsobj.)): The scale is determined by the projection center of the

     camera and the rectangular window that includes the detected object region in the

     observed image. This information is required fbr controlling the zoom parameter.

     By representing the object size in the observed image as the angular values, the

     represented values can be consistent even if the zoom parameter is changed.

 2 IFbr a multi-target tracking system, the perception module also requires the object information for

object identification. We will address this problem in the next chapter.
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Representation of the object information.

4.3.3.2.1 [[hrget Motion Model and Motion Estimation and Prediction using
Kalman Filter
   In the dynamic memory, the observed information is written as discrete values. Since

these values include errors, estimating a reliable value from them is important. We so}ve

this problem by the Kalman filter, The Kalman filter (1) estimates a true value at the

current time and (2) predicts a value in the future, from a set of measured values based

on the predefined state model.

Motion and measurement models of the target

   'Ib employ the Kalman filter for representing the object direction and scale, the state

equation of the target motion is required. We model the target motion during a prQcessing

cycle of the perception module as fo11ows:

Direction model: The direction of the object is modeled to be a constant angular ve-

     locity motion around the projection center of the camera.

Scale model: The varying rate of the object scale is modeled to be a constant,

Since a processing cycle of the perception module is short enough, these assumptions

about the target motion are valid.
oftlrg`.(bijts,:"hl･l,,b,Jz,).:".d.stS,o.bijs;EIi,ll,o,bu'",)tid.e,f,9`?ft,hhe,V,a,r,Y,i,n.gr,a,`.e,S,(l'geie,d,i[IR,.e,",`aai,v,aiues)

           X" = (Fhbjn, [T6bjn, 'Rsobjn, 71gobjn7 'libbjn; [t6bj.; 'lilsobj.; lsobj.)T ) (4'1)

the state equation of the target motion is represented as fbllows:

                            Xn+i= FXn+GW, (4.2)
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provided that

           ."' = ( El Ati4i4 ), G! =( 91 ), w= (wi,w2,w3,w4)T,

where l4: a 4 × 4 unit matrix, 04: a 4 × 4 zero matrix, At: the interval between consecutive
frames, and wi {ili = 1,2,3,4}: white noise whose average and variance are O and aZ,,

respectively. On the other hand, the measured value yn r= (I llbj., 7Zbj.) llliobj., 71eobj.)T,

which includes the error v, is represented by

                             Yn =HXn+V, (4･3)
provided that
                    H= ( I4 o4 ), v= (vb v2, v3, v4)T,

where vi {ili = 1,2,3,4} denote white noise whose ayerage and variance are O and a.2,,

respectively.

Estimation and prediction from measured values

   If the motion and measurement models of the target are represented by equations

(4.2) and (4.3), the estimated value te. and the predicted value te.+i are computed by

the fo11owing equations:

                       din : Mn+Kn(Yn-Htnn), (4･4)
                      ten+1 == Fdin, (4･5)
                                                                   (4.6)

where K. denotes the Kalman gain:

                     Kn = i)nln-IHT(l4+H[PHT)-1,

                    AAA                    Pnln = Pnln-i-KnHl?zEn-i,

                  Pn+11n : I'i)nlnFT+Q

where a 8 × 8 matrix Q is represented by

                           04 04
                                2lrea. o O O
                                crvl '                   Q= o4 8 iii'F2 g2EL g ･

                                        av3
                                o o o gwa
                                             av4

   In the above discussion, we assume that a processing cycle of the perception module

(i.e., At) is constant. In general, however, At varies depending on the observed image.

We, therefore, regard At as a variable value.
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 Figure 4.12: Updating the object motion trajectory.
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4.3.3.2.2 Describing Target Motion
   We here show how the Kalman filter updates the information in the dynamic memory.

Let OBJi denote the information about the target object at t (t E [ti,ti+i), where i

denotes the ith observation).

   Suppose that observations at ti (i = 1,･･･,n) have been done. In the dynamic memory,

the target information modified at t. (i.e., OBJ.) is represented as fbllows:

    OBJn : [tn,OO)
  . (Ibbjn,CT6bjn'Rsobjn)CZ'lsQbjn)Ill)bj.,[]i6bj.,Rsobj.,Ctlsiobj.) = ten+1(t)･ (4'7)

   If a new data at t.+i (i･e･, y.+i = (1lbj.+,,71ibj.+i,llgobj.+,,[Tleobj.+,)T) is detected

by the perception module, the dynamic memory rewrites the data (Figure 4.12). Let

Atn+i = tn+i - tn･ Initially, the predicted value at t.+i is computed from equation
(4.6)3 ,

                       ten+1(tn+1) :F(Atn+1)ten+1(tn)･ (4･8)

Then, the estimated value te.+i is obtained from equation (4.5):

               ten+1 = ten+1(tn+1) + Kn+1 (Yn+1 ' Hten+1(tn+1)) ･ (4･9)

   I"rom equations (4.8) and (4.9), the information of the target object at and after t. is

updated as foIIows:

   OBJn: [tn,CX)) O OBJn: [tn,tn+1)
                                            ten+1 - ten
                   ' ･ ten+1 (t) =                                             t.+1-t. (tMt")+te"' (4.lo)

                         OBJn+1: [tn+1,oo)
                                  tnn+2(t) = F(t-tn+1)2n+1･

4.3.3.3 Cameralnformation

4.3.3.3.1 CameraMotionModel
   Controlling the pan, tilt and zoom parameters of the camera can be classified into two

types, namely specifying the direction/focal-length and the velocity4 . As mentioned at

the beginning of this section, we implement a smooth camera motion. For this motion,

specifying the velocity is appropriate because specifying the direction/focal-length forces

the camera tq suspend its motion after controlling the camera parameters. We, therefbre,

control the camera parameters by specifying their velocities.

   The management of the camera motion history in the dynamic memory involves some

complications, because the action module controls the speed of each camera parameter

and, at the same time, measures the pan-tilt angles and the zoom of the camera.

 3 In equation (4.7), tn.+i(t) denotes the predicted value at and after tn. If t = tn, however, aln+i(t) is

equal to the estimated value at tn (i.e., 2n). Consequently, mn+i(tn) = an･

 4 SONY EVI-G20 accepts both the directionlfocal-length and velocity specifications.
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   First of all, we conducted experiments to model the dynamics of the FV-PTZ camera

(EVI-G20) and found that it can be well described by `the first-order lag and dead time

model; and `the first-order lag model' in the pan-tilt angles and zoom controls, respectively.

The fo11owing represents the obtained dynamics of the FV-PTZ camera.

Pan-tilt angles

   Suppose that the pan-tilt velocities at t = O are (lil a.,, Ztl am,) and the pan-tilt veloci-

ties' control commands (4.., 71,g.) are sent to the camera at the same time. Then, the

pan-tilt velocities (denoted by (Pts..(t), 7}..(t))) are represented by

      :a,m.lt,l-:-i2･arniPI;.a:,ol,(l-'g.xg,`:.t.-:/:-:f3,':.a.m:,:(gO/i/e,':1)' (4ii)

where T and T denote the dead time and the time constant, respectively. By integrat-

ing the above equations, the pan-tilt angles at t (denoted by (R,..(t),ITE..(t))) can be

obtained:

Ilam(t) =

l'l am(t) =

where (4amo, 7}amo)

   The dead time T(== 44[msec])

by intensive experiments.

control command (1660/sec)

line and the dots denote

values, respectively.

described as the first-order lag and dead time model.

Zoom

 -R amo+tl Zamo (O SI t< 7)
 -Il amo + T･Pl arno + (t - T) -R om

 }IZI,i(,eliP,}st/iliF,')-i) (Ptom-ftamo) Eo' ,-!{< ,`). ,.) (4.i2)

 [Zl amo + 7[Zl amo + (t - T) 7}om

 +T (exp (-!i' :7) - 1) ([t}om - (tLam,) (T SI t)

denotes the pan-tilt angles at t = O.

          and the time constant T(=: 63[msec]) were determined

     Figure 4.13 illustrates a pan angle history; the pan velocity

       is sent to the camera when the pan angle is 200. The solid

    the first-order lag and dead time function and the measured

Figure 4.13 shows that the angular dynamics of EVI-G20 is well

   We represent the dynamics of the zooming factor as the history of the view angle.

Then, the dynamics of the zooming factor can be described as the first-order lag model.
                                                 .The velocity and position of the view angle at t (denoted by ZE..(t) and Zh..(t), respec-

tively) are represented as follows:

        2:6am (t) = ("2]rcom - 2i:6amo) (1 - exp (- ii )) + 21:6amo, (4･13)

        ZEam (t) = Z6,., + (t) 2]i6o. + T (exp (- Elil) - i) (ao. - 2e..,) , (4.i4)
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Figure 4.13: Angular dynamics of the FV-PTZ camera.

where ZL.. denotes the zoom velocity control command sent at t = 0, and Zkam, and

Zham, denote the velocity and the position of the view angle at t == O, respectively. The

time constant T(= 30[msec]) was determined by intensive experiments.

4.3.3.3.2 DescribingCameraMotion
   Suppose that we have the following information about the camera motion in the dy-

namic memory (Figure 4.14 5 A):

                          CAMn : [tn7oo)
                                   "Ramn(t)
                                   7Lamn (t)

                                   Zeam.(t) , (4･l5)
                                   R am. (t)

                                   7'l amn (t)

                                   ZLam. (t)

where t. denotes the time when the nth camera control is done, and (Ram.(t), 7}am.(t))7

ZLam.(t) and ("PEam.(t), [t}am.(t)), 2ca..(t) denote the position and the velocity of pan-

tilt-zoom parameters, respectively. Equations (4.11) and (4.14) express that the camera

 5 Although Figure 4.14 illustrates only the pan angle history, other parameters are also updated and

modified by the sarne method.
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velocities converge in the specified control command (i.e., A.., [i}o. and 2com). That is,

the velocity error does not accumulate. The position errors, on the other hand, accumulate

while the camera parameters are controlled. 'Ib solve this problem, the dynamic memory

has to update the camera motion history while correcting the positions of the pan-tilt-

zoom parameters.

  When the camera speed control command (IEom.+,;CT})om.+,,Z6om.+i) is sent to the

camera at t.+i, CAM. (equation (4.15)) is changed to equations (4.16) and (4.17) using

the camera dynamics in equations (4.11) tv (4.14) (Figure 4.14 B):

CAMn [tn, tn+1)

R arn. (t)

7}am. (t)

Z6amn (t)
･

･P}amn (t)

CZI)amn (t)

ZLamn (t)

'

(4.16)

CAMn+1 : [tn+1} OO)

-Ptamn+i (t) =

7Eamn+i (t) =

Zcamn+1(t) =

Ramn+i (t) =

71 amn+i (t) ==

Z6amn+i (t) -(

 -Ptaam. (t) (tn+1 :{ t< tn+1 +7)
                         . R)amn(tn+1 + 7) + (t - tn+1 - 7) Ptom.+!

 +T (exp (-2t=S!lll;;Zt 7) - 1) (-Rom.+i - -R am.(tn+1 +T))

                           (tn+i+T E{ t)

7}am. (t) (tn+1 :E{ t< tn+1+T)
7"l am. (tn+1 + T) + (t - tn+1 - T) 7Eomn+i

 +T (exp (-St=kZlitL=Zt ') - 1) ([tlom.+i - [l}am.(tn+1 +7))

                           (tn+i +T :SI t)
 Z6am. (tn+i) + (t - tn+i) ZEomn+i

 +T (exp (-kt:til±Lt ) - 1) (26om.+i - 2i76amn(tn+1))

"lil amn (t) (tn+1 :f{ t< tn+1+7)
1 1 am. (tn+i + 7)

+ ('R omn+i - iil am. (tn+1 + T)) (1 - exp (- Et=t ?÷=zt T))

                           (tn+i + T 5{ t)
[Z'}am. (t) (tn+1 S{ t< tn+1+T)
7Eam. (tn+i + T)

+ ([tLornn+i - [tl arn.(tn+1 + 7-)) (1 - exp (-¥t t '))

                           (tn+i +T :E{l t)

26om.+i - 2i6am.(tn+1)) (1 - exp (-St=lit±2't )) + 26arn.(tn+1)

(4.17)

  After sending the command, the action module reads the current pan-tilt angles (P',

T') and focal length (Z') at t'(> t.+i) from the camera. Then, some discrepancies (R)rr.., ,

[Tl)rr.+i, Zbrr.+i) may be fbund between the predicted and observed pan-tilt angles (Figure
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4.14 B):

                         -Plgrrn+i = P'-aarn..,(t').

                         [Tl,rr.+i = Tt-CT}airn.+i(ti)･

                         Zbrr.+i = Zt-Z6am.+i(tt)･

   'Ib reduce these discrepancies and generate a smooth camera motion trajectory in the

dynamic memory, we modify CAM.+i as fo11ows (Figure 4.14 C):

CAMn+!

where a (= 1.25)

  [tn+1, OO)

  -PEam.+i (t) == -l lamn+i(t) + R)rrn+i (1 - eXP(-ma(:,lt.+i)))

  71 am.+i(t) = [Z-l amn+i(t) + [Zl)rrn+i (1 - eXP(-E7(fill{likT;,lt.+i) )')1

  Zharn.+i (t) = Z6amn+i (t) + Zbrrn+i (1 - eXP(-i;T(7ifllikT:,-`t..',) ))

  "I1amn+i = Rarnn+i

  CZI)am.+i = CTLamn+i

  Zcamn+i = Zhamn+i

and b (== O.22) denote the time constants.

;

(4.18)

4.3.4 Perception Module: Dynamic Object Detection Method

The perception module repeats the foIIowing tasks:

   1. Read the current pan-tilt-zoom parameters from the dynamic memory.

  2. Generate the background and threshold images from the APS and threshold APS

     images, respectively.

  3. 0btain the subtraction image between the background and observed images, and

     compare it with the threshold image for object detection.

  4. Compute the centroid and the rectangular region of the detected object in the

     observed image.

  5. Wlrite them into the dynamic memory.

   rlb make this background subtraction work well, we have to align the synthesized

background image exactly with the observed image. To attain the accurate alignment, in

turn, the perception module has to obtain the current pan-tilt angles since the camera is

moving continuously. This is exactly the place where the dynamic memory plays a crucial

role; the pan-tilt angles are measured by the action module and recorded into the dynamic

memory, based on which the current pan-tilt angles are interpolated or predicted by the

dynamic memory to answer the read request from the perception module.

   Note that even with the dynamic memory, pixel-wise exact alignment between the

background and observed images is hard to attain. The perception module compensates
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for such a small misalignment (the left column in Figure 4.8): several shifted versions

of the observed image are generated and their differences from the background image

are computed. The image with the least overall gray level difference is regarded as the

result ofthe background subtraction. The effectiveness and limitations ofthe comparison

between shifted images are described in Section 2.4.3.

   Note also that since an image is captured during the camera motion, it is corrupted

with motion blurs. rlb cope with motion blurs, the perception module has to establish

object detection taking into account the fbllowing two factors:

   e The sensitivity of the subtraction should be lowered around high contrast edges

    in the observed and background images. The threshold image proposed in Section

    3.2.2.1 is usefu1 for suppressing any sensitive subtraction around edges.

   e The image should be captured when the cameratmoves slow enough. To determine

    the proper capturing timing, the perception module has to inquire of the dynamic

    memory about not only the pan-tilt angles but also the camera speed.

   With the above fine image alignment and sensitivity control, a silhouette of the object

can be stably extracted.

4.3.5 ActionModule:Prediction-BasedCameraControlMethod

4.3.5.1 ViewDirectienControl

The action module controls the view direction of the camera to capture the object image at

the image center. We first present the control method based on the PID control method.

PID method

   Proportional-Integral-Derivative (PID, in short) control is a major control scheme.

The controller, which consists of three terms (namely, the proportion, integral, and deriva-

tive terms), examines any instantaneous error between the process value and the set point,

The proportional term causes a larger control action to be taken for a larger error. The

integral term adds to the control action if the error has persisted for some time and the

derivative term supplements the control action if the error is changing rapidly with time.

   Practical view-direction controlling steps for object tracking based on the PID method

are as fo11ows.

  1･ Let (R am(tn),71a.(t.)) be the camera pan-tilt angles read by the action module at

    tn, where n denotes the nth control cycle.

  2. Read from the dynamic memory the location of the target object at t.. Let
     (Pbbj (tn), 71)bj (tn)) be the location.

  3. Compute the displacement:

                         -Fhis (tn) = -l bbj (tn) ' -Fl am (tn))

                         [Z'his(tn) = 76bj(tn)-7}am(tn)･
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Figure 4.15: View direction control based on the PID method.

  4. Determine the camera velocity control command (Vi)(n), V)(n)) by the following

     equations and send it to the camera.

       :,(:-;".({;ii/S,`,;`,i',1(,2or:,i2,Z,,;,li[l".i:illlg,(j."Ii],'1-ll,:ii･;,oili,ISi,iZl})j(4ig)

     where At = t. - t.-i and K, or, fi are the predefined constants.

   Here again, the dynamic memory plays a crucial role in realizing stable physical camera

control. Firstly, whereas the control timing t. is determined according to the autonomous

dynamics of the action module, the target object location at the specified timing can

be obtained from the dynamic memory. Secondly, while the gains for the PID control

are determined by purely off:line stand-alone experiments with6ut taking into account ･

the dynamics of the perception module, the same stable camera control can be realized

even after integrating the perception and action modules. This is because the dynamic

memory guarantees that the autonomous dynamics of a module is not disturbed even if

the module is integrated with other modules.

   This method controls the pan-tilt angles of the camera as follows:

   e If the displacement between the current positions of the target and the camera angle

     (i･e･, (ihis(tn), CThis(tn))) is large, the high-speed control command is sent.

   e As the displacement becomes smaller, the velocity gets further suppressed.

Although this control method realizes smooth camera motion, the time spent in controlling

the pan-tilt angles is not taken into account. That is, the target motion causes some
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displacement between the directions of the target object and the camera view. This

disadvantage is fatal for real-time moving object tracking. Accordingly, the view-direction

control method that takes into account both the camera motion and the target motion is

required.

Prediction Based Control

   Suppose the action module sends the camera control command at tn. Let T be the

constant latency for the camera to accept the camera control command from the action

module, and At be a processing cycle of the action module. We first consider At also to be

constant. Since the camera has the latency T, the last command (Ram.-i(t), 71am.-i(t))

is actually valid until t. + T, and the newest command changes the camera action from

tn + 7. The action module, therefbre, determines the camera control command so that

the displacement between the target direction and the camera angle at ta(= tn + T)

vanishes at tb(= t. +T+At), as illustrated in Figure 4.16. The object direction at tb (i.e.,

P6bj(tb),7bbj(tb)) and the view direction of the camera at ta (i.e., Ra.(t.),7}am(ta)) can

be read from the dynamic memory. From these parameters and ("Ptam.+,(t)p CT}am.+i (t)) in

equation (4.17), the fo11owing equation is obtained:

   IIill#.rn#((l,bl-;[Rzl,,a.M:((l.aj+"A"t`;lli.O.M.".'TT8:Xi,PEtlltl)):i?((Elli.O.M.":711'iii/ar."."8.3)))'(`20)
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                                                                    (4.23)

     Provided that an initial At is determined by intensive experiments in advance.

4.3.5.2 ZoomControl

To control the view direction towards the target object, the action module (1) estimates

the dynamics of the camera and the target object and (2) analyzes the observed image.

In these processes, many uncertain factors are involved:

   e 'T}arget motion: Since the target object moves freely, its motion cannot be precisely

    estimated. Moreover, as long as the target motion is modeled as the constant angular

    velocity motion, this model just gives an approximation.

'Ib align the view angle of the camera with the object direction at tb,

                           -lbbj(tb) == 1tamn(tb),
                                                                    (4.21)
                           76bj(tb) = 7Lam.(tb),

have to be satisfied. (R,..., 7}...) fbllows firom equations (4.20) and (4.21) that

            4,.. = .Ftam.(ta)+"IbbJ(ll')t'+l}IM,;;t"()-tth,"P)}a-Mnl()ta)At' (422)

            [Zlomn = Tlarn.(ta)+[T6bJ(iil'llM+ilii?M,:;ta()-tth,fZ)'LIE}nl()ta)At

These control commands enable the system to capture the target object at the image

center without delay.

   In the above discussion, At is considered to be constant. In general, however, At

varies in each processing cycle:

   e The processing cycle of the action module is summarized as fbllows:

      1. Read the values from the dynamic memory at t..

      2. Compute (1eom.)7'Lom.) at tnt

      3. Send (.l l)om., 7}o..) to the camera at t..

      4. Inquire the current camera motion of the camera to modify the camera trajec-

         tory recorded in the dynamic memory at tn.

    While the former three tasks can be finished immediately, the action module has

    to wait the reply from the camera for task 4. The time spent in inquiring for the

    camera motion varies depending on the states of the camera and network. The

    action module, therefore, computes the average over the past m times and regards

    it as At:
                                    n
                                    2 (t,-t,-,)

                            At = i==n-m+1 .
                                        m
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   e Camera motion: Whereas the camera dynamics is modeled a priori, its physical

     motion can vary depending on its internal mechanical and electronic states.

   e Image analysis: The computed position of the target object can fiuctuate due to

     noise and varying photographing conditions.

The action module controls the zoom under the existence of these uncertainties, That is,

when the degree of uncertainties is low, the action module zooms in to acquire high reso-

lution object images. When some unexpected events happen and the prediction deviates

largely from the observed data, on the other hand, the action module zooms out so as

not to lose track of the target object. In what fo11ows, we describe such a zoom control

method.
   All of the uncertainties mentioned above are reflected in the prediction'error of the

target position, namely, the distance between the image center and the centroid of the

target region in the observed image. The action module records this prediction error to

learn the degree of uncertainties involved in the task. The action module then determines

the optimal zoom parameter based on the learned degree of uncertainties:

Criterion for zooming: From the recorded prediction errors, the uncertainty degree

     at each observation is computed. The maximum uncertainty degree can then be

     obtained. The action module estimates the zoom parameter that allows the camera

     to capture a required silhouette of the target object even in the worst case. This

     zoom parameter is considered to be optimal to realize both stable tracking and

     high-resolution capturing.

   rlb employ the above criterion, we first have to evaluate the uncertainty degree from

the prediction error. The prediction error in the observed image depends on the following

factors:

Target motion: Since we model the target motion as a simple constant angular velocity

     motion, the diffkDrence between the model and the actual target motion incurs the

     prediction error.

Interval between observations: The longerthe observation interval becomes, the larger

     the prediction error becomes.

