
新制

情

46

Improved　Algori七hms　for

CNF　Sa七is丘abili七yProblems

Suguru　Tarr李aki

Abstract

 Improved Algorithms for
CNF Satisfiability Problems

 Suguru Tamaki

Kyoto University, Japan

 2006

 In this thesis we study the computational complexity of CNF Satisfiability prob-

lem (SAT for short) in an algorithmic point of view. SAT problem is, given a

Conjunctive-Normal-Form Boolean formula, to determine whether there is an as-

signment to the variables that satisfies all clauses of the formula. This problem is

one of the most studied problems among all NP-complete problems and has been

studied in a Iot of research fields, including artificial intelligence, logic design, and

scheduling, without saying computational complexity.

 One of the central problem in SAT is to design algorithms for n variable formulas

that run in time cn (c < 2). We would Iike to reduce the constant cin the exponent

as small as possible. Such results are very important in both theoretical and practical

sense. In this thesis we give several new algorithms and analyses of them for 3SAT,

where clause length of input formulas is restricted to three.

 In Chapter 3, we improve Sch6ning's randomized Iocal search algorithm using

partial knowledge on satisfying assignments. Our main idea is to use the bias in the

number of O's and 1's of a satisfying assignment. Actually we take the the number

of O's and 1's as a parameter and design an algorithm optimized for each parameter

value. Though our algorithm do not improve the general case, we can apply our

algorithm to some natural combinatorial problems like 3DM matching, where the

number of O's and 1's in satisfying assignments are often inbalanced. Then we give

some experimental results that shows our algorithm is faster for several instances in

practical sense.

 In Chapter 4, we present new worst-case upper bounds for 3SAT. The previous

best algorithm for general 3SAT is an improved version of Sch6ning's algorithm and

2

for unique 3SAT is PPSZ's randomized splitting algorithm. Our result is based

on the following observation: if an input formula has few satisfying assignments,

PPSZ's performs well, and if it has many satisfying assignments, Schoning's does

well. We give the analysis of two algorithms using a combinatorial structure that is

closely related to the number of satisfying assignments of formulas. We obtain an

improved upper bounds by selecting two algorithms for the parameter value used in

the analysis.

We also present an improvement on Schoning's randomized local search algorithm.

In the original Schoning's algorithm we use an uniformly generated assignment as

starting point of search. Hofmeister et al. gave a better way to obtain a good starting

point with higher probability by using independent clause set and improved the

algorithm. We extend the definition of independent clause set, namely, we introduce

independent clause pair set and analyze it. As a result, we obtain a further better

way to obtain a good starting point of search and improved the previous algorithm.

In Chapter 5, we propose a new algorithm that improves the current best worst

case upper bounds of 3SAT shown in Chapter 4. It is known that PPSZ's algorithm

can find a satisfying assignment in sub-exponential time when given an assignment

that agrees with a satisfying assignment in a large fraction (say, 2/5 fraction) of

variables. We say such an assignment a good assignment. In the current best al

gorithm we try to find a good assignment by guessing uniformly at random. Our

basic idea is to use Schoning's algorithm for obtaining a good assignment with higher

probability. We analyze this new algorithm under some assumption and improves

the current best worst-case upper bounds of 3SAT. Under the same assumption, we

also improves unique 3SAT case, which seems more difficult than to improve that of

the general case.

 Improved Algorithms for

CNF Satisfiability Problems

 A Dissertation
Presented to the Graduate School of Informatics

 Kyoto University
 in Candidacy for the Degree of

 Doctor of Philosophy

 by
 Suguru Tamaki
Kyoto University, Japan

Supervisor: Prof. Kazuo Iwama

Copyright @ 2006 by Suguru Tamaki

 Kyoto University, Japan

 AII rights reserved.

11

Contents

1 Introduction

 1.1 Background

 1.2 Overview ofthe Thesis

2 AIgorithms for CNF Satisfiability Problems

 2.1 Preliminaries

 2.2 Randomized Local Search AIgorithms............

 2.3 Randomized Splitting Algorithms

3 Exploiting Partial Knowledge of Satisfying Assignments

 3.1 Introduction .

 3.2 Selection of lnitial Assignments

 3.3 ThreeDimensionalMatching.................

 3.4 Experiments..........................
 3.5 Constraint Satisfaction Problems

 3.6 Deterministic Algorithms for Large bias

 3.7 Concluding Remarks

4 Improved Upper Bounds fbr 3-SAT

 4.1 Introduction .

 4. 1.1 New wrost-case upper bounds for 3SAT

 4.1.2 Improving Randomized Local Search Algorithms . .

 4.2 CombinationofTwoAlgorithms...............

 4.3 FurtherImprovements

1

1

3

7

7

9

10

15

15

17

21

22

25

27

30

33

33

33

35

36

40

iii

 4.4 Improving Randomized Local Search Algorithms.......

 4.5 OurImprovements

 4.6 ConcludingRemarks

5 Increasing the Success Probability of PPSZ-type Algorith

 5.1 Introduction .

 5.2 Preliminaries

 5.3 NewAlgorithm
 5.3.1 Uniformity assumption

 5.3.2 Upper bounds of the complexity

 5.4 On the Possibility of D erandomiz ation

 5.5 Exploiting bias in satisfying assignments

 5.6 ConcludingRemarks

6 Conclusion

Bibliography

Publication List

ms

40

46

53

55

55

57

58

59

60

62

64

67

69

71

81

iv

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Numerical examples of Theorem 1 . . .

Running time ofnaive algorithms . . .

Comparison of the running time for k =

Running time for different l

Running time for different d

Running time of deterministic algorithm

Worst-case upper bounds for k-SM . .

rl¥ade-offs of PPSZ and SCH . . . ･ ･ ･

Refined analysis of PPSZ

Subroutine Ind- Clauses-Assign

Algorithm Red2

Algorithm RW
Subroutine Construct Ind-Clauses-Set .

Subroutine Ind-Clauses-Assign-1

Subroutine Construct Ind-Clauses-Set .

3

20

22

23

28

28

30

34

39

39

42

43

44

47

48

51

5.1

5.2

5.3

Running time of deterministic algorithms

Bias in a satisfying assignment and time complexity .-

Number of satisfying assignments and time complexity

65

66

68

v

Acknowledgments

I would like to express my sincere appreciation to my supervisor, Prof. Kazuo

Iwama. He allowed me to study at his laboratory and also guided me strongly

and enthusiastically throughout my research activities. This thesis would not be

completed without his great advice. His precious words would have a favorable

influence on my future activities.

I would like to express my sincere appreciation to Prof. Hiro Ito and Prof. Shuichi

Miyazaki. They taught me several important theoretical principles with their accu

rate comments and suggestions on my research. Several enthusiastic discussions with

them were quite exciting experiences for me.

I am deeply grateful to Professor Takashi Horiyama for supporting my research

activities with his exceeding contribution to Iwama laboratory.

I would like to thank all the members of Iwama laboratory for giving me helpful

advice and encouragements for my research work. I would like to thank all of my

friends for having a meaningful and enjoyable time together.

I am very thankful to Prof. Taiichi Yuasa and Prof. Hidetoshi Onodera for their

valuable comments on this thesis.

Finally, I would like to express my supreme gratitude to my family, for encour

aging and supporting me at all times.

This work is financially supported in part by the 21st Century COE Program for

Research and Education of Fundamental Technologies in Electrical and Electronics

Engineering.

vi

Chapter 1

Introduction

1.1 Background

Satisfiability problem (SAT for short) is, given a Boolean formula F, to determine

whether there is an assignment to the variables that satisfies the formula. In this

thesis we study the computational complexity of satisfiability problems in an algo-

rithmic point of view. SAT is a typical NP problem, where NP stands for the class

of problems solvable in nondeterministic polynomial time. If we are given a satisfy-

ing assignment of an input formula, we can verify it efficiently. However, it is hard

to find satisfying assignments in general case. Actually Cook proved that SAT is

NP-complete. That means we can reduce every NP problem into SAT in polynomial

time. It is widely believed that NP-complete problems can not be solved in poly-

nomial time, or even in sub-exponential time. Thus typical time complexity of SAT

is of the form 2C" where c < 1 is some constant. Our main purpose of this thesis

is to reduce the constant c as small as possible. The importance of the constant c

is apparent. Consider 2" and 20"6". The former is greater than the latter by 20'4"

factor. When n == 500, the difference becomes 2200 ev 1020, that is an astronomically

large number. Thus improving c == 1 to c == O.6 is very meaningful when we treat an

exponential function.

 In this thesis we try to design and improve the algorithms for SAT exploiting

several properties of CNF formulas. Our typical approach is as follows: First we

define the property of formula and parameterize it. For example, we take the prop-

 1

2 1 Introduction

erty that a formula has many satisfying assignments or not and define the number

of satisfying assignments as a parameter. Second we design an algorithm optimized

for formulas with a specific range of the parameter. Finally we may have a set of

algorithms optimized for every range of the parameter. Of course, when we see the

history, several improvements seem to follow this approach implicitly. However, we

use this idea more explicitly. In general, to improve an algorithm we must find" hard

instances" against the algorithm and then design a new algorithm for them. The

main difference is we do not need to find hard instances since we first parameterize

some property and optimize algorithms for each parameter value. Hard instances

can be naturally found in optimization steps. This seems very useful approach and

clarify the situation of improvements because we can try improving algorithms auto

matically in some sense. Now the task of improving algorithms becomes as follows:

There are a lot of natural properties of formula and there are also a lot of algorithms

for SAT. We select one property and one algorithm, and do optimization. Repeat

this as many as possible for pairs of a property and an algorithm. Then we have a list

of algorithms optimized according to the parameter. If we obtain an improvement

on a set of algorithms optimized for every range of one fixed parameter, we are done.

Even if we cannot obtain an improvement for some range, the result may have prac

tical importance because some practical problems described by SAT formula appears

with some limited range of parameter.

Importance of Satisfiability Problems Why SAT plays a special role among

several NP-complete problems like max clique, min vertex cover and min coloring?

One explanation is its generality of the problem. SAT instance consists of a boolean

formula. This means we can easily express a mathematical statement as a SAT

instance. By the definition of NP-completeness, we can do the same for other NP

complete problems. However it is often not convenient to express propositional logic

statements as graphs or set systems. A lot of NP-complete problems can be easily

reduced to SAT, but the reduction of opposite direction is often very complicated,

like a typical proof of NP-completeness using carefully designed gadgets. Thus if

we study one problem from NP-complete problems, SAT seems the most natural

1.2. 0verview of the Thesis 3

one. Another explanation is its practical importance. We know several problems

that appear in artificial intelligence, Iogic circuit design, scheduling are naturally

expressed as SAT problems. Designing fast algorithms for SAT directly provides fast

solutions for these problems.

 Here we give a list ofreferences around SAT: approximation algorithms [ACG+99,

VazOl], average case analyses of SAT algorithms [Che03, Fla03, Gen98, KP92, KV06],

experiment and efficient implementation of SAT algorithms [CI95, CI96, CIKM97,

HK05, IKM+OO, Mor93, SK93, SLBH05, SLM921, Iower bounds for SAT [FvMOO,

Wil05], circuit complexity [Al196, BS90, HSs89, HJP95, IM02, IPZOI, PSZOO, Weg87] ,

proof complexity [BP98, Urq95], exact algorithms for NP-complete problems [AS03,

BE05, Bei99, Bys04, Epp03, FG04, FGK05, FGK06, FKrT04, GHNR03, NR03, Woe03,

Woe04], see also proceedings of recent SAT conference [SA]T03, SAT04, SAT05].

1.2 Overview of the Thesis

In this thesis we treat the k-satisfiability problem (k-SAT for short). In k-SAT

problem, a Boolean formula F is given by a set of clauses each of which has length at

most k. The problem is to determine whether there is an assignment to the variables

that satisfies the formula. This problem has been studied by many researchers,

and various algorithms have been proposed. Some algorithms indeed have a worst-

case time complexity much better than the trivial exhaustive search algorithm; see,

e.g.,[MS85,PPSZ98,Sch99,Ku199,DGHSOO,HirOOa].

 In Chapter 3, we improve Sch6ning's randomized walk algorithm using partial

knowledge on solutions. In [Sch99], Sch6ning gave the celebrated randomized algo-

rithm for 3SAT, which runs in an expected time of 1.334n. The algorithm is a simple

local search. We give a generalization of the analysis of [Sch99], which says that if

we have some knowledge on the value in a satisfying assignment, we can increase

the success probability. For example, suppose that we know for some reason, 90% of

the odd-indexed variables xi,x3,xs...take value 1 in asatisfying assignment. Then

our analysis shows that we would be able to obtain solution in roughly 1.196" steps,

which is much better than the original 1.334". As a concrete example of such partial

4 1 IntrodiLction

knowledge on solutions, we consider an imbalance between the number of O's and 1's

in the satisfying assignment. Suppose that we know the satisfying assignment in-

cludes pon O's and pin 1's (O S po S 1 and pi == 1 -po). Then we can obtain optimal

algorithm by improving Sch6ning's algorithm. We Iook a combinatorial problem, i.e.,

3-Dimensional Matching (3DM), as a concrete example where such an iinbalance ap-

pears. If we reduce 3DM instances to SAT formulas, the resulting formulas do have

the imbalance whose degree is represented by pi = 1/k. We also show preliminary

experimental results.

 In Chapter 4, we present new worst-case upper bounds for 3SAT. Our bound is

1.3225" that improves the previous best 1.328n by [Rol03]. The basic idea is to com-

bine two existing algorithms, the one by Paturi, Pudlak, Saks and Zane [PPSZ98] and

the other by Sch6ning [Sch99]. It should be noted, however, that simply running the

two algorithms independently does not seem to work. The algorithm of [PPSZ98] is

called PPSZ, which is based on a randomized Davis-Putnam combined with bounded

resolution. This algorithm has the unique feature that it achieves a quite nice per-

formance, O(1.3071"), for a unique 3-CNF formula, i.e., a formula which has only

one satisfying assignment. As the number m of satisfying assignments grows, the

bound, denoted by CZH b.sz(m), degenerates, i.e., [Tl,psz(m) is an increasing function.

In contrast, the algorithm of [Sch99] is based on the standard local search for which

the above intuition is obviously true. Namely its running time [IlicH(m) is the worst

when m = 1 and then decreases. Recall that [Z}ps,(1) < [Tgc.(1) = O(1.334").

So, if we run the two algorithms in parallel, then the running time is bounded

by min{[Z-l.psz(m),CZ-tscH(m)} which becomes maximum (== 7-bpsz(mo) = [IgcH(mo)) at

m = mo. Obviously [Zl]cH(mo) < 7-l]cH(1). Although [ZHbc.(1) is not the currently best,

there is a lot of hope of breaking it since 7- P.s.(1) is much better than the current

best. Unfortunately, this approach has an obstacle. We know the value of Tbpsz(m) -

but we do not know that of [Tl,..(m) for the following reason. To obtain [ZHtscH(m), it

appears that we need to know the Hamming distance between the (randomly cho-

sen) initial assignment and its closest satisfying assignment. However, there is no

obvious way of doing so, since it is quite hard to analyze how (multi) satisfying as-

signments of a 3-CNF formula can distribute in the whole space of 2n assignments.

1.2. 0verview of the Thesis 5

To overcome this difficulty, we analyze two algorithms simultaneously, that is, we

give a lower bound on the success probability that at least one algorithm returns a

satisfying assignment given a same initial assignment.

 We also present an improvement on Sch6ning's randomized local search algo-

rithm extending the techniques developed by [SSWOI, HSSW02]. Our result gives

O(1.329917") upper bounds fbr 3SAT. This bound is the first result that achieves

better bounds than 0(1.33") at the moment after the result of [SSWOI, HSSW02]

appeared. This result is a generalization of the algorithm of [HSSW02]. The main

idea is to change the probability distribution for the initial assignment depending

on the input clauses. In the original Sch6ning's algorithm, each variable is set to 0

with probability 1/2. The infbrmation given by the clauses is completely ignored.

Although a clause C = xi Vx2 Vx3 tells us that not all those three variables should be

set to zero simultaneously, the original initialization phase selects such an assignment

with probability 1/8. In order to exploit such information, [HSSW02] introduced the

notion of maximal independent clause set. Our improvement is based on extending

the definition of the maximal independent clause set. We introduce the notion of a

good pair for clauses and allow maximal independent clause set contains not only

clauses but good pairs. This enables us to exploit more information from clauses.