Area size of the object: When the object is close to the camera and/or the action

     module zooms in, the object is projected largely onto the observed image. In this

     case, even a small movement of the object produces a. big variation in the observed

     image. This makes accurate prediction diflicult.

Among these factors, the interval between observations and the area size of the object

region can be exactly obtained from the system clock and the detection result, respectively.

We normalize the prediction error by these two factors to evaluate the uncertainty degree.

Normalization by the interval between observations:

    We consider the prediction error to be in proportion to the interval between obser-

    vations. The prediction error is, therefore, divided by the interval to normalize the

    uncertainty degree.
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Figure 4.17: Normalization of the estimation error due to the area size

          of the object region.

Normalization by the area size of the object:

    Figure 4.17 illustrates the relationship between the estimation error and its primary

    factors (i.e., the zooming factor and the distance between the projection center and

    the object in the scene). Each factor affects (1) the area size of the projected object

    and (2) the estimation error as foIIows:

    Zooming factor: The area size is linearly in proportion to the square of the focal

        length, while the estimation error is proportional to the focal length.

    Distance between the projection center and the object: The area size and
        the estimation error are in inverse proportion to the square of the distance and

        the distance, respectively.

    The area size of the target object at ti (denoted by AREA(ti)) and the estimation

    error at ti (denoted by POS,....(ti)) are then represented by

                         ARE]A(ti) = CareaXDfl2s(2ti()t,), (4･24)

                       POSUrror(tz) = CloosXDfl(k)t,), (4'25)

    where Carea and Clo., are coeMcients, f(ti) the focal length at ti, and DIS(ti) the

    3D distance between the projection center and the object at ti. In our system, since

    the perception module writes (1) the projected size of the detected object (i.e.,

    (.Ilsobj,CTlsobj)) and (2) the history of the view angle (i.e., ZLam) into the dynamic

    memory, the action module can read these values at any time. Ftom these values,

    the rectangular window size of the detected object in the observed image at an

    arbitrary time can be estimated. The action module regards it as AREA(ti).
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    From equations (4.24) and (4.25), the foIlowing relationship is obtained between the

    estimation error and the area size of the object:

                           POSerror(ti) oc AREA(ti)･ (4･26)

    The prediction error is, therefore, divided by the area size to normalize the uncer-

    tainty degree,

  Based on the analysis of the prediction error described above, we now define the

instantaneous uncertainty degree, AUD(ti), at the ith observation time t, as fo11ows:

                                 POSerror(ti)
                                              . (4.27)                    AUD(ti) =
                              T(ti)× AREA(ti)

  With the above definition of the uncertain degree, the action module determines the

optimal zoom factor by the fo11owing steps:

  1. At the nth observation time t., obtain the maximum possible uncertainty degree

                        AUDmax=MaX{AUD(tn)}- (4･28)

  2. Determine the focal length f(t.+i) for the next observation so that the maximum

    possible position error, POSglP.X,(t.+i), defined below, becomes less than the prefixed

    threshold.

              POSeM,rax.r(tn+i) = AUDrnaxX(tn+i-tn) AREA(tn+i)) (4･29)

    where

                                    AREA(tn)
                     AREA(tn+i) = f2(t.) Xf2(tn+i)'

    We remark here again that (t.+i - t.) = At is determined by equation (4.23).

  3. Compute the optimal view angle at t.+i (denoted by Z.+i) from the determined

    optimal focal length. '
  4･ Substitute Z}i+i for Zcam..,(t) in equation (4.17). Then, determine the zoom control

             .    command Zltom:

                                                 .                2com.=2,a..(t.)+Zh"is7+ZeTam(",(.tp")(i!-.Z.h,)"m-"(i)")At. (4.3o)
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4.3.5.3 CameraControlProcess

 Here, we summarize the tasks of the action module. The action module repeats the
fo11owing steps:

   1, Read the object direction and area size from the dynamic memory.

   2. Determine the next camera control command by equations (4.22) and (4.30).

   3. Wlrite it into the dynamic memory. (Then, the dynamic memory updates the camera

     motion history.)

   4. Send it to the camera.

   5. Inquire of the camera the current pan-tilt-zoom parameters.

   6. Wlrite the parameters obtained in step 5 into the dynamic memory. (Then, the

     dynamic memory modifies the camera motion history.)

4.4 Experiments

We conducted experiments to verify the eflectiveness of the proposed system for real-time

object tracking. Following are system resources.

Active camera: SONY EVI-G20.

PC: Pentiumlll 600MHz × 2.

The perception and action modules and the dynamic memory were implernented by
threads on a PC, and run in parallel.

4.4.1 SuppressingMotionBlurs

We first examined the degree of motion blurs with various camera velocities. Figure 4.18

shows the experimental results:

   e The images in the left column were captured while the pan angle was rotating at a

     constant velocity.

   e The images in the middle column were generated from the APP. Tb generate these

     images, the camera angle was inquired when the image was captured.

   e The images in the right column were subtraction images between the captured and

     generated images.

Since the observed scene was stationary, no region appeared in a subtraction image if

motion blurs were not included in the captured image.

   From the subtraction results, we can confirm that motion blurs were not caused unless

the rotational velocity exceeded 600/sec. Accordingly, we defined the maximum rotational

velocity as 600/sec.
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4.4.2 1]rackingResults

A computer-controlled mobile robot moved in the scene. The camera was placed about

2.0[m] above the floor. Figure 4.19 shows an example of observed image sequence (the

input and detection images). The size of each image is 320 × 240 [pixels]. The system
captured the images in about O.1 [sec] intervals on average.

   Figure 4.20 shows the read/write access timings from/to the dynamic memory by the

perception and action modules. Each vertical line denotes a read/write timing. The upper

graph is for the object location data, which was written by the perception module and

read by the action module. The lower one is for the pan-tilt camera position data, written

by the action module and read by the perception module. We can obtain the fo11owing

observations.

   1. Both modules work asynchronously while keeping their own intrinsic dynamics.

   2. The perception module runs almost twice as fast as the action module (about

     100[msec/cycle]).

   3. Irrespective of these mutually independent dynamics, smooth dynamic information

     flows through the dynamic memory are realized without introducing any idle time

     for synchronization.

   Figure 4.21 illustrates object and camera motion trajectory data written into and read

from the dynamic memory, where
    graph 1 (upper right) : pan--tilt camera positions measured from the camera,

    graph 2 (upper left) : pan-tilt camera positions read from the dynamic memory,

    graph3 (lower left) : object locations estimated from observed images, and

    graph 4 (lower right) : object locations read from the dynamic memory.

Each graph includes a pair of trajectories: a larger amplitude is about pan and a smaller

amplitude is about tilt. Note that the object locations as well as the camera positions are

described in terms of (pan, tilt).

   We see the fo11owing observations.

   1. Comparing graph 1 with graph 2, the data density of the latter is higher than that

     of the fbrmer. This is because the perception module runs faster and hence reads

     the pan-tilt camera position data more frequently. This also holds true fbr graph 3

. and graph 4.

  2. The camera control is well synchronized with the object motion. Figure 4.22 shows

     the overlapped pan trajectories of graph 1 and graph 4.

4.4.3 PerformanceEvaluation

4.4.3.1 Effectiveness of Smooth Camera Motion

Here, we point out the effbctiveness of smooth camera motion by the fbllowing compar-

ative study. Figure 4.23 shows observed images taken by the simple active background
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Figure 4.20: Access timing to the dynamic memory by the perception

 and action modules. Upper object information, Lower:

 camera information.

subtraction system without modular (perception and action) functions mentioned in the

last chapter. We call this system system A, and the system with the perception-action

modules and the dynamic memory (i.e., proposed system) system B. Similarly as with

the experiment by system B in Section 4.4.2, a computer-controlled mobile robot moved

in the scene. When each system worked, the robot moved along the same trajectory at

the same speed. Note that the frame intervals shown in Figure 4.19 and Figure 4.23 differ

from one another (system A: 2 frame intervals, system B: 10 frame intervals). Systems A

and B captured images in about O.5 and O.1 [sec] intervals on average.

   The average and the variance of (1) the distance between the image center and the

centroid of the detected object region and (2) the area size of the detected object are

shown in Table 4.1. Table 4.1 indicates that the proposed system improves the stability

of tracking with active background subtraction.

   In addition, the proposed system drastically shortens the capturing interval and con-

trols the camera smoothly. These advantages not only produce quantitative improvements

but also make it easy to understand the trajectory ofthe object motion. Figure 4.24 shows

observed images taken by systems A and B. As we can see, the observed images taken by

system B were captured while the view direction of the camera was smoothly changed.

Sys£em A, on the other hand, captured images intermittently. The intermittent observa-
tions caused difliculty in understanding the situation in the scene. In particular, when the

camera zoomed in, it was hard to follow the object motion because the observed image

included little information about the background scene.
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Table 4.1: (1) Distance

tected object

ject.

the image center and the

region, and (2) Area size

centroid of the de-

of the detected ob-

(1)average (1)variance (2)average (2)variance

SystemA44.0[pixel] 6.7[pixel] 5083[pixel] 145[pixel]

SystemB16.7[pixel] 1.5[pixel] 5825[pixel] 108[pixel]

4.4.3.2 Target Motion Estimation and Prediction using Kalman Filter

In this experiment, cv = (wi, w2, w3, w4) in equation (4.2) and v = (vi, v2, v3, v4) in equation

(4.3) were determined so that (aZ,/ol,) == 10-ii (i = 1, 3) and (aZ,/a.2,) :10-'3 (i = 2, 4).

Figure 4.25 illustrates the measured (solid line), predicted (broken line), and estimated

(dotted line) values of the target object direction. We can see that the estimation and

prediction using the Kalman filter worked well.

   rlb verify the effkectiveness of (1) smooth camera motion by employing the dynamic

memory and (2) prediction-based tracking, we conducted experiments with the fo11owing

three systems:

System 1: Simple active background subtraction system without modular functions.

System 2: Real-time active background subtraction system with the dynamic memory

    using the PID control method.

System 3: Real-time active background subtraction system with the dynamic memory

    using the prediction-based control method.
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tme

System A

time

Figure 4.24:

             System B

Comparison between images taken by systems A and B.

Each sequence shows the images observed for the same

period (about one second).

  Figure 4.26 illustrates the pan angle history of each system. In the figure, non-smooth

camera motion controlled by system 1 (small dotted line) incurs a large camera-control

delay; the average of the delay was O.89[sec]. System 1 captured images in about O.5[sec]

intervals on average. This interval was five-fold slower than that of the system with the

dynamic memory. Fbr system 2 (broken line), the view direction of the camera fo11owed

the object direction after a delay of O.47[sec]. Fbr system 3 (large dotted line), on the

other hand, the delay was shortened to O,08[sec]. As we can see, the proposed system

(system 3) greatly improves the tracking ability.

4.5 ConcludingRemarks
In this chapter, we proposed a real-time moving object tracking system with a dynamic

memory. Although the basic scheme fbr object detection and tracking is the sarne as that

of the active background subtraction method presented in the last chapter, the system

has increased flexibility and adaptability by the fo11owing properties:

  e In the system, the perception and action modules run in parallel and work together

    for object detection and tracking.

    Perception: Capture the image and detect the object in the captured image.

    Action: Control the camera parameters to track the target object while keeping

        its silhouette in the image.

   e These modules exchange their infbrmation with each other through the dynamic

    memory. The dynamic memory allows the modules (1) to exchange the information

    asynchronously without disturbing their own intrinsic dynamics and (2)                                                               to obtain

    the available information at any time.
i
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   e The camera parameters are controlled based on a sophisticated prediction-based

     method that takes into account both the target and camera motion for eflicient

     tracking. This method enables the system to keep tracking the target object without

     any delays.

These properties increase the reactiveness of the system as required for real-time process-

   The practical effbctiveness of our system has been demonstrated by several experi-

ments.
   Note that in a CDV system, asynchronous interactions play a crucial role in realizing

the dynamic integration of the visual perception, action, and communication functions.

This is because message exchanges among AVAs are asynchronous in nature. That is,

such flexible behaviors are required to make good use of the CDV system's functions. For

example,

   e Since the computational resources of an AVA are limited, the observation of mean-

     ingless images wastes the resources that could possibly be used for other processes

     such as communication.

   e Each AVA should adaptively determine its own dynamics in accordance with the

     result of its image analysis and interactions with other AVAs.

Therefore, the realization of the dynamic coordinations between the functions of the AVA

has generality.



Chapter 5

Real-time Cooperative Mult
                                    '11racking by Communicating
Vision Agents

i--target

Active

5.1 Real-time Cooperative Multi-target Cthracking

In this chapter, we propose a real-time cooperative tracking system that gazes at multiple

objects simultaneously. The system consists of Active Wsion Agents (AVAs, in short),

where an AVA is a logical model of the active vision system that is capable for communi-

cating each other through network.

  For real-time object tracking by multiple AVAs, we have solved

e how to design an active camera for dynamic object detection (chapter 2) and

e how to realize real-time object tracking with an active camera (chapters 3 and 4).

Here, we put our focus upon how to realize a real--time cooperation among AVAs.

   In order to implement the real-time cooperation among AVAs, we propose a three-

layered interaction architecture. In each 1ayer, parallel processes exchange different kinds

of object information for effective cooperation. rlb realize real-time information exchange

and processing, we employ the dynamic Memory architecture. The dynamic interaction

in each layer allows the total system to track multiple moving objects under complicated

dynamic situations in the real world.

   By employing multiple pan-tilt-zoom cameras, we aim at designing a system that

can not only simply track trajectories of target objects but also acquire their detailed

information. The detailed information of the object is required to apply the system to

face recognition and volume reconstruction methods and so on.

   Experimental results demonstrate that the proposed real-time cooperation method
enables the system to (1) successfu11y acquire the dynamic object information and (2)

adaptively assign the appropriate role to each AVA.

113
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          Figure 5.1: Advantages of target tracking by multiple cameras.

5.1.1 Advantages ofMulti-camera Tbeacking System

In general, tracking target objects by multiple cameras allows the system to acquire the

fo11owing abilities:

3D reconstruction: If the external camera parameters (i.e., the 3D position of all cam-

    eras) are calibrated, the 3D information of the object can be reconstructed from the

    2D information of Vhe object observed by multiple cameras.

    In the case of Figure 5.1 (a), the 3D position of the object is reconstructed from

    the object information detected by camerai, camera3, and camera4 based on the

    triangulation. ' '
Continuous wide-area observation: By exchanging the object information between
    cameras, the system can keep tracking the focused target object without interference

    of dbstacles and other moving objects.

    In the case of Figure 5.1 (b), camera2 cannot observe objecti due to an obstacle.

    Camera2 can, however, gaze at object! by receiving the 3D position of objecti from

    another camera.

Adaptive Role assignment: By dynamically assigning the appropriate role to each

    camera so that each target object is tracked by the camera that is suitable for

    gazing at, the system can adapt itself to the object motion.

    In the case of Figure 5.1 (b), camera2 changes its target object from objecti to

    object2 because 1) camera2 cannot observe objecti and 2) only camerai tracks

    object2. Consequently, all objects are observed by multiple cameras, and the 3D

    information of all the objects can be reconstructed.
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The above
world.

abilities allows the system to track    .movmg objects persistently in the real

5.1.2 System Organization

Our system consists of a group of network-connected computers, each of which possesses

an active camera, as illustrated in Figure 5.2. A group of spatially distributed active

cameras enables continuous wide-area observation as well as detailed measurement of 3D

object infbrmation. We impose the fo11owing constraints about the camera configuration

on the system:

   e Visual fields of cameras are overlapping with each other in order to keep tracking

     a target object in the observation scene without a break. That is, in our system,

     the area of the observation scene is determined by the number of cameras and their

     visual-fields.

   e In addition, all the observation spaces can be observed by at least two cameras.

     This is because every space has to be observed by multiple cameras to reconstruct

     3D information of an object being there.

   A pair of network-connected computer and an active camera is called an Active Vision

Agent (AVA). We employ an FV-PTZ camera as an active camera. By employing the
properties of the FV-PTZ camera, each AVA can detect and track the moving object

independently. We have proposed the dynamic object detection and tracking method

using the FV-PTZ camera in this thesis,
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   With the above architecture and functions, each AVA works autonomously while keep-

ing its own intrinsic dynamics and cooperates with other AVAs by exchanging the infor-

mation through the network. The network is not a special close network (e.g., high-speed

PC cluster) but an open network. Each AVA captures images asynchronously because
it works autonomously keeping its own dynamics. That is, the system is not in need of

any synchronization mechanism (e.g., sync-pulse generator and gen-lockable camera). In

order to allow each AVA to compare its observed information with that of another AVA as

time-series data, we suppose that the internal clocks of all the AVAs are synchronized. For

example, by comparing the time stamps of images captured by different AVAs with each

other, the system can identify images taken at the almost same time with one another.

5.1.3 Related Works

Our system is designed as an asynchronized distributed carnera system, where each camera

corresponds to a single agent. It differs from other similar systems in the fo11owing points:

Image capturing timing: While images captured by different cameras are asynchro-

     nized in our system, several other multi-camera systems synchronize all cameras

     by employing a synchronization mechanism. Ybnemoto-Arita-thniguchi IYArl]OO]

     proposed a fu11y synchronized multi-camera system, where all cameras are synchro-

     nized by a common sync-generator. In this system, each camera is coupled to a

     PC and the internal clocks of all the PCs are synchronized. Since each image in-

     cludes a time stamp when it is captured, the system can identify images taken at

     the same time by different cameras with one another. In the system with widely

     distributed cameras, proposed by Kitahara-Ohta-Kanade[KOKOO], all cameras are

     also synchronized by a sync-generator. In this system, each image obtains its time

     stamp from a time-code generator shared by the entire system.

     In the above synchronized multi-camera systems, each camera cannot capture im-

     ages depending on its own internal state. However, for realizing a fiexible multi-

     camera system adaptable to various tasks, asynchronized image capturing are re-

     quired as fo11ows:

       e Each camera should observe the scene keeping its intrinsic dynamics to reac-

         tively adapt itself to dynamic situations in the scene.

       e Depending on a task given to each camera, its motion dynamics, and so on,

         the intemal states of all the carneras are different from each other. This makes

         difficult for all the cameras to synchronize with each other.

    In our system, therefore, all cameras are controlled independently and observe the

    scene asynchronously.

Processing and controlling mechanism: Our system consists ofmultiple agents, each

    of which corresponds to a computer with an active camera. Each agent analyzes

    its observed image independently. For the entire system to work as a cooperative
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     distributed system, all the agents exchange their analyzed information with each

     other (Figure 5.3 (a)).

     Sogo-Ishiguro-Trivedi[SITOO], on the other hand, proposed the centralized process-

     ing tracking system (Figure 5.3 (a)). In this system, a single computer gathers all

     the captured images through the network. This computer then analyzes them and

     integrates the object information observed by each camera. This system has the

     foIlowing two problems:

       e Increasing the network-load and computational complexity: Since im-
         ages captured by all cameras pass through the network, a huge network-load is

         caused. Besides the network problem, a single computer has to cope with all

         complicated situations in the real world by itself. This expands the computa-

         tional complexity of the process that is conducted by a single processor.

       e Complex design ofthe system behavior: We have to design a complex be-
         havior of the entire system taking into account all combinations of predictable

         situations. The complexity ofthe system increases dramatically by introducing

         active cameras; each camera should be dynamically controlled depending on

         object motions.

     These problems result in difliculty in realizing a real-time flexible multi-camera

    system. This is the reason why we adopt a distributed processing system.

Definition of an agent: In general, there are two kinds of agents:

    Software agent: This is a virtual agent without any physical body in the real

         world. Each agent corresponds to a logical data (e.g., the infbrmation of the

         detected object) in the system.
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Figure 5.4: Definition of an agent.

Real-world agent: This is an agent with its own physical body (e,g., an active

    camera and a mobile robot) that can be controlled by itself. There exists one-

    toone correspondence between an agent in the system and the body in the real

    world. The agent can (1) interact with the real world by utilizing its physical

    body and (2) be affected by events in the real world through its physical body.

We believe that an intelligent system has to possess its own body to mutually

interact with the real world. The concept of such a real-world agent is described in

[Mat98]. We, therefore, define an agent to correspond to each physical body in the

real world. That is, we call (1) the above real-world agent an agent simply and (2)

an agent without its body a software agent.

For real-time and reactive processing to cope with complicated dynamic situations

in the real world, every agent should be modular with the dynamic memory as
well as the real-time object tracking system in chapter 4. In multi-agent system,

a communication module is required for the message exchange among agents in
addition to perception and action modules. Therefore, the above two kinds of

agents consist of the fo11owing compositions:

Software agent: The perception and communication modules with the dynamic

    memory.

Real-world agent: The perception, action and communication module with the

    dynamic memory.

The difference between the compositions oftwo agents is the existence of the action

module that is required to control the physical body.
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AIthough several object tracking systems with multi-camera and multi-agent sys-

tems are reported, most ofthem employ only software agents. In these systems, each

software agent corresponds to the information of the detected object as fo11ows:

Nishio-Ohta[N092] (Figure 5.4 (b)): They defined an agent to correspond to

    each object detected by the system. Each agent examines the object infbrma-

    tion detected by all cameras and keeps tracking its target object.

Nakazawa[NakOl] (Figure 5.4 (c)): An agent is created fbr all objects detected

    by each camera . A single camera can, therefore, correspond to multiple agents.

    Each agent communicates with agents in other cameras and forms an agency

    (i.e., a group of AVAs) with agents which track the same object in the scene.

In the above systems, all cameras are shared by software agents, each of which

manages the information of each detected object. The above definitions force each

software agent to examine the object information detected by all cameras for track-

ing its target. Besides this technological problem, the above definitions have an

essential limitation: multiple software agents may control a camera inconsistently

in tracking their target objects (i.e., controlling pan, tilt and zoom parameters), if

the system employs active camerasi. Since our objective is not only estimating

the trajectory of the target object but also acquiring its detailed information, each

camera has to control the zoom parameter to obtain a high-resolution object image.

This results in difficulty fbr a camera to gaze at multiple objects simultaneously.

Accordingly, the above essential limitation is fatal for realizing the system which we

aim at.

In our system, on the other hand, an agent (i.e., AVA) corresponds to a single

active camera (Figure 5.4 (a)). That is, each agent monopolizes its own camera. All

AVAs can, therefore, control their own cameras to gaze at the target object. As we

can see, our definition of the agent has the advantage in that it has the one-to-one

correspondence between the agent and the camera.

In our system also, however, the information of each target object should be man-

aged intensively in order to (1) compare the object infbrmation detected by cameras

and (2) record the information of each object severally. rlb realize this function, a

software agent,･which has the one-to-one correspondence with a target object, gath-

ers the object information detected by cameras and manage the information of its

target object. In our system, AVAs that track the same object form a group called

an agency, and a software agent corresponding to each agency works as the entity

of the agency (the details of the agency and its software agent will be mentioned

later). .

   Object tracking has a large variety of categories and implies many problems. Although

we do not focus on the following problems, they are also major topics on object tracking.

 i In [N092] and [NakOl], they employed stationary cameras. This problem, therefore, did not become

apparent.
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        Figure 5.5: Camera configuration fbr object tracking.

Camera configuration planning: While we do not consider how to arrange the cam-

    eras to effectively gaze at the target objects, there are many researches about the

    effective camera configuration fbr realizing the given task. Cowan-Kovesi[CK88]

    proposed an automatic camera placement method fbr object feature detection. In

    this method, each camera is placed so that all surface points be in focus, all sur-

    faces lie within the visual field of the camera, and no surface points be occluded.

    Tarabanis-Tsai-Allen[TTA95] proposed the MVP sensor planning system. This

    system determines the optimal settings of the camera and illumination by virtually

    synthesizing desirable camera views based on geometric models of the environment,

    optical models of the cameras ,and models of the task.

lracking with isolated camera configuration: In our system, we impose the con-
    straint about the camera configuration on the system: visual fields of cameras are

    overlapping with each other in order to keep tracking a target object in the obser-

    vation scene without a break (Figure 5.5 (a)).

    On the other hand, several works on object tracking with isolated camera config-

    uration (Figure 5.5 (b)) are reported. In this camera configuration, the system

    has to reconstruct the paths taken by moving objects that are temporarily visible

    from multiple non-overlapping cameras. Distributed Vehicle Monitoring Testbed

    (DVMT)[LC83] is famous for target motion estimation in a wide-spread area. The

    system integrates pieces of target motions observed by each distributed sensor for

    estimating a global target motion. Wada-rllamura-Matsuyama[WTM96] proposed

    a multi-agent system that solves a global object identification by estimating the op-

    timal combination of local identification results obtained by each agent. Although

    object identification in a wide area cannot be solved generally based on a com-

    mon combinatorial optimization method, a spatiotemporal constraint about object

    motion and path reduces the search space and allows the system to obtain the opti-
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     mal result. Kettnaker-Zabih[KZ99] presented aJ Bayesian fbrmalization of this task,

     where the optimal solution is the set of object paths with the highest posterior

     probability given the observed data. They showed how to efficiently approximate

     the maximum a posteriori solution by linear programming. While the former two

     systems (i.e., [LC83] and [WTM96]) are non-real-time systems, this system tracks

     atarget object in real-time. -

5.1.4 Basic Scheme fbr Cooperative l]racking

In our system, many AVAs are embedded in the real world, and observe a wide area.

With these AVAs, we realize a multi-AVA system that cooperatively detects and tracks

multiple target objects. Followings are the tasks of the system:

  1. Initially, each AVA independently searches for an object that comes into the obser-

    'vation scene.

  2. When an AVA detects an object, the AVA examines whether or not the information

    of the detected object is required to the given task. If the information is required,

    the AVA regards the detected object as a target object,

  3. If the AVA detects the target object, the AVA navigates the gaze of other AVAs

    towards the target object as illustrated in Figure 5.6 (a).

  4. An AVA, which is required to gaze at the target object by another AVA, decides

    whether it accepts the navigation or continues its current role depending on the

    situation.
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5. AVAs, all of which gaze at the same object, keep tracking the focused target object

  cooperatively as illustrated in Figure 5.6 (b). A group of AVAs that track the same

  object is called an Agency. In our system, there exists the one-to-one correspondence

  between an agency and a target object in the scene.

6. Depending on the target motion, each AVA dynamically changes its target object

  as illustrated in Figure 5,6 (c).

7. When the target object gets out of the scene, the AVA decides whether it searches

  for an object again or tracks another target object that is tracked by other AVAs

  depending on the situation.

5.1.5 Issues in Real-time Cooperative Multi-target 1racking

To realize the above cooperative tracking, we have to solve the following problems:

Multi-target identification: 'Ib gaze at each target, the system has to discriminate

     between multiple objects in the scene.

Real-time and reactive processing: "[[b cope with the dynamics in the scene (e.g.,

     object motion), the system has to execute the process in real time and deal with

     the variations in the scene reactively.

Adaptive resource allocation: We have to implement a two-phased dynamic resource
     (i.e., AVA) allocation:

      1. To perform both object search and tracking simultaneously, the system has to

         preserve AVAs that search for a new object even while tracking target objects.

      2. For each target object to be tracked by the AVA that is suitable fbr gazing at,

         the system has to adaptively assign AVAs to their target objects in accordance

         with the target motion.

We solve these problems with real-time cooperative communication among AVAs and

5.2 TaskSpecification

1lrracking multiple objects includes a large variety of behaviors depending on the task

given to the system. This is because each applied system requires different kinds of

object information. We, therefore, design the system that is adaptable to various tasks

by specifying parameters.

   First of all, the tracking system need to search for an object in the scene. This role

is called Search2 . 0nce a target object is detected, the system then gazes at the target

 2 Hereafter, slanted seareh denotes the role fbr searching a new object.



5.2 71ask Speeification 123

1

n
7ZF)

o

Tracking

.
.
'･

N,L

   "-s--

     "lt..

      I -ss--s

      ix
t'-------e-td--ljs

    Ci N..
      1s"-'----

t--'-'-"--"-s!-

      i Pi ･....
                     .      1 ls .

    Sc Sp 1 Search
(a) Current state, Task-constraint

1

n

o

Tracking

Li

      i L2
      i

-.--.---."--.--
    Ci
      i

      i

      l
L3

     Sc I Search
(b) Three types of the system states

Figure5.7: System state graph (system state representation with

         search and tracking).

object to obtain its infbrmation. This role is called [Tblackinrf. In addition, the system

is required to selectively gaze at the object whose information is necessary for the given

task because the importance of each object information may be different from each other

depending on a given task.
   In our system, we specify the task to the system by the fo11owing three parameters:

Task-constraint: This parameter represents the number of AVAs that execute search

     and tracking.

Object-importance: This parameter specifies the priority of each object.

Goalny#function: This parameter specifies the aptitude of an AVA for each task.

5.2.1 Task-constraint

The number of AVAs that execute search and tracking are adjusted in accordance with

the given task-constraint. An AVA that searches for a new (undetected) object is called

a jFh-eelancer-AVA. A freelancer-AVA observes a wide area independently, and undertakes

search. AVAs that cooperatively track the same object form a group (i.e., agency). Each

agency corresponds to a specified object detected in the real werld. An AVA belonging

to an agency is called a Member-AVA.
   We can realize various capabilities of the system, in terms of the combination of

search and tracking as shown in Figure 5.7. We call this graph a System State Graph.

 3 Hereafter, slanted tracking denotes the role for tracking a target object.
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 The horizontal and vertical axes indicate the rates of AVAs that perform search and

 tracking, respectively. We call values of the horizontal and vertical axes Search-level and

 7V,acking-level.

 Definition 1 (Search-Ievel and CI]racking-level)

            search-ievei = The nUIIIfteertoOtfa lnlliliiigeearroCfhikgAasn ObjeCt (s.i)

          rihracking-ievei - ThenUM¥ehreOtfotAtViCii:rbaeCrki'onfg?KtirAgsetObjeCtS (s.2)

 A domain of each value is, therojbre, determined as follows:

                                 OS Search-level Sl (5.3)
                                O -< rllrracking--level Sl (5･4)
                  O S (Search-level+Tracking-level) S 1 (5.5)

 That is, a combination of search-level and tracking-level has to be within a triangle de-

 termined by the horizontal and vertical axes and the line L in Figure 5.7.

   We define the task-constraint and the current state ofthe system on the system state

graph,

Definition 2 (Current state P(Sp, [ZZp)) 71his parameter (T' in Figure 5.7 fo?? repre-

 sents the search-level (Sp? and the tracking-level (7-))] at thepresent time. 77ie range of

 the current state P is on the line L in .F'igure 5.7 (a?. 71P}at is, (Sp + 7'})) is always 1.

Definition 3 ('1]ask-constraint C(Sc, 7b)) 7'7bis parameter (℃Y in Figure 5.7 (a?? rep-
resents the minimum search-level (Sc? and tracking-level (Tc?, which the system has to

keep while working. 71he task-constraint is given by users as a pair of constants a.e.,

Sc and 7-tr? depending on the task of the sgstem. 7ZIze system has to, therefore, a(ijust

the current state so that its search-level and tracking-level are not less than those of the

task-constraint.

   Ifollowings are the three states of the system determined by the relations between the

task-constraint and the current state.

Deficiency of search-level: 7b < 71P and Sc > Sp. Namely, the current state P is on

     Li in Figure 5.7 (b).

Task satisfaction: 7b S 7Zp and Sc S Sp. Namely, the current state P is on L2 in
     Figure 5.7 (b).

Deficiency of tracking-level: CZb > 71p and Sb < Sp. Namely, the current state P is

     on L3 in Figure 5.7 (b).

If the current state of the system does not satisfy the task-constraint, each AVA dynam-

ically changes its own role between search and tracking to adjust the search-level and the

tracking level to the task-constraint.

   Thus, the system can realize a gradual variation of its behavior to adapt itself to

versatile tasks by representing its behavior with 4umerical parameters.
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Figure 5.8: Hierarchy of the goal-function.

5.2.2 Object-importance

In our system, object-importance is given to each object category that can be distinguished

by the system. '
Definition 4 (Object-importance Ip) Let Ip denote the obj'ect-importance of the tar-

get ob2'ect of agencyp. [T7}e range of the ob2'ect-importance is O S Ip S 1.

   7Zhe number of the member-AVAs in agencyp (denoted by Mp? is determined by the

object-importance of the ta7get object:

                Mp = (The total number of the AvAs)× lll;, (s･6)

                         A

                        i=1

where A is the total nufnber of the existing agencies. 7-7}at is, the number of the member-

AUAs is proportional to the object-importance of the taT:get object.

5.2.3 Goal-function

In our system, each AVA has to decide its own role according to the given task-constraint

and object-importance. These two parameters give the system the restriction about the

numbers of AVAs that execute each role (i.e., search and tracking of each target object),

Each AVA can, however, freely change its role under this restriction. The AVA changes
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its role taking into account what we call a goal-function. Each AVA decides its role to

increase the value of the goal-function under the restriction of the task-constraint and

object-importance. The value of the goal-function is determined by the roles of all the

AVAs in the systern. That is, the value of the goal-function varies depending on (1)

whether each AVA is searching for an object or tracking a target object and (2) which

object each AVA is tracking.

   The goal-function of our tracking system has a hierarchical 'structure shown in Figure

5.8.

e System-value: The goal-function of the entire system.

  of the following search-value and tracking-value.

This function is the sum

- Search-value: The goal-function of search. This function is the sum of all

  the search-values of freelancer-AVAs.

   * Search-values of freelancer-AVAsi,...,NF: The goal-function of each

     freelancer-AVA. The value of this function is determined by the search

     ability of the freelancer-AVA.

- Tltracking-value: The goal-function of tracking. This function is the sum of

  all the agency-values.

   * Agenciesi,...,N-values: The goal-function of the agency that tracks each

     target object. Each value is the sum of all the tracking-value of member-

     AVAs belonging to this agency.

       ･ Tteacking-values of member-AVAsi,...,M: The goal-function of
        each member-AVA. The value of this function is determined by the

        tracking ability of the member-AVA.

That is, the value of the goal-function for the entire system is the total sum of the

search-values of the freelancer-AVAs and the tracking-values of the member-AVAs. This
goal-function can be designed to be adapt itself to the task given by users4 .

5.2.4 Summaryofthetaskspecification

Here, we summarize the dynamic role assignment of AVAs based on the task specification. '

The task-constraint determines the number of freelancer-AVAs and member-AVAs, each

of which performs search and tracking, respectively. Next, the number of member-AVAs

belonging to each agency is determined by the object-importance of each target object.

   These two parameters give the system the restriction about the numbers of AVAs that

execute each role (i.e., search and tracking of each target object). Under this restriction,

each AVA changes its role to increase the value of the goal-function. To give the system

the proper goal-function, each AVA can work in accordance with dynamic situations in

the real world (i.e., object motions) depending on the given task.

 4 We give an example in Section 5.5.1.3.
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Figure 5.9: Dynamic role assignment of AVAs based on the task speci-

         fication.

5.3 Dynamic Interaction for Cooperative Tlrracking

In our system, multiple processes cooperatively work by dynamically interacting with

each other. As a result, the system as a whole works as a tracking system. By composing

the system as a group of multiple processes, we can represent the complex behavior of

the total system through the interactions between processes. Designing the total system

can be, therefore, reduced to designing each process. Furthermore, the states and those

transitions of the system increase enormously by combining with each other. We believe

that this property allows the system to cope with complicated dynamic situations in the

real world.

5.3.1 Layers in the System

For the system to engage in multi-target tracking, object identofication is significant. We,

therefore, classlfy the system into three 1ayers (namely, intra-AVA, intra-agency and inter-

agency layers) depending on the types of object information employed for identification.

Each layer corresponds to the elements in the system as fbllows (Figure 5.10):

Intra-AVA layer (the lowest layer): An AVA.

Intra-agency layer (the middle layer): An agency.

Inter-agency layer (the highest layer): The total system.
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  In each layer, object identification according to the type of exchanged information is

established. Depending on whether or not object identification is successfu1, a dynamic

interaction protocol fbr cooperative object tracking is activated.

  In what foIlows, we address the interactions in each 1ayer.

5.3.2 Intra-AVA Layer: Interaction between Modules within an

       AVA

In the intra-AVA layer, perception, action and communication modules interact with each

other through the dynamic memory. That is, an AVA consists of a group of three modules

and a dynamic memory. The interactions among modules materialize the functions of the

AVA.
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5.3.2.1 PerceptionModule

Followings are the tasks of the perception module:

   1. Capture an image.

  2. Detect anomalous regions in the captured image.

  3. Estimate the number of the detected objects, and obtain the infbrmation of each

     object.

  4. Find out its own target object from the detected objects.

While the above tasks 1 and 2 are similar to the tasks of the single-target tracking system

proposed in chapter 4, the multi-target tracking system has to establish object identifi-

cation (the above tasks 3 and 4). Note that a freelancer-AVA performs only the above

tasks 1 and 2 because it should observe a wide area without gazing at a specific object.

A member-AVA, on the other hand, has to establish object identification to keep tracking

its target object, namely the above tasks 3 and 4. In what follows, actual problems for

realizing the tasks 3 and 4 are described.

   After the perception module detects anomalous regions in the observed image by the

background subtraction5 , it then obtains the fo11owing information:

The number of the detected objects: Since there might be multiple objects in the

     observed image, the perception module has to discriminate between the observed

     objects,

The infbrmation of each object: To represent the object information, the object di-

     rection (i.e,, the 3D view line from the projection center of the camera to the centroid

     of the detected object region in the observed image) and the size of the object region

     (i.e., the pixel number included in the detected object region) are computed. With

     this information, object identification and camera control are implemented.

   'Ib discriminate between the observed objects, the adjoining relations between the

detected anomalous pixels are examined. The result of the background subtraction is

recorded in the image that is called a Detection image. Let D(x,y) be a pixel value at

the image coordinates (x, y) in the detection image:

   e If D(x,y) = 1, the pixel (x,y) is considered to be the anomalous region.

   e !f D(x, y) = O, the pixel (x, y) is considered to be the background region.

If D(x,y) = 1 and D(n) = 1, where n denotes the 8-neighbor pixels of (x,y) (i.e., n G

{(x - 1,y- 1), (x,y- 1), (x + 1,y- 1), (x - 1, y), (x + 1, y), (x - 1,y+ 1), (x,y+ 1),

(x + 1,y+ 1)}), D(x,y) and D(n) are considered to be the same object region. Figure

5.11 illustrates the object discrimination based on the adjoining relations.

 5 The object detection method by the perception module are mentioned in chapter 4.
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Figure 5.11: Object discrimination based on the adjoining relations be-

tween the detected anomalous regions (pixels).

   However, since the result of the background subtraction includes image processing

errors, the examination for each pixel incurs a misunderstanding about the adjoining

relations. rlb increase the robustness for object discrimination, we decrease the resolution

of the detection image as illustrated in Figure 5.12:

1. C(i,j') is a group of L × L pixels: C(i,J') consists

  L× (i+1), y= (L × j')+1, ･･ ･, L× (7' +1)}･

of {(x, y)1 x= (L×i)+1, ･･･,

2. Let R(i,j')

  AID (i, j)/(L

  ues are 1, in

be a rate of

× L), where
C(i,j-).

pixels,

IVb(i,j)

whose pixel

 denotes the

values are 1, in C(i,2'):

number of pixels, whose

R(i,1') ==

pixel val-

3. If R(i,j') is larger than a predefined threshold, the pixel value at (i,2') in the coarse

  detection image is 1 (i.e., D(i,j') : 1 in the coarse detection image).

4. 0therwise, D(i, 2') = O in the coarse detection image.

The object discrimination algorithm mentioned above is applied to the coarse detection

lmage.
   Based on the result of the object discrimination in the coarse detection image, the

centroid and size of each detected object are obtained in the original detection image.

First, each object region in the coarse detection image is superimposed on the original

object detection image, and the superimposed region is regarded as the object region in

the original detection image (Figure 5.13). The centroid and size of detected objectp are

denoted by (xl], yZ) and AREAP, respectively. Next, the pan-tilt angles of objectp at the
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Figure 5.12: Coarsening the detection image.

image capturing time t (denoted by (eg,j(t), [Tl l,j(t))) is represented by

               (Elil;g((ll)-(gii::E`t])+(zr,2`,z".[x,i'ii((l]])} (ss)

where (a..(t), 7}.. (t)) and f(t) denote the pan-tilt angles and focal length of t4e camera

e8g',,k,2`£'e･,fiElllrsigL･,iZ',gi),g(g)g,dsww,z`,h.eeR･,.view･,,ggg.c`Los.fr%m,,dih£,.e'ttes,g!.o".c,z"ge.'

view line LP(t) and the region size AREAP(t) are regarded as the infbrmation of objectp

at t.

   When the above object information is obtained at t + 1, the perception module
compares the 3D view lines of objectsi,...,Nle., detected at t+ 1 (denoted by Li(t+

1),･･･,LiVi+i(t + 1)) with those of objectsi,...,AG detected at t fbr object identification.

Let (1) LP(t + 1), where p E {1, ･ ･ ･ , AXi+i}, have the shortest angle between Lq(t), where

q G {1, ･ ･ ･ , Al}}, and (2) the angle between LP(t+1) and Lq(t) be shorter than athreshold.

The perception module then identifies LP(t+1) with Lq(t)･ A
   Next, this module compares the 3D view line of its target at t (denoted by LA(t))

with Li(t+ 1),･･･,LNt+i(t+ 1). Let (1) LX(t+ 1) have the shortest angle between L(t),
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Figure 5.13: Superimposing the detected object region.

 where x E {1,･･･,A7}+i}, and (2) the angle between Z(t) and LX(t + 1) be shorter than

 a threshold. The perception moduleAconsiders object. correspEtinding to LX(t + 1) as the

target object at t+1. Consequently, L(t+1) = LX(t+1) and AREA(t+1) = AREAX(t+1).

   If the interval between t and t+ 1 is small enough and the angle between 3D view

lines of multiple objects is large enough, the above identification method is usefu1. In

general, however, this assumption does not alwacys hold. To increase the reliabiiity of

object identification, the perception module reads the 3D view line of the target object

at t+ 1 from the dynamic memory (future prediction), and compares it with the 3D view

lines detected at t + 1. This procedure makes identification reliable.

   The perception module writes the information of all the detected objects at t + 1 (i.e.,

(Li(t+1), ･･ ･, L"(t+1) and AREAi                                       AREAN (t+1)) into the dynamic memory.                              (t+1),･･･,
Note that the information of the non-target objects are also recorded as time-series data

in the dynamic memory. This is because object identification by the perception module

might be corrected by the agency: when the member-AVA tracks a non-target object due

Po failing object identification by itself, the agency informs the member-AVA of the target

infbrmation by seRding the 3D position of the target object (denoted by .iE}(t))6 . In this

case, the target information in the dynamic memory is modified so that the detected 3D

yiew line Lytr), where y E {1, ･ ･･,N}, identified with i)(t + 1) is regarded as the target

information L(t) .               Therefore, the information of all the detected objects has to be recorded

in the dynamic memory.

 6The details of the process for (1) correcting the target infbrmation in the AVA and (2)
                                                                  detecting
the wrong object identification by the agency will be mentioned in Section 5.3.2.2 and Section 5.3.3.6,

respectively.



ff
l

5.3 bynamic interaction for Cooperative [I]racking 133

5.3.2.2 ActionModule

The action module in the freelancer-AVA moves its camera along the predefined trajectory

to search for an object.

   In the member-AVA, on the other hand, the action module controls the camera to gaze

at the target object according to (1) the 3D view line and the area size of the target (i.e.,

L(t + 1) and ARAEA(t + 1)) detected by the perception module or (2) the 3D position of

the target (i.e., P(t+1)) received by the communication module. In eacAh processing cycle,

the action module first read P(t + 1) from the dyAnamic memory. If P(t + 1) isAvalid7 ,

the action module controls the camera based on P(t + 1), otherwise based on L(t + 1)

and ARAEA(t + 1). When the action module controls the camera based on Z(t + 1) and

ARAEA(t + 1), the camera is controlled by the prediction-based tracking method with the
dynamic memory proposed in chapter 4. When the view direction is controlled based on

P(t + 1), on the other hand, the following rules are employed:

  1. 0bject identification: Let the 3D view line determined byAii}(t + 1) and the

     projection center be Z'(t + 1). The action module compares L'(t + 1) with the

     object information Li(t + 1), ･ ･ ･, LN(t + 1) detected by the perception module for

     object identification, Depending on the result of object identification, the target

     information is modified as fo11ows:

     Case A: If LY(t+1) has the enough small angle between Z'(t), where y E {1, ･ ･ t, N},

         LY(t + 1) is considered to be the target information at 't + 1 (successfu1 identi-

         fication).

     Case B: If all the 3D view lines Li(t + 1), ･･ ･, LN(t + 1) are distant firom Z'(t),

         the target is considered to be lost at t + 1 (unsuccessfu1 identification).