 In Chapter 5, we propose a new algorithm that improves the current best worst-

case upper bounds of 3SAT under assumption. Our main idea is to use Sch6ning's

RandomWalk for obtaining better initial assignments for PPSZ. The result also

improves the current best worst-case upper bounds of Unique3SAT, which seems

more difflcult than to improve that of the general case. The basic idea of PPSZ

is as follows: Suppose that a given formula G(xi,...,x.) has exactly one satisfying

assignment 2 == ziz2 ･･･z. E {O, 1}" (can be extended to the general case). Also let T

be apermutation of {1,2,...,n}. Then if we assign each value ofz into {xi,...,xn}

in the order of 7r, (i.e., z.(i) - x.(i) in Step 1, z.(2) . x.(2) in Step 2, and so

on), a certain number of variables g {xi,...,x.} are forced. Here, we say that a

variable x is fbrced in the above course of sequential assignment with respect to T

and z, if x becomes a unit clause in Step k for some k) 1. [PPSZ98] shows that

the number N of such forced variables can be made quite large by adding clauses by

6 1 introdiLction

resolution. For a randomly chosen T, they proved that the expected value of N is

at least (21n2- 1)n fu O.613n. This implies that if we know the correct values of

the unforced variables, ("correct" means the same value as z), then we can retrieve

the whole values of x by the above process. Roughly speaking it is enough to know

the correct values of only O.387n variables to obtain the satisfying assignment. Of

course there is no obvious ways of getting the correct values of O.387n variables.

Our idea is to use RandomWalk for this purpose. If we guess the values O.387n

variables uniformly at random, the probability that all variables become correct is

2-Oi387". We can observe that RandomWalk generates better distribution than

guessing uniformly at random if we assume RandomWalk has some property. In

fact we can obtain an upper bound of O(1.2991") for unique 3SAT and O(1.308")

for general 3SAT by this approach.

Chapter 2

Algorithms for CNF Satisfiability

Problems

2.1 Preliminaries

In this section, we introduce some definitions and notations we will use throughout

this thesis. We also state some basic facts.

 For any finite set S, ISI denote the cardinality of S. Let [n] ii {1,2,...,n} and

P. denote the set of all permutations over [n]. An alphabet is any non-empty, finite

set. Typically £ is {O, 1} or [d]. Given an alphabet Z, a string over £ is a sequence

of symbols from £. The length of a string a is the number of symbols a consists

of. Given an alphabet £, we denote by 2" the set of all strings over £ with length

n. Given a string a E £", we denote by ai the symbol appears in ith place of a,

and in addition given J E [n], denote by ai the sutbstring consists of {ai}iEJ, that is,

substring obtained by restricting a to the index set I. Given two strings a, b E £",

d(a, b) E #{ilai f bi} denote the Hamming distance between two strings a and b.

 The Hamming ball ofradius a aroundx E {O, 1}" is B(x, d) ! {y E {O, 1}n i d(x,y) g

d}. The subciLbe with respect to x c {O,1}" and I [[n] is C(x,I) Ei {y E

{O, 1}" l yi = xi}. We call a variable cci is definig variabge of C(x, I) if i E I

and non-dofinig variable if i ¢ I. We will use the following Iemma about subcube:

Lemma 2.l Given a nonempty S E {O, 1}", {O, 1}" can be partitioned into a fomily

 7

8 2 Algorithms for CNF Satisjiability Problems

{C(z,Iz) I z E S} of disjoint subcubes so that C(z, I z) contains z E S but no other

z' E S - {z}.

The proof of this lemma is easy, see [PPSZ05]. We call such a partition subcube

partition of {O, l}n with respect to S.

We write log x as 10g2 x and In x as loge x. Binary entropy function is

1 1
h(x) = x log - + (1 - x) log --.

x 1- x

Now we recall some basic definitions concerning k-SAT. Given n Boolean variables

Xl, ... , xn, an assignment to those variables is a vector a = (al"'" an) E {o,l}n.

A clause C of length k is a disjunction C = h V 12 V ... lk of literals where a literal

is either a variable Xi or its negation Xi (1 ::; i ::; n). For some constant k, k-CNF

formula is a conjunction of clauses of length k. Sometimes we think k-CNF formula

as a set of clauses. The problem k-SAT is defined as follows:

Input: k-CNF formula F = C l 1\ ... 1\ Cm' Each C i is a clause of length at most k.

Problem: there an assignment that makes F true, i.e., a satisfying assignment for

F?

Throughout this thesis, we will use n for the number of variables and m for the

number of clauses in the given input formula. It can be assumed without loss of

generality (and we will do so in the rest of the thesis) that no variable appears twice

in the same clause. Furthermore, we may assume that no clause appears twice in

the input formUla, hence, the number of clauses is bounded by O(nk) and it makes

sense to estimate the running time in terms of n.

We use and analyze probabilistic algorithms that find satisfying assignments with

positive success probability. The success probability of one repeat-iteration, i.e., the

probability of finding a satisfying assignment (if one exists) during one execution of

the repeat loop is at least p(n) for some fuction of n.

Lemma 2.2 Let A be an probabilistic alogrithm runs in time t(n) with success prob

ability p(n). Then there exists an algorithm A' runs in time N·t(n)/p(n) with success

probability at least 1 - e-N .

2.2. Randomized Local Search Algorithms 9

Proof If we run A independently t times, then the probablity that A succeeds at

Ieast once is 1 - (1 -p(n))`. Recall that (1 - 1/c)X < 1/e holds for x > 1. Let A' be

an algorithm that runs A independently t == N/p(n) times. Then its running time is

Nit(n)/p(n) and success probability at least 1-e-N. D

2.2 Randomized Local Search Algorithms

In this section, we describe a randomized Iocal search algorithm SCH and its major

properties. The algorithm consists of its main routine SCH and RandomWalk as

follows:

RandomWalk(CNF formula G, assignment y);

 yt = Zli

 for 3n times

 if y' satisfies G

 then return y'; exit;

 C e a clause of G that is not satisfied by y';

 Modify y' as follows:

 select one literal of C uniformly at random and

 flip the assignment to this Iiteral;

 end

 return y'

SCH(CNF-formula F, integer T)

 repeat T times

 y = uniformly random vector E {O, 1}n

 z == RandomWalk(F, y);

 if z satisfies F

 then output(z); exit;

 end

 output('Unsatisfiable');

10 2 Algorithms for GNF Satisfiability Problems

Lemma 2.3 ([Sch02]) Let F be a kGNF formula and a* be a satisfying assignment

for F. For each assignment a, the probability that a satisfying assignment is found

by RandomWalk(F, a) is at least (k~l)d(a,a*).

The following lemma states the bound for kSAT obtained in [Sch02] using the

above lemma.

Theorem 2.1 ([Sch02]) For any satisfiable formula F on n variables, the success

probability of one repeat-iteration of SCH is at least {~ + (k~1) }n.

2.3 Randomized Splitting Algorithms

In this subsection, we describe PPSZ and its major properties. The algorithm

consists of the following four procedures, PPSZ (main routine), Modify, Search

and Resolve.

Modify(CNF formula G, permutation 'if of P n , assignment y)

Go =G.

for i = 1 to n do

if G i - 1 contains unit clause X 1T (i)

then Z1T(i) = 1

else if Gi - 1 contains unit clause X1T (i)

then Z1T(i) = 0

else Z1T(i) = Y1T(i)

Gi = Gi - 1 with X 1T (i) = Z1T(i)

end

return Z

Search(CNF-formula F, integer T)

repeat T times

'if = uniformly random permutation of P n

y = uniformly random vector E {O, l}n

Z = Modify(F, 'if, y);

2.3. Randomized Splitting Algorithms 11

 if z satisfies F

 then output(z); exit;

end

output('Unsatisfiable');

 Consider a single run of Modify(G, T, y). Recall that each variable xi is assigned

so as to satisfy some unit clause, or is set to yi. A variable whose assignment is

determined by a unit clause is said to be forced. Let I(G,T,y) denote the set of

indices of variables that are not forced with respect to T and y. The following is one

of the key lemmas to analyze Modify:

Lemma 2.4 ([PPZ99]) Let T(G,z) denote the probability with respect to random

r and y, that Modify(G,T,y) retiLrns z. Then

 T(G, z) == E.[Pr, [y E C(z, I(G,T, z))]].

 A good bound for 7(G,z) is shown in [PPSZ98, PPSZ05]. We need some defi-

nitions on Resolution. Clauses Ci and C2 are said to confZiet on variable v if one

of them contains v and the other O. Ci and C2 is a resolvable pair if they conflict

on exactly one variable v. For such a pair, its resolvant, denote by R(Ci, C2) is the

clause C = Di A D2 where Di and D2 are obtained by deleting v and ti from Ci and

C2. If Ci and C2 are in the formula F, then adding R(Ci,C2) does not change the

satisfying assignments of F. We say that the resolvable pair Ci and C2 is s-bozsnded

if IR(C,, C2)I S s･

Resolve(CNF-formula F, integer s)

 Es=F.
 while Il, has an s-bounded resolvable pair Ci, C2

 With R(Ci, C2) ¢ I7Is

 4 - 4 A R(Ci, C2)･

 return(4)･

12 2 Algorithms for GNF Satisjiability Problems

PPSZ(CNF-formula F, integer s, integer T)

Fs = Resolve(F, s).

Search(Fs ' T).

Let P(v, G, z) denote the probability with respect to a random 1r and a fixed

assignment z, that the variable v is forced in Modify(G, 1r, z). It is easy to see

EJr[II(G, 1r, z)l] = n - ~v P(v, G, z). We say z is a d-isolated satisfying assignment

of F if none of the assignments in B(z, d) satisfies F. Define

00 1
ILk = L .(" 1)

j=1 J J + k-1

and
(d) 3c =-------
k (d-l)(k-l)+2·

Lemma 2.5 ([PPSZ98, PPSZ05]) Let F be a k-GNF formula and z be ad-isolated

satisfying assignment of F. If s 2: k d , then for any variable v,

Using the above lemmas, we can bound T(G, z).

Theorem 2.2 ([PPSZ98, PPSZ05]) Let F be a k-GNF formula and z be a d

isolated satisfying assignment of F. If s 2: kd
, then for any variable v,

In general case, F may not have a d-isolated satisfying assignment. We state the

result in terms of subcube. Now, given formula F with a set of satisfying assignments

S and the subcube partition {C(z,Iz) I z E S}, T(Fs ' zIC(z, Iz)) is defined as the

probability (averaged over y) that a single execution of Modify finds the assignment

z under the condition that the initial assignment y E C(z, I z).

2.3. Randomized Splitting AIgorithms 13

Lemma 2.6 ([PPSZ98, PPSZ05]) Pbr any satiofZable k-CNF form2Lla F and any

partition {C(z,I.)}, ofy (C(z,I.) is chosen ttnofbrmly at random, then the valzLe

T(4,zlC(z, I2)) is bouneled as follows:

 T(4,zlC(z, 4))) 2-(i-ftt,) ((k - k2)3-i-iStti 1Iizl .

Chapter 3

Exploiting Partial Knowledge of

Satisfying Assignments

3.1 Introduction

In the k-satisfiability problem (k--SAT for short), a Boolean formula F is given by a set

of clauses each of which has length at most k. The problem is to determine whether

there is an assignment to the variables that satisfies the fbrmula. This problem has

been studied by many researchers, and various algorithms have been proposed. Some

algorithms indeed have a worst-case time complexity much better than the trivial

exhaustive search algorithm; see, e.g.,[MS85,PPSZ98,Sch99,Ku199,DGHSOO,HirOOa].

 In [Sch99], Sch6ning gave the celebrated randomized algorithm for the CNF Sat-

isfiability Problem (SAT), which runs in an expected time of 1.334n (multiplied by

a polynomial). The algorithm is a simple local search, i.e., (i) selecting an initial

assignment at random, (ii) selecting an arbitrary unsatisfied clause and fiipping one

of the variables in it, and (iii) repeat step (ii) 3n times. He proved that the possibility

p of successfully finding a satisfying assignment by this procedure is

 'p)G(1+kll))n, (3.1)

where k is the maximum number of literals in each clause. In the case of 3SA[[",

the value of the right hand size is (3/4)n. In other words, we can find a satisfying

 15

16 3 Exploiting Partial Knowledge of Satisfying Assignments

assignment with high probability by repeating the above procedure roughly (4/3)n

times (multiplied by a polynomial).

In this chapter, we first give a generalization of the equation 3.1, namely, we

prove that

n (r)P >II t·+_2
- 2 k-1 '

i=l

where t i (Ii = 1 - t i , resp.) is the probability that variable Xi is assigned a correct

(incorrect, resp.) value at the initialization step. (If t i = fi = 1/2, then (2) is the

same as (1).) This equation says that if we have some knowledge on the value of

Xi in a satisfying assignment, we can increase the success probability. For example,

suppose that we know for some reason, 90% of the odd-indexed variables Xl, X3, X5 ...

take value 1 in a satisfying assignment. Then our best strategy is to select 1 initially

for all the odd-indexed variables and to select 0 or 1 at random for the even-indexed

variables. Then the success probability (when k = 3) calculated from (2) is

(
1) O.05n (3) O.5n

P 2: 1°.45n"2 "4 r-v 0.836n.

This means that we would be able to obtain solution in roughly (1/0.836)n = 1.196n

steps, which is much better than the original 1. 334n.

As a concrete example of such partial knowledge on solutions, we consider an

imbalance between the number of O's and l's in the satisfying assignment. Suppose

that we know the satisfying assignment includes Pon O's and PIn 1's (0 ::; Po ::; 1 and

PI = 1 - Po). Then we can obtain optimal probabilities qo and ql (= 1 - qo) by using

(2), such that we should assign 0 to each variable with probability qo and 1 with ql

at the beginning. Our result shows that the expected time complexity when we use

this optimal initial-assignment is

1 k-1
for - <Po <--k - - k '

T=
1 k-1

for Po < k or Po > -k-·

3.2. Selection of Initial Assignments 17

For example, when po = 2/3, T == 1.260" and when po == O.9, we have T = 1.072".

Such an imbalance of O's and 1's often appears in instances encoded from other

problems. F or example, SAT-instances encoded from the class-schedule problem

[CIKM97, IKM+OO] have the property that solutions must have very few 1's. Also,

let us remember the famous result by Cook [Coo71] where SAT is first proved to be

NP-complete. One can see that his reduction also has the same property.

 In this chapter, we take a more combinatorial problem, i.e., 3-Dimensional Match-

ing (3DM), as a concrete example of such an imbalance. An instance of 3DM is given

as (VV X,YM) where IWI = IXi == IYI = q and M g M/ × X × Y. If each element

in WUX UY appears in M evenly, i.e., roughly k times, then our reduction gives

a kSAT instance using kg variables. Our reduction also assures that any satisfying

assignment has exactly q 1's against the kq variables. In other words, the resulting

formulas do have the imbalance whose degree is represented by pi == 1/k. Note that

this reduction is quite natural and it appears hard to come up with another reduction

(whether or not it creates the imbalance) which provides reasonably simple formulas.

 We also show preliminary experimental results. Our instances are those encoded

from 3DM and from prime factorization. It is clearly demonstrated that our approach

is faster than the original Sch6ning's, especially for the second set of instances. Note

that the second instances are harder than the other since the number of satisfying

assignments is few.

 Our result is not a general improvement, but we believe that there are many cases

for which our approach is useful.

3.2 Selection ofInitial Assignments

In this section, we first generalize the equation 3.1 which is then used to derive

improved bounds for kCNF-formulas having the imbalance in their solutions. From

now on, when we say algorithm A,, it means SCH which repeats RandomWalk

exactly one time.

Lemma 3.1 . I7brsome satioping assignmenta", letti a S i S n? be theprobability

that variabge xi receives the same (correct? initial assignment as a". Also let A ==

18 3 Eoploiting Partial Knowledge of Satioping Assignments

1 - ti. Then the probability p that A, is succesofbul is

 p2 Ifi., (tz + k ft- 1)

Proof Suppose that X (X', resp.) is a random variable such that X (X', resp.)

variables among xi,...,xn (among x2,...,x., resp.) receive incorrect values in the

initial assignment. Then by Lemma 1, the probability p can be written as

 p) >li pr{x == 2} (kli)0

 j=O A i.
 == ti ill.ii pr{x' ==]} (kli)j+ fi ll.i, pr{xt =o} (kli)e"

 = (ti + k f-' i) lil.il, Pr{X' = 2} (k l i)j

By applying a similar reduction to the summation term n - 1 times, we can obtain

the inequality in the lemma. D

 Now we consider kCNF-formulas having the imbalance in their solutions. Suppose

that a given formula f has a satisfying assignment a* which has l O's and (n - l) 1's.

Let po = t/n and pi == (n - l)/n. Our new algorithm IT is the following:

IT(CNF-formula F, real po, integer T)

 repeat T times

 y = randomly generated vector E {O, 1}" satisfies the following:

 Pr[yi = O] = qo(po),Pr[yi = 1] = 1 - qo(po)

 z = RandomWalk(F, y);

 if z satisfies F

 then output(z); exit;

 end

 output('Unsatisfiable');

3.2. Selection of Initial Assignments 19

 Similarly, We denoted by A,(po), IT which repeats RandomWalk exactly one

time. The difference from A, only in selecting initial assignments: Namely, each

variable xi is assigned O with probability qo and is assigned 1 with probability 1 - qo,

where the value of qo is given by the following theorem.