  2. Camera control: Based on the result of object identification, the action module

     controls the camera as follows:

Case A: If object identification is successfu1, the pan-tilt-zoom parameters are con-

    trolled by the prediction-based tracking method.

Case B: If object identification is unsuccessfu1, the pan-tilt angles are changed

                                                                   .    towards LY(t + 1). Tb search for the target object, the zoom parameter is

    controlled so that the view angle of the camera becomes the widest.

5.3.2.3 CommunicationModule
                                                               'If necessary, the communication rnodule transmits the object information detected by the

perception module (i.e., Li(t + 1),･ ･ ･,LN(At + 1)) to agencies. This module also receives

the information of the target object (i.e., P(t + 1)) from agencies.

   Object information sent from an AVA is listed in Table 5.1. This information is

transmitted through the network as a message. Depending on the role of the AVA, this

message is transmitted in the different ways:

 7 lf the interval betweent+1and the current time is shorter than the predefined threshold, PA(t + 1)

is considered to be valid.
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Table 5.1: Object information sent fr om an AVA to agencies.

Entry Information

AVAinformation AVA-ID IDofanAVA
Externalparameters Externalcameraparameters(3D

positionandviewdirection)

Number Thenumberofdetectedobjects

Time ThetimewhenanAVAobserved
Detectedinformation
{1,･･･,N}

Objecti Viewline 3Dviewlinefromacamerato
objecti(Li)

Targetfiag IfanAVAistrackingobjecti,the
valueis1,otherwiseO.

l I

ObjectN Viewline 3Dviewlinefromacamerato
objectN(LN)

Targetfiag IfanAVAistrackingobjectN,the
valueis1,otherwiseO.

   e If the AVA works as a freelancer-AVA, the message is broadcasted. While this

    message is accepted by all agencies, all AVAs ignore it.

   e If the AVA works as a member-AVA, the message is sent only to its agency.

An agency extracts the necessary infbrmation from this message and establish object

identification between its own target object and the object infbrmation included in the

received message.

5.3.2.4 Dynamic Memory: Interaction between the Modules

To cooperatively work as an AVA, perception, action and communication modules need

to dynamically exchange the time-series information maintained by each module. Each

module provides the fo11owing information:

Perception: The 3D view lines of the detected objects.

Action: The camera parameters (i.e., pan, tilt and zoom).

Communication: The received information of the target object.

Table 5.2 shows the reader and writer of the information exchanged between the modules.

   This information exchange is realized through the dynamic memory. The contents of

the dynamic memory in the intra-AVA layer are shown in Table 5.3. The functions of the

dynamic memory and the dynamic interactions between modules are identical to those of

the single-target tracking system proposed in chapter 4. With the dynamic memory, the
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            thble 5.2: Information exchanged in the intra-AVA layer.
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Reader

Perception Action Communication

Perception The3Dview
linesofthede-
tectedobjects

The3Dview
linesofthede-
tectedobjects

Writer Action Cameraparameters i
p

Communication Thecorrectedin-
formationabout
thetargetobject

The3Dposi-
tionofthetar-
getobject

Table 5.3 : Entries of the dynamic memory in the intra-AVA layer.

Entry Information

AVAinformation AVA-ID IDofanAVA
Externalparameters Externalcameraparameters(3D

positionandviewdirection)

Role CurrentroleofanAVA(i.e.,free-
lancerormember)

Camerainformation Pan Panpositionsarerecordedastime-
seriesdata("Pcam(t))･

Tilt Tiltpositionsarerecordedastime-
seriesdata(T,am(t)).

Zoom Zoompositionsarerecordedas
time-seriesdata(Zcam(t))･

Targetinformation 3Dposition 3DpositionsofthetargetobjectareArecordedastime-seriesdata(P(t)).

Number Thenumberofdetectedobjects
Detectedinformation
{1,t･･,N}

Objecti Viewline 3DviewIinefromacamerato
objectiisrecorderastime-series
data(Li(t)).

Targetflag IfanAVAistrackingobjecti,the
valueis1,otherwise'O.

i i

ObjectN Viewline 3Dviewlinefromacamerato
objectNisrecordedastime-series
data(LN(t)).

Targetfiag IfanAVAistrackingobjectN,the
valueis1,otherwiseO.



136 Real-time Cooperative Multi-target [Ilracking by Communicating Active Vision Agents

[!iE]Memberi /-te

citlg-i.i(zl,(/ffi///(li.ill.i!:;;'

EIIII!] Memberl

iiP2(t+1)

       . CorRearison

WS,ii(ii]i･b&

.,Agencyi

1･,'

1(t+1)

Ellll] Memben
E MenibEts

V

(a) Spatial object identification (b) Temporal object identification

Figure 5.14: Object identification established in the intra-agency layer.

modules can exchange their information asynchronously at an arbitrary time. Therefbre,

each module can work autonomously without damaging the reactiveness required fbr a

real-time system.

5.3.3 Intra-agency Layer: Interaction between AVAs

The intra-agency layer consists of member･-AVAs belonging to the same agency simulta-

neously. In this 1ayer, the member-AVAs in the same agency exchange the information

                                                      identification areof the detected objects for object identification. Two kinds of object

required in this layer.

5.3.3.1 Spatial Object Identification

When the member-AVAsi,...,M of the agency capture the images, the agency has to es-

tablish object identification between the 3D view lines detected by each member-AVA

{Lii (ti)li= 1,･･･,Ni}, ･･･, {LZM' (tM)li = 1,･･･,NM}, where {Lh(t.)ii =1,･･･,Alin} de-

notes the 3D view lines detected by member-AVA. at t. (Figure 5.14 (a)). These 3D

view lines are compared between AVAs, and the 3D distance between each view line is

computed. If the 3D distance between the view lines is less than a threshold, these view

lines are considered to be the information of the same object. In addition, an intersection

of the identified 3D view lines is regarded as the 3D position of the object,

  In an example shown in Figure 5.14 (a),
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   e member-AVAi detected two objects at ti (the 3D view lines are denoted by Ll(ti),

    L?(ti), and

   e member-AVA2 detected two objects at t2 (the 3D view lines are denoted by L5(t2),

    L3(t2), and

   e member-AVA3 detected one objects at t3 (the 3D view line is denoted by Lg).

These 3D view lines are compared between the AVAs. `Ll(ti), L5(t2) and Lg(t3)' and

`L?(ti) and L3(t2)' are identified with each other, respectively. Based on these correspon-

dences, the system computes the intersections of the 3D view lines that were identified

with each other, and then regards these intersections as the 3D positions of the detected

   Note that this spatial identification method is effective only if the interval between

ti,･･･,tM is short enough.

5.3.3.2 Tbmporal Object ldentification

'Ib gaze at the target object continuously, the agency compares the information of the

target object at t with the information of the objects observed at t+1 after spatial

object identification (Figure 5.14 (b)). Depending on the types of the observed object

information, temporal object identification includes the foIIowing four cases:

   e When spatial object identification at t + 1 has reconstructed the 3D positions of

     detected objects (denoted by {a(t+1)li = 1, ･ ･ ･ , N}), the information of the target

     object at t is compared with {R(t + 1)li = 1,･･･,N}. Note that {.Fe(t + 1)ii =

     1, ･ ･ ･ , N} are reconstructed from the 3D view lines observed by each member-AVA

     at the time closest to t+ 1:

     Case 1. When the 3D position of the target object at t (i.e., P(t)) is compared

         with {a (t + 1) li = 1, ･ ･ ･ , N}: Let (1) Il, (t + 1) have the shortest Adistance

         between .P(t), where x E {1,･･･,N}, and (2) the distance between P(t) and

         R,(t + 1) be shorter than a threshold. The agency then regards 11,(t + 1) as

         the 3D position of the target object at t + 1.

         If this identification fails, namely none of {a(t+1)li = 1, ･ ･ ･ , N} are identified

         with P(t), the fo11owing case 3 is applied.

     Case 2. When the 3D view line of the target object at t (i.e., Z(t)) is compared

         with {1 t(t + 1) li == 1, ･ ･ ･ , N}: Let (1) l l, (t + 1) have the shortest Adistan ce

         between Z(t), where x E {1,･･･,IV}, and (2) the distance between L(t) and

         R,(t + 1) be shorter than a threshold. The agency then regards R,(t + 1) as

         the 3D position of the target object at t + t.

         Ifthis identification fails, namely none of {R(t+1)li = 1, ･ ･ ･ , N} are identified

         with P(t), the fbllowing case 4 is applied.

     In these cases, P(t + 1) = R,(t + 1).
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   e When spatial object identification at t + 1 has not reconstructed 3D position of

     any detected object, namely none of 3D view lines detected by member-AVAs are

     identified with each other, the information of the target object at t is compared

     with the 3D view lines of the objects, each of which is observed by each member-
     AVAi,...,M at the time closest to t + 1 (denot ed by {Lg' (ti)li =: 1, ･ ･ ･ , Ni }, ･ ･ ･ ,

     {Liv (tM)li =: 1, ･d･, .ZVM}):

     Case 3. When the 3D position ofthe'target object at t (i.e., P(t)) is compared with

         {L{ (ti)li = 1,･･･,Ni}, ･･･, {L3t,t(tM)li == 1,･･･,NM}: Let (1) LZ(t,) have the

         shortest distance between P(n, where x E {1,･･･,AZla} and y E {1,･･･,M},

         and (2) the distance between P(t) and Lg(ty) be shorter than a threshold. The

         agency theAn regards Lg(t,) as the 3D view line of the target object at t+ 1. In

         addition, P(t) is projected onto Lg(ty), and this projected 3D point is regarded

         as the 3D position at t+ 1.

     Case 4. When the 3D view line ofthe target object at t (i.e., Z(t)) is compared with

         {Lk (ti)li = 1, ･ ･ ･ , ATI}, ･ ･ ･ , {LSt,f (tM)li = 1, ･ ･ ･, NM}: Let (1) L(t) be observed

         by member-AVA,, and (2) Lg(t,) be identified with Z(t) by the perception

         module of member-AVAy. The agency then regards Lg(ty) as the 3D view line

         of the target object at t+ 1.

     In these cases, Z(t + 1) = Lg (t + 1).

   In an example shown in Figure 5.14 (b), the system estimated the 3D positions of two

objects at t+1 (denoted by Pt(t+1) and Ri(t+1)) by spatial object identification. The

system, then, compares these 3D positions with the 3D position of the target object at
t (denoted by P(t)), namely this situation is the above case 1. As a result, A(t + 1) is

identified with P(t).

   Note that this temporal identification method is effective only if the interval between

t and t+ 1 is short enough.

5.3.3.3 Virtual Synchronization for Spatial Object Identification

Since AVAs capture images autonomously, the member-AVAs in the same agency observe
the 3D view lines ofthe objects ({Lh(t.)li : 1, ･ ･ ･ , Ar.}) at different times (i.e., t. I t.).

Furthermore, the message delacy via network makes the interval between t. and t. Iarger.

The result of object identification is, therefore, unreliable if these asynchronized object

information from each camera is compared with each other. The unreliable identification

results in difliculty in a continuous observation of the target object.

   Other distributed systems that consist of autonomous cameras coped with this problem

as follows: In [NakOl] and [KMSOO], the newest information gathered from each camera is

considered to be observed at the same time. In [Ste99], each object information includes

its time stamp (Let ti denote the time stamp of informationi). The system regards the

information observed at ti and tj･, where lti - tal is small enough, as the simultaneous

information. These approximate methods break down under complicated situations and

network congestion.
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Figure 5.15: Virtual synchronization fbr spatial object identification

          among member-AVAs in the same agency.

    Tb solve this problem, we put the dynamic memory in the intra-agency 1ayer as we

 do in the intra-AVA Iayer (Figure 5.10). By employing the dynamic memory, a 3D view

 line at an arbitrary time can be estimated from asynchronous discrete time-series data

 recorded in the dynamic memory. We can, therefbre, solve this problem to estimate a 3D

'view line observed by each camera at the same time. We call this procedure a Virtual

 Synchroniuation. Since each agency works while keeping its intrinsic dynamics, it can

 establish object identification at an arbitrary time by reading 3D view lines detected by

 all the member-AVAs from the dynamic memory.

    Figure 5.15 (a) shows an example of the virtual synchronization with the dynamic

 memory. In this example, the object information (i.e., the 3D view line) detected by

 member-AVAi and member-AVA2 (indicated by white points in the figure) is written in the

 dynamic memory shared by the member--AVAs. rlb establish spatial object identification

 at T, the agency can obtain the 3D view Iines detected by both member AVAs at T
 (denoted by Li(T) and L2(T), both of which are indicated by black points in the figure)

 by estimating the values from the dynamic memory. The agency can, therefore, establish

 spatial object identification between the 3D view lines observed at the same time.

   In our system, spatial object identification is practically realized as foIlows. When an

 agency is fbrmed (mentioned in Section 5.3.3.5), an Agency Mdnager is generated at the

 sapae time. An agency manager is an autonomous software agent8 independent of AVAs,

 and performs the fo11owing tasks as a delegate of an agency.

  8 In our system, the agency manager is implemented by a UNI[X process on a PC.
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Table 5.4: Entries of the dynarnic memory in the intra-agency layer.

Targetinformation 3Dposition 3Dpositionsofthetargetob-
jectarerecordedastime-series
data(P(t)).

3DviewIine 3Dviewlinesofthetargetob-
jectarerecordedastime-series
data(Z(t)).

Object-importance Theobject-importanceofthe
targetobject

Memberinformation
{1,･･･,M}

Number Thenumberofmember-AVAs
atthepresenttime.

member-AVAi AVA-ID IDofmember-AVAi
External

parameters

Externalcameraparametersof
AVAi'scamera

l {

member-AVAM AVA-ID IDofmember-AVAM
External

parameters

Externalcameraparametersof
AVAM'scamera

Detectedinformation
{1,･･･,M}

DetectedInformationof
member-AVAi

Detectedinforma-
tion(showninTable5.1)sent
frommember-AVAiisrecorded
astime-seriesdata.

I
l
･

DetectedInformationof
member-AVAM

Detectedinformationsentfrom

member-AVAMisrecordedas
time-seriesdata,

   e Management of the dynamic memory in each agency. The contents of the dynamic

     memory in the intra-agency layer are shown in Table 5.4.

   e Object identification. This task is performed by the perception module in the agency

     manager.

   e Communication with other agencies and AVAs. This task is performed by the

     communication module in the agency manager.

That is, the agency is a conceptual group, and the agency manager is an entity of the

agency. All the information of the target object is managed by each agency manager.

There exists one-to-one correspondence between the target object (and its information)
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and the agency (and its agency manager). To manage the information ofthe target object

with each agency intensively, the system handle the object information as fo11ows:

e All the member-AVAs send the information of the

  manager.

detected objects to its agency

e Even if the agency disappears once because the target object cannot be observed,

  its recorded information will be managed by the agency that tracks the same target

  object when it is detected again (mentioned later).

e In the proposed system, the system detects only the position and direction as the

  information of the detected objects. If multi-modal information (e.g., appearance,

  sound and so on) is observed, all of them are managed intensively by the' agency

  manager and written into its dynamic memory.

   Member-AVA. sends the 3D view lines of the detected objects (i.e., {Lh(t.)li ==

1,･･･,Al}n}) to the agency manager in the same agency. The agency manager then
writes the received object infbrmation into its dynamic memory. When spatial ob-

ject identification is required, the agency manager compares the object information ob-

served by member-AVAsi,...,M, which are obtained by the virtual synchroniza-tl'on (i.e.,

{Le' (T)li :1,･･･,Ni},･･･,{LTM' (T)li = 1,･･･,NM}). If the distance between Lb(T) and

Lii(T) is small enough, the agency manager regards the ith detected result of AVAp and

j'th detected result of AVAq as the 3D view Iines both of wkich go tow-a.rds the same

object (denoted by object.) in the scene. The intersection of LS(T) an                                                          d LZ(T)                                                                  (denoted
by R,(T)) is regarded as the 3D position of object. at T.

   Object information sent from the member-AVA to the agency is listed in Table 5.1.

Ifor object identification in the intra-agency layer, only several parts of the detected

information {1, ･ ･ ･ , N} are utilized. The other information is, however, required to other

purposes:

e The target flag is referred by the agency manager

  member-AVA successfully tracks the target object

  (in Section 5.3.3.6)).

to confirm whether Qr not the

of the agency (mentioned later

e The AVA information is employed for the interaction in the inter-agency 1ayer (men-

  tioned later (in Section 5.3.4)).

   Figure 5.15 (b) shows an example of spatial object identification with the virtual

synchronization. In this example, AVAi, AVA2 and AVA3 capture the images at ti, t2
and t3, and detect the 3D view lines Li(ti), L2(t2) and L3(t3), respectlvely. T-he agency

manager synchronizes these 3D view lines at t3, and then acquires Li(t3), L2(t3) and

L3(t3). By comparing these values synchronized virtually, the agency manager can realize

reliable spatial object identification.
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Figure 5.16: Virtual synchronization for temporal object identification.

5.3.3.4 Virtual Synchronization for Temporal Object Identification

For temporal object identification, the agency manager has to compare the 3D position
of the target object at t (i.e., P(t)) with the 3D positions of the detected objectsi,...,N

at t+1 (i.e., {1t(t + 1)li = 1,･･･,Ar}). The result of object identification is, however,

unreliable because the object information obtained at different times is compared with

each other.

   This problem can be also solved with the dynamic memory in each agency. That
is, an agency manager records the 3D position of the target object (i.e., P(t)) into the

dynamic memory as time-series data. The agency manager can, therefore, estimate the

3D position of the target at t + 1 (denoted by P(t + 1)), and compare P(t + 1) with

{F}(t+1)li = 1,･･･,N}. Then, the detected result R,(t+ 1) which has the shortest

distance between P(t + 1) is considered to be the 3D position of the target at t + 1.
Consequently, P(t+1) = 1 1,(t+1). Thus, temporal object identification becomes reliable.

   Figure 5.16 shows an example of temporal object identification with the virtual syn-

chronization. By interpolating the reconstructed 3D positions of the target object, the

agency manager can estimates the target position at T (Figure 5.16 (a)). In Figure 5.16

(b), the 3D position P(t+1) is reconstructed at t+1. The agency manager theh estimates

the 3D position of the target object at t+ 1 (i.e., P(t + 1)), and compares P(t + 1) with

P(t + 1).

   As mentioned above, the information exchange in the intra-agency layer through the

dynamic memory allows the system to stabilize both spatial and temporal object iden-

tification. Note that all object identification in the intra-agency layer, namely object
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Figure 5.17: Agency formation.

identification between an agency and a member-AVA/freelancer-AVA, is established by

the agency (agency manager).

   Depending on whether or not spatiotemporal object identification is successfu1, the

dynamic interactions for a generation and maintenance of an agency are activated. These

dynamic interactions are defined by the fo11owing three cooperative-tracking protocols:

Agency Formation: This protocol defines

       e a new agency generation by a freelancer-AVA and

       e a participation of a freelancer-AVA in an agency.

Agency Maintenance: This protocol defines

       e a secession of a member-AVA from an agency and

       e an elimination of an agency.

Agency Spawning: This protocol defines a new agency generation from an existing

    agency.

5.3.3.5' Agency Formation Protocol

Initially, each AVA independently searches for an object. When a freelancer-AVA finds a

new object, it requests from the existing agencies object identification between the newly

detected object and the target object of each agency9 (Figure 5.17 (1)). Depending on

whether or not the result of object identification is successful, the freelancer-AVA works

as fo11ows:

 9 The details of a communication between the freelancer-AVA and the agency will be mentioned in

Section 5.3.5.
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Case A: No agency established a successfu1 identification:

     The freelancer-AVA that finds the new object starts a new agency manager. The

     agency that tracks the newly detected object is then formed. The freelancer-AVA

    joins into this agency (Figure 5.17 (2-a)).

Case B: An agency established a successfu1 identification:

     The freelancer-AVA joins into the agency that has made successful identification if

     requested by the agency (Figure 5.17 (2-b)).

   Depending on the relationship between the current state of the system and the task-

constraint, the agency formation is rejected even if the freelancer-AVA finds an object: if

there are not enough freelancer-AVAs for search (i.e., in the case of deficiency of search-

level), the number of freelancer-AVAs must not decrease. Then, the freelancer-AVA and

agency works as follows:

Case A: The freelancer-AVA cannot become a member-AVA, and a new agency is not

     generated.

Case B: The agency manager, which established a successfuI identification, examines the

     goal-functions of the freelancer-AVA and its member-AVAs to determine (1) whether

     or not include the freelancer-AVA in the agency instead of the current member-AVA

     and (2) if the freelancer-AVA joins into the agency, which member-AVA should be

     released.

   Since all the information about the same object should be managed together, a newly

generated agency manager (l) reads the object information obtained in the past and (2)

compares its own target information with the read infbrmation for object identification.

If this identification is successful, the agency manager considers the read information

as the information of the own target object and records it into the dynamic memory.

For this purpose, the agency manager need to record its own target information when

the agency disappears (the details of the disappearance of the agency are mentioned in

Section 5.3.3.6).

5.3.3.6 AgencyMaintenanceProtocol

After an agency is generated, the agency manager continues spatial and temporal object

identification fbr cooperative tracking (Figure 5.18 (1)). If temporal object identification

between the target objects of the agency and member-AVA. fai}siO , the agency manager

reports the 3D position of the target object to member-AVAm. This information navigates

the gaze of member-AVA. towards the target object (Figure 5.18 (2)).                                                         Nevertheless, ifthe
failure of identification continues for a long time, the agency manager puts member-AVA.

out of the agency (Figure 5.18 (3)).

 iO The member-AVA sends the information of all detected objects to the agency. The agency, however,

can find the target information of this member-AVA by checking the target fiag (shown in [lable 5.1).
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Figure 5.18: Agency maintenance.

   If all the member-AVAs are unable to observe the target object, the agency manager

eliminates the agency. All the member-AVAs, then, return to freelancer-AVAs.

   In addition, depending on the relationship between the current state of the system and

the task-constraint, the agency manager adjusts the number of member-AVAs. If there
are not enough freelancer-AVAs (i,e., in the case of deficiency of search-level), the agency

manager has to release its member-AVA to increase freelancer-AVAs.

   The agency manager records its object information when the agency is eliminatedii .

As mentioned above, in order to unify the information of the same object, this recorded

object information is read by a newly generated agency.

5.3.3.7 Agency Spawning Protocol

The agency manager can distinguish its own target object from other objects detected

by member-AVA. (Figure 5.19 (1)). If the agency manager finds the 3D view line of

the newly detected object (denoted by L.), it requires ether agencies to compare L. with

their own target objects for object identification. Then, the results of object identification

are returned from other agency managers. If none of identification is successfu1 (namely,

it seems that there is not an agency that tracks the newly detected object in the system),

the agency manager orders member-AVAn to generate a new agency (Figure 5.19 (2)).

As a result, member-AVA. generates an agency for tracking L. and joins it (Figure 5.19

(3)).

   An agency generation by the agency spawning is also restrained if the search-level of

the current state is less than that of the task--constraint.

ii ln our system, the object information is written into the disk drive.
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5.3.4 Inter-agency Layer: Interaction between Agencies

The inter-agency layer consists of all existing agencies. The fundamental task of an agency
is to keep tracking its own target object. In order to keep tracking the target object in the
complicated wide area, agencies need to exchange their member-AVAs with each other
in accordance with the target motions. To realize such a dynamic reconstruction of the
agency, the following two kinds of information are exchanged between agencies.

• Information of the target object.

• Information of the member-AVAs.

We call this information Agency Information. The contents of the agency information are
listed in Table 5.5.

In our system, the agency reports its agency information not only to other agencies
but also to all freelancer-AVAs through broadcast messages. The freelancer-AVA also
broadcasts the information of the detected objects to all agencies. The freelancer-AVA
has to exchange the object information between agencies in order to achieve the following
functions:

• Maintain a consistency of one-to-one correspondence between the agency and the
target object. That is, if there is not the agency that is tracking the object detected
by a freelancer-AVA, the system can generate a new agency. The system should not,
however, generate a new agency if there is an agency that is tracking this object.

• Investigate the current state of the system. If a message from a freelancer-AVA is
newly received, the search-level of the system increases. Similarly, if a message from
an agency is newly received, the tracking-level of the system increases based on the
number of the member-AVAs belonging the agency.
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Table 5.5: Agency information.

Entry Information
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Target information 3D information ~D position of the target object
P or 3D view line of the target
object L

Object-importance The object-importance of the
target object

Time The time when the target is
observed

Member information Number The number of member-AVAs
{1,· .. ,M}

member-AVAI AVA-ID ID of member-AVAI
External External camera parameters of
parameters AVAI's camera

member-AVAM AVA-ID ID of member-AVAM
External External camera parameters of
parameters AVAM's camera

We will give a full account of the interaction between the agencies and the freelancer-AVAs
in Section 5.3.5.

5.3.4.1 Virtual Synchronization for Object Identification between Agencies

An agency that has received the agency information from another agency (agencYi) com
pares the 3D position of its own target with that of agencYi's target. This object identi
fication is not reliable if these 3D positions are observed at different times. This problem
can be solved with the virtual synchronization in the same way as temporal object iden
tification in the intra-agency layer. With the 3D positions of the target object recorded
as time-series data in the dynamic memory, the agency manager can synchronize the 3D
position of its own target with the received 3D position of agencyi's target. This virtual
synchronization of the 3D positions realizes reliable object identification between agencies.

Depending on whether or not the result of object identification between agencies is
successful, the dynamic interactions in the inter-agency layer defined by the following two
cooperative-tracking protocols are performed:

Agency Unification: This protocol defines a merge of agencies, both of which track the
same object.

Agency Restructuring: This protocol defines a reformation of the member-AVAs be
tween agencies.
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Figure 5.20: Agency unification.

5.3.4.2 AgencyUnificationProtocol

The Agency Ulr}ofication protocol is executed when the result of object identification be-

tween agencies is successfu1. With this protocol, the agencies that are tracking the same

object are merged into one.

  Followings are actual examples of situations that cause the agency unification.

e When the agency considers multi-objects in the scene as a single object because

 of the failure in object identification. For example, this situation is caused when

 different objects become close enough to be identified as the same object. In this

 case, the agencies that make successfu1 identification merge together temporally to

 keep one-to-one correspondence between the agency and the detected target object.

e When a single object is first regarded as multiple objects because of the failure of

  object identification, and then multiple agencies are fbrmed for the same object by

 mistake. This error is recovered by the subsequent observation. That is, multiple

 agencies that are made due to the mistake merge together when object identification

 between these agencies is successfu1.

   Figure 5.20 shows an example of the agency unification. Agency managerA, which has

made successfu1 object identification with the target object of agencyB, sends the message

to agency managerB. This message asks agencyB to join agencyA (Figure 5.20 (1)). In

order to order the member-AVAs of agencyB to transfer to agencyA, agency managerB

sends messages to its member-AVAs after it receives the unification-request message from

agencyA (Figure 5.20 (2)). Agency managerB then eliminates itself. Thus, two agencies

merge together (Figure 5.20 (3)).
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5.3.4.3 Agency Restructuring Protocol

The Agency Restructuring protocol is executed when the result of object identification
between agencies is unsuccessful. The agency manager performs the agency restructuring
taking into account the following factors:

• The number of the member-AVAs is determined by the object-importance of the
target object.

• Under the restriction about the number, each agency is attended by the AVAs which
are suitable for gazing at the target object.

Followings are actual examples of the situations that cause the agency restructuring.

Due to object motion: Depending on the 3D position of the target object, the AVAs
that are competent enough to gaze at the target object are determined.

Due to new agency generation: When a new agency is generated, this agency re
quires member-AVAs enough to track the target object. This agency, therefore,
requests AVAs from other agencies.

We have various factors in determining the aptitude of each AVA for tracking (e.g. the
3D distance between the camera and the target, visibility from the camera), namely the
criterion for the agency restructuring. Users can settle down this criterion depending on
the task of the system as the goal-function.

Figure 5.21 shows an example of the agency restructuring.

1. If agency managerD makes unsuccessful object identification between agencyc, it
examines (1) the number of the member-AVAs between agencyc and agenCYD and
(2) the tracking ability of each member-AVA. Based on this examination, agency
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managerD decides whether or not to request a member-AVA from agencyc. If it
requests, it sends the AVA-request message to agencyc (Figure 5.21 (1)).

2. When agency managerc is requested to transfer its member-AVA to agencYD, agency
managerc examines the aptitude of own member-AVAs for tracking the target ob
ject of each agency. Agency managerc determines the member-AVA that is more
suitable for tracking targetD rather than targetc, where targetc and targetD indi
cate the target object of agencyc and agenCYD, respectively. If agency managerc
considers member-AVAo to be suitable for tracking targetD, agency managerc or
ders member-AVAo to transfer to agencYD ("Change agency message" in Figure 5.21
(2)). Member-AVAo then informs agenCYD that it joins into agencyc ("Join agency
message" in Figure 5.21, 2.).

3. Member-AVAo then starts working as a member of agenCYD (Figure 5.21 (3)).

5.3.4.4 Exclusive Interaction in Inter-agency Layer

A member-AVA transfers between agencies as a result of the dynamic interaction in the
inter-agency layer. Although this is necessary for continuous tracking, the state of the
system is temporally unstable during the reformation of the agency.

The following examples show the actual problems that occur during the dynamic
interaction between agencies:

Agency Unification: If two agencies decide to join into one side at the same time, both
agencies may fail in the agency unification because the agency of the destination
has disappeared.

Agency Restructuring: If multiple agencies exchange their member-AVAs at the same
time, there is some possibility that AVAs will swing between agencies due to a
radical reformation of agencies.

To solve these problems, each. agency performs a dynamic interaction in the inter
agency layer only with a single agency simultaneously. In addition, each inter-agency
cooperative-tracking protocol is executed depending on the following conditions.

Agency Unification: Agencyp that has made successful object identification with agencYQ
requires agencYQ to join into agencyp.

When agencYQ is requested to join into agencyp, it decides whether or not to accept
the request according to its own state as follows:

• If agencYQ is not concerned with any inter-agency interaction, agencYQ accepts
the request.

• If agencyQ has requested the agency unification with agencyp, agencyQ com
pares the times when each agency sent the message to one side. AgencYQ
accepts the request only if agencyp sent the message earlier than agencYQ.

• If agencyQ is interacting with another agency, agencyQ rejects the request.
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Agency Restructuring: Agencyp that has made unsuccessfu1 object identificatien with

    another agency can require a member-AVA only if agencyp is not executing any other

    inter--agency interaction with other agencies.

    When the agency is requested a member-AVA, it decides whether or not to accept

    the request according to its own condition as foIIows:

       e Ifthe agency is not executing any inter-agency interaction, it determines whether

         or no£ to release its member-AVA. Depending on the determination, the agency
        sends the message of acceptance or rejection in reply.

       e If the agency is interacting with another agency, it rejects the request.

5.3'.5 CommunicationwiththeFreelancer-AVA

'A freelancer-AVA communicates only with agencies. The freelancer-AVA sends the infor-

mation of the detected objects to the agencies by the broadcast message. The contents

of this message are Iisted in Table 5.1.

   The agency that has received the object information from the freelancer-AVA estab-

lishes spatial object identification between its target information and the received object

information. Then, the agency sends the result of identification to the freelancer-AVA

in reply. The freelancer-AVA that has received this reply perfbrms the agency formation

depending on the received issue.

   On the other hand, the agency broadcasts the agency information. The freelancer-

AVA, that has received the agency information, refers to the target information included

in the received message. This freelancer-AVA decides the next role depending on the

condition of the current state of the system and the task-constraint as fo!lows:

(Search-level of the current state) > (Search-level of the task-constraint)

     The freelancer-AVA can start tracking the target object. If this freelancer-AVA

     starts tracking the target object, it points its gaze towards the 3D position of the

     target object that the agency sends.

(Search-level of the current state) g (Search-level of the task-constraint)

     The freelancer-AVA should continue to search for a new object,

5.4 Completeness and Soundness of the System

5.4.1 Completeness for Persistent Tracking

In general, it is hard to guarantee that the system can always track all target objects under

every situation in the real world. The possibility of tracking depends on various factors

(e.g., the number of cameras and target objects, mechanical limitations of the camera,

the speed of the target object, and so on). Here, we mention the relations between the

numbers ofcameras and target objects, and show the upper limitation ofthe target objects

to be tracked simultaneously in the proposed system.
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To track a target object, an agency is generated. We define an agency as a represen
tation of a target object in the system. Because of this definition, the maximum number
of target objects to be tracked is equal to the maximum number of agencies. An agency
is generated by an AVA that detects a target object in the scene, and the agency has to
be attended by at least one member-AVA for tracking its target object. The maximum
number of agencies, therefore, is the total number of AVAs in the system. In this case,
each agency has only one member-AVA.

In the proposed system, however, an agency reconstructs 3D information of its target
object from 2D information of the object observed by multiple member-AVAs. The 3D
information of the target object greatly assists the agency to persistently keep tracking
the target object as follows12 :

• The reconstructed 3D position of the target object is useful for object identification
not only among AVAs but also among agencies.

• Even if a member-AVA cannot observe its target object because of being disturbed
by obstacles or other moving objects, it can gaze at the target object by being
received the 3D position of the target object.

• Comparing the 3D positions of the target objects with those of the cameras allows
the system to determine which AVA is appropriate for gazing at each target object.

That is, each agency should have at least two member-AVAs for reliable object tracking.
Based on the above discussion, we summarize the relations between the tracking ability

of the system and the numbers of the target objects and AVAs (denoted by nt and na ,

respectively) as follows:

Case 1: nt ~ I~-l: The system can stably track all the target objects while obtaining
their 3D information.

Case 2: Izr1< nt ~ na : Although the system can track all the target objects, (nt-I~1)
or more target objects are tracked by only one AVA.

Case 3: na < nt: (nt - na ) or more objects cannot be tracked by the system simultane
ously.

Note that In1denotes the maximum integer that is not more than n.
This limitation about the number of target objects results because (1) the agency

receives the information of objects only from its member-AVAs and (2) the agency has
to be attended by at least one member-AVA. To avoid this problem, we can modify the
system as follows:

3D reconstruction method: If the agency receives the object information from AVAs
except for its member-AVAs as well, it can possibly reconstruct the 3D information
of the target object even when it has a single member-AVA. That is, this information

12 In addition, to apply the proposed system to various vision systems (e.g., navigation and motion
, capturing systems), the 3D information of the target object has to be reconstructed.
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exchange allows the agency to stably track the target object even in r~1< ~ ::; na

(the above case 2). In this case, however, member-AVAs have to send the informa
tion of the detected objects not only to their own agency manager but also to other
agency managers that require the object information. This increases a network-load.
In particular, if each member-AVA broadcasts the object information to report it
to all agencies, a huge network-load is produced. To avoid a breakdown of the sys
tem due to increasing the network-load, each member-AVA should examine which
agency requires the information, and send it based on the result of the examination.

Definition of an agency: If the agency can exist without any member-AVA, the system
can track the target objects even in the case of na < nt (the above case 3). To obtain
the information of the target object, the agency without the member-AVA has to
gather the object information from non-member-AVAs. We have to, therefore, solve
the problem about increasing the network-load mentioned above. In addition, this
definition has an essential problem: since the vacuous agency cannot control any
camera, it is not guaranteed that this agency (1) keeps tracking the target object
and (2) acquires its meaningful image.

In addition, here again note that we aim at designing a system that can not only
track trajectories of target objects but also acquire their detailed information. If
the system is required only to track the trajectory of the target object, each AVA
can survey a wide area and observe multiple objects simultaneously by adjusting
the zooming factor of its camera at the wide view angle. To acquire the detailed
information of the object, however, each AVA should control the pan, tilt and zoom
parameters of its camera to keep obtaining the high-resolution image of the target
object. In this case, it is hard for each AVA to keep observing multiple objects si
multaneously. Accordingly, each agency has to be attended by at least one member
AVA in order to acquire the detailed information of its target object continuously
by controlling the gaze of its member-AVA.

Thus, to avoid several problems mentioned above, we design the system so that (1) the
agency reconstructs the 3D information of its target object only from the information
received from its member-AVAs and (2) each agency has at least one member-AVA.

5.4.2 Necessity and Sufficiency of Cooperative-tracking Proto
cols

In the proposed system, all events happened in the real world are characterized by the
results of object identification. Therefore, by verifying the types of cooperative-tracking
protocols executed depending on the result of each object identification, we can confirm
the necessity and sufficiency of cooperative-tracking protocols for multi-target tracking.

All the cooperative-tracking protocols are activated by the agency depending on
whether or not the result of object identification is successful. Object identification is
established when the agency received the message including the information of the ob
jects from the freelancer-AVA, member-AVA and other agencies. Table 5.6 shows the
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Table 5.6: Cooperative-tracking protocols activated by the agency de-

         pending on the result of object identification.

Received object i7oformation  Result of object ident21fication

Success Failure
3Dviewlinesofdetectedobjects
fromfreelancer-AVA

AgencyFormation AgencyFormation

3Dviewlineofthetargetobject

frommember-AVA
AgencyMaintenance AgencyMaintenance,

AgencySpawning
3DviewIinesofnon-targetob-
jectsfrommember-AVA

AgencyMaintenance AgencySpawning

3Dpointofthetargetobject
fromagency

AgencyUnification AgencyRestructuring

types of the cooperative-tracking protocols that are activated according to the relations

between the type of the received object information and the result of object identification.

   As we can see, the cooperative-tracking protocols are designed just enough in accor-

dance with the situations in the real-world.

5.4.3 Soundness of Communicating with Other Processes

In each layer, multiple parallel processes dynamically exchange their infbrmation with

each other for cooperation. This dynamic interaction has to be realized without causing

deadlock.

Intra-AVA layer: The perception, action and communication modules exchange their

     infbrmation through the dynamic memory in the intra-AVA layer. The dynamic

    memory enables the modules to asynchronously obtain the information of another

    process at an arbitrary time.

Intra-agency layer: Similarly, each agency has its own dynamic memory managed by

    the agency manager. All member-AVAs send their observed infbrmation to the
    agency manager. The agency manager continues spatiotemporal object identifica-

    tion while keeping its own intrinsic dynamics. In addition, several information is

    reported from the agency manager to its member-AVAs by the message transmis-

    sion. The member-AVA accepts only the message from its agency manager not to

    be affected inconsistently by multiple agencies: for example, message delays incur

    the invalid communication between the agency and the member-AVA belonging to

    another agency.

Inter-agency layer:

    communication

The information exchange in this 1ayer is implemented by a direct

using the message transmission. Tb avoid a confiict of different
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     interactions between agencies, (1) each agency pembrms an inter-agency cooperative-

     tracking protocol only with one agency simultaneously and (2) a timeout processing

     fbr the inter-agency interaction is adopted to cope with message delays, dynamic

     agency generation and elimination, and other unpredictable factors.

   Thus, the dynamic interaction in each lacyer can be reactively realized without incon-

sistency and deadlock.

5.4.4 Soundness ofState [Yansitions ofthe System

Here, we show that each module, AVA and agency can continue to work persistently
without causing deadlock. rlb confirm this, we summarize (1) the functions of all the

cooperative-tracking protocols and (2) the transitions ofthe system state caused by these

protocols.

5.4.4.1 State thransitions ofthe Modules

Perception module: Starting at initial, a perception module repeats the fo11owing steps

     (Figure 5.22 (a)):

      1. dapture: Capture an image (at to).

      2. Read (Camera para): Read the pan-tilt-zoom･parameters at to from the dy-

         namlc memory.

      3. Detect: Detect object regions in the captured image.

      4. Read (Object info): Read the histories of the object information detected in

         the past from the dynamic memory.

      5. ID: Identify the newly detected object information with the histories of the

         object information.

      6. write (Object info): Write the result of object identification into the dynamic

         memory.

Action module: Starting at initial, an action module works at each state as fo11ows

     (Figure 5.22 (b)):

       e Read (Role): Read the current role (i.e, freelancer-AVA or member-AVA) from

       '         the dynamic memory: '
          - If the current state is a freelancer-AVA, the state changes to Search.

          - If the current state is a member-AVA, the state changes to Read (3DP).

       e Search: Determine the next camera parameters based on the predefined tra-

        jectory. The state changes to damera Control.

       e' Read (3DV): Read the 3D view lines of the detected objects from the dynamic

         memory. The state changes to Read (3DP).
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       e Read (3DP): Read the 3D position of the target object from the dynamic

         memory. Depending on whether or not the infbrmation of the 3D position is

         valid, the state changes as foIlows:

          - If the information is valid, the state changes to ll).

          - If the information is invalid, the state changes to [I]rack (Predict).

       e fl): Identify the 3D position of the target object with the 3D view lines of the

         detected objects:

          -- If identification is successful, the state changes to write (fargeO.

          - If identification is unsuccessful, the state changes to [I]rack (Non-predict).

       e write ([Ihrget): Wtite the information of the newly identified target object into

         the dynamic memory. The state changes to [I?ack (Predict).

       e 7]rack 4Predict): Determine the next camera parameters by the prediction-

         based control method. The state changes to damera Control.

       e 7]rack (7Von:predict): Determine the next camera parameters to gaze atthe 3D

         position of the target object. The state changes to Camera Control.

       e Camera Control: Control the camera parameters. The state changes to Read

         (IRole).

Communication module: All messages sent to the AVA are stored in the message
    buffer managed by the communication module. Starting at initial, a communication

    module works at each state as follows (Figure 5.22 (c)):

       e Read (Role): Read the current role from the dynamic memory:

          - If the current role is a freelancer--AVA, the state changes to eneck ([Ihsk).

          - If the current role is a member-AVA, the state changes to Read (3DV]).

       e Clheck ([Ilask): Compare the task-constraint and the current state ofthe system.

        The result of the comparison is valid until the state is changed to Check ([IhskL)

           .        agaln.
       e Read (3DV): Read the 3D view lines of the detected objects from the dynamic

        memory. Depending on whether or not there exists the newest 3D view lines

        that has not been sent to the agency manager, the state changes as fo11ows:

          - If the newest information has been detected, the state changes to Send

            (3DiiL).

          - If the newest information has not been detected, the state changes to

            Receive (Bufft)r check).

       e Send (13DV): Depending on the current role of the AVA, the communication

        module works as follows:

          - Send the newest 3D view lines to the agency manager if the AVA is a

            member-AVA.
          - Broadcast the newest 3D view lines, if the AVA is a freelancer-AVA.
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           The state changes to Recejve (Buffbr eheck).

         e Receive (Buffl?r check): Read the message buffer: all the messages are put into

           the message buffer, and the communicatien module read them in the order of

           FIFO:

            - If there exists a message in the buflk)r, the state changes to Check (Valid-

              it"'

            - Otherwise, the state changes to Read (3DV).

         e Check (VaJidity): Examine whether or not the read message is validi3,the

           state changes as fo11ows:

            - If the message is valid, the state changes to eneck ([Ilype).

            - If the message is invalid, the state changes to Receive (ButiEbr check).

         e eneck ([Ilype): Depending on the type of the message, the state changes as

          follows: '
            - If the message is the 3D position of the target object, the state changes to

              write (3DP).

            - Otherwise, the state changes to write (Role).

        e write (3DP): Wtite the received 3D position of the target object into the

          dynamic memory. The state changes to Read (CRole).

        e write Bole): Wicite the new role ifthe received message makes the AVA change

          its state. Depending on the type of the received message and the result of the

          comparison in Check ([Ilask), the state changes as fo11ows:

            - If the message requests the AVA to generate the new agency (i.e., the

              agency formation and agency spawning protocols) and the task-constraint

              allows the system to increase member-AVAs, the state changes to Generate

              Agency.

            - Otherwise, the state changes to Read (Roloj.

        e Generate Agenc}y: Generate an agency. The state changes to Read (Role).

 As mentioned above, all the modules can work while keeping their own intrinsic dynamics.

 In addition, since the information exchange between the modules is implemented through

 the dynamic memory, all the modules can work continuously without conflicting with

' another module when they exchange the information.

 5.4.4.2 State TMransition of the AVA

 Figure 5.23 (a) shows the state transition model of the AVA. All the state transitions

 of the AVA are caused by the cooperative-tracking protocols mentioned in Section 5.3,

 provided that the state transitions indicated by arrows with E occur automatically and

 immediately.

  i3 Ifor example, a freelancer-AVA neglects the object infbrmation depending on the current state of the

 system. A member-AVA neglects all messages from other agencies.
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  1. Starting at initial, an AVA works as a freelancer-AVA at Ereelancer.

  2. If the AVA at IF]reelancer finds an object, it requests the existing agencies to identify

    the detected object with their own target objects. Depending on the result of object

    identification, the AVA changes its state as fbllows:

      e Agency Formation: If this AVA cannot start tracking the object due to
        the relations between the task-constraint and the current state of the system,

        its state stays at F]reelancer regardless of the result of object identification.

      e Agencg Formation (IDF Success), Agency Formation (IDF failure):
        If this AVA can start tracking the object, its state is changed to Member or

        Member(Generate Agency) depending on the result ofobject identification. Its

        state is immediately changed to Member after it generates an agency manager
        even if the state has been changed to Member(Generate Agenc". This AVA,

        then, starts working as a member-AVA at Member.