Theorem 3.1 Let p be the probability that Algorithm A,(po) is szLccesskl. Then

p becomes maxim?Lm ivhen the probability go 2vith which each variable is assigned 0

initially is given as

 1
 1 for po<k,
 k-1 kpo -1 1
 qo (po) - k-2 forkg po S k ,
 k-1
 o forpo> k,

and the value ofp for this optimal qo is

 %onrfin (k 4 i)n for i s p, g ki i,

 p(po))
 (k l: 1)min{pon,pin} forpo < ili or po > k zi 1.

Proof By Lemma 2, the probability p can be written as

 p(po)) l.C,.!, (tz+k41) = (g,+kq-' 1)POn (q, +kq-o 1)"'"

To decide the value of qo that maximizes p, we consider the following function

a(qo'
 : }zg,.{,lq?', -k qii;l"i ,lqil kiq-,Oi).Pi,l-,,, ,., {- (i - ,i,) qo +i}

a is convex in [O, 1], so it takes maximum value where its derivative is O or at either

20 3 Exploiting Partial Knowledge of Satisfying Assignments

end of the interval [0, 1]. Since

'() (1 - 6) (1) - (1 - 6)
(J qo = Po (1 1) 1 + - Po (1 1) + 1 '

- k-l qo + k-l - - k-l qo

(J'(qo) = a implies qo = (kpo - l)/(k - 2). By substituting this optimal qo, or

substituting qo = a or qo = 1 if (kpo - 1)I (k - 2) is less than a or greater than 1,

respectively, we obtain the theorem. o

Remark The value of qo is quite different from the value of Po· For example, if

Po = 0.6 and k = 3, the value of qo is 0.8, and if Po :2: 2/3, then qo = 1.0. Namely,

the imbalance should be expanded in the initial assignment.

Fig. 3.1 shows numerical examples of Theorem 3.1 for k = 3,4,5, and 6. The

horizontal axis shows the value of a ::; Po ::; 1 and the vertical axis shows the value of

e supposing that the optimal bound of Theorem 3.1 is represented as en. Note that

the time complexity is roughly bounded by lip.

1.7.------,-------.-------r-------,------,

1.6

1.5

1.4

1.3

1.2

1.1

"k=3" --+-
"k=4" ---)(--
"k=5" ---*---
"k=6" £]-_ .

Figure 3.1: Numerical examples of Theorem 1

3.3. Three Dimensional Matching 21

3.3 ThreeDimensionalMatching

An instance of 3DM is given as (Vtil X, X M) where VVI X and Y are disjoint sets of

size q and M (IMI == n) is a subset of W×X×Y. Its question is whether or not there

is a subset M' ! M such that IM'I == q and all elements in I7[il X,Y appear (exactly

once) in M'. For an integer k, k3DM is a restricted version of 3DM, namely, each

element in l2[iZ X, Y appears at most k times in M (and therefore n S kq). k3DM can

be reduced to kSAT as follows: For given (I7[4 X,YM), we construct a formula F

such that: (i) F uses n variables zi, z2, . . . , z. (zi corresponds to the ith triple in M).

(ii) Suppose that an element w E Mi appears in the iith, i2th, . . ., ikth triples in M.

Then we prepare a CNF-formula UW(zi,,zi,,...,zi,) such that it becomes 1 if and

only if exactly one of zi,,zi,,...,xik is 1. When k = 3, for example, UW(zi,,zi,,zi,)

can be written as

 (7Zil V -Zi2 V 7Zi3) A (=Zil V --i Zi2 V Zi3) A (Zil V 7Zi2 V 7Zi3)

 A (7zil V Xi2 V 7Zi3) A (Zil V Zi2 V Zi3)･

(iii) The entire formula F is a conjunction of UW for all 7v E W, UX fbr all cv E X

and UY for all yE Y.

 We can easily see that (i) F is satisfiable iff the original (I7V]X,YM) has a

matching, and (ii) if F is satisfiable, then any solution has q 1's, i.e., an imbalanced

satisfying assignment. For example, if k = 3, then pi = 1/3 and A,(2/3) finds a

solution in time 1.260" and if k = 4, then A,(1/4) for 4SAT does so in time 1.317".

 As a comparison, let us consider a naive method of solving k3DM directly. Since

each element in W appears in M at most k times, there are at most kq different

ways of selecting q (or less) triples from M which cover all elements in I2V. One can

compute whether or not these q triples constitute a matching in polynomial time.

Thus the time complexity of this algorithm can be written as k"lk. This is 1.443n for

k = 3 and 1.588" for k = 4. In both cases our bounds of A,(1/k) are much better.

Note that it is hard to find other reductions which are reasonably simple, whether

or not their satisfying assignments are balanced. Figure 3.2 shows the running time

of a naive algorithm. The horizontal axis shows the value of a where q = cun and

22 3 Eqploiting Partial Knowledge of Satioping Assignments

 2

1,9

1.8

1,7

1,6

1.5

1,4

1,3

1,2

IA

 1

 i:,m'･

 di ..･x'

 pt,, * /X'

 ,it/.J"'* .,,X"

 -t xXe"'

 ;*-
 ...tB,r ,

 M,ri /X

 jl -i :x x, lll/ ' ' .×
 t ' ' ' '>(

'
t

'

 ,X7
lttt

XSi. 4i k=3,i

"k=4"
"k=5"
,r k=6,i

---x---

-- x--
'H"'e--H

o.t 02 O,3 O.4 O,5 O,6 O.7 O.8 O.9 t

 Figure 3.2: Running time of naive algorithms

the vertical axis shows the running time for each k = 3,4, 5,6. Figure 3.3 shows the

comparison of the running time of a naive algorithm, original Sch6ning's and ours.

3.4 Experiments

Experiments were conducted for CNF-formulas reduced from 3DM and from prime

factorization. For the 3DM formulas, we first obtain a random 3DM instance by

generating n triples which are to be in M. This generation is basically random but

(i) to assure that the instance has a matching, we first generate an artificial matching

(of q triples) and then (ii) add n-q triples so that each element in W ×X × Y

appears exactly three times. This 3DM instance is reduced to a 3SAT instance as

described above.

 We have generated 15 different formulas for each ofn= 250,500,750, 1000 and

1250. We tested six different local-search algorithms:

 (1) Pure GSArl] [SLM92].

 (2) Weighting [CI95, CI96, Mor93, SK93].

 (3) Weighting + 50% Random Walk.

3.4. Experiments 23

 2

1,9

1,8

1.7

1.6

1.5

1.4

t.3

t2'

1.1

 1

xxx

 "BF" +
,F

SAT-S" --'×---
"SAT-IT" ---,k---

x'

-Me`'X'
.x-
x..".#.-rw -x-t-e-.x...it..-x)e -e x x x x- -x)e-x-x)e -){ x--

x. 'x.
')E.

'x.
-X'

"X-
'x.

'xs

"X.
'x.

'x.
'orre---M.

'x.
-Lre-

-x--x--x

-X'
-x･-･x

O.3 O,4 O.5 O,6 O.7 O,8 O,9 1

Figure 3.3: Comparison of the running time for k == 3

 (4) GSAT + 50% Random Walk [SK93].

 (5) Sch6ning.

 (6) Our modified Sch6ning.

Each algorithm is run 100 times (using different random numbers) for each single

instance. Since (5) and (6) execute 3n flips in a single try, we also execute the same

number of flips in other algorithms. (Since each algorithm has its own recommended

value for the number of flips in a single try, this setting might not be too fair.) The

result is given in Table 1, which shows the ratio of successfu1 tries (average values

over 15 instances). Algorithms (1) through (6) are denoted by g, gw, gwn, gn, A,

and A,(2/3), respectively. We also tested algorithms g, gw, gwn and gn fbr the

imbalanced initial assignments as A,(2/3), but we did not find clear differences.

 One can immediately see that the absolute success ratio of our algorithm is very

high compared to the analysis. Obvious reason is that each instance has a lot of

satisfying assignments; there is a good chance that one of them happens to be quite

close to the initial assignment chosen by the algorithm. Although this nature cer-

tainly discourages the effort of selecting initial assignments cleverly, our A,(2/3) is

clearly better than others.

24 3 Eilz)loiting Partial Knowledge of Satioping Assignments

#ofvariables g gw gwn gn As As(2/3)

250 O.129 O.176 O.528 O.475 O.468 O.613

500 O.O02 O.058 O.4355 O.41 O.405 O.581

750 o.oo O.O19 O.368 O.388 O.428 O.599

1000 o.oo O.O15 O.37 O.385 O.357 O.585

1250 o.oo O.O07 O.345 O.354 O.367 O.631

Table 3.1: 3DM Instances

qo O.5 O.6 O.7 O.8 O.9 1.0

O.356 O.475 O.576 O.634 O.648 O.598

 Table 3.2: Effect of the value of qo

 Note that A,(2/3) initially assigns O to all the variables (i.e., qo == 1.0) by Theorem

1. Table 2 shows how the success ratio changes according to the value of qo by using

five 3DM formulas of 1250 variables. Our algorithm is run 5000 times for each

instance for qo = O.5, O.6, O.7, O.8, O.9 and 1.0 and the table shows the average success

ratio of five instances. As mentioned above, A.(2/3) becomes optimal for qo = 1.0.

However, the experiments suggest the optimal point exists around qo = O.9 probably

for the same reason mentioned before.

 Another benchmark is a reduction from prime factorization. Again instances

are 3CNF-formulas, which are denoted by Ih. If integer n can be represented by

n = ni × n2 with integers ni and n2 > 1, then ll, has a single satisfying assignment

corresponding to this pair of ni and n2. Hence, if n is a product of two prime

numbers, R, has only one satisfying assignment. R, is constructed by simulating

the usual multiplication procedure using many auxiliary variables other than those

used for binary representations of ni and n2. 0ur experiment has used Pt2g which

uses 136 variables and contains 337 clauses. Since 129 = 3 × 43, A2g has only one

satisfying assignment. To make the imbalanced situation, we flip the polarities of

the variables appropriately so that the satisfying assignment has 50%, 60%, 70%,

80% and 90% O's.

 Table 3 shows how many times A,(qo) succeeds out of 100,OOO tries. Each column

corresponds to the imbalance described above (50% for the first column and 90% for

3.5. Constraint Satisfaction Problems 25

the last one). Note that the optimal qo for the 60% imbalance is

1. Note that PL2g includes a lot of clauses which contains only

which obviously makes it easy to solve.

O.8 due to Theorem

one or two literals,

po qo

O.5 O.6 O.7 O.8 O.9 1.0

O.5 5 5 5 11 4 8

O.6 4 11 8 14 16 8

O.7 6 6 15 20 28 50

O.8 6 15 28 74 179 520

O.9 9 4 61 235 994 5063

 Table 3.3: Prime-factorization instances

 Our third benchmark was taken from the DIMACS benchmark set. We tested

only one instance called aim-50-1-6-yesl-1.cnf, which is basically a random 3SAT

instance (each clause includes exactly three literals) and has 50 variables and 80

clauses. Also, it has only one satisfying assignment. Thus this instance appears the

hardest among what we used in the experiments. Like Table 3, Table 4 shows how

many times A,(qo) succeeds out of 500,OOO tries. (Note that the number of tries is

five times as many as Table 3.)

po qo

O.5 O.6 O.7 O.8 O.9 1.0

O.5 8 4 6 6 5 7

O.6 13 10 9 17 25 25

O.7 7 20 30 58 139 318

O.8 8 22 54 187 585 1449

O.9 10 24 154 778 5356 25274

Table 3.4: DIMACS instances

3.5 Constraint Satisfaction Problems

Sch6ning shows in [Sch991 that a similar local search algorithm

Constraint Satisfaction Problem (CSP). An instance of CSP is

is also efficient for

a set of constraints

26 3 Ehrpgoiting Partial Knowledge of SatiofYing Assignments

Ci,C2,...,C. and each constraint (Ji(xi,x2,...,x.) is a function from {O, 1,...,d-

1} into {O, 1}. Each variable xi takes one of the d different values. If each constrain

depends on at most l variables, we call the problem (d,l)-CSP. Slightly changing

RandomWalk algorihtm, the followings hold:

Lemma 3.2 ([Sch02]) Let d) 3 and F be a (el,l)-osP instance and a* be a

satiof2/ing assignment for F. Iibr each assignment a, the probability that a sat-

iofYing assignment is foiLnd by RandomWalk(F, a) is at least (h!i)d(a'a*) where

h -= (l - 1)(d - 1) + 1.

Theorem 3.2 ([Sch02]) Fbr any satiofZable (d, l)-esP instance F on n variabges

andd 2 3, the success probability of one Tepeat-iteration ofSCH is at least d-" {1 + (

ivhere h= (l - 1)(d- 1) +1.

 Suppose that there is a similar imbalance in a solution, such that pon variables

take value O (and the other (1-po)n ones take 1 through d-1). Then by changing the

initial assignment exactly as before, we can improve the expected time complexity

T as follows.

±-!1

h
)

)}n

T=

(

(qo +

Z '- 11)mpon

 (d - 1)qi

 h-1

(1 +

) 'Pon

d-2
h-1

) mPln

(ql + qo + (a - 2)qi

h-1

 1
 for po < h+d-2'

 -pln 1) for SpoS
 h+d-2

 h-1
h+ el -27

 (z -- 11)-pon for po>hkil2;

where pi =i- po, qo == (h+ dh--21PO -i, gi =i-dq-Oi and

h- (l-1)(d-1)+1. '
Proof The success probability is estimated by Lemma 3.2 as follows:

 p(po) 2 (po + (di.1)lpi)PO" (pi + po +id--1 2)pi)pin

3.6. Deterministic Algorithms for Large bias 27

 We would like to maximize the value of

 Q, + (di"l lpi)PO @, + po +ial--1 2)pi)Pi

 : l((li; -i -'l,Yi,/,,(,211,Z.i,2, ilO,. (k +,g,--2,, + ,,,i- ,,)}pi

 Define

 f(y) = (ay + b)PO(cy + d)Pi,

 then this value becomes maximum at

 poad + picb
 Y = - (po +pi)ac '

 Substituting approapriate values, it is shown that p(po) becomes maximum at

 h+d-2 (d-1)po-pi
 Y == d(h - 2) ' p, +p, '

 Fig. 3.4 shows numerical examples of for d == 4,l = 3,4,5,6 and Fig. 3.5 shows

 numerical examples of for d = 3,4,5,6,l = 4. The horizontal axis shows the value

 of 0 S po S 1 and the vertical axis shows the value of c supposing that the optimal

 time bound represented as c".

3.6 Deterministic Algorithms for Large bias

In this section, we discuss the derandomization of our result. Dantsin et. al.

[DGH+02] have shown that Sch6ning's algorithm can be derandomized. Namely,

they gave a deterministic algorithm similar to Sch6ning's. Thus it is natural to try

to derandomize our algorithm. The following algorithm is a deterministic analogue

of RandomWalk shown in [HSSW02].