  3. If the AVA receives the message that induces the state transition from its agency

    manager when the AVA works as a member-AVA, its state is changed depending on

    the kind of the executed cooperative-tracking protocol as fo11ows:

       e Agency Unification, Agency Restructuring: The state is returned
        to Member via Member(Clhange Agency). This AVA then transfers to another

        agency.
       e Agency Spawning: The state is returned to Member via Member(Generate
        Agency). A new agency is generated at Member(Generate Agenc yL),                                                                  and this

         AVA belongs to the new agency.

       e Agency Maintenance (ll)M Eailure): This AVA exits from the agency,
         and then works as a freelancer-AVA again. The state is changed to Ereelancer.

       e Agency Maintenance (IDM Success): The AVA stacys in the current agency,

         and its state remains at Member.

Note that although the states P}eelancer and Member have the reiterative state transitions

(AgencyFormation and Agency Maintenance (ll)M Success), respectively), the

state of the AVA changes constantly in the lower level as fo11ows:

   e Even if the AVA continues to be a freelancer-AVA, its camera parameters are con-
    trolled to search for an object. That is, its internal state always keeps changing in

    the action level.

   e The member-AVA fixes its camera parameters when the target object stands. The

     AVA, however, keeps observing the target object, and all the observation results

     are written into the dynamic memory in the AVA. The internal state of the AVA,

     therefore, keeps changing by updating the contents of the dynamic memory.

   Based on the above discussion, it is confirmed that each AVA work continuously with-

out faIIing into the steady condition.
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5.4.4.3 State Tltransition ofthe Agency

Figure 5.23 (b) shows the state transition model of the agency. All the state transitions of

the agency are caused by the cooperative-tracking protocols, provided that the automatic

state transition E, in the same with that of the AVA.

1. Just after an agency is generated (at initial), it starts working at Agency.

2. The agency receives the fo11owing two kinds of messages from AVAs and other agen-

  cies:

Object information: When the agency receives the object information, it estab-

    lishes object identification between its target object and the received object

    information. Each cooperative-tracking protocol executed by this object iden-

    tification is shown by a bold font in Figure 5.23 (b).

Result of object identification: The result ofobject identification between agen-

    cies, which is established by another agency, is replied. This message is sent

    based on two kinds of cooperative-tracking protocols (i.e., the agency unifi-

    cation and agency restructuring). Each result of these cooperative-tracking

    protocols is shown by a italic bold font in Figure 5.23 (b).
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Depending on the result of object identification, the state of the agency is changed

as fo11ows:

  e Agency Formation, Agency Maintenance (ll)M Success): The agency
    waits the next message. Its state stays at Agency.

  e Agency Restructuring, Agency Maintenance (IDM failure): If the
    agency is requested to release and give its member-AVA from another agency

    (i.e., Agency Restructuring) or object identification with its member-AVA

    fails for a long time (i.e., Agency Maintenance (IDM thilure)), the num-

    ber of its member-AVAs decreases. The state of the agency changes to Agency

    (ZDecrease Member) and returns to Agency.

  e Agency Restructuring, Agency Unification: If the agency requests the
    member-AVA from another agency, its state changes to Agency (increase Mem-

    ber) and returns to Agency.

  e Agency Maintenance (IDM Eailure), Agency Unification: Because the
    agency does not have any member-AVA, the state of the agency moves to
    Agency (DisappeaD. The agency then eliminates itself.

Although the state transition network of the agency has the reiterative state transition

as well as that of the AVA, the internal state of the agency also keeps changing: since

the agency receives the information of the detected objects from its member-AVAs, the

target information managed by the agency is always updated.

   Tb realize the above state transition of the agency, the perception and communication

modules in the agency manager (of agencyA) works as fo11ows. Figure 5.24 shows their

state transition models.

Perception module: Starting st jnitial, the state changes as fo11ows:

       e Read (Object info): Read the object information received from freelancer-AVAs

         and agencies, which object identification has not been established with its own

         target information. The state changes to Select ll)-type.

       e Select M-type: Select the type of object identification that will be established

         next:

          - If spatiotemporal object identification among the 3D view lines detected

            by different member-AVAs is selected, the state changes to Read (Virtual

            SymCM)･
          - If object identification between its own target information and the ob-

            ject information received from the freelancer-AVA or the other agency is

            selected, the state changes to Read (Virtual symcT).

       e Read (Virtuai syncM): Read (1) the 3D view lines detected by the member-

         AVAs and (2) the 3D infbrmation of its target object, each of which is observed

         at the same time ((T>t4) with the virtual synchronization. If the 3D position of

    ' its target object at 7ZM in the dynamic memory is valid, the 3D position is
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        e ll)p (3DV): Compare L with the received 3D position for object identification.

        e ll])v (3DP): Compare P with the received 3D view line for object identification.

        e ll)v (3DV?: Compare L with the received 3D view line for object identification.

        e write (ID resulO: Wlrite the result of object identification into the dynamic

          memory.

 Communication module: All messages sent to the agency manager are stored in the

     message buffer managed by the communication module. Starting st initial, the state

     changes as follows:

        e Broadcast (3DP): Broadcast the 3D position of its own target object. The

         state changes to eneck ([Tbslg).

        e caeck ([Ihsk): Compare the task--constraint and the current state ofthe system.

         The result of the comparison is valid until the state is changed to eneck ([Ihsk)

         again. Depending on the result of the comparison, the state changes as follows:

           - If the task-constraint is satisfied, the state changes to Receive (l3ufTl?r

             check)-

           - If the task-constraint is dissatisfied, the state changes to Decrease member.

       e Decrease member: Release a member-AVA that is determined based on the

         goal-function. Depending on the number of the member-AVAs, the state
         changes as fo11ows:

           - If agencyA has no member-AVAs, the state changes to Disappear.

           - Otherwise, the state changes to Receive Bufller checkl.

       e Receive (Buffl?r check): Read the message buffer:

           - If there is not any messages in the buffer, the state changes to Read (ID

             result),

           - If there is a message in the buffer, the state changes to Check (VZilidity).

          - If all the messages in the buffer are read, the state changes to CZheck ([IYpe).

         Note that all the messages in the buffer are read, they are not deleted from the

         buffer.

       e Check (V2ilidity): Depending on whether or not the read message is validi4 ,

         the state changes as fo11ows:

          - If the message is invalid, the state changes to Delete message.

          - If the message includes object information, the state changes to write'

   - (Object infb).
          - If the message reports the result of the cooperative tracking protocol acti-

            vated by another agency, the state changes to Receive (Bufil?r check).

 i4 Fbr example, an agency manager neglects the message about inter-agency cooperative-tracking pro-

tocol depending on the result of the comparison between the task-constraint and the current state of the

system.
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e Delete message: Delete the invalid message from the buffer. The state changes

  to Receive (BujfiEler check).

e write (Object info): Write the object information into the dynamic memory,
  and delete it from the buffer. The state changes to Receive (BujEil?r check).

e Read (IID result): Read all the results of object identification from the dynamic

  memory, and select the one which has the biggest priority:

   - If there is not any results in the dynamic memory, the state changes to

     Receive (Bufibr check).

   - If the identification result is selected, the communication module deletes

     it from the dynamic memory. The state changes to eneck (Sendeij.

e Check (Sendei:): Depending on the type of the identification result, the state

  changes as fo11ows:

   - If object identification is established with the object information detected

     by a freelancer-AVA (freelancerf), the state changes to eneck aDF).

   - If object identification among the object information detected by member-

     AVAs is established, the state changes to eneck (IDM).

   - If object identification is established with the object information detected

     by another agency (agency.), the state changes to (]heck (rDA).

e eneck (ll)F): Depending on the result of identification, the state changes as

  follows:

   - If identification is successful, the state changes to Send (Success).

   - If identification is unsuccessfu1, the state changes to Send deilure).

e Send (Success): Report the successful result of object identification to freelancer･-

  AVAf. Depending on the current state of the system, the state changes as

  fo11ows:

   - If the current state satisfies the task-constraint, the state changes to Send

      (Join request).

   - Ifthe current state does not satisfy the task-constraint, the communication

      module examines the goal-function whether or not it should exchange the

      roles of its member-AVA and freelancer-AVAf. If it should exchange, the

      state changes to Send (Release).

    - Otherwise, the state changes to (lheck (Wliit time).

e Send (Join request): Request freelancer-AVAf to join agencyA. The state

  changes to eneck (Wait time).

e Send (Release): Order the selected member-AVA to exit from agencyA. The

  state changes to Send (Join request).

e Send (failure): Report the unsuccessful result ofobject identification to freelancer-

  AVAf. The state changes to oneck (Wait time).

e eneck (]DM):
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    - Ifthere exists a newly detected non-target object in the object information

      detected by the member-AVAs, the state changes to Agency spawning.

    - Otherwise, the state changes to Agency maintenance.

e Agency spawning: Depending on the number of the member-AVAs, the state

  changes as fo11ows:

    - If (1) agencyA has multiple member-AVAs or (2) the object importance of

      the newly detected object is larger than that of its target object, the state

      changes to Send aD request).

    - Otherwise, the state changes to Agency maintenance.

e Send (ID request): Request other agencies to identify the newly detected object

  with their target objects. The state changes to Agency maintenance.

e Agency maintenance: Depending on the result of object identification between

  the 3D view lines of the target object detected by the member-AVAs and the

  3D position of its own target object, the state changes as fo11ows:

   - If identification is successfu1, the state changes to eneck (V;lait time).

   - If identification with member-AVA. is unsuccessfu1, the state changes to

      Send (3DP).

e Send (3DP): Send the 3D position of the target object to member-AVA.. The

  state changes to Check (VSLait time).

e eneck CIDA): Depending on the result of object identification with agency.,

  the state changes as follows:

   - If identification is successfu1, the state changes to Agency unification.

   - If identification is unsuccessfu1, the state changes to Agellcy restructuring.

e Agency unification: The state changes to Send (Uhify request).

e Send (Utiify request): Request agencya tojoin into agencyA. The state changes

  to eneck (WZiit time).

e Agency restructuning: Examine the object-importance of the target object, the

  number ofthe member-AVAs, and the goal-function of each agency. Depending

  on the result of the examination, the communication module works as follows:

   - If agencyA does not have enough member-AVAs or agency. has the AVA
     that is suitable for gazing at the target object of agencyA, the state changes

     to Send (AWI request).

   - Otherwise, the state changes to eneck (Wkiit time).

e Send (AVA request): Request a member-AVA from agency.. The state changes
  to Check (iLI,ZLit time).

e eneck (7 ype): Select the message in the buffer, which has the biggest prior-

  ity, and delete it from the buffer. Suppose the selected message is sent from

  agencyb. Depending on the type of the selected message, the state changes as

 fo11ows:
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   - If the message requests agencyA to merge into agencyb (i.e., the agency

     restructuring protocol), the state changes to Send (enange).

   - If the message requests agencyA to give the member-AVA to agencyb (i.e.,

     the agency restructuring protocol), the state changes to Select member.

   - If the message requests object identification between the target object of

     agencyA and the object infbrmation included in the selected message (i.e.,

     the agency spawning protocol), the state changes to M.

   - If the message includes the reply of object identification (i.e., the agency

     spawning protocol), the state changes to Check (ll)eplyi.

e Select member: Examine the object-importance of the target object, the num-

  ber of the member-AVAs, and the goal-function of each agency. Depending on

  the result of the examination, the communication module works as fo11ows:

   - If agencyA should transfer its member-AVA to agencyb, the communica-

     tion module selects the member-AYA that transfers to agencyb. The state

     changes to Send (AccepO.

   - Otherwise, the state changes to Send (RojecO.

e Send (?lccept): Report the acceptance of the request to agencyb, and order the

  selected member-AVA to transfer to agencyb.

e Send (Roject): Report the rejection ofthe request to agencyb.

e Send (Change): Order all the member-AVAs to transfer to agencyb. The state

  changes to Disappear.

o ID: Identify the received object information with its target information by the

  virtual synchronization. The state changes to Send (ID reply).

e Send (ZD reply): Send the result of object identification to agencyb. The state

  changes to eneck (Wait time).

e (]heck (ID repliy;): Depending on the received result of object identification,

  the state changes as fo11ows:

   - If all the existing agencies establishes unsuccessful object identification,

     the state changes to Send (Generate request). .
   - If the received message reports the successfu1 result of object identification,

     the state changes to Cancel spawning.

   - Otherwise, the state changes to (lheck (VVait time).

e Send (Generate request): Request the member-AVA, which has detected the

  newly detected object, to generate a new agency, and release this member-AVA

  from the agency. The state changes to CZheck (VVait time).

e Cancel spawning: Finish waiting the replies of object identification from other

  agencies, namely the agency spawmng.

e Check (Wiiit time):
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   - If (1) the communication module has requested object identification from

     other agencies at Z based on the agency spawning protocol, (2) the agency

     spawning has not finished, and (3) the difference between the current time

     and tr is larger than the threshold, the state changes to Send (Generate

     requesO･

   - Otherwise, the state changes to Broadcast (13DP).

e Disappear: Eliminate itself.

5.4.4.4 State [Ehransition ofthe System

Finally, we show the state transition network of the total system. Changing behaviors of

each AVA and agency brings the state transition of the system. With various cooperative-

tracking protocols, the system can track multiple target objects. The system dynamically

changes its state while tracking. Figure 5.25 shows the state transition of the system.

   When (1) the situation in the real world changes (namely, the number of the target

objects in the scene changes) and (2) a wrong cooperative-tracking protocol is activated,

the system returns to the stable state by properly executing the cooperative-tracking

protocol as fbllows:

  1. When the situation in the real world changes.
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When the number of objects increases: If a freelancer-AVA finds a new ob-

    ject, the agency formation is executed. If a member-AVA finds a new object,

    on the other hand, the agency spawning is executed,

When the number of objects decreases: Since temporal object identification

    in the intra-agency Iayer is unsuccessfu1, the agency maintenance is executed.

    Then, the agency that has tracked the disappeared object is eliminated.

2. When the system has executed a cooperative-tracking protocol by mistake.

'

Due to the wrong agency formation and agency spaWning: Then, Tnultiple
    agencies track a single object simultaneously. In this case, the agency unifica-

    tion corrects the system state.

Due to the wrong agency unification: Then, only a single agency tracks mul-

    tiple objects. In this case, the agency formation or agency spawning restores

    the system to the stable state.

That is, the system keeps working with repeating stable and unstable conditions.

5.5 Experiments
We conducted several experiments to verify the effectiveness of cooperative tracking with

the proposed system.

5.5.1 Specifications ofthe System

5.5.1.1 SystemOrganization

In our experiments, we employed ten AVAs.

PC with an active camera.

Each AVA consists of a network-connected

pc: Pentiumlll 600MHz × 2 and 256MB memories with Linux operating system.

Active camera: FV-PTZ camera
    controlled via RS-232C.

(SONY EVI-G20). The camera parameters can be

Network: 100M-base Ethernet.

The perception, action and communication modules are implemented by threads on a PC.

The dynamic memory is also implemented by a thread on the same PC. The communi-

                                                                 clockscation module exchanges information by UDP messages. In addition, the internal

of all the PCs are synchronized by Network Time Protocol (NTP)[Mi191]. With these

resources, the perception module can capture images and detect objects in the observed

image at about O.1[sec] intervals on average.
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Figure 5.26: Experimental environment.

5.5.1.2 Calibrating External Camera Parameters

We conducted experiments in the environment illustrated in Figure 5.26. Camerag and

cameraio are placed about 1.5[m] above the floor. AII other cameras are placed about

2.5[m] above the floor (Figure 5.26 (b)). The external camera parameters (i.e., the 3D

position and view direction of each camera) were calibrated. We acquired the external

camera parameters of all the cameras based on a homography between image planes of

cameras. In the experimental environment illustrated in Figure 5.26, the flat floor can

be observed from every camera. Therefore, the projection between an image plane and

the floor can be represented by a homography. By utilizing this property, the external

camera parameters are acquired as fo11ows:

  1. Erom the homography matrices Hi and H2, each of which is determined by the

    fioor and the image planes of two cameras, we can obtain a collineation matrix
    M = H2Hfi. The matrix M can be estimated by giving four corresponding

    points projected from the floor onto the two image planes.

  2. By decomposing the matrix M, we can obtain relative rotation R and translation

    T matrices between two cameras, as well as the surface normal vector of the floor

    n-'.

  3. If we have m cameras, the above relative external camera parameters (i.e., R and

    T) between `camerai and camera2', ･ ･ ･, `cameram-i and cameram' are estimated.
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4. By integrating all the relative external camera parameters, we can acquire the ex-

  ternal camera parameters of all the cameras.

5.5.1.3 DesigningGoal-function

The goal-function is examined by the agency manager (1) when the agency releases its

member-AVA to satisfy the task-constraint (i.e., Decrease member in Figure 5.24), (2)

when object identification with a freelancer-AVA is successfu1 (i.e., Send (Success) in

Figure 5.24), (3) when the agency restructuring protocol is activated (i.e., Agency re-

structuring and Select member in Figure 5.24), and (4) when the agency is required a

member-AVA from another agency (i.e., Select men2ber in Figure 5.24).

   In our experiments, we designed the goal-function as fbllows:

Search-value of freelancer-AVAf: Let Wf denote the area size of the fioor that is

     visible from AVAf. In this experiment, IiV) is computed from the external parameters

                                                             . The value of     of cameraf (i.e., the 3D position and view direction of the camera)

     this function (denoted by Vbf) is determined as follows:

                               Vb, = asxW], (5.9)

     where cr, is a constant that is determined so that Vgf is well-balanced with the

     tracking-value.

Tbacking-value of member-AVA.: Let Dza denote the 3D distance between the cam-
     era of AVA. and the target object of agency., and Aza denote the angle between

     the central direction of AVA.'s view angle and the direction from the camera to the

     target object. The value of this function (denoted by L67za) is determined as follows:

                              lii'k = Dl.n Xin.' (5'10)

5.5.2 PerformanceEvaluation
We conducted experiments with the systems with/without the virtual synchronization.

In order to verify the effectiveness of the virtual synchronization against not only the

asynchronized observations but also the network delay and the lost packet, we broadcasted

vain packets over the network to adjust the network load.

   The system tracked two computer-controlled mobile robots. Both the robots repeated

a straight-line motion at a speed of 50[cm/sec] in the observation scene. Ll and L2 in

Figure 5.26 (a) show the trajectories of the robots.

   Figure 5.27 (a) shows variations of network conditions when the packet size of the

vain broadcast messages is changed. The error of spatial identification in Figure 5.27

(b) denotes the ayerage distance between the reconstructed 3D position and the 3D view

lines detected by member-AVAs. The error of temporal identification in Figure 5.27 (c)

denotes the average distance betwe..en the 3P positions of the target, each of which are

reconstructed at t and t + 1 (i.e., P(t) and P(t + 1)). Since temporal identification was
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Figure 5.27: Performance evaluation ofthe virtual synchronization: (a)

 Delay of the message (solid line) and Rate of lost packet

 (dotted line), (b) Error in spatial object identification, (c)

 Error in temporal object identification. The horizontal

 axis indicates the total size of the vain broadcast messages

 per second.

established at

each temporal

   As we can
identification,

O.1[sec] intervals in this experiment, the robot moved for 5[cm] between

identification.

see, the virtual synchronization helps both spatial and temporal object

especially in the case of the bad network conditions.

5.5.3 Verifying Cooperative-tracking Protocols

Next, we experimented to verify the effectiveness of the cooperative-tracking protocols.

Our experimental results demonstrated fiexible and reliable multi-target tracking by co-

operation among AVAs.

   In order to verify the effectiveness of the task representation with the task-constraint

and object-importance, we made two experiments in the same environment. In each
experiment, we gave the following parameters as the task representation.

Experiment 1

    Task-constraint: Search-level was O.1. 'I]racking-level was O.9.

    Object-importance: Values for all objects is 1.0.
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l

Experiment 2

    Task-constraint: Search-level was e.3. Tracking-level was O.7.

     Object-importance: Values for objecti and object2 were 1,O and O.5, respectivelyi5 .

   In both experiments, the system tracked two people. Objecti first came into the

observation space from the location `X' (shown in Figure 5.26 (a)). Next, object2 came

into the observation space. ' Both objects, then, moved freely in the observation space.

   At first, we show the result of the first experiment.

   Figure 5.28 shows the partial image sequences observed by each AVA. The size of each

image is 32e × 240 [pixel]. The images on the same row.were taken by the same AVA.
Figure 5.28 shows images taken by AVA2, AVA4, AVAs, AVA7, AVAs, AVAg and AVAio

as examples. The images on the same column were taken at almost the same time. The

enclosed regions within the red and blue lines in the images indicate the detected regions

of objecti and object2, respectively.

   Figure 5.29 shows the role of each AVA and the formation of each agency. The image in

Figure 5.29 indicates the situation at the time when the observed image (in Figure 5.28)

on the same column was captured. A green circle indicates a freelancer-AVA. Circles

of other colors indicate member-AVAs. A square indicates a target object tracked by an

agency. The color of the object is the same with that of member-AVAs which was tracking

each target object. A line from the camera to the target object indicates correspondence

between the agency and the target object. `X' shown in Figure 5.29 indicates location X

in Figure 5.26 (a).

   In this experiment, the system worked as follows:

a: First of all, each AVA was searching for an object independently (Figure 5.29 (a)).

b: AVAs first detected objecti (Figure 5.28, 5-b), and then agencyi was formed (Figure

     5.29 (b)).

c: All the AVAs, except for AVAs, were tracking objecti as the member-AVAs of agencyi.

     AVAs was searching for'a new object as the freelancer-AVA (Figure 5.28, 5-c).

d: Next, AVAs detected a new object (Figure 5.28, 5-d). AVAs then regarded this object

    as the target (object2), and generated agency2 (Figure 5.29 (d)).

e: In this experiment, the object-importance of both objecti and object2 were equal to

    each other. As a result of the agency restructuring, therefore, the number of the

    member-AVAs in agency2 became equal to that in agencyi (Figure 5.29 (e)).

ft Since objecti came close to object2, no AVA could divide these objects by the back-

    ground subtraction (Figure 5.28, 2-f, 4-f, 5-f, 7-f, 8-f, 9-f). Then, the newest target

    infbrmation (i,e., the 3D position) of both agencyi and agency2 became identical,

 i5 In this experiment, the system gave 1.0 and O.5 as the object-importance to the object that was

detected first and second, respectively
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 Figure 5.28: Experiment 1: Partial image sequences observed by AVAs.