28 3E卿lo伽π9　Pα漉αZκηoω1θ吻e（ゾ3α伽力伽9孟55乞9π7ηeη孟3

3．5

3

2，5

2

1．5

1

　　　，・”　来’
　　戸米〆

　戸メx　ノ　　ロ　　　　　ノ

Ef）ど．x

マ〆
〆，メ

，・×

　　♂β且’『日’『’区”日’・隔日、

〆『〆米’継一米冒瓶・．塁㌦

　ノ激蘇矧脳xご’受民

｝㎜
一
…

一
　
一
　
「

畷
米
E

　
＝

3
4
5
n
O

三
＝
≡
＝

4
4
4
4

＝
三
＝
＝

」
0
．
O
d
d

叫
　
　
1
5
　
　
”
　
　
舳

　　・　口、x　　　米　』・・．
’x’メx汽里減

　　　　、X　X口，、
　　　　ヘ　　　　　ロ　　ヒロ
　　　　　’x　》K口、
　　　　　ヘ　　　　　ロ　　ヒロ　　　　　　×、　L米’図，
　　　　　　へ　　　　　り　　し　　　　　　　x、’米、’国，

　　　　　　　×、’掬㌔
　　　　　　　　＼・×＼裏：＝咳

　　　　　　　　　　ヘ　　　　　　ビ　　　　　　　　　　’×米、亘
　　　　　　　　　　　　　　　ロ　　ロ　　　　　　　　　　　’×米油
　　　　　　　　　　　　　　　　し　　ヒ　　　　　　　　　　　　　’×毅国
　　　　　　　　　　　　　’＼×｝国

　　　　　　　　　　　　　　　　　ヘ　コ　　　　　　　　　　　　　　　x、狩ロ
　　　　　　　　　　　　　　　＼辱米＼
　　　　　　　　　　　　　　　　＼：』暴、

　　　　　　　　　　　　　　　　　こ漫麹，

層
受

‘
噺
」

0 0．1 0，2 0．3 0．4 0．5 0．6 0．7 0．8 0．9 1

Figure　3．4：Running　time　f6r　dif5erent　Z

4．5

4

3．5

3

2．5

2

1．5

1

．
口

×

日

．目’『

9’－

b…区．
’9

早D
、且

9正ユ

回
’国

国

　　，ズ・・崇’締一巌’張噛～．米　㌔

　米’　　　　　　　　　　　　繁、　　　　、
　　　　　　　　　　　　噛巌．
※　　　　　　　　　　　’楽　　 国

　　　　　　　　　　　　　　’米
　　　　　　　　　　　　　　　「渠　　国
　　　　　　　　　　　　　　　　　、　　Eミ

／〆　　、＼ト辱、

豪4
4
4
4

；
＝
＝
冨

3
4
5
6

；
＝
＝
三

H
U
d
d
d

x、　　　・．　口
　うく　　　※　＼．
　ヘ　　　　　　　　　

＼’米駈
　　　　　　　　　　 ヨ　　ヒ

　　　　x　米国．
　　　　　＼×＼二三
　　　　　　　’x米・ご国、
　　　　　　　　’x楽1』国
　　　　　　　　　ミ　　　ロ　ロ　　　　　　　　　×、巣こ 国
　　　　　　　　　　x髄米’・．
　　　　　　　　　　　’〉ぐ・稟、
　　　　　　　　　　　　還墨粟、

．p．

~
“

0 Oj 0．2 03 0．4 0．5 0．6 0．7 0．8 0．9 1

Figure　3．5：Running　time　f6r　different　4

3.6. Deterministic Algorithms for Large bias 29

LocalSearch(CNF formula G, assignment y, integer r);

 if y satisfies G

 then return y

 else if T<O

 then return null

 else

 Pick a clause C false under y

 for each literal l E C

 do flip l's value in y

 if LocalSearch(Gli=i, y, r - 1) returns

 a satisfying assignment y

 then return y

 return null

 end

 LocalSearch and its valiant is analyzed in [DGH+02, BK04] and the running

time is estimated as follows:

Lemma 3.3 ([DGH+02, BK04]) Fbr any satiofiable k-CArF formula F,

LocalSearch(F, y,r) finds a satioping assignment a s.t. d(y, a) g r in time at Tnost

kr.]Fbrk= 3, the running time can be reduced to 2.792r.

This lemma yields derandomization of our result immediately. Let F be a k-CNF

formula and assume its satisfying assignment has at most pon. Then if we run Lo-

calSearch(F, y,r) with y = OOO ･ ･･O,r = pon, we can find a satisfying assignment.

The running time is greatly improved when the bias is large, but we get no im-

provement for small bias case. Figure 3.6 shows the running time of derandomized

algorithm.

30 3 Exploiting Partial Knowledge of Satisfying Assignments

1.8,------,----,--------,.------,----------,

1.7

'k=3'
'k=4' -------
'k=S' -_ _-
'k=6' .

0.80.60.40.2
1~-----'------L-----'---------L.------"

o

Figure 3.6: Running time of deterministic algorithm

3.7 Concluding Remarks

In this chapter, we improve Sch6ning's randomized walk algorithm using partial

knowledge on solutions. Actually we improve the algorithm for the formula with a

satisfying assignment in which the number of O's and 1's are unbalanced. Though

our algorithm do not improve the general case, we can apply our algorithm to some

natural combinatorial problems like 3DM matching, where the number of O's and

1's in satisfying assignments are often unbalanced. Then we give some experimental

results that shows our algorithm is faster for several instances in practical sense.

Appendix

Table 3.5 shows the application of our result to several NP-complete problems. Re

duction to CNF formula is similar to 3-Dimensional Matching case and we obtain

non-trivial algorithms for these problems.

3.7. Concluding Remarks 31

Problem BruteForce SAT Pl

3-DimensionalMatching
al-DimensionalMatching

EXACTCOVERBY3-SETS
MONOCHROMATICTRIANGLE
SETSPLITTING

:
l
'
#
l
'
:
'
[
l
l
.
l
i
i
i
i
i
i
E
g
i
"
l
:
,
;
l

k-SAT
k-SAT
k-SAT
3-SAT

k-SAT

or

or

a
o
r
o
rTable 3.5: Reduction to CNF formula

Chapter 4

Improved Upper Bounds for 3-SAT

4.1 Introduction

4.1.1 New wrost-case upper bounds for 3SAT

Worst-case upper bounds for 3SAT (k-SAT in general) have been one of the most

well-studied topics in theoretical computer science. For small k's, especially for

k = 3, there exists a Iot of algorithms which run significantly faster than the trivial

2" bound. Roughly speaking most algorithms are based on Davis-Putnam. [Sch99]

is the first local search algorithm which gives a guaranteed performance for general

instances and [DGH+02], [HSSW02], [BS03] and [Rol03] follow up this Sch6ning's

approach. The following Figure 4.1 summarizes those algorithms where a constant

c means that the algorithm runs in time O(c").

 Our new bounds are denoted by [*] in the above list, namely we prove:

Theorem 4.1 for any satiofiabge n-variable 9- CIVF

(4-CNF) formiLla F, there exists a randomized algorithm that finds a satioping

assignment ofF in eazpected riLnning time O(1.3225") (O(1.4705n)).

The basic idea is to combine two existing algorithms, the one by Paturi, Pud15k,

Saks and Zane [PPSZ98] and the other by Sch6ning [Sch99]. It should be noted,

however, that simply running the two algorithms independently does not seem to

work. Also, our approach can escape one of the most complicated portions in the

 33

34 4 Improved UPper BoiLnds for 3-SAT

3SAT 4SAT 5SAT 6SAT type ref.

1.839
- - "

det.J [MS79]

1.782 1.835 1.867 1.888 det. [PPZ99]

1.769
- - -

det. [Dan83]

1.618 1.839 1.928 1.966 det. [Luc84,MS85]

1.588 1.682 1.742 1.782 prob. [PPZ99]

1.579
- - -

det. [Sch92]

1.505 - - H
det. [Ku199]

1.481 1.6 1.667 1.75 det. [DGH+02]
1.474

- - -
det. [BK04]

1.362 1.476 1.569 1.637 prob. [PPSZ98]

1.334 1.5 1.6 1.667 prob. [Sch021

1.3302
- - -

prob. [HSSW02]
1.3300

- - -
prob. I**]

1.3290 - - -
prob. [BS03]

1.3280
- - -

prob. [Rol03]

1.3225 1.4705
- -

prob.
[
*
]

 Figure 4.1: Worst-case upper bounds for k-SAT

analysis of [PPSZ98]. In this chapter we focus on the 3-SA[I] case; the 4-SAT case is

very similar and may be omitted. The same approach does not improve the bounds

for 5-SAT or more.

 The algorithm of [PPSZ98] is called ResolveSat, which is based on a randomized

Davis-Putnam combined with bounded resolution. ResolveSat behaves like local

search algorithms, that is, it takes an random assignment and a random variable

ordering as an input and tries to modify initial assignment to be satisfiable one

by using Davis-Putnam procedure. This algorithm has the unique feature that it

achieves a quite nice performance, O(1.3071"), for a unique 3-CNF formula, i.e., a

formula which has only one satisfying assignment. As the number m of satisfying

assignments grows, the bound, denoted by [Z}psz(m), degenerates, i.e., 7}psz(m) is

an increasing function. [PPSZ98] needed a lot of effort to stop this degeneration by

formalizing the intuition that if the formula has many satisfying assignments, then

finding one should be easy.

 In contrast, the algorithm of [Sch99] is based on the standard local search for

which the above intuition is obviously true. Namely its running time [ZM I]cH(m) is the

4.1. Introduction 35

worst when m = 1 and then decreases. Recall that Tppsz (l) < TscH (l) = O(1.334n).

So, if we run the two algorithms in parallel, then the running time is bounded

by min{Tppsz(m), TSCH(m)} which becomes maximum (= Tppsz(mo) = TSCH(mo)) at

m = mo. Obviously TSCH(mo) < TscH (l). Although TscH (l) is not the currently best,

there is a lot of hope of breaking it since Tppsz (1) is much better than the current

best.

Unfortunately, this approach has an obstacle. We know the value of Tppsz(m)

but we do not know that of TSCH(m) for the following reason. To obtain TSCH(m), it

appears that we need to know the Hamming distance between the (randomly chosen)

initial assignment and its closest satisfying assignment. However, there is no obvious

way of doing so, since it is quite hard to analyze how (multi) satisfying assignments of

a 3-CNF formula can distribute in the whole space of 2n assignments. To overcome

this difficulty, we analyze two algorithms simultaneously, that is, we give a lower

bound on the success probability that at least one algorithm returns a satisfying

assignment given a same initial assignment.

4.1.2 Improving Randomized Local Search Algorithms

As seen in the previous chapters, Schoning's randomized local search algorithm is

very simple and fast. Thus to improve this algorithm was thoght to be very difficult.

First breakthrough was achived by [SSW01, HSSW02] and upper bounds for 3SAT

is reduced to 1.3303n from (4/3)n. The authors of [SSW01, HSSW02] observed that

there is a better way to obtain an initial assignment than simply generating uniformly

at random. They introduece the notion of independent clauses of CNF formula and

show that if the number of independent clauses is sufficeintly large, we can obtain a

good initial assignment. However, it is not necessary that the number of independent

clauses is large. To deal such a case, they use another simple algorithm that runs

very fast for a formula with small number of independent clauses. In this chapter,

we present an improved algorithm of [HSSW02] extending the notion of independent

clauses.

36 4 improved (71)per Bounds foT 3-SAT

Organization of chapter In section 2, we present the analysis of our new algo-

rithm that achieves new worst case upper bounds for 3SAT. In section 3, slightly

refined analysis of our algorithm is given. In section 4, we review the basic idea of

[HSSW02]. In secton 5, we present our improveinent.

4.2 CombinationofTwoAlgorithms

As mentioned previously, we cannot analyze a simple repetition of SCH and PPSZ.

Our solution is to use the same random assignment for each execution of SCH and

PPSZ. Namely, our algorithm is:

IT(CNF-formula F, integer s, integer T)

 E, = Resolve(F, s).

 repeat T times

 y = uniformly random vector E {O, 1}n

 T == uniformly random permutation of 1,2,

 z= Modify(4,T,y)l

 z' = RandomWalk(F, y);

 if z satisfies F

 then output(z); exit;

 else if z' satisfies F

 then output(z'); exit;

 end

 output('Unsatisfiable');

,n

 Now we present the analysis of our new algorithm. Let po be the probability that

the above single try finds a satisfying assignment if the given formula is satisfiable.

To obtain po, there are two key lemmas, for. which we recall some definitions. Let

sat(F) be the set of satisfying assignments of the formula F. A set of assignments,

C g {O, 1}", is called a siLbciLbe, if C is determined by fixing a certain number of

variables. For example, {OOOO, OOOI, OOIO, OOII} is a subcube obtained by fixing xi =

x2 = O. Now it turns out that the whole space, {O, 1}", can always be partitioned

4.2. Combination of Two Algorithms 37

into a family {Cz I z E sat (F)} of disjoint subcubes so that Cz contains z E sat (F)

but no other z' E sat(F) - {z} (see chapter 2). Note that the existence (not explicit

construction) of such partition suffices for our purpose.

Now, given formula F with a set of satisfying assignments S and the subcube

partition {C(z, /z) I z E S} , T(F, zIC(z, /z)) ((}(F, zIC(z,!z)), resp.) is defined

as the probability (averaged over y and 1T) that a single execution of Modify

(RandomWalk, resp.) finds the assignment z under the condition that the ini

tial assignment y E C(z, /z). We state the lower bounds of T(F, zIC(z, /z)) and

(}(F, zIC(z, /z)).

Lemma 4.1 For any satisfiable 3CNF formula F and any partition C(z, /z) , if y E

C(z, /z) is chosen uniformly at random, then the value T(Fs ' zIC(z, /z)) is bounded

as follows:

T(F zlC(z /)) > 2-(1-'Y3)n-'Y3! I z ls, 'z _ ,

where /3 = 2 - 2ln 2.

Lemma 4.2 For any satisfiable 3CNF formula F and any partition C(z, /z) , if

y E C(z, /z) is chosen uniformly at random, then the value (}(F, zIC(z, /z)) is bounded

as follows:

(
3)n-1IZ I

(}(F, zIC(z,!z)) 2': 4

Proof. Omitted. o

Now our success probability of a single run is at least the probability of Lemmas 4.1

and 4.2, i.e.,

Po > L max{T(F, zIC(z,!z)), (}(F, zIC(z'!z))}Pr[z E C(z,!z)]
zEsat(F)

> min max{T(F, zIC(z, /z)), (}(F, zIC(z, /z))}
zEsat(F)

38 4 Improved (LIPper BoiLnds for 3-SAT

since

 2 Pr[z (c(z, 4)] - i.

 zEsat(I7)

 po 2 max{7(F, zlC(z, l2)),a(F, zlC(z, I.))},

which becomes minimum (= st(1.3227'n)) when

II2I = O.027940n. Now the standard probabilistic argument allows us to claim that

our algorithm finds a satisfying assignment with high probability for I = O(1.3227").

Recall that I is the number of repetitions.

 Similar result holds for 4SA]] using following Iemmas.

Lemma 4.3 Eor any satiofiable 4CNF formula F and any partition C(z,h) , ofy E

C(z,I.) is chosen zLnofbrmgy at random, then the value 7(I71,,xlC(z,I.)) is boiLnded

as follows:

 7(I71, , zlC(;z , 4))) 2-(i-"v4)(n-1iz 1) (2/3) P.I,

where 74 = O.4451818849.

Lemma 4.4 libr any satiefiable 4CNF formzLla F and any pawhtion C(z, I.) , of

y E C(z, I.) is chosen 2Lnofbrmly at random, then the valzLe a(F, zlC(z, I.)) is boiLnded

as follows:

 0(F, zlc(z, I.))) (g)n-Iizl .

Now

 po 2 max{T(F, zlC(z, I.)),a(F, zlC(z, Il,))},

which becomes minimum (== st(1.4705'")) when II.1 = O.049007n.

4.3 . Further Improvements 39

1.37

1r36

1.35

1,34

t.33

1,32

1,31

 t.3

129

 'SCH' +
 'ppsz' ×
"H'A-- .,....... .pa.pt,,*,pe.,,×.,**.pe.plpt×geptplpt*xi"ptpdXptXXXXptpe"

.pa.pe.pa.ptpl"ptpuEe""'"u"v-ti}...v.......

 ""'"4"ig.lt-tpt..%.

o O.Ol O.02

 Figure

 O,03

4.2:

 O.04 O,05 O,06

Tirade-ofiis of PPSZ

O,07

and

 O.08 O.09

SCH

O,1

1,326

1,325

1,324

1.323

1.322

l,321

 1.32

1.319

1,318

+

l

+
+

+
+

+
+

+
+

+

 ×
 xx
 xx
 xx
 xx
 xx
 xx
 xx
xx
x

+
 +
 +
 +
 +

 x
 Xx
 xx
 xx
Xx
x

 ×
 xx
¥l
x+

 ×
 ×xx x
x

+
 +
 +

 ngCH'
 x 'ppsz'
 × 'PRSZ2'

 xx
 xxxx x
x

+
+

+
+

+
+

+
+

+
×

x

O,02 O,022 O.024

 Figure 4.3

 o.o26 o.o2s o,o3

: Refined analysis of

 O,032

ppsz

O.034 O.036

40 4 Improved Upper Bounds for 3-SAT

4.3 Further Improvements

In this section, we slightly improve the running time of our algorihm by more refined

analysis. We used lemma 4.1 for lower bounding the success probability of PPSZ

algorithm. However, lemma 4.1 is obtained by the analysis optimized for unique

3SAT. We can obtain a different bound that yields better trade-offs as following:

Lemma 4.5 For any satisfiable 3CNF formula F and any partition C(z,Iz) de

scribed above, ify E C(z, I z) is chosen uniformly at random, then the value T(Fs ' zIC(z, Iz))

is bounded as follows:

T(F zlC(z I)) > 2-(I-,(a))(n-IIzl)oYz!s, ,z _ ,

where

()
6a-6a2 ln(1/a)-4a3 -11

rva = -<a<1.
I 3a2' 2 - -

The improvement is shown in Figure 4.3. Using this lemma, we obtain 1.3225n upper

bounds, which slightly improves previous 1.3227n .