Av

AVA4

   (b) (c) (d) (e) (f) (g) (h) . (i)
                                          tlme
Figure 5.29: Experiment 1:

        mations.

Transitions of AVA roles and agency for-

l
t

1
1

1
1

1
1

1

!
'
i'
,
,
1



5.5 Experiments 175

[numberl

6(m)

AVA2 AVAIo@

  % eeAVA6
  Trajectory of Objecti

               i-         P" ･-"'
        - --l --        s AVAs
eegeEEag$

AVAg
i

j
e
i
i

AVA3
s
l

       l}-.'-' 'Y Trajectory of Object2

AVAI AVAs

" 't

Etw

AVA7

AVA4

(a) r]]arget motion trajectories recon-

structed by agencies

10

8

6

4

2

Oo s. Io ls 20 30 40 48-50 [se6cO
]

(b) The number of AVAs that work for each role

(`search' and `tracking of each object')

Freelanoers

MembersofAgencyi tmimtmt
MembersotAgency2 -.....--

tiv"',t .,,,rt'v'li-"'E':,,t""

       : :.l       e -:l       - --       . ---       e --t       - --t       - --l       - --       - ".t       : ::t       1.'ec".1'"11xgixl./s'r,II!c,l,/"r,/i'

       l 11t tl 1 :.ifseb12gLT'?,,etecl'objecte 11i ,//i '///111i9,,lsject'EXit

 i:ll ii `:: 't:.i

Member of

 Agency2

Member of

 Agencyl

AVA2 .
AVA4 etiisiiisiiii

AVAto.---..,

mJ--"-tl--e-tp--
:
!
i
:

- ll   :.
   :.
   :e
    :.

ee-ttell--le "t ts----tt-t}  :" ::  :- :-.:
  i -::"
  :=:       --

Freelancer

!l tS !I !1 1-I SI LI !l !1 !IY!lli 11e !1 !l tl"li LIY!e Li !1 !ny - . . -"-l t!l!1! - . . . ., '1"

AVAs -i.-it-#,,

-!
i
:

!

:

:

:

14 15

(c)

       16
Histories of AVAs'

  17

roles

18
[sec]

Figure 5.30: Experiment 1: Experimental results.

    and object identification between two agencies was successfu1. As a result, two agen-

    cies merged together by the agency unification, and became agencyi (Figure 5.29

    (f))'

g: After two objects were apart from each other, some AVAs could detected objecti and

    object2 severally (Figure 5.28, 2-g, 5-g, 7--g, 9-g). Then, the agency that tracked

                                                    infbrmation of object2    a newly detected object was generated. At this time, the

    obtained in the past was read. The newly generated agency compared its target
    information with the read object information (i.e., the past trajectory of object2)

    for temporal object identification. Since this object identification was successfu1,

    the newly detected object was regarded as object2 (Figure 5.29 (g)).

h: Objecti came to location X again (Figure 5.29 (h)), and would disappear.
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i: After agencyi dissolved, all the AVAs except for AVA4 was tracking object2 as the

    member-AVAs of agency2 (Figure 5.29 (i)).

   Figure 5.30 (a) shows the trajectories of the target objects, which ate reconstructed by

the agencies, In this figure, the reconstructed 3D positions are projected onto the floor.

When the agency spawning for object2 caused, tracking of object2 was started at location

P.

   Figure 5.30 (b) shows the histories of the number of (1) the freelancer-AVAs, (2)

the member-AVAs tracking objecti and (3) the member-AVAs tracking object2. The
horizontal and vertical axes indicate the time and the number of AVAs undertaking each

role, respectively. This graph shows the system states at 1[sec] intervals. Figure 5.30 (c)

shows the histories of the AVA's roles. The horizontal and vertical axes indicate the time

and the AVA's role. Burnps in Figure 5.30 (b) and (c) indicate the temporal states of

the system while each AVA was changing its role depending on the target motions. Erom

these results, we can see that the system as a whole worked to cope with the dynamic

situations in the scene by dynamically changing the role of each AVA.

   Note that each member-AVA did not always gaze at the target object of its agency as

we can see in Figure 5.28. That is, just after the AVA transferred to the new agency, it still

observes the target object of the former agency because it has not finished changing its

gazing direction towards the new target object. For example, AVA2 and AVA4 belonged

to agencyi at (h) in Figure 5.29. They had to, therefore, gaze at objecti. Both of them,

however, observed object2. This is because it was immediately after AVA2 and AVA4

transferred from agency2 to agencyi. Figure 5.31 shows images observed by AVA4 before

and after (h) in Figure 5.29. 4-H in Figure 5.31 is the same image with 4-h in Figure

5.28. When AVA4 captured 4-A, AVA4 was ordered to transfer to agencyi. We can see

that AVA4 was changing its gazing direction towards objectl.

   Next, we show the result of the second experiment. In this experiment, we verified

the efiicacy of the task representation.

   Figure 5.32 shows the partial image sequences observed by each AVA. The arrangement

of images is the same as that of the first experiment. Figure 5.28 shows images taken

by AVAi, AVA2 and AVAs as examples. Figure 5.33 shows the role of each AVA and the

   Figure 5.34 (a) shows the trajectories ofthe target objects, which are reconstructed by

the agencies. Figure 5.34 (b) shows the histories ofthe number of (1) the freelancer-AVAs,

(2) the member-AVAs tracking objecti and (3) the member-AVAs tracking object2. This

graph shows the system states at 1[sec] intervals. The system detected objecti and object2

at 7 seconds and 28 seconds, respectively. The system kept tracking both objects. Figure

5.34 (c) shows the histories of the AVA's roles. The horizontal and vertical axes indicate

the time and the AVA's role. Since two objects had the diffkerent object-importances, the

numbers of the member-AVAs in agencyi and agency2 were different from each other.

   As we can see, the dynamic interactions among AVAs and agencies enable the system

to persistently track multiple objects taking into account the given task.
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Figure 5.31: Experiment 1: AVA4 was changing its gazing direction to

detect the new target object (i.e., objecti enclosed with red

line). These images were taken at about O.1 [sec] intervals

on average.
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Figure 5.34: Experimental results 2: Experimental results,

5.6 ConcludingRemarks

This chapter proposed a real-time multi-target tracking by employing the concept of CDV.

  Our system has the fo11owing properties.

  e Multiple parallel processes dynamically interact with each other, which results in

    the system that works as a whole for cooperative tracking.

  e The system is classified into three layers to efliciently establish various types of

    object identification.

    Intra-AVA layer: Perception, action and communication modules work together
        as a single AVA by dynamically interacting with each other.
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Intra-agency layer: AVAs in the same agency exchange object information to

    track the target object.

Inter-agency layer: In order to adaptively restructure agencies taking into ac-

    count target motions, the agencies exchange the agency information with each

    other.

   e Employing the dynamic memory ,architecture realizes the dynamic interactions in

    each layer without synchronization. The system is endowed with a high reactiveness.

These properties allow the system to be adaptable to complicated dynamic situations in

the real world.

   Experimental results demonstrated the practical effectiveness of our system.

   While we proposed the three-layered interaction architecture for real-time cQoperative

tracking, we consider the three-Iayered architecture to be adaptable to other coopera-

tive systems with autonomous agents. Followings are justifications of each layer for its

existence.

Intra-AVA layer: To perfbrm versatile and complex behaviors, an intelligent autonomous

    agent should consist of several functional modules required for the task

Intra-agency layer: Agents, all of which aim at the same purpose, should form an
    agency to cooperatively work together. The agency should be personified as a deld-

    egate of a corporate group in order to work without contradictions between agents.

Inter-agency layer: For agencies to cooperatively work by negotiations, they should

    interact with each other.



Chapter 6

Incremental Observable-area
Modeling for Cooperative Th?acking

6.1 Sharing Information for Cooperative TMracking

Fbr multi-agent systems, the knowledge of partners' abilities is required to realize coop-

erative action among the agents whatever task is defined. In particular, for cooperative

object tracking, every agent should know the area in the scene that is observable by each

agent. Each agent should then decide its target object and gazing direction taking into

account the adaptive role assignment among all the agents.

   In this chapter, in order to augment our cooperative tracking system with multiple

AVAs, we put our focus upon the sharing knowledge ofall the AVAs' abilities (i.e., observ-

able area in the scene) for the eMcient cooperative object tracking and scene observation.

Our system incrementally acquires the observable-area infbrmation of each AVA, and en-

ables the AVAs to dynamically and appropriately change their roles by taking into account

all the AVAs' observable areas.

6.1.1 Adaptive Role Assignment

In our cooperative tracking system, all member-AVAs can keep tracking a focused tar-

get object without being disturbed by obstacles or other moving objects through the

compulsory gaze navigation by the agency (i.e., the agency maintenance protocol in the

intra-agency layer). They continue to obey the gaze navigation even ifthey cannot observe

the target object due to obstacles. The AVA that cannot observe the target object, how-

ever, should change its role for increasing the eficiency of the total system. Fbr example,

the fo11owing functions can be considered for such an AVA (Figure 6.1):

1. AVAi predicts the position where the target object will appear within its observable

  area, then changes its gazing direction to ambush the target object (Figure 6.1, 1.).

2. AVAi gazes the area where none of other AVAs observes to find another object

  (Figure 6.1, 2.).

181
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   3. If AVAi can observe the target object of another agency, it joins this agency (Figure

     6.1, 3.).

   Our system realizes the dynamic role assignment by the fo11owing cooperative tracking

protocols:

   e Agency maintenance: When a member-AVA loses track of the target object, the

     agency navigates the gaze of the member-AVA towards the target object. Never-

     theless, if the member-AVA has not detected the target object for a long time, the

     agency releases it. In this case, the AVA is assigned to search for a new object.

   e Agency restructuring: The agencies exchange their member-AVAs to cope with the

     target motions.

To implement these protocols, the target information of each AVA is employed.

                   /
Shared information 1 (Target information): (1) The target object ofeach AVA. (2)

     3D position of each target object.

In our system, this information is dynamically exchanged between agencies. The target

information, however, is not enough to effectively realize the above functions 1, 2 and

3 because the system does not take into account the visible/invisible information of the

target object in the scene.

   The above problem is caused by lack of the information about the 3D geometric
configurations of the scene. That is, the system cannot know whether the target object

is interfered by obstacles or object detection fails due to processing errors, when the

target object is not detected in the observed image. rlb solve this problem we expand our

cooperative tracking system to identify each AVA's visible/invisible area in the scene and

employs this information for the adaptive role assignment. In the proposed system, the

system gathers the visible/invisible area information of all AVAs during tracking. This

information is shared by AVAs and agencies.

Shared information 2 (Observable-area infbrmation): The information about the

    observable area of each AVA.
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By referring the observable--area infbrmation, (1) an agency can dynamically assign the

appropriate role to each member-AVA and (2) a freelancer-AVA can search its observable

area for an object. These properties allow the system to realize the functions 1, 2 and 3

mentioned above for increasing the eMciency of the total system.

   In the proposed system, the above shared information 1 and 2 is taken into account

simultaneously. Hence, the system cooperatively tracks multiple objects with referring

the geometric configurations between each target object and the environment of the ob-

servation scene.

   In what fo11ows, we first describe (1) how to acquire the visible/invisible information of

each AVA and (2) how to manage the acquired information in Section 6.2. We then present

communication protocols for cooperative tracking with the observable-area information in

Section 6.3. Finally, experimental results demonstrate the effectiveness ofthe cooperation

among the AVAs with the help of the proposed observable-area infbrmation in Section

6.4.

6.2 Observable-area Model

6.2.1 Observable-area Model for Adaptive Role Assignment

In the proposed system, an agency refers both the visible/invisible area information and

the trajectory of the target object in order to examine whether or not each AVA can

observe the target object. Based on the result of this examination, each AVA is assigned

to appropriate role.
   Tb realize eMcient cooperative tracking by the total system, an appropriate role of each

AVA should be determined by considering the visible/invisible information of all the AVAs

comprehensively. The system, therefore, manage the visible/invisible area infermation of

all the AVAs collectively as a scene model. We call this scene model an Observable-area

Model.

6.2.2 Data Structure ofthe Observable-area Model

We adopt the octree representation[AV89] for the data structure of the observable-area

model (Figure 6.2).

Octree representation: An octree is a tree data structure. Starting with an upright

     cubical region of space, the octree space is recursively decomposed into eight cubes

     called octants if the label in each octant should be different. The information of

     each 3D area (e.g., visible/invisible information) is shown by the label in the each

     octant.

   We have the following advantages in employing the octree representation as a visi-

ble/invisible area model:
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Figure 6.2: Data structure of the observable-area model.

e The octree representation allows us to reduce the amount of data, since the visi-

  ble/invisible area usually masses in the scene: while a large octant is generated for

  widely spread visible/invisible area, many small octants are generated if the space

  are tangled with visible and invisible areas.

e Easiness of resizing cubes in the octree allows us to localize the resolution of the

  observable-area model. That is, we can adjust the resolution depending on the

  distance from the camera, the edge of each obstacle, and so on.

   Figure 6.2 illustrates an example of the observable-area model. Depending on the

geometric configuration between the camera and obstacles, visible and invisible areas of

the camera are determined. In Figure 6.2 (a), white and gray regions indicate the visible

and invisible areas of the camera, respectively. In Figure 6.2 (b), each octant in the

visible/invisible area is shown. It is confirmed that each cube is divided into octants. Let

a cubical region corresponding to the entire scene be a square 1 on a side. The number

in each octant denote the reciprocal of its side's length.
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   In the proposed model, the above observable-area information is generated for each

camera, and all the information is managed as the observable-are model in the scene: Each

cube in the octree model includes visible/invisible information fbr each camera. This is

a difference between the proposed model and common scene models that directly include

the information of a scene.
   In each cube in the octree model, the fo11owing three kinds of the visible/invisible

labels are attached to each AVA:

UNDEFINE The system has not identified whether or not the AVA can observe the

    area.

VISIBLE The AVA can observe the area.

INVISIBLE The AVA cannot observe the area.

The visible/invisible labels in octants of each cube are examined when the system deter-

mines whether or not each cube is decomposed into octants.

6.2.3 Generating Visible/Invisible lnformation

In the cooperative tracking system proposed in the last chapter, object identification and

3D position reconstruction are realized by incorporating 3D view lines detected by each

AVA. In the system with the observable-area model, however, the agency computes the

intersection of the visual cones, each of which is determined by the projection center of a

camera and the detected region in the observed image. If the intersection exists among

the visual cones, all the detected regions corresponding to the visual cones are considered

as the same object. Moreover, the 3D position of the object can be obtained, since the

computed intersection corresponds to the volume of the object. We call this volume

reconstruction method a Vblume intersection Method.
   Since the volume intersection method needs the visual cones observed by AVAs, each

AVA haye to inform its agency manager of the observed visual cones. Each AVA sends an

agency the detected object region in the observed image instead of the information about

IR,e,.isg,a,tc.os,e2,t,he,¥l,%eJ,vs,s･.g],z,ass,nf,y.,ca.".ss:,ilg2`.e,g,h.e.;Lg,aa,ii2n,s,s,fr,o,Iv,shs.theg,ea¥e9

   In object identification and 3D reconstruction with the volume intersection method, if

the image observed by AVA. is actually used for the volume reconstruction, the system

can then identify the area where the detected object exists to be visible from AVA..

Otherwise, the area is identified to be invisible from AVA.. In an example illustrated in

Figure 6.3, while the volume of the object is reconstructed from the detected results of

AVAi, AVA2 and AVA3, AVA4 does not detect the same object in its observed image. In

this case, the reconstructed object region is considered to be visible from AVAi, AVA2

and AVA3･

  i The externa! camera parameters are included in a message from an AVA to an agency (see Table

5.1).
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 Figure 6.3: Vblume and position reconstruction of the object and gen-

          erating the visible/invisible area information by the volume

          intersection method.
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   The agency can incrementally generate the visible/invisible information while the ob-

ject is being tracked by member-AVAs. The proposed system, therefore, changes its
behavior during tracking as fo11ows:

   1. The system first keeps tracking target objects without any information about the

     scene.

                             '
   2. During tracking, the system updates the observable-area model.

  3. By employing the acquired obseivable-area model, the system assigns an appropriate

     role to each AVA.

With this scheme, the system can increase its tracking efiiciency as the observable-area

model progresses.

6･2.4 UpdatingObservable-areaModelbasedonVisible/Invisible
        Information

After new visible/invisible information is obtained as mentioned in Section 6.2.3, all the

visible/invisible labels in the new infbrmation are respectively compared with those in

the observable-area model to update the observable-area model. If the label in the new
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Figure 6.4: Visible area propagation (Left: Volume is reconstructed,

         Right: Vblume is not reconstructed).

information is diffkDrent from that in the cube whose position corresponds to the new

information in the observable-area model, this cube is decomposed into octants. This

decomposition is executed as long as the fo11owing two conditions are both satisfied.

  1. The label in the new infbrmation is diffk2rent from that in the observable-area model.

2. The fo11owing inequality is true:

                           distance CONST.
                          focaltength< 2depth '

  where distance is the length from the camera to the area, focallength is the focal

  length of the camera and depth is the depth of the octree. CONST. denotes a
  constant that determines the minimum size of the cube in the octree.

Since the resolution of the reconstructed volume depends on focatlength and distance,

the number of decomposition is defined by the above inequality.

   After the decomposition, each cube is given the visible/invisible label. If all the labels

of the octants are the same, these octants are unified to decrease the amount of the cubes.

   Furthermore, the visible information is propagated to facilitate generating the observable-

area model, Two cases exist for the propagation of the visible area (Figure 6.4).

Case A (Figure 6.4, left): The volume of the object has been reconstructed, In this

    case, each cube in the observable-area model, which corresponds to the area where

    the reconstructed volume exists, is identified to be visible. We can then identify the

    area between the object and the camera to be also visible from this camera if it can

    observe the object. The cubes between the object and the camera are, therefore,

    updated as the visible area.
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Case B (Figure 6.4, right): The volume of the object has not been reconstructed. In

this case, the whole area included in the visual cone is updated as the temporary

visible area except the area that has been already identified to be visible or invisible.

Due to this function, there is a possibility of falsely attaching the temporary visible

label to the area that is not yet estimated but actually invisible. To correct the

observable-area model by the subsequent observation, the temporary visible label is

updated when the area is identified as visible or invisible.

/    In the above case B, wrong VISIBLE labels might be possibly attached to the areas

that are (1) invisible from the camera and (2) beyond the object position. This results

in regarding the invisible area as the visible area by mistake. rl]b correct this misun-

derstanding by the subsequent observations, the system has to rewrite the label in the

observable-area model. We give INVISIBLE higher priority than VISIBLE when the
observable-area model is updated. Therefore, if the labels in the observable-area model

and the newest visible/invisible information are VISIBLE and INVISIBLE, respectively,

VISIBLE in the observable-area model is updated in INVISIBLE.

   Updating VISIBLE in INVISIBLE is required when the system corrects the visi-
ble/invisible information obtained by the volume intersection method, too. In an example

illustrated in Figure 6.5 (a), AVAi cannot observe object2 because of being disturbed by

the obstacle. However, the system considers the volume area of object2 to be visible

from AVAi by mistake, since (1) the visual cone of AVAi includes the volume area of

object2 and (2) the volume area of object2 is reconstructed by intersecting the visual

cones of AVA2 and AVA3. This misunderstanding is corrected by the subsequent obser-

vation illustrated in Figure 6.5 (b). When objecti moves away, AVAi cannot detect any

object in the observed image. The system then considers the volume area of object2 to

be INVISIBLE from AVAi and update the observable-area model based on the newest
visible/invisible information. Thus, updating the visible/invisible label allows the system

to compensate for limitations of obtaining visible/invisible information with the volume

intersection method.

11
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   Based on the
priority is applied

above discussion, to the three kinds of labels, the fbllowing order of

in case of substituting the label for the cube.

INVISIBLE > VISIBLE > UNDEFINE

For example, VISIBLE and UNDEFINE labels are not recorded in the cube that has
been identified as INVISIBLE. In the proposed model, the observable-area model starts

from a single cube whose label is UNDEFINE, and the system divides it into octants and

attaches visible/invisible Iabels in accordance with this priority.

6.2.5 Managing the Observable-area Model

The observable-area model should be referred by each agency to assign appropriate roles

to member-AVAs. Since the observable-area model is made from the visible/invisible

information generated by the agency, the agency manager can obtain the model by itself.

Accordingly, the agency manager can refer the model immediately without increasing the

network load.
   However, the fbllowing problems result in difficulty in severally managing the observable-

area model obtained by each agency:

   e Since the agency manager is dynamically generated and eliminated, it cannot con-

     tinue to manage the observable-area model. When the agency disappear, it should

     entrust the observable-area model obtained by itself to other agencies.

   e To determine a role of each AVA by considering the visible/invisible information of

     all AVAs, all agencies haye to exchange the observable-area models of their member-

Thus, these problems cause repeated network congestion. In the proposed system, there-

fore, the agency delegates the fo11owing tasks to a model-management module, Observable-

area Model Manager.

   e Keeping and updating the observable-area model.

   e Planning the appropriate roles of AVAs by referring the observable-area model.

   The system has a single observable-area model manager, and the manager receives all

the information from every agency at each frame to have the observable-area model as

illustrated in Figure 6.6.
   By leaving the management ofthe observable-area model in the charge ofthe observable-

area model manager,

   e increasing a network-load can be avoided, and

   e each agency can reactively cope with object motions for tracking because it is re-

     leased from managing the observable-area model.

The performance of the system is, therefore, improved.
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Figure 6.6: Managing the observable-area model.

6.3 Cooperative Tracking with the Observable-area
      Model

This section addresses communication protocols for (1) updating the observable-area

model and (2) the role assignment to each AVA. Figure 6.7 illustrates the information

exchange between the agency manager and the observable-area model manager.

6.3.1 InformationflowfromtheAVA/AgencytotheObservable-
       area Model Manager

At each frame, the agency manager transmits the foIlowing three messages to the observable-

area model manager:

  e CURRENT ROLE : For the observable-area model manager to plan the appropri-
    ate role for each AVA, the information about the current role of each AVA is required.

    The agency manager, therefore, reports its member-AVAs to the observable-area

    model manager.

  e OBJECT POSITION : The transmitted 3D position of the object allows the
    observable-area model manager to keep the object's motion trajectory.

  e VISIBLE/INVISIBLE MAP : The transmitted visible/invisible information for

    each AVA allows the observable-area model manager to update the observable-area

    model.
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 message flow.

between an agency manager and the
model manager. Each arrow indicates a

   Similarly, the freelancer-AVA sends the observable-area model manager the CUR-

RENT ROLE message, which informs that this AVA is working as the freelancer-AVA.

   Note that, in our cooperative tracking system, both the agency and the freelancer-AVA

broadcast messages including the CURRENT ROLE and OBJECT POSITION informa-
tion as mentioned in Section 5.3.5. The observable-area model manager can obtain these

information by receiving the broadcasted messages. All of the above three messages can

be transmitted to the observable-area model by sending the VISIBLE/INVISIBLE MAP

message in surplus.

6.3.2 Information fiow from the Observable-area Model Man-
       ager to the AVA/Agency

The observable-area model manager decides the role assignment to each AVA every after

updating of the observable-area model based on the information sent from the agency and

the freelancer-AVA. If the observable-area model manager finds a new appropriate role

assignment, the fo11owing message is transmitted to the agency manager or the freelancer-

AVA:

   e ASSIGNMENT : (1) The ID ofthe AVA that is assigned a new role2 and (2) the

    details of the new role, are included in the message. Some actual examples of the

    new roles are shown in Figure 6.1).

 2 This information is required only if the ASSIGNMENT message is sent to the agency manager.
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:

If the agency receives the ASSIGNMENT message and approve the effectiveness of the

role assignment, the agency assigns the new role to the AVA. Since only the agency is

allowed to order its member-AVAs, the system can avoid sending the different roles to a

member-AVA simultaneously.

   If the freelancer-AVA receives the ASSIGNMENT message, on the other hand, it

judges the effectiveness of the role assignment by itself and decides whether or not it

starts the assigned role.

   Note that the observable-area model manager never order but propose a new role.

Following are the reasons:

   e Since each AVA and agency are' an autonomous agent and group, respectively, they

     should determine their behaviors by themselves.

   e While each AVA and agency determine their roles depending on the information

    managed by themselves, the observable-area model manager receives the required

    information from them through the network and assign a new role with referring

    the received information. This results in difficulty in reactive planning by the

    observable-area model manager.

6.4 Experiments

We experimented to verify the effectiveness of the proposed observable-area model for

cooperative tracking. Our experimental results demonstrated the improvement in coop-

eration of AVAs while tracking.

   We conducted our experiments in the environment shown in Figure 6.8. System or-

ganization is the same with that of the cooperative tracking system shown in chapter 5

except the number of AVAs; here we employed four AVAs.
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   In this environment, object 1 came into the observation space, and stayed for a while

at the location X after moving along the trajectory. Note that AVA3 could not observe

object 1 when it was at the location X. Next, object 2 moved along the trajectory and

stopped at the location Y. After that, object 1 started moving again.

   The fo11owing three tracking systems were employed for comparative study:

System 1: Tlracking system without cooperative action, namely each AVA track a target

     object independently without forming an agency.

System 2: Cooperative tracking system without the observable-area model.

System 3: Cooperative tracking system with the observable-area model.

Both objects moved along the almost same trajectories severally when each system worked.

For cooperative tracking systems 2 and 3, we gave the fbllowing parameters to the systems

as the task specification:

Task specification:

    Task-constraint: The tracking-level and search-level were 1.0 and O.O, respectively. ･

     Object-importance: Values for object 1 and object 2 were 1.0 and O,1, respec-

         tively.

Irrterval for releasing a member-AVA: Ifa member-AVA cannot detect its target ob-

    ject for 10[sec], the agency releases it based on the agency maintenance protocol.

6.4.1 ThrackingResults

Figure 6.9, 6.10 and 6.11 show examples of image sequences observed by AVA2 and AVA3.

Figure 6.9, 6.10 and 6.11 are captured by systems 1, 2 and 3, respectively. The size of

each image is 320 × 240 [pixel]. The enclosed regions with the white and black lines in
the images indicate the detected regions of object 1 and object 2, respectively.

   Without cooperative actions (system 1), each AVA first searched for an object inde-

pendently (al, a2 and bl, b2). When the AVAs found object 1, they regarded it as the

target object and started tracking it independently (a3, a4 and b3, b4). When object 1

was obscured by the obstacle (b5, b6), AVA3 started searching for an object immediately

(b7, b8). Then, AVA3 detected object 2 and kept tracking it (b9 tv b14). Since AVA3

could not notice that object 1 came into the observable are of AVA3 again, it continued to

gaze at object 2. Moreover, AVA2 also changed its target object to object 2 when object

1 and object 2 became close (all, a12), because their projected regions in the observed

image overlapped each other and then AVA2 considered object 2 to be its target object.

   Without the observable-area model (system 2), after searching (cl, c2 and dl, d2),

all the AVAs detected object 1 and regarded it as the target object, and then began

to cooperatively track object 1 (c3, c4 and d3, d4). However, AVA3 kept gazing at the

direction of the 3D position of object 1 transmitted from the agency manager, though

AVA3 could not observe it due to the obstacle (d5 "v d13). This is because the agency did
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Figure 6.9: Partial images observed by system 1.
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not release AVA3 for 10[sec] (i.e., the interval for releasing a member-AVA based on the

agency maintenance protocol). Therefore, AVA3 could not obtain the eficient information

about the target objects from the observed images, The other AVAs, on the other hand,

kept tracking object 1 (c5 Av c14). Note that AVA2 kept gazing at object 1 that was

regarded as the target object even if object 2 was also detected in the observed image

(ell, e12). This is because

   e temporal object identification established by the agency assists each member-AVA

     to identify the target object, and

   e since the object-importance of object 1 is much larger than that of object 2, the

     agency tracking object 1 did not release its member-AVAs, and the new agency was

     not generated.

   With the observablearea model (system 3), each AVA first searched for an object

independently (el, e2 and fi, M) and then cooperatively tracked object 1 while belonging

the agencyi          (e3, e4 and B, fa) (similar to the cooperative tracking without the observable-

area model). AVA3 started, however, searching for another object (f7, rs) immediately

after AVA3 could not detect object 1 (fo, fo). This reactive role assignment could be

realized by the assistance of the observable-area model manager. AVA3 then detected

object 2 at the location Z and generated agency2 for tracking object 2. AVA3 then started

tracking object 2 independently (ro tv fi2). After that, when object 1 started walking and

became close to the area where AVA3 could observe, the observable-area model manager

/
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Figure 6.13: Histories of the evaluation functions.

instructed 2rvA3 that it could observe object 1. Since the object-importance of object l is

much larger than that of object 2, AVA3 transferred from agency2 to agencyi and started

again tracking object 1 (f14, f14). Then, agency2 disappeared. The visible/invisible area

information fbr AVA3 is shown in Figure 6.12 where the two different views are illustrated.

P and Q respectively indicate the visible and invisible area. Note that we see the obstacle

area at R3.

6.4.2 PerformanceEvaluation

We quantitatively evaluated how effectively the system accomplishes the given task.

following criterion eval(f) is employed for the evaluation:

                               lh
                      eval(f) = Z obj'(n) × aTea(n, f),

                               n==1

where

The

(6.1)

   e .Nin denotes the number of the member-AVAs,

   e ob7'(n) denotes the object-importance of AVA.'s target object, and

 3 We can also estimate the 3D geometric information of the scene by integrating the observable-area

information of each AVA.
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   e area(n,f) denotes the area size (the number of detected pixels) of AVA.'s target

     object at f-th frame.

   Figure 6.13 illustrates the histories of eval(f) while systeml, 2 and 3 were working.

We can see that the evaluated result of system 3 surpasses those of the other systems at

almost all frames. The average values of eval(f) fbr system 1, 2 and 3 were 3026, 3143

and 3403 respectively.

   We can see the fo11owing observations from Figure 6.13 (the histories of eval(f) ob-

tained by system 1, 2 and 3 are called graph 1, 2 and 3, respectively):

   e Comparing graph 1, graph 2 and 3 rapidly rises after each system first detected

    object 1. This is because the gaze navigation by the agency is executed in systems

    2 and 3.

e Between frames 90 and 125, graph 1 and graph 3 are larger than graph 2. This

  is because AVA3 gazed at the obstacle and could not detect any target object in

  system 2.

e Between frames 125 and 140, graph 2 and graph 3 are Iarger than graph 1. This is

  because AVA2 kept tracking object 2 whose object-importance was IQwer than that

  of object 1.

   Ilrrom the comparative experimental results shown

we may conclude that the proposed model improves
tracking.

in Section 6.4.1 and Section 6.4.2,

the effectiveness of cooperation in

6.5 ConcludingRemarks
We proposed the incremental observable-area model for cooperative tracking. This model

allows a tracking system to dynamically assign the appropriate role to each AVA.

   In the proposed system, the visible/invisible area information of each AVA is acquired

based on the reconstructed 3D information of the target object. The information, there-

fore, incrementally increases while the system keep tracking the target object and the

accuracy of the observable-area model is augmented. As the information is accumulated,

the system can utilize the required information for adaptive role assignment. As a result,

the system as a whole can cooperatively work.

   We should note that the proposed model is evaluated by multi-agent systems for real-

time object tracking, however, the basic idea (i.e., the knowledge of partners' abilities is

necessary for cooperation) is applicable to various types of multi-agent systems.



Chapter 7

Concluding Remarks

7.1 ThesisSummary
In this thesis, we haye presented real-time cooperative multi-target tracking by communi-

cating active vision agents. 'Ib realize real-time flexible tracking in a wide-spread area, we

employ the idea of CDV. Based on the CDV system, our system consists of communicat--

ing AVAs. Multiple autonomous AVAs communicate with each other and cooperatively
behave. ]inrthermore, the states and their transitions of the system increase enormously

by combining with each other. This property allows the system to cope with various and

complicated situations in the real world. This is a great advantage of the distributed

processing system in contrast to the centralized processing system. We believe that this

property is indispensable to realize the real-world system.

   For real-time flexible object tracking by multiple AVAs, we have solved the fo11owing

problems:

  1. How to design an active camera for dynamic object detection and tracking.

    ]Fbr wide-area active imaging, we developed an FV-PTZ camera, This camera is

    designed so that the projection center is always placed at the rotational center
    irrespectively of pan, tilt and zoom controls. This property allows the system (1)

    to synthesize a wide panoramic image by mosaicing multiple images observed by

    changing pan-tilt-zoom parameters and (2) to generate an image taken with any pan-

    tilt-zoom parameters from the wide panoramic image. With the FV-PTZ camera, we

    can realize an active camera system that detects anomalous regions in the observed

    image by the background subtraction method.

  2. How to realize real-time object tracking with an active camera.

    Fbr real--time object detection and tracking, we designed an active background sub-

    traction method with the FV-PTZ camera. Tb successfully gaze at the target dur-

    ing tracking, the system incorporates a flexible control system named the dynamic

    memory architecture to dynamically control visual perception and camera action

    modules. The dynamic memory enables parallel modules to asynchronously obtain

    the information of another process without disturbing their own intrinsic dynamics.

201
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3. How to realize cooperation among AVAs for real-time multi-target object tracking.

  To implement a real-time cooperation among AVAs, we designed a three-layered

  interaction architecture:

e lst layer (Intra--AVA layer): Visual perception, action and communication mod-

  ules work together as a single AVA by dynamically interacting with each other.

  Each module exchange its information through the dynamic memory.

e 2nd layer (Intra-Agency layer): AVAs that track the same target form an

  agency. AVAs in the same agency exchange object information to coopera-

  tively track the target. Each agency has its own dynamic memory, and all the

  AVAs exchange their information of the detected objects through the dynamic

  memory. The dynamic memory allows the agency to obtain the reliable result

  of object identification from asynchronous object information observed by the

  AVAs.

e 3rd layer (Inter--Agency layer): In order to adaptively restructure agencies

  taking into account targets' motions, agencies exchange the target and agency

  information with each other,

The dynamic interaction in each layer allows the whole system to track multiple

moving objects under complicated dynamic situations in the real world,

In addition, we devised a scene model fbr eficient cooperation among AVAs. The

visible/invisible area information is included in the scene model that is called an

observable-area model. The model is incrementally updated while the system works.

With the help of the observable-area infbrmation in the model, all the AVAs can

cooperatively and adaptively assign their works to each other.

7.2 Future Works

As mentioned above, our real-time tracking system can work under complicated dynamic

situations in the real world. We believe that this system can be a basic technology to

realize various real-world vision systems. rlb practically apply our system to real-world

vision systems, other issues in Computer Vision should be discussed. In what fo11ows, we

briefly summarize several aspects untaken in the thesis and directions of future works.

1. More robust object detection

e Robust background subtraction: 'Ib detect object regions in the observed im-

  age taken with arbitrary combinations of pan-tilt-zoom parameters, we employ the

  background subtraction method with the fo11owing properties:

    - Wide panoramic background image (generating a background image taken with

      arbitrary combinations of pan-tilt-zoom parameters).

    - Variable threshold (coping with camera calibration errors).
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    - Subtracting the background image from several shifted versions of the observed

      image (measures to stably detect object regions in the observed image taken

      with smooth camera motion).

  These properties allows the system to acquire reliable detection results in a sta-

  tionary scene. The effectiveness of the proposed background subtraction method,

  however, is limited because the stationary background scene assumption does not

  always hold in the real world, especially in the outdoor scene. rlb cope with the

  fo11owing types of variations in scenes, many works have been reported:

  Continuous small variations in objects: In [SG99j and [HHDOOb], probability

      distributions are employed to model the intensity variations at each pixel.

  Intermittent large variations in objects: In [SMKUOO], the background scene

      image is adaptively renewed by employing M-Estimation.

  Variations in the illumination: In [MOHOO], variations in the scene are modeled

      by (1) variations in the overall lighting conditions, and (2) local image pattern

      fluctuations, and so on.

  By applying these methods to our tracking system, the system can work under
  dynamic variations in the real world.

e Detection using knowledge about the target object: Although the back-
  ground subtraction method is effective, it is diMcult to detect an object in all sit-

  uations and environments. rlb solve this problem, the knowledge about the target

  object should be utilized:

    - In [TMOO], the object region in the observed image is roughly estimated based

      on the past object trajectory. Then, the threshold fbr subtraction is dynam-

      ically determined depending on the gray level distribution in the estimated

      reglon.

    - In [KMSOO], the system detects a human face using the given knowledge: eigen

      images[MN95] [AIS95] of the human face are generated in advance and used

      for face detection.

e How to look problem: In the proposed system, each camera captures an image
  while varying the view direction. In general, such image capturing incurs motion

  blurs and results in diMculty in object detection. We restricted the upper speed of

  the camera to suppress motion blurs. r]b solve this problem radically, we have to

  consider `how to look problem'. That is, the observation method should be changed

  depending on the states of the system and camera. For example:

    - If object motion is slow enough to track it by a slow camera action, the active

      background subtraction method is effective.

    - In [MWM98b], object regions are detected while a camera is rotated at high

      speed based on the optical flow analysis. The optical flow, however, cannot

      detect stationary objects.
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    Since these two methods compensate the disadvantage of the other, the system can

    continue to detect objects by selecting the method according to camera motion.

2. More reliable object identification

e Error detection and correction for object identification: In the proposed
  system, an error in object identification is corrected in the higher layer and the

  subsequent observation:

    - If a member-AVA makes unsuccessful object identification, the agency detected

      it, and the corrected object information is sent from the agency to the member-

      AVA (i.e., the agency maintenance).

   - If an agency makes unsuccessful object identification, it is detected and cor-

      rected by the inter-agency interaction in the subsequent observation (e.g., the

      agency unification).

 While these methods work well, each AVA and agency need the interval to adapt

 themselves to actual situations.

 Such identification error detection and correction methods are indispensable for

 multi-target tracking, and many works have been reported (see [BS78] [Rei79], for

 example). These methods can be utilized to improve (1) the reliability of object

 identification established by each AVA and agency and (2) the reactiveness of the

 error correction.

e Object identification based on multimodal information: In the thesis, we
  established object identification among multiple AVAs by integrating the detected

  results of AVAs. To implement the integration, we put our fbcus upon a real-time

  cooperation among AVAs.

  On the other hand, some researchers addressed this problem by developing high-

 performance image recognition methods (see [IB98] and [HHDOOa], for example).

 In these methods, the appearance information is employed for object identification.

 These methods can be applied to our system. In particular, the appearance infbr-

 mation is usefuI when it is hard to identify the target object by employing only the

 3D trajectory data. Followings are actual examples:

   - When the object is observed again after it has got out of the scene.

   - When multiple objects become close together.

 To employ the appearance infbrmation for the proposed system, we have to note

 that it should be represented as fo11ows:

   - For each AVA and agency to effectively manage the appearance information in

     the dynamic memory, it should be represented as time-series data.

   - For object identification among multiple cameras, the omnidirectional appear-

     ance information is required.
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Besides the visual information, employing multimodal information is effective not

only for object identification but also for object detection. While only the visual

information is employed for object detection and tracking in the proposed system,

the auditory and visual information is observed and analyzed for real-time multi-

object tracking in [NHM+Ol]. In this system,

- auditory streams with sound source direction are extracted, and

- visual streams with face ID and 3D-position are extracted by combining skin-

  color extraction, correlation-based matching, and multiple-scale image genera-

  tion from a single camera.

These auditory and visual streams, each of which is obtained asynchronously on dif

ferent PCs connected via network, are associated by comparing the spatial location.

3. The number of the trackable target objects:

   The completeness for persistent tracking in our system (i.e., the relations between the

numbers of cameras and target objects) is mentioned in Section 5.4.1. Here, we discuss

how to increase the number of the trackable objects.

   'ib increase the number of the trackable objects, we can modify the system as fo11ows:

e Vacuous agency without member-AVAs: In general, since an agency manager
  is a software agent, the number of agencies can increase regardless of the number

  of AVAs. In the proposed system, however, the number of agencies cannot increase

  more than the number of AVAs. This is because an agency has to be attended by

  at least one member-AVA. Although this restriction assists each agency in tracking

  its target object persistently, the flexibility of the system declines.

 'Ib solve this problem, we can modify the system so that an agency without any

 member-AVAs can be generated. This definition allows the system to track target

 objects more than the number of AVAs (i.e., cameras). Instead of this advantage,

 we have to consider the fo11owing problems:

When is an agency generated by whom? As well as the proposed system, an
    agency should be generated by an AVA that detects a target object when it

    is confirmed that no agency tracks the newly detected object. The difference

    from the proposed system is that the AVA necessarily belongs to the newly

    generated agency as a member-AVA.

How does a vacuous agency obtain the information of the target object?
    A vacuous agency has to receive the object information detected by non-

    member-AVAs (i.e., freelancer-AVAs and member-AVAs of other agencies).

    While a freelancer-AVA broadcasts the information of the detected object, a

    member-AVA sends it only to its agency manager. The fo11owing two methods

    can be employed fbr the member-AVA to report the detected information to

    vacuous agencles:
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      Broadcast: By broadcasting the message, each member-AVA can easily re-

         port the information of its detected objects to all agencies. This method,

         however, increases a network-load enormously.

      Multicast: To suppress a network-load, each member-AVA should send the ,
         information only to agencies. For this message transmission, each member-

         AVA has to grasp the existence of all the agencies in the system. An agency

         should distinguish its member-AVAs from member-AVAs in other agencies,

         which send the information of their detected objects to the agency. This

         is because the agency cannot control their cameras to keep tracking the

         target object, We call such an AVA a Supporter-AV4 (mentioned later).

      This information transmission to multiple agencies allows not only vacuous

      agencies but also common agencies with their member-AVAs to obtain more
      information of their target objects.

e Supporter-AVA: While a supporter-AVA works as a member-AVA in an agency,

  it sends the information of the detected objects to other agencies. A member-AVA

  can be supporter-AVAs of multiple other agencies simultaneously. Note that each

  member-AVA is controlled only by the agency that it belongs to, and the agency

  cannot interfere in the behaviors of its supporter-AVAs.

4. Camera configuration planning:

   While we do not consider how to arrange the cameras to effectively gaze at the target

objects, there are many researches about the effective camera configuration for realizing

the given task.

   In [CK88], an automatic camera placement method for object feature detection is

proposed. In this method, each camera is placed so that all surface points be in focus,

all surfaces lie within the visual field of the camera, and no surface points be occluded.

In [TTA95], the MVP sensor planning system is proposed. This system determines the

optimal settings of the camera and illumination by virtually synthesizing desirable camera

views based on geometric models of the environment, optical models of the cameras, and

models of the task.

   Similarly, the efflective camera configuration for object tracking should be planned

depending on the given task. IFbr example:

   e The wider the observation scene becomes, the larger the number of cameras be-

    comes. Then, a network-load increases. To avoid this problem, an efficient camera

    configuration is required.

   e For the system to keep tracking a target object in a wide area, all areas have to be

    observable from a camera. In addition, to reconstruct 3D information of an object,

    visual fields of cameras have to be overlapped and all areas have to be observable

    from multiple cameras.

  e Ifsearch is important, cameras should be embedded in the scene so that each camera

    is suitable for observing a wide area.
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e If there exists a place that should be monitored selectively, many cameras should

  be embedded around there.

5. [I]racking with isolated camera configuration:

   In all the experiments conducted in this thesis, visual fields of all AVAs are overlapping

with each other. This situation does not alwacys hold depending on the task. To keep

tracking the target object even if cameras are embedded sparsely in the scene, the system

has to employ not only the 3D trajectory of the target object but also other information

for object identification:

   e The above appearance-based object identification is usefu1.

   e In general, for object identification among widely distributed cameras, the system ,

     searches enormous candidates for an optimal solution. Since such a method makes

     real-time processing dificult, we should reduce the candidates by applying some

     constraints. In [KZ99] [WTM96], several constraints on the route and lapse assist

     object identification in addition to the appearance information.

6. Capturing selective object image depending on the task:

   Depending on the task, the required information of the target object varies; whole

body, face, hands and so on. For example:

   e In order to acquire not only the target trajectory but also the precise volumetric and

    appearance information (e.g., [WWTMOO] and [BDOO]), the system should control

    cameras to capture the high-resolution untaken and meaningfu1 object image.

   e For individual identification, information on human face is significant. In [KMSOO]

    and [YWMOO], the human head is detected based on the appearance and feature

    models.

   As mentioned above, the proposed system has to be expanded for actual real-world

systems. We, however, believe that the fundamental and essential problems have been

solved in this thesis, and our proposed system can be applied to various real-world sys-

tems: visual surveillance and monitoring systems, ITS (Intelligent Transport System),

navigation of mobile robots and disabled people, and so on.

   We hope that all the fruits of this thesis are utilized for many researches in future.
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