4.4 Improving Randomized Local Search Algorithms

Independent Clauses We begin by introducing some notions. Two clauses 0 and

Of are called independent ifthey have no variables in common. E.g., 0 = Xl VX2 VX3

and Of = Xl VX5 VX6 are not independent. For a formula F, a maximal independent

clause set C is a subset of the clauses of F such that all clauses in Care (mutually)

independent and no clause of F can be added to C without destroying this property

the dependency. If C is a maximal independent clause set for a formula F then

every clause 0 in F contains at least one variable that occurs in (some clause of)

C . Otherwise, C would not be a maximal independent clause set. This gives the

following consequence: if we assign constants to all the variables contained in the

independent clauses, then - after the usual simplifications consisting of removing

constants - we obtain a 2-CNF formula F*, since every clause in F* has at most two

4.4. Improving Randomized Local Search Algorithms 41

literals. It is well known that there is a polynomial-time algorithm for checking the

satisfiability of a 2-SAT formula [APT79] and finding a satisfying assignment if one

exists. Hence, given a satisfiable formula F and a maximal independent clause set

with 7h independent clauses Ci,...,CZh, we are able to find a satisfying assignment

in time pogy(n)･7M. Namely for each of the in independent clauses, we can run

through all seven (of the eight) assignments that satisfy the clause. The remaining

2-SAT formula is tested in polynomial time for satisfiability.

 For a better understanding of what follows, we remark that this algorithm could

also be replaced by a randomized algorithm: set each of the independent clauses

with probability 1/7 to one of the seven satisfying assignments. Then, solve the

remaining 2-SAT problem. The success probability of this randomized algorithm is

at Ieast (1/7)M which is large if in is small.

Basic Idea The basic idea behind the improvement of [HSSW02] is as follows: If

we are given an instance of 3-SAT where we find a maximal independent clause set of

in clauses where M is small, we get a small running time (or large success probability)

by the algorithm just described. On the other hand, in could be as large as n/3.

Here we are able to improve the first phase of Sch6ning's original algorithm. In the

original algorithm, each variable is set to O with probability 1/2. The information

given by the clauses is completely ignored. Although a clause C = xi V x2 V x3

tells us that not all those three variables should be set to zero simultaneously, the

original initialization phase selects such an assignment with probability 1/8. Their

improvement is to initialize the three variables in every independent clause so that

assignment (O,O,O) should be avoided. The computation shows that the success

probability of this modified version of Sch6ning's algorithm increases with M.

Underlying Algorithms The algorithm starts by computing a maximal indepen-

dent clause set. It is clear that this can be done in polynomial time by a greedy

algorithm which selects independent clauses until no more independent clauses can

be added. Let Ci,...,Cth be the independent clauses thus chosen. By renaming

variables and exchanging the roles of xi and Xi if necessary we may assume that

Ci = xi Vx2 V x3, C2 = x4 Vxs V x6 etc. Hence, the variables xi,..., cc3th are those

42 4 Improved Upper Bounds for 3-SAT

Subroutine Ind-Clauses-Assign(p1' P2, P3);
for G E {G1 , ... ,Gm }

Assume that G = Xi V Xj V Xk

Set the variables Xi, Xj, Xk randomly in such a way
that for a = (Xi, Xj, Xk) the following holds:

Pr{a = (0,0, l)}=Pr{a = (0,1, O)}=Pr{a = (1,0, 0)}=P1
Pr{a= (0,1, l)}=Pr{a = (l,O,l)}=Pr{a= (1,1,0)}=P2
Pr{a = (1,1, 1)}=P3

end for;

Figure 4.4: Subroutine Ind-Clauses-Assign

contained in the independent clauses and X3m+l, ... , X n are the remaining variables.

For assigning constants to the variables in the independent clauses, we apply a ran

domized procedure called Ind-Clauses-Assign which depends on three parameters

P1, P2, and P3' to these three, we choose one of the seven assignments for the three

variables of one clause. The details of the procedure are explained in Figure 3. After

Ind-Clauses-Assign is called, all variables Xl, ... , X3m are assigned constants.

Assume in the following that a* is an arbitrary but satisfying assignment to the

input formula. For each independent clause Gi , we can count the number of the

variables in Gi that are set to 1 by a*. Since a* is a satisfying assignment for all

clauses, we have that either one, two or three of the variables in Gi are set to 1, for

each i. For our analysis, let m1 (m2 and m3 respectively) be the number of clauses in

{G1 , ... , Gm} in which exactly one variable is set to 1 bya* (two and three variables,

respectively). Let us also abbreviate ai := mdm. We have m= m1 +m2+m3 hence

a1 + a2 + a3 = 1. We are now ready to describe two randomized algorithms which

play key roles in the improved 3-SAT algorithm [HSSW02].

Algorithm Red2 and Its Success Probability Algorithm Red2 is the gener

alization of the algorithm which checks all 7m assignments to the variables in the

maximal independent clause set. It reduces a 3-SAT formula to a 2-SAT formula

and is successful if the 2-SAT formula is satisfiable. The algorithm is described in

4.4. Improving Randomized Local Search Algorithms 43

Algorithm Red2(qi, q2, q3); #qi are probabilities with 3gi + 3g2 + q3 == 1#

 Ind-Clauses-Assign(qi , q2, q3)i

 Simplify the resulting formula and

 start the polynomial-time 2-SAT algorithm;

 Figure 4.5: Algorithm Red2

Figure 4.

 AIgorithm Red2 finds a satisfying assignment when the partial assignmentto the

variables xi,...,x3in (which satisfies the clauses Ci,...,(],h) can be extended to a

complete satisfying assignment. This is the case, e.g., if the partial assignment agrees

with a* on xi,...,x3th . The probability of this event is exactly qPi･q2M2･q3M3, as

we show now: Let q･ be one of the in clauses and let a' have exactlyi1's for the

variables in q. The probability that algorithm Red2 assigns values to the three

variables in q that agree with a' is qi. By multiplying over all clauses, we obtain

the above probability. The following theorem states the bound with the parameters

we need later on:

Theorem 4.2 tCllSSWO21. Algorithm Red2 has siLccess probability at least

 (Ell,L)Mi . (SIII'L)M2 . dvy3 = [(Elli'L)cri . (Elii'L)cr2 . atg3]rh.

Algorithm RW and Its Success Probability Algorithm RW improves the first

phase of Sch6ning's random walk (RW) algorithm in which an initial assignment is

chosen. Instead of initializing each variable xi with probability 1/2 to 1, variables

xi, . . . , x3m in the independent clauses are assigned by Subroutine Ind-Clauses-Assign

to the probability distributions pi,p2 and p3. Algorithm RW is described in Figure

4 and its success probability is analyzed in the following theorem.

Theorem 4.3 !HSSWO211. The s2Lccess prDbability ofalgorithm RMiis at least .linw :==

(2) "-3M . (3gi + 9g2 + p-43)Mi (9gi + 3g2 + 'p-23)M2 (32i + 3g2 + p3) M3

44 4 improved UPper BoiLnals for 9-SAT

Algorithm RW(pi,p2,p3); #pi are probabilities with 3pi + 3p2 +p3 = 1#
 Ind- Clauses-Assign (pi , p2 , P3) i

 Set the variables x3ni+i,...,x. independently of each other to O or 1,

 each with probability 1/2.

 To the assignment a obtained in this way, apply RandomWalk(a).

 Figure 4.6: Algorithm RW

Proof By Lemma 1, the success probability of RandomWalk(a), where a has Ham-

ming distance dfrom the satisfying assignment a" = (al,...,aA) is at least (1/2)d/p(n).

As in the proof of Theorem 1, we obtain for the success probability:

 1 Pr{success}) E[(s)d(a･"")]/p(n).

Here, it does not hold that all variables are fixed independently of each other. But

the only dependence is between variables which are in the same clause Ci, where

1 g a S th. Define Xi,2,3 to be the random variable which is the Hamming distance

between (ai,a2, a3) and (al,aS,aS). Define X4,s,6 etc. similarly and Iet Xi = d(ai,a,*･)

for i > 377L + 1. We have

 d(a7 a') = Xi,2,3 + X4,s,6 + ' ' ' + X3in-2,3m-i,37h + X3ni+i + X3th+2 + ' ' ' + Xn,

hence

 Pr{success}) p(ln) ･ E[(S)Xi,2,3+X4i5･6+'''+X3th-2,3th-i,3th+X3nt+i+X3nt+2+-''+Xn]

 ' = p(1.) . E[(S)xi･2･3] . E[(S)X4･s･6] ･ ･ ･ .[i][(;)X3in-2･3m-i･3th] ･ ,.,,l!l.l!l.,E[(i)Xz]･

 We show how to analyze E[(i)Xi･2･31, the other terms E[(3)X`･5･6] etc. are analyzed

in the same way. It turns out that E[(i)Xi･2･3] depends on how many ones (al, aS, aS)

contains. We have to analyze the three possible cases:

Case a: + aS + aS == 3:

4.4. Improving Randomized Local Search Algorithms 45

 This implies (al,aS,ag) = (1,1,1). The algorithm chooses (xi,x2,x3) == (1,1,1)

with probability p3 and then the Hamming distance from (al,aS,ag) is zero. Sim-

ilarly,, the algorithm sets (xi,x2,x3) with probability 3p2 to one of (O ,1 ,1), (1,O

,1) and (1,1,O) which leads to Hamming distance 1, etc. Thus, by definition of the

expected value, we obtain

 E[(;)xi,2,3] = (;)O . p, + (S)i ･ 3p, + (3)2 ･ 3p,

 33
 = 4Pi + EP2 +P3･

 In the similar manner, we can analyze the other two cases:

Case al + aS + ag == 1:

 E[(i)Xi･2i3] == (g)O ･ p, + (i)i ･ 2p, + (S)2 ･ (2p, + p,) + (g)3 ･ p2

 3 9 p3
 == EPi+gp2+if.

Case a: + aS + ag = 2:

 E[(g)Xi･2･3] == (S)O ･ p, + (S)i ･ (2p, + p,) + (3)2 ･ 2p, + (g)3 ･ p,

 9 3 p3
 = gPi+EP2+7'

 The values mi, m2, m3 count for how many clauses which of the three cases holds.

Hence, we obtain the bound on Pr {ssuccess} stated in the theorem. []

Combining the Algorithms The simplest way to improve upon the O(poly(n) ･

(4/3)") bound of Sch6ning's 3-SAT algorithm is as follows: We first call Red2(1/7,1/7,1/7).

And then call RW(4/21,2/21,3/21). The success probability of this combined algo-

rithm is at least st(1.330258-"), which we will prove now: First, observe that the

success probability of algorithm Red2(1/7,1/7,1/7) is at least (1/7)M) (1/7)M/p(n).

On the other hand, by Theorem 3, with the chosen parameters, the success proba-

46 4 Improved UPper BozLnas for 9-SAT

bility of algorithm RW is at least

 , (2)n-3in.(?)7n.,,L,=(2)".(2+/)M.,,k,.

The combined algorithm is successful if one of the two randomized algorithms is

successful and thus the success probability of the combined algorithm is at least as

large as the maximum of the two success probabilities. We observe that the bound on

the success probability of algorithm Red2 decreases with M while the bound on the

success probability of algorithm RW increases with in hence it suflices to compute

the 77b where both are equal. This is the case for

 n log9/64
 E'i = l.g3/4 'U 6'8188417,i･e･;M fu O.1466525 ･ n.

This leads to a success probability of at least 9(1330258-") and a randomized algo-

rithm for 3-SAT with expected running time O(1.330258n).

4.5 Ourlmprovements

Good pair Our Improvement is obtained by extending the technique of [HSSW02].

Without loss of generality, we can assume that, given 3-SAT fbrmula F, if a literal

xi appears in a clause C, then there exists a clause C' such that Xi appears in C'.

(Otherwise we eliminate such a literal by assigning the value that makes the literal

true.) We call C and C' are a good pair if they have the same variable and its sign

is different in each clause between them. By renaming variables and exchanging the

roles of xi and Xi, good pair is classified into 6 types:

 e type 1: (xi V x2 V x3) A (Xi V x4 V Xs)

 e type 2: (xi V x2 V x3) A (Xi V x2 V X4)

 e type 3: (xi Vx2 Vx3)A (Xi VX2 V C4)

 e type 4: (xi Vx2 V x3) A (Xi Vx2 VX3)

 e type 5: (xi V x2 V x3) A (tui V X2 V X3)

4.5. 0ur Improvements 47

Subroutine Construct Ind-Clauses-Set{input F};

 Compute maximal independent gooel pair set e'

 Compute maximal indepenaent claiLse set e by adding independent clauses to e'.

return e .

 Figure 4.7: Subroutine Construct Ind-Clauses-Set

 e type 6: (xi V x2 V x3) A (Xi V X2 V X3)

 For every type, we can see that exactly 1/4 of all possible assignments do not

satisfy both of a good pair at the same time. E.g., fbr (xi Vx2 Vx3) A (Xi Vf2 V x4)7

(Xi) x2, x3) x4) = (O; O, O, O), (O, O, O, 1), (1, 1, O, O) and (1, 1, 1, O) are unsatisfying as-

signments among 16 possible assignments. To exploit good pair for the improvement

of the first phase of Sch6ning's algorithm, we modify some notions. Two good pairs

C A C' and C" A C"' are called independent if they have no variable in common.

A good pair CA C' and a clause C" are also called independent if they have no

variable in common. Recall that, in the original algorithm, maximal independent

cla2Lse set can be constructed arbitrary. For our improvement, we construct maximal

independent clause set as described as Figure 6.

Probabilistic analysis We begin by showing some lemmas.

Lemma 4.6 R)r a type 1 good pair (xi V [c2 V x3) A (Xi V x4 V xs), we can obtain

 E[(i)Xi,2,3,4,s] = (14s52)

by Ind- clauses-Assign-1 (8,7, {il, , 8, ; (il, , cii,77 ig,i2)･

Proof Figure 4.8 shows Ind-Clauses-Assign-1(pi,p2,p3,p4,ps,p6) where pi's have to

satisfy

 4pi + 8p, + 4p3 + 2p4 + 4ps + 2p6 = 1

Similarly to the analysis of Ind-Clauses-Assign, we can obtain the following ten cases.

48 4 improved UPper Bo2Lnds for 9-SAT

Subroutine Ind-Clauses-Assign-1 (pi,p27P3,p4,Ps7P6)i

 Assume that C = (xi V x2 V x3) A (tui V x4 V xs)

 Set the variables [ci, x2, x3, x4, xs randomly in such a way

 that for a = (xi, x2, x3, x4, xs) the following holds:

 Pr{a-=(O,O,1,O,O)}-Pr{a-(O,1,O,O,O)}-Pr{a-(1,O,O,O,1)}

 Pr{a =(O,O,1,O,1)}-Pr{a-(O,O,1,1,O)}=- Pr{a ==(O,1,O,O,1)}

 Pr{a-(1,O,1,O,1)}-Pr{a-(1,O,1,1,O)}-Pr{a=-(1,1,O,O,1)}

 Pr{a==(O,O,1,1,1)}-Pr{a=(O,1,O,1,1)}= Pr{a=(1,1,1,O,1)}

 Pr{a==(O,1,1,O,O)}=Pr{a=(1,O,O,1,1)}=p4

 Pr{a=(O,1,1,O,1)}=Pr{a==(O,1,1,1,0)}= Pr{a=(1,O,1,1,1)}=

 Pr{a=(O,1,1,1,1)}= Pr{a= (1,1,1,1,1)}=p6

Pr{a=(1,O,O,1,O)}=pi

Pr{a-(O,1,O,1,O)}=

Pr{a=(1,1,O,1,O)}==P2

Pr{a==(1,1,1,1,O)}==P3

Pr{a=(1,1,O,1,1)}=Ps

Figure 4.8 : Subroutine Ind-Clauses-Assign-1

Case d((a: , aS, ag), (O, O, O)) =- 1 and d((a:, aE, ag), (1, O, O)) - 1:

 9213E[(i)xi,2,3,4,s] = gp, + k5p, + tltp3 + TTtp4 + g7tps + iBp6

Case d((al

 and

Case d((al

, aS7

, aS;

ag), (O, O, O)) =- 1 and d((a:,

ag), (o, o, o)) = 2 an

a2, aE), (1, O, O)) = 2 and a: - O:

d d((a:,aZ, ag), (1, o, o)) - 1 andal =1:

 3 15 3E[(l)xi･2･3･4:s] = ktpi + lllilp2 + 16tp3 + gp4 + iiiips + 4P6

Case d((a:, aS, ag), (O, O, O))

 and

Case d((a:, aS, ag), (O, O, O))

= 1 and d((a:, aZ, ag), (1, O, O)) - 3:

= 3 and d((a:, aE,ag),(1 ,O, O)) = 1:

 1
E[(E)Xl,2,3,4,5] 9 15 3 3 9 3= i6Pi + -g-P2 + EP3 + gP4 + gPs + ?6

4.5. 0ur Improvements 49

Case d((al, aS, ag), (O, O, O)) = 1 and d((a:, aE, ag), (1, O, O)) == 2 and a: = 1:

 and

Case d((al, al, ai), (O, O, O)) = 2 and al((al, a:, ag), (1, O, O)) = 1 and al = O:

 E[(3)xi,2,3･4･s] .. gp, + gp, + 2p, + gilp4 + gps + gp6

Case el((a:, aS, ag), (O, O, O)) - 2 and d((ai, aE, ag), (1, O, O)) - 2:

 E[(±)xi,2,3,4,s] .. :÷/p, + lgtLp, + gp, + fltTp, + gp, + 2p6

Case d((al, aS, ag), (O, O, O)) - 2 and d((al, aE, ag), (1, O, 0)) =- 3:

 and

Case d((a:, aS, ag), (O, O, O)) =: 3 and d((ai, aE, ag), (1, O, O)) - 2:

 E[(5)Xi,2,3i4i5] = gp, + gp2 + gP3 + gP4 + gPs + gP6

 Since (pi,p2,p3,p4,ps,p6) = (ill,,61,,8,,8,,61,,igr,), we obtain EI(3)Xi･2･3･4･s] =:

We can construct and analyse Ind-Clauses-Assign-i for each type i and obtain similar

bounds as follows.

 e type 2: (xi V cc2 V x3) A (fi V CC2 V X4)

 E[(3)xi,2,3,41 .. (lll7)

 e type 3: (xi V x2 V x3) A (Xi V X2 V X4)

 E[(i)Xl,2,3,,] .,. (lii51)

50 4 improved UPper Bounds for 9-SAT

 e type 4: (xi V c2 V v3)A(Ti VX2 VX3)

 E[(S)Xi･2･3] == (llll5)

 e type 5: (xi V x2 V x3) A (Xi V f2 V X3)

 E[(±)X"2'31 - (14o5s)

 e type 6: (xi V x2 V x3) A (Xi V X2 V X3)

 E[(S)xi･2･3] - (El;t)

Now we compute the success probability of the modified RW from the analysis of

the independent clause set e computed by Construct Ind-Clauses-Set (with the pa-

rameters described as above).

Theorem 4.4 The s2Lccess probability of the modijied algorithm RMI is at least PRw : =

(2)n.(2i/)MO (i2g07)Mi Gi:)M2 (2g?)M3 (ltt)M`.(g÷/)M5.(gtt)M6.p(1.),

where mi is the nzLmber of good pairs of type i in e and mo is the niLmber of single

claiLses in e.

 The success probability of modified Red2 is at least (1/7)Mo･(1/24)Mi･(1/12)M2+M3･

(1/6)M4+Ms+M6. However, in the worst case, combining the algorithms does not im-

prove the upper bound. It is the case when e contains small number of good pairs,

e･g･, mi, m2, . . . , m6 = o(n), we have no advantage of good pairs.

 To deal with such case, following observation is useful. Let e be a fixed maximal

independent clause set, Iet e" be a set of good pairs in e and let e' be a set of

single clauses in e. Our problem occurs when e" is small and e' is large to some

extent. The reason why a clause C E e' cannot constitute a good pair is that any

candidate clause for a good pair with C is not independent to the pairs in e" So, if

e" is removed, C E e' may become good pair.

4.5. 0ur Improvements 51

Subroutine Construct Ind-Clauses-Set{input F};

 Compute maximal independent set of type 1 '-3' good paire'

 Compute maximal independent cla2Lse set e by adding

 independent clauses or good pair to e'.

return e.

 Figure 4.9: Subroutine Construct Ind-Clauses-Set

 For a fixed formula F and its maximal independent set e, let V be a set of clauses

that are not independent to e". If we assign constants to all the variables contained

in e" and apply usual simplification technique to F, we obtain a formula F* that

satisfies the properties:

 (1) the clauses contained in V are eliminated or have at most two literals.

 (2) if we make a good pair by using clause in e', another clause of good pair is

contained in V.

 In F', a good pair consits of a clause in V and in e' is classified into three types.

 e type 1': (ci Vx2 Vx3)A (Xi VX4)

 e type 2': (xi V x2 V x3) A (Xi V x2)

 e type 3': (xi Vx2 V x3)A (Xi VX2)

 Similarly to the analysis of Ind-Clauses-Assign-i, we have the following bounds

for the above three types.

 e type 1': (xi V x2 V x3) A (Xi V X4)

 E[(;)Xi,2,3,4] - (li})

 e type 2': (xi Vx2 Vx3)A (Xi VX2)

 E[(3)xi72･3] - ({ls)

52 4 improved UPper Bounds for 3-SAT

 e type 3': (xi V x2 V x3) A (Xi V X2)

 E[(S)xi･2･3] - (ER,T)

Now we compute the success probability of the modified RW on F* from the analysis

of the independent clause set e computed by Construct Ind-Clauses-Set (with the

parameters described as above).

Theorem 4.5 The s7Lccess probabilitgy of algorithm RW on F* is at least RRw :=

 (g)n-5mi-4(m2+m3)-3(M4+Ms+M6) (2i/)Mo' Gig)Mi' (:i7i)M2' (:%)M3'

where m,, is the nzLrnber of good pairs of type i' in e and mot is the number of single

clauses in e.

 The success probability of modified Red2 is at least (1/7)Mo' (1/10)Mi' (1/5)M2'+m3'

Here again, we have no advantage of good pairs when mit is small. In such case, we

assign constant to all variables contained in the good pairs of type 1'-3' and apply

usual simplification technique to F'. As a result, we obtain a formula F"' such that

clauses contained in V are eliminated or have at most one literals. Thus, we can

eliminate all variables in e' in F** because variables contained in e' appear as unit

clauses or pure literals. (We call a literal l, is a pure literal in F iff a literal li does

not appear in F.)

Upper bounds Now, we consider the upper bound of our improved algorithm.

Erom theorem 5 and its counter part algorithm, we obtain two upper bounds

 (g)" (2i/)MO (;4,gg)Mi GiZ)M2 (223)M3 (l+P)M` (26,)M5 (lii,i)M6

 7MO 24Ml 12M2+M3 6M4+Ms+M6

where O S 5mi + 4(m2 + m3) + 3(m4 + ms + m6) S n･

4.6. Concluding Remarks 53

From theorem 6 and its counter part algorithm, we obtain two upper bounds

 24Ml 12m2+m3 6m4+ms+m6 (g)n"5Ml-4(M2+m3)-3(m4+ms+m6)

 . (g÷/)mo' (sg)mi･ (g+/)-2･ (g;g)-,･

 24Ml 12M2+M3 6M4+M5+M6 77T}ot 10Ml, 5M2,+M3,

where O S 4mi, + 3(m2, + m3t) S n - 5mi - 4(m2 + m3) - 3(m4 + ms + m6)･

From the observation in the last part of the analysis, we obtain the following upper

bound

24Mi 10Mit 5M2'+M3' T(n - 5ml - 4(m2 + m3) - 3(m4 + Ms + r}Z6) - Ml, - 3Mot)

where T(n) is the best upper bound fbr 3-SAT with n variables. Define

Tt(mo, ml, m2, m3, m4, ms, m6) = : maxmo,,ml,,m2,,m3, min{(3), (4), (5)},

then we have T(n) == maxm,,m,,m,,m,,m,,ms,m6 min{(1), (2), T'}. By numerical analysis

we obtain T(n) = O(1.329917n).

4.6 ConcludingRemarks

In this chapter we present new worst-case upper bounds for 3SAT. Our algorithm

make use of trade-off between two algorithms and achieves current best running time.

Recently we learn that Rolf gave more refined analysis of PPSZ that yields even

better trade-offs as follows:

Lemma 4.7 ([Rol05b]) R)r any satiofiable 9CNF formiLla F and any pawhtion

C(z,I.) described above, ofy E C(z,I2) is chosen iLn2formgy at random, then the

vagzLe 7(I71,,ziC(z, I.)) is bounaed as foggows:

 T(47zlC(z, I.)) }il 2-(i-7')(n-Iizl)-rs'Ii.1,

54 4 Improved [7Pper Bo2Lnds for gy-SAT

where ty' = O.61229, 6' = O.90625.

This further improves the upper bound for 3SAT into 1.32216n.

 We also present an impovend on Sch6ning's randomized local search algorithm ex-

tending the techniques develped by [SSWOI, HSSW02]. Our result gives O(1.329917")

upper bounds for 3SAT. This bound is the first result that achives better bounds than

O(1.33") after [SSWOI, HSSW02]. Independent ofour work, [BS03] gives O(1.3280")

upper bounds using similar method and additional ideas. Following the result of

[BS03], [Rol03] gives O(1.3270n) upper bounds by more refihed analysis. We do not

know this approach, that is, the combination of local search and independent clause,

yields new worst-case upper bounds for 3SAT that beats the current best bound

O(1.3225"). However, if we can analyse the running time of these kind of algorithms

when combined with PPSZ, we may obtain further improvements.

Chapter 5

Increasing the Success Probability

of PPSZ-type Algorithms

5.1 Introduction

Worst-case upper bounds for 3SAT (k-SAT in general) have been one of the most

well-studied topics in theoretical computer science. Figure 4.1 in previous chapter

shows its rich history of improvements. The current best bound is O(1.3225") by

as shown in the previous section, which is based on a tricky combination of the

two existing algorithms, Sch6ning's Local Search ([Sch021, denoted by SCH) and

Randomized Davis Putnam by Paturi, Pudlak, Saks and Zane ([PPSZ98], denoted

by PPSZ). This chapter stays on the same line, namely a combination of the two

brilliant algorithms, but uses a completely different approach.

 The basic idea of PPSZ is as follows: Suppose that a given forinula G(xi, . . . , xn)

has exactly one satisfying assignment z = ziz2 ･･･z. E {O,1}n (can be extended to

the general case). Also let T be a permutation of {1,2,...,n}. Then if we assign

each value of 2 into {xi,..,,x.} in the order of 7r, (i.e., z.(i) - vr(i) in Step 1,

zT(2) -> xT(2) in Step 2, and so on), a certain number of variables {ll {xi,...,x.}

are foTced. Here, we say that a variable x is forced in the above course of sequential

assignment with respect to T and z, if x becomes a unit clause in Step k for some

k 2 1. [PPSZ981 shows that the number N of such forced variables can be made

quite large by adding clauses by resolution. For a randomly chosen r, they proved

 55

56 5 Increasing the SiLccess Probability of PPSZ-type Algorithms

that the expected value of N is at least (21n2- 1)n Fti O.613n. This implies that

if we know the correct values of the unforced variables, ("correct" means the same

value as z), then we can retrieve the whole values of z by the above process. Roughly

speaking it is enough to know the correct values of only O.387n variables to obtain

the satisfying assignment.

Our Contribution. Of course there is no obvious ways of getting the correct values

of O.387n variables. Our idea is to use SCH for this purpose: Recall that local search,

in general, starts with a random assignment y and gradually approaches to the final

goal, i.e., the satisfying assignment z. The Hamming distance d(y, z) between y and

z is expected to be n/2, which becomes O when we get to the goal. In the case of

SCH, we can always decrease the Hamming distance by one with probability at least

1/3 in each step.

 Suppose that the current assignment a' is close to z, say d(a",z) = O.05n. Also

suppose that we use this a" (and a randomly selected T) for the retrieval process of

PPSZ. If T is fixed then the set, U, of unforced variables is also fixed, and recall

that if all the values of the variables in U are correct then we can successfully get

the satisfying assignment z. Since IUI -- 0.387n and the O.95n variables (=S) have

correct values in y*, it appears that the above success probability (=probability that

U are included in S) is not too small. In fact we can obtain an upper bound of

O(1.2991") for unique 3SAT and O(1.3231n) for general 3SAT by this approach. (Of

course we do not know if the current assignment is sufficiently close to z. So we try

the above PPSZ retrieval process in each step of SCH; if successful we are done,

otherwise we just flip one variable by the SCH rule.)

 One drawback of this approach is that the intermediate assignment a' of SCH

is not uniformly at random. Hence we need some assumption to prove the upper

bounds previously mentioned. However, we can also give some observation which

claims that the above non-uniformity is probably not too serious. Apparently it is

obviously important future work to give a formal solution to this question.

Related Work. The idea of using PPSZ in each step of local search is not new;

 UnitWalk by Hirsch and Kojevnikov [HK05] is the following procedure: In each step,

 we apply the same retrieval process using a' and (a randomly selected) T, and if

5.2. Preliminaries 57

there are unit clauses then we fix their values so as to satisfy the unit clauses and

mod21lv (simplify) the formula by this assignment. If there is no unit clause, then

we select one variable at random and flip its value. Thus there are two important

differences: (i) They change the formula in the course of the local search (we do not).

(ii) They select the variable to be flipped at random (we use the SCH). Apparently

these two differences make their analysis hard and they give only experimental data

for the performance, which are quite nice especially for "hard" benchmarks.

 Since SCH is a very simple algorithm (and its analysis is also simple and beauti-

fu1), many researches tried to improve it by adding heuristics. However, improvement

appears to be harder than it Iooks, and there are only a few successfu1 attempts so

far [HSSW02, BS03, RolO3]. Furthermore, the basic ideas of them are quite simpler,

i.e., using a biased initial assignment rather than the one selected uniformly at ran-

dom. We proposed a completely different approach in previous chapter where SCH

and PPSZ are run in parallel and an answer of the faster one is taken. However,

a simple implementation of this idea fails and they escape this problem by using

the same initial assignment for both SCH and PPSZ. [GNR04] also depends on

a diffident idea. They define an independent set of formula, and prove that if the

size of the independent set is suMciently large, then both SCH and PPSZ can be

improved.

5.2 Preliminaries

In this section, we review the basic property of Sch6ning's algorithm.

Lemma 5.1 ([Sch02]) Let F be a 3CA[F formzLla and a* be a satioping assignment

for F. jPbr each assignment a, the probability that a satisvfeling assignment is found

by RandomWalk(F, a) is at least (1/2)d(a･"').

 The fo11owing lemma states the bound for 3SAT obtained in [Sch02] using the

above lemma.

Lemma 5.2 ([Sch02]) R)r any satiofiable formula F on n variables, the siLccess

probability of one repeat-iteration ofSCH is at least (3/4)n.

58 5 Increasing the SiLccess Probability of PPSZ-type Algorithms

 We can generalize lemmas 5.1 and 5.2 by analyzing RandomWalk in a way

similar to [Sch02]

Lemma 5.3 LetF be a 3CNFfor7nula anda* be a satisuing assignmentforF. Fbr

each assignment a and O S d S d(a, a'), the probability that

RandomWalk(F, a) reaches some b E B(a", al), (= £b Pr[it reaches b E B(a', d)l)

is at least (1/2)d(",a")-d. PtLTthermore, ofa is chosen unofbrmly at random andO g

d S n/3, then the probabigity that RandomWalk(F, a) reaches some b E B(a*, d) is

at least (3/4)"(1/2)-d.

 Now, given formula F with a set of satisfying assignments S and the subcube

partition {C(z, I.) 1 z E S} , a(F, zlC(z, l2)) is defined as the probability (averaged

over y) that a single execution of RandomWalk finds the assignment z under the

condition that the initial assignment y E C(z, 1le).

Lemma 5.4 Fbr any satiojiable 3CIVF formula F and any partition C(z,4) de-

scribed above, ofy E C(z, iL) is chosen unofbTmly at random, then the valzLe a(F, zlC(z, I.))

is boundeel as follows:

 a(F, zlC(., l2))) (2)n-Iixl .

5.3 NewAlgorithm

In this section, we present our new algorithm and its analysis. As shown below, IT

is similar as the previous section, i.e., it runs the two algorithms in parallel. Our

key routine is Walk&Modify, which tries to retrieve all the bits of the satisfying

assignment from the current assignment.

c Walk&Modify(CNF formula Gi

y'=yl

for 3n times

 if y' satisfies Gi

 then return y'; exit;

G2, permutation T, assignment y);

5.3. New Algorithm 59

 else if y" = Modify(G2,T,y') satisfies Gi

 then output(y"); exit;

 C e a clause of Gi that is not satisfied by y';

 Modify y' as follows:

 select one literal of C uniformly at random and

 flip the assignment to this literal;

end

return y'

IT(CNF-formula F, integer s, integer T)

 4 == Resolve(F, s).

 repeat T times

 y = uniformly random vector E {O, 1}"

 T = uniformly random permutation of 1, 2, .

 z - Walk&Modify(F, 4, T, y);

 if z satisfies F

 then output(z); exit;

 else if 2' = Modify(Fl,,T,y) satisfies F

 then output(z'); exit;

 end
 output('Unsatisfiable');

7n

5.3.1 Uniformityassumption

Lemma 5.3 for unique 3SAT says that RandomWalk reaches some b E B(a', d) with

probability at least (3/4)"(1/2)-d. Since IB(a*,d)I fu (Z), if we assume that Ran-

domWalk reaches each of B(a", d) with the same probability, then that probability

i
s

 4- (2)n (g) -d/(n).

60 5 Jncreasing the SzLccess Probability of PPSZ-type Algorithms

If this assumption is true (actually it is enough that the assumption is true for a some

specific value of d which is given later), then it implies that each bit is independently

correct with probability at Ieast 1b × (n i 1), which makes the analysis much easier.

 Unfortunately, it is unlikely that the assumption is true. So, we introduce a bit

weaker assumption, namely;

Assumption 1. RandomWalk reaches each a, such that d(a, a") = d with proba-

bility at least Ib/p(n) for some p(n) == eO(").

 Since we are ignoring a sub-exponential factor, this assumption can obviously

replace the stronger one. Now let us consider how reasonable Assumption 1 is. One

bad scenario is that some variable has an exponentially smaller number of chances of

being fiipped. If this would be the case, then such a variable almost always has the

same value as its initial value. Since the initial value is correct with probability 1/2,

the value of this variable in the current assignment a' is also correct with probability

1/2 although the expected number of correct values in a is, say, O.95n. Fortunately,

such an extreme imbalance in the number of fiips does not happen. To see this, recall

that a formula G for unique SAT has at least one critical clause for each variable.

Let (xi + x2･ + xk) be such a critical clause for xk. Then, if the initial assignment to

xk is wrong, then this clause becomes false with probability 1/4. If there are many

such clauses, the probability increases. However, since there are only a polynomial

number of clauses and the number of steps in each run is only 3n, the difference

among such probabilities is within polynomial. It appears that this observation

implies Assumption 1, but we cannot prove it at this moment.

5.3.2 Upper bounds ofthe complexity

If we use Assumption 1, then the following analysis is not so hard:

Theorem 5.1 Under Assumptionl, for any 9CA[F formiLga F and its unique sat-

iofying assignment z, the szLecess probability of one repeat-iteration ofIT is at geast

p(4, z)) 1.29gl-n.

Proof Fix 3CNF formula F and its unique satisfying assignment z. Then,

p(4, z) = E. [Pr, [y E C(z, I(4, 7r, z))]]

5.3. New Algorithm 61

By Assumption 1, RandomWalk reaches each a in S = {a I d(a, z) = d} with

probability at least Pb/p(n) and the size of the "good" subset of S, the number of

assignments that are contained in C(z,J(4,T, z)) with Hamming distance d from 2
is (n - II(:lils,T, Z)l). Hence7

 p(4, z)) ET [,sm,sa.xi, { (n M II(#'"' Z) I) . Ib/p(.)}]

Using lemma ?? and the convexity of the term in expectation, we can assume

II(I71,,r,z)l = (1 - or)n for any T. Optimizing d, we obtain p(E,,z)) 1.2991-n

Theorem 5.2 Uhder Assumptionl, for any satiEvfiabZe 3CNF formiLla F, the siLc-

cess probability of one repeat-iteration of IT is at least

 p(4,z) - 2Pr[z c C(z, I.)lp(.E,,zlC(z, I2')) }ii 1.3os-".

 zES

Proof Let S be a set of satisfying assignments of F and fix the subcube parti-

tion {C(z, l2)1z E S}. Note that the number of assignments that are contained in
C(z, I(4, r7 z))nC(z, I.) with Hamming distance d from z is (" - IIz1 - kl(4,"7 z)1).

Using Iemma 2.6 under the assumption, we can bound

p(4,xlC(z,Iz)) ;}r E.[Pr,Ec(.,i.)[y (!C(z,I(Il,,7r,z))]]

 I}) ET [,,{m,,a{.xi,((n-IIzl-iil(I71i,7r7z)I) . (2)"-iizi (:l)-d/(

Since this bound depends on the size of the cube II.1, we use lemma 2.6 as previous

chapter when II.l is small. The convexity of the term in expectation, we can assume

II(4,r,z)1 = (1-or)(n-II21 for any T. Optimizing d, we obtain p(E,,z)) 1.308-",

n
d

)
)
]

62 5 Increasing the Success Probability of PPSZ-type Algorithms

5.4 OnthePossibilityofDerandomization
 '
In this section, we consider the possibility of derandomizing our algorithm that may

beat the current best deterministic algorithm for 3SAT. The current best deter-

ministic algorithm [BK04] is a derandomized version of Sch6ning's Random Walk

algorithm and that achieves 1.473n upper bounds for 3SAT. Although we do not

know whether PPSZ algorithm can be derandomized, [Rol05b] gave a derandomized

PPSZ algorithm for Unique SAT. The following is the Rolf's deterministic algorithm

that do not use randomly generated initial inputs.

Modify'(CNF formula G, permutation T, assignment y, integer t)

 Go = G,]' - 1.

 fori=1 to n do

 if Gi-i contains unit clause x.(i)

 then z.(i) = 1

 else if Gi-i contains unit clause X.(i)

 then z.(i) = O

 else if Gl' <-t

 then z.(i) = y7r(i)

 else return null.

 Gi = Gi-1 With XT(i) == Zr(i)

 end

 return z

Rolf(CNF-formula F, set of permutations P, integer s, integer t)

 4 = Resolve(F, s).

 fbreach 7r E P and y E {O, 1}`

 z = Modify'(4, T, y, t);

 if z satisfies F

 then output(z); exit;

 end

 output('Unsatisfiable');

5.4. 0n the Possibility of Derandomization 63

Theorem 5.3 ([Rol05b])]Fbr any zLniquely satiofiabge 3CNFformula F and appro-

priately chosen s,t and P, Rolf finds a satiofiying assignment of F in time 2(iny)n

ivhere or =2-2ln2.

We can extend this theorem in terms of subcube partition.

Lemma 5.5 Fbr any satiofiabge 3CNF formiLla F and any partition C(z,4) and

appropriately chosen s,t and P, Rolf finds z E C(z, I2) in time

 2(i-7(a))(n-Iizl)(2/cr)lizl,

where

 6dv - 6dv2 log.(1/cr) - 4cu3 - 1
 7(dv) -:
 3dv2

and any constant a s.t. S S ce S 1.

This estimate of the running time is almost as same as the probabilistic case, but

worse by 21izl factor.

 Now we have a fast algorithm for formulas which have satisfying assignments with

small number of defining variables (small l41). Thus if we could show a fast algo-

rithm for the case of large number of defining variables, we would get desired upper

bounds. However, it is very hard to show such an algorithm. Recall when we analyze

probabilistic algorithms using subcube partition, we only need to estimate the suc-

cess probability averaged over initial assignments drawn from one specific subcube.

That means we can fix one specific subcube and assume that defining variables of

the cube are assigned correct value. In deterministic case, the situation becomes dif

ferent. If we want to analyze the algorithm on one fixed subcube, we must explicitly

choose the subcube by assigning correct values to defining variables. Intuitively this

assigning process costs 2Iizl factor and we cannot expect that derandomized version

of Sch6ning's works well for the cube with large defining variables.

64 5 Jncreasing the S2Lccess Probability of PPSZ-type Algorithms

 Subcube partition may be not useful for analyzing deterministic algorithm, we can

use simpler property of formulas. Now we take the number of satisfying assignment

as a parameter, that is the original motivation of our improvement, and observe

the running time of two algorithms in terms of this parameter. Let F be a 3CNF

formula with 2dn satisfying assignments. It is easy to see that for any subsube

partition {C(z, I.)} from 2dn satisfying assignments, there exists one subcube with

II2I s{ an. Thus the running time of Rolf is estimated as follows:

Lemma 5.6 Fbr any 3CNF formula F with at most 2d" satief2/ing assignments and

appropriately chosen s,t and P, Rolf finds z E C(z, I.) in time

 2(1-or(a))(1-d)n(2/or)dn,

where

 6dv - 6or2 ln(1/or) - 4or3 - 1
 .>t(cu) =
 3or2

and any constant or s.t. 5 g cu S 1.

The above lemma is useful for fbrmulas with few satisfying assignments. For formulas

with many satisfying assignment, Hirsh[Hir98] gave the following result:

Theorem 5.4 ([Hir98]) R)r any 9CIVF form2Lla F with at least 2d" satioping as-

signments, there exists a deterministic algorithm that finds a satioping assignment

Of F in time 27-37(1'd)n.

Combining these algorithms, we improve the 1.473" upper bound for 3SAT for for-

mulas with 2d" satisfying assignments when d is sufficiently small or large. Figure

5.1 shows the running time of three algorithms.

5.5 Exploiting bias in satisfying assignments

In this section, we consider 3CNF-formulas having the bias in their solutions or many

satisfying assignments.

5.5. Exploiting bias in satisfying assignments 65

1.7

1,6

1.5

1.4

1.3

t.2

1.t

1

 / 'Hirl ----- " 'PPSZ,1 ---..---

 ++++/++++++++++++÷+++++++++++++++++++¥++

/'

 t'
 XL
 1,
 Lit
 Xi
 1,
 L,
 1,
 tL
 Xi
 L

o O.2 O.4 O.6 O.8 1

Figure 5.1: Running time of deterministic algorithms

Bias in a satisfying assignment Suppose that a given formula F has a satisfying

assignment a* which has l O's and (n - l) 1's. Let po = l/n and pi = (n - l)/n. We

have shown how to modify the initial assignment of SCH to obtain a better success

probability, i.e., each variable xi is assigned O with probability qo and is assigned 1

with probability qi, where the value of qo is appropriately determined. If we choose

optimal qo with respect to po, the following holds:

 {pgo(1 - p,)i-po (g) }" for S s po s :,

 a(F, z))

 (±) (1-po)n for po >g

 Now we consider similar situation in PPSZ. Given a uniquely satisfiable formula

F, the following quantity measures the stTDng bias in a satisfying assignment z.

 po -: po(F) =' r[}'n { I{i C I(lftiill; ,Z,l t)fi == O}I }

If we assign O with probability po and 1 with probability 1 - pi to each variable xi,

66 5 JncTeasing the Suecess Probability of PPSZ-type Algorithms

the following holds: If po) 1/2,

 T(G, z) = E. [Pry [y E C(z, I(G7 T, Z))]]

 }il E.[{p{IO(1-po)i'po}'V(G,r,x)I]

 2 {pgO(1-po)1-po}-(1-7)n.

 The success probability is shown in Fig. 5.2. Compared to SCH, PPSZ is Iess

sensitive to the bias of assignments.

 1.35

1,3

t.25

1,2

1.15

1.1

1,05

 1

s
s

s

N

s

s

N

s

s
s
s

'?,P,S,Zl :--ff..

s

 O.5 O,55 O,6 O.65 O.7 O,75 O.8 O.85 O,9 O,95 1

 Figure 5.2: Bias in a satisfying assignment and time complexity

Number of satisfying assignments Figure 5.3 shows the running time of algo-

rithms for 3CNF formulas with 2d" satisfying assignments. This result follows frorr}

following lemmas.

 '
Theorem 5.5 ([CIKP03]) I7brn variabges k-CNF F with s sol2Ltions, s7Lccess prob-

ability ofPPSZ is at least 1/(2"/s)i-'lk.

Lemma 5.7 I7br n variables k-CllVF F ivith 2`" soliLtions, success probability of

5.6. Concluding Remarks 67

PPSZ is at least

 r(4,zlC(z, I.))) 2-(i-kt,) ((k - k2)3-1i-S-gii)`n

 '
Theorem 5.6 R)rn variables k-CNF F with 2h(or)" solutions, s2Lccess probability of

SCH is at least

 (2(iQki-n}'2)nl 'ik,-.' /"ani O "M ` i

 This theorem can be proved by lemma 2.3 and the following isoperimetric in-

equality:

Lemma 5.8 ([Har66], (see [ASOO], p.104)) Let B(x) be a Hamming bagl of ra-

diiLs x andB(A,x) be a set ofpoints within Hamming distance at mostx from some

point in a set A. Then,

 ISI 2 IB(a)1 -> IB(S, d)I) Bl(a + d)I.

 We can see that SCH is not so fast as PPSZ for formulas with very large number

of satisfying assignments. This is an interesting phenomena compared to the analysis

based on subcube partition, where SCH is better for assignments with large number

of defining variables.

5.6 ConcludingRemarks

In this chapter, we propose a new algorithm that improves the current best worst-case

upper bounds of 3SAT under assumption. Our main idea is to use RandomWalk for

obtaining better initial assignments for PPSZ. The result also improves the current

best worst-case upper bounds of Unique3SAT, which seems more difficult than to

improve that of the general case. Of course, the obvious future work is to verify

the assumption used here. We do not know our result can be derandomized since

we do not have a fast deterministic algorithm for a formula with many satisfying

68 5 increasing the Success Probability of PPSZ-type Algorithms

1.6

f.5

1,4

1,3

1.2

1.1

1

 x'
t- ;t-tttt

x

.x----be----x----)e----x- --x

'CIKP'

'ppsz
'SCH'

:-[:-x---

o O,1 02 O.3 O.4 O,5 O.6 O.7 O.8 O,9 1

Figure 5.3 : Number of satisfying assignments and time complexity

assignments.

Chapter 6

Conclusion

In this thesis we study the computational complexity of CNF Satisfiability problem

(SAT for short) in an algorithmic point of view. One of the central problem in SAT

is to design algorithms for n variable formulas that run in time e" (c < 2). We would

like to reduce the constant c in the exponent as small as possible. In this thesis we

give several new algorithms and analyses of them for 3SAT, where clause length of

input formulas is restricted to three.

 In Chapter 3, we improve Sch6ning's randomized local search algorithm using

partial knowledge on satisfying assignments. Our main idea is to use the bias in the

number of O's and 1's of a satisfying assignment. Actually we take the the number

of O's and 1's as a parameter and design an algorithm optimized for each parameter

value. Though our algorithm do not improve the general case, we can apply our

algorithm to some natural combinatorial problems like 3DM matching, where the

number of O's and 1's in satisfying assignments are often inbalanced. Then we give

some experimental results that shows our algorithm is faster for several instances in

practical sense.

 In Chapter 4, we present new worst-case upper bounds for 3SAT. The previous

best algorithm for general 3SAT is an improved version of Sch6ning's algorithm and

for unique 3SAT is PPSZ's randomized splitting algorithm. Our result is based

on the following observation: if an input formula has few satisfying assignments,

PPSZ's performs well, and if it has many satisfying assignments, Sch6ning's does

well. We give the analysis of two algorithms using a combinatorial structure that is

 69

70 6 Concl7Lsion

closely related to the number of satisfying assignments of formulas. We obtain an

improved upper bounds by selecting two algorithms for the parameter value used in

the analysis.

 We also present an improvement on Sch6ning's randomized local search algorithm.

In the original Sch6ning's algorithm we use an uniformly generated assignment as

starting point of search. Hofmeister et al. gave a better way to obtain a good starting

point with higher probability by using independent clause set and improved the

algorithm. We extend the definition of independent clause set, namely, we introduce

independent clause pair set and analyze it. As a result, we obtain a further better

way to obtain a good starting point of search and improved the previous algorithm.

 In Chapter 5, we propose a new algorithm that improves the current best worst-

case upper bounds of 3SAT shown in Chapter 4. It is known that PPSZ's algorithm

can find a satisfying assignment in sub-exponential time when given an assignment

that agrees with a satisfying assignment in a large fraction (say, 2/5 fraction) of

variables. We say such an assignment a good assignment. In the current best al-

gorithm we try to find a good assignment by guessing uniformly at random. Our

basic idea is to use Sch6ning's algorithm for obtaining a good assignment with higher

probability. We analyze this new algorithm under some assumption and improves

the current best worst-case upper bounds of 3SAT. Under the same assumption, we

also improves unique 3SAT case, which seems more diflicult than to improve that of

the general case.

 Throughout this thesis, we follow a general framework to design new algorithms

as follows: First we define the property of formula and parameterize it. Second we

design an algorithm optimized for formulas with a specific range of the parameter.

Finally if we have a set of algorithms optimized for every range of the parameter.

Our framework is promising for further improvements. A good start point is to find

another natural and useful properties of CNF formulas.

Bibliography

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. M. Spaccamela,

 and M. Protasi. Complexity and Approximation. Combinatorial Optimization

 Problems and their Approximability Properties. Springer-Verlag, 1999.

[Al196] E. Allender. Circuit complexity before the dawn of the new millennium. In

 Proceedings 16th Annual Conference on Fbundations of Software 7-lechnology

 anel Theoretical Co7npiLter Science (TISTEISTCS '9di, Lecture Notes in Computer

 Science 1180, pp. 1-18, 1996.

[APT79] B. Aspvall, M. F. Plass and R. E. Tarjan. A Linear-Time Algorithm for

 Testing the rllruth of Certain Quantified Boolean Formulas. InjFbrmation Pro-

 cessing Letters, 8(3):121-123, 1979.

[ASOO] N. Alon and J. H. Spencer. The probabilistic method (second edition). John

 Wiley & Sons, Inc., 2000.

[AS03] V. Arvind and R. Schuler. The Quantum query complexity of O-1 knapsack

 and associated claw problems. In PToc. ISAAC2003, LNCS 2906, 168-177, 2003.

[BE05] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289"). J. Algorith7ns,

 54(2):168-204, 2005.

[Bei99] R. Beigel. Finding Maximum Independent Sets in Sparse and General

 Graphs. In the proceedings of the 10th Annual ACMLSIAM SymposiiLm on Dis-

 crete Algorithms, 1999.

[BK04] T. Brueggemann and W. Kern. An improved local search algorithm for 3-

 SAT･ Theoretical Comp2Lter Science, 329(1-3):303-313, 2004.

71

72 Bibliography

[BP98] P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, and

 Future. B7Llletin of the EiLropean Association for Theoretical CompzLter Science,

 65:66-89, 1998.

[BS90] R. Boppana and M. Sipser. The complexity of finite functions. Handbook

 of Theoretical Computer Science, Vbl.A:Algorithm and Complexity, Elsevier,

 1990.

[BS03] S. Baumer and R. Schuler. Improving a probabilistic 3-SAT AIgorithm by

 Dynamic Search and Independent Clause Pairs. Selected Revised Papers from 6th

 International Cowference on Theory and Applications of Satiofiability [Tlesting

 (SAT 200Srp, LNCS 2919:150-161, 2003.

IBys04] Jesper Makholm Byskov. Enumerating Maximal Independent Sets with Ap-

 plications to Graph Coloring Operations Research Letters, 32(6):547-556, 2004.

[Che03] H. Chen. An Algorithm for SAT Above the Threshold. In Proc. SAT 2003,

 LNCS 2919, pp. 14-24, 2003.

[CI95] B. Cha and K. Iwama. Performance test of local search algorithms using new

 types of random CNF formulas. Proc. VC14I95, pp. 304-310, 1995.

[CI96] B. Cha and K. Iwama. Adding new clauses for faster local search. Proc. AAAI

 1996, pp. 332-337, 1996.

[CIKM971 B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algo-

 rithms for partial MAXSAT. Proc. AAAU99Z pp. 263-268, 1997.

[CIKP03] C. Calabro, R. Impagliazzo, V. Kabanets and R. Paturi. The complex-

 ity of unique k-SAT: an isolation Iemma for k-CNFs. In Proceedings of IEEE

 Conference on CompiLtational Complexity, pp. 135-141, 2003.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceeelings

 of the 9rd Ann2Lal ACM Symposi2Lm on the Theory of Computing, pp. 151-158,

 1971.

BIBLIOGRAPHY 73

[Dan83] E. Dantsin. Two systems for proving tautologies, based on the split method.

 Journal of Soviet Mathematics, 22:1293-1305, 1983.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem

 proving. CommzLnications of the ACM, 5:394-397, 1962.

[DGH+02] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Pa-

 padimitriou, P. Raghavan, and U. Sch6ning. A deterministic 2 - zi}Tt algorithm

 for k-SAT based on local search. Theoretical Computer Science, 289(1):69-83,

 2002.

[DHIV03] E. Dantsin, E. A. Hirsch, S. Ivanov, M. Vsemirnov. Algorithms for SAT

 and Upper Bounds on Their Complexity. Journal of Mathe7natical Sciences,

 118(2):4948-4962, 2003.

[DHW04] E. Dantsin, E. A. Hirsch, A. Wolpert, Algorithms for SA[I] based on search

 in Hamming balls. In Proceedings of S7L4CS 2004, LNCS 2996, pp. 141-151,

 2004.

[DHW05] E. Dantsin, E. A. Hirsch and A. Wolpert. Clause shortening combined

 with pruning yields a new upper bound for deterministic SAT algorithms. ECCC

 Report TR05-102, 2005.

[DKW05] Evgeny Dantsin, Vladik Kreinovich, Alexander Wolpert. On quantum ver-

 sions of record-breaking algorithms for SAT. ACM SIGACT News, 36(4):103-

 108, 2005.

[DP60] A computing procedure for quantification theory. Journag of the ACM, 7:201-

 215, 1960.

[Epp03] D. Eppstein. The traveling salesman problem for cubic graphs. 8th VVbrksh.

 Algorithms and Data StrzLctiLres, Lecture Notes in Comp. Sci. 2748, pp. 307-318,

 2003.

[FG04] Jorg Flum and Martin Grohe. Parametrized Complexity and Subexponential

 Time. BzLlletin of the EiLropean Association for Theoretical Computer Science,

 84, 2004.

74 Bibliography

[FGK05] Fedor V. Fomin, Fabrizio Grandoni and Dieter Kratsch. Measure and Con-

 quer: Domination - A Case Study. Proc. IC14LP 2005, pp. 191-203, 2005.

[FGK06] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. Measure and Con-

 quer: A Simple O(20'288") Independent Set Algorithm. Proc. SODA 2006, to

 appear.

[FKT04] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca: Exact (Exponential) Al-

 gorithms for rllrreewidth and Minimum Fill-In. Proc. IonLP 2004, pp. 568-580,

 2004. ,
[FIa03] A. Flaxman. A spectral technique for random satisfiable 3CNF formulas. In

 Proc. SODA 2003, pp. 357-363, 2003.

[FvMOO] L. Fortnow and D. van Melkebeek. Time-space tradeoffs for nondetermin-

 istic computation PToceedings of the 15th LEEE Conference on Comp2Ltational

 Complexity, pp.2-13, 2000.

[Gen98] I. P. Gent. On the stupid algorithm for satisfiability. APES Technical Report

 03-1998.

[GHNR03] J. Gramm, E. A. Hirsch, R. Niedermeier and P. Rossmanith. New Worst-

 Case Upper Bounds for MAX-2-SAT with Application to MAX-CUT. Discrete

 AppZied Mathematics, 130(2):139-155, 2003.

[GNRO4] R. Gummadi, N. S. Narayanaswanny and V. Ramaswamy. Algorithms for

 satisfiability using independent sets of variables. The Seventh International Con-

 .ference on Theory and Applications of SatistZability Tlesting (SAT 2004?, LNCS

 3542, pp. 133-144, 2004.

[Har66] L. H. Harper. Optimal numberings and isoperimetric problems on graphs.

 Journal of Combinatorial Theory, 1:385-394, 1966.

[Har67] L. H. Harper. A necessary condition on minimal cube numberings. JoiLrnal

 of Applied Probability, 4:397-401, 1967.

BIBLIOGRAPHY 75

[HSs89] J. Hastad. Almost optimal lower bounds for small depth circuits. Random-

 ness and Computation, Advances in Computing Research 5, pp. 143-170, 1989.

[Hir98] E. A. Hirsch. A Fast Deterministic Algorithm for Formulas That Have Many

 Satisfying Assignments. Logic Journal of the JGPL, 6(1):59-71, 1998.

[HirOO] E. A. Hirsch. New Worst-Case Upper Bounds fbr SAT. Journal ofA2ttomated

 Reasoning, 24(4):397-420, 2000.

[Hir03] E. A. Hirsch. Worst-case study of Iocal search for MAX-k-SAT. Discrete

 Applied Mathematics, 130(2):173-184, 2003.

[HJP95] J. Hastad, S. Jukna and P. Pudlak. Top-down lower bounds for depth-three

 circuits. Computational Complexity, 5:99-112, 1995.

[HK05] E. A. Hirsch, A. Kojevnikov. UnitWalk: A new SAT solver that uses local

 search guided by unit clause elimination. Annals of Mathematics and Artoficiag

 intelligence, 43(1-4):91-111, 2005.

[HSSW021 T. Hofmeister, U. Sch6ning, R. Schuler and O. Watanabe. Probabilistic 3-

 SAT AIgorithm Further Improved. Proceedings 19th Symposi2Lm on 7-7beoretical

 Aspects of Computer Science, LNCS 2285: 193-202, 2002.

[IKM+OOI K. Iwama, D. Kawai, S. Miyazaki, Y. Okabe, and J. Umemoto. Paral-

 lelizing local search for CNF satisfiability using vectorization and PVM. Proc.

 Workshop on Algorithm Engineering (V[IAE 2000? pp. 123-134, 2000.

[IM02] K. Iwama and H. Morizumi. An explicit lower bound of 5n-o(n) for boolean

 circuits. In Proceedings 27th Cooference on Mathematical I7bundation of Com-

 piLter Seience, LNCS 2420, pp. 353-364, 2002.

[IP99] R. Impagliazzo and R. Paturi. Complexity of k-SAT. In Proceedings of LEEE

 Cooference on Comp?Ltational Complexity, 1999.

[IPZOI] R. Impagliazzo, R. Paturi and F. Zane. Which problems have strongly ex-

 ponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001.

76 Bibliography

[KP92] E. Koutsoupias, C. H. Papadimitriou. On the Greedy Algorithm for Satisfi

ability. Inf. Process. Lett. 43(1): 53-55, 1992.

[Ku199] O. Kullmann, New methods for 3-SAT decision and worst-case analysis.

Theoretical Computer Science, 223(1-2):1-72, 1999.

[KV06] M. Krivelevich and D. Vilenchik. Solving random satisfiable 3CNF formulas

in expected polynomial time. Proc. SODA 2006, to appear, 2006.

[Luc84] H. Luckhardt. Obere Komplexitatsschranken fiir TAUT-Entscheidungen. In

Frege Conference 1g84, pp. 331-337, 1984.

[MS79] B. Monien and E. Speckenmeyer. 3-satisfiability is testable in O(1.62T
).

Technical Report Beicht Nr. 3/1979, Universitat-Gesamthochschule-Paderborn,

1979.

[MS85] B. Monien and E. Speckenmeyer. Solving satisfiability less than 2n steps.

Discrete Applied Mathematics, 10:287-295, 1985.

[Mor93] P. Morris. The breakout method for escaping from local search minima.

Proc. AAAI 1993, pp. 40-45, 1993.

[NR03] R. Niedermeier and P. Rossmanith. An efficient fixed parameter algorithm

for 3-Hitting Set. Journal of Discrete Al90rithms, 1:89-102,2003.

[Pap91] C. H. Papadimitriou. On selecting a satisfying assignment. In Proceedings

of FOCS 1991, pp. 163-169, 1991.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PPSZ98] R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential

time algorithm for k-SAT. Proceedings 39th Annual Symposium on Foundations

of Computer Science, pp. 628-637, 1998.

[PPSZ05] R. Paturi, P. Pudlak, M. E. Saks and F. Zane. An improved exponential

time algorithm for k-SAT. J. ACM, 52(3):337-364, 2005.

BIBLIOGRAPHY 77

[PPZ99] R. Paturi, P. Pudlak, and F. Zane. Satisfiability coding Iemma. C7}icago

 JozLmal of Theoretical Computer Science, 1999.

IPSZOO] R. Paturi, M. E. Saks, and F. Zane. Exponential lower bounds for depth3

 Boolean circuits. CompzLtational Complexity, 9(1):1-15, 2000.

[Pud98] P. Pudlak. Satisfiability - algorithms and Iogic. In Proc. MFes 1998, LNCS

 1450, pp. 129-141, 1998.

[PZ98] R. Paturi and F. Zane. Dimension of projections in boolean functions. SL4M

 J. Discrete Math., 11(4):624-632, 1998.

[Rol031 D. Rolf. 3-SA[[" E RTIME(O(1.32793n)). ECCC TR03-054, 2003.

[Rol05a] D. Rolf. Derandomization of PPSZ for Unique-k-SAT. In Proc. SAT2005,

 LNCS 3569, pp. 216-225, 2005.

[Rol05b] D. Rolf. Improved Bound for the PPSZ/Sch6ning-Algorithm for 3-SAT.

 ECCC TR05-159, 2005.

[SAT03] Enrico Giunchiglia, Armando Tacchella (Eds.). Selected Revised Papers

 from 6th International Conference on Theory and Applications of Satisfiability

 Testing (SAT 2003), Lecture Notes in Computer Science 2919, 2004.

[SAT04I Holger H. Hoos, David G. Mitchell (Eds.). Revised Selected Papers from 7th

 International Conference on Theory and Applications of Satisfiability Testing

 (SAr]] 2004), Lecture Notes in Computer Science 3542, 2005.

[SAT05] Fahiem Bacchus, [[bby Walsh (Eds.). Proceedings 8th International Confer-

 ence on Theory and Applications of Satisfiability rlbsting (SAT 2005), Lecture

 Notes in Computer Science 3569, 2005.

[Sch92] I. Schiermeyer. Solving 3-Satisfiability in less than 1.579n steps. esL 92,

 LNCS 702, pp. 379-394, 1992.

[Sch99] U. Sch6ning. A probabilistic algorithm for k-SA[I] and constraint satisfaction

 problems. Proceedings 40th Ann2Lal Symposium on FbiLndations of Co7nputer

 Science, pp. 410-414, 1999.

78 Bibliography

[Sch02] U. Schoning. A probabilistic algorithm for k-SAT based on limited local

search and restart. Algorithmica, 32(4):615-623, 2002.

[Sch05] R. Schuler. An algorithm for the satisfiability problem of formulas in con

junctive normal form. Journal of algorithms, 54(1):40-44,2005.

[SK93] B. Selman and H. Kautz. Local search strategy for satisfiability testing. 2nd

DIMACS challenge Workshop, 1993.

[SLBH05] L. Simon, D. Le Bene, E. A. Hirsch, The SAT2002 Competition. Annals

of Mathematics and Artificial Intelligence, 43(1-4):307-342, 2005.

[SLM92] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard

satisfiability problems. Proc. AAAI 1992, pp. 440-446, 1992.

[SSW01] R. Schuler, U. Schoning, and O. Watanabe. An improved randomized al

gorithm for 3-SAT. LA Symposium 2000 (Winter), 2001.

[Tre04] Luca Trevisan. A Note on Approximate Counting for k-DNF. In Proc.

APPROX-RANDOM 2004, pp. 417-426, 2004.

[Urq95] Alasdair Urquhart. The Complexity of Propositional Proofs. In Current

Trends in Theoretical Computer Science, 1995.

[VaI77] L. Valiant. Graph-theoretic arguments in low-level complexity. In Proceedings

6th Conference on Mathematical Foundation of Computer Science, LNCS 53, pp.

162-176, 1977.

[VazOl] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[Weg87] 1. Wegener. The Complexity of Boolean Functions. Wiley, 1987.

[Wi104] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its

implications. Theoretical Computer Science, to appear. An earlier version ap

peared in ICALP 2004.

BIBLIOGRAPHY 79

[Wil05] R. Williams. Better Time-Space Lower Bounds for SAT and Related Prob-

 lems. In Proceedings LEEE Conjlerence on Computational Complexity (CCC

 200by, pp. 40-49, 2005.

[Wbe03] Gerhard J. Wbeginger. Exact Algorithms for NP-Hard Problems: A Survey.

 Reviseel Papers from 5th International VVorkshop on Combinatorial Optimiza-

 tion, Lecture Notes in Computer Science 2570, pp. 185-208, 2003.

[Wbe04] Gerhard J. Wbeginger. Space and Time Complexity of Exact Algorithms:

 Some Open Problems (Invited Talk). IWPEC 2004, LNCS 3162, pp. 281-290,

 2004

[Yam05] Masaki Yatmamoto. An Improved O(1.234M)-Time Deterministic Algorithm

 for SAT. Proc. ISAAC 2005, pp. 644-653, 2005.

[Zan98] F. Zane. Circuits, CNFs, and Satisfiability. PhD thesis, UCSD, 1998.

Pub1ication List

e Kazuo Iwama and Suguru Tamaki. Exploiting Partial Knowledge of Satisfying

 Assignments. Discrete Applied Mathematics, invited and accepted for presen-

 tation in a special issue on the theory and applications of satisfiability testing.

e Kazuo Iwama and Suguru Tamaki. Improved Upper Bounds fbr 3-SAT. In

 Proceedings of 15th annual ACM-SL4M SymposiiLm on Discrete Algorithms

 (SODA 2004), pp. 328-329, New Orleans, USA, January, 2004.

e Kazuo Iwama and Suguru Tamaki. Exploiting Partial Knowledge of Satisfy-

 ing Assignments. In Proceedings of 5th VVorkshop on Algorithm Engineering

 (WAE 2001), Lecture Notes in Computer Science 2141, pp. 118-128, Aarhus,

 Denmark, August, 2001.

e Kazuo Iwama and Suguru Tamaki. Exploiting Partial Knowledge of Satisfying

 Assignments. Working Notes of LICS2001 Workshop on Theory and Applica-

 tions of Satisfiability Testing, Boston, USA, pp. 106-114, June, 2001.

o Kazuo Iwama and Suguru Tamaki. Increasing the Success Probability of

 PPSZ-type Satisfiability rllesting. IEIon 712chnical Committee on CompzLta-

 tion (COMP), rlbkyo, Japan, March, 2006, to appear.

e Kazuo Iwama and Suguru Tamaki. Improved Upper Bounds for 3-SAT. Elec-

 tronic Colloquium on Computational Complexity, Report TR03-053, pp･ 1-37

 2003.

81

