
VIVIIIJV

ts

19

 Studies

 on

 Local Search Approaches

to One Dimensional Cutting Stock Problems

Shunji Umetani

 STUDIES
 ON
 LOCAL SEARCH APPROACHES
TO ONE DIMENSIONAL CUTTING STOCK PROBLEMS

Shunji UMETANI

Submitted in partial fuMlment of

the requirement for the degree of

 DOCTOR OF INFORMATICS
(Applied Mathematics and Physics)

KYOTO UNIVERSITY
 KYOTO, JAPAN
 JANUARY, 2003

Preface

As combinatorial optimization problems appear in important application areas, a wide va-

riety of algorithms has been developed for several decades. Unfortunately, most of these

combinatorial optimization problems are known to be NP-hard, i.e., they belong to a class of

intractable problems. Therefbre, under the widely believed conjecture P ; NP, their exact

algorithms must be exhaustively time consuming. However, in most real applications, we are

satisfied with good solutions obtained in reasonable computational time, even if we are not

able to obtain an exact optimal solution. In this sense, to deal with 1arge instances of such

intractable combinatorial optimization problems, approximate (or heuristic) algorithms are

very important, and have been intensively studied in recent years.

 The local search and its extensions called metaheuristics are part of the most represen-

tative approaches fbr this purpose. These algorithms have been applied to many intractable

problems for their simplicity and fiexibility, and succeeded in obtaining good solutions to some

extent. However, in recent years, due to the diversification and sophistication of systems in

real applications, these problems have become more intractable so that simple applications

of metaheuristic algorithms are not suflicient. To overcome these diMculties, we need to

construct meaningful mathematical models based on carefu1 analysis of the problems, and

develop more powerfu1 and/or flexible tools.

 In the thesis, we consider one of such intractable combinatorial optimization problems,

called the one dimensional cutting stockproblem (ID-CSP), which have been intensively stud-

ied since 1960s because of its wide applicability to material industries. In their earlier studies,

where minimizing the cost associated with materials was one of most important issues, ID-

CSP have been studied as a variant of integer linear programming problems (ILP) and many

useful algorithms were developed. However, in recent industry, as the cost associated with

setup costs have become more dominant than the cost associated with materials, the solutions

i

of such algorithms become not desirable to users. We propose other formulations of ID-CSP

in which we include the number of setups as an input parameter, and design local search

algorithms based on various heuristics and/or mathematical programming techniques. Our

approach gives users useful information of the trade-off curves between these cost functions

by controlling the input parameter.

The studies on ID-CSP are still developing, and many important problems remain to be

solved in this field. The author hopes that the research gives useful tools and ideas to conquer

these intractable combinatorial optimization problems.

January, 2003

Shunji Umetani

II

This thesis would not have been possible without the help of many others. First of all, I

am heartily gratefu1 to Professor '!bshihide Ibaraki of Kyoto University fbr his enthusiastic

guidance, discussion and persistent encouragement. He commented in detai1 on the whole

work in the manuscript, which significantly improved the accuracy of the arguments and

quality of the exposition. Without his considerable help, none of this work could have been

completed.

 A great deal of gratitude goes to Professor Mutsunori Yl)giura of Kyoto University with

whom I wrote joint papers. His great collaboration was very important in forming the idea

of this thesis.

 I also wish to express my gratitude to Professor Koji Nonobe of Kyoto University, Pro-

fessor Toshimasa ishii of 'Ibyohashi University of Technology, Professor 'Ileikashi Horiyama

of Kyoto University, Professor Hirotaka Ono of Kyushu University, Professor Liang Zhao

Utsunomiya University, and all members in Professor Ibaraki's laboratory for many enlight-

ening discussions on the area of this work. I especially mention a member who gave me usefu1

comments, namely Shinji Imahori.

 My deepest gratitude is to my family for their heartfelt cooperation and encouragement.

.

iii

Contents

1 Introduction

 1.1 Combinatorial Optimization Problems ･･････････････････

 1.2 Local Search and Metaheuristics ･････････････････････

 1.3 One Dimensional Cutting Stock Problems ････････････････

 1.4 Previous Works on the Pattern Minimization in ID-CSP･-･･-･･･

 1.5 Research Objectives and Overview of the Thesis ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･

2 A Local Search Algorithm Based on Adaptive Pattern Generation

 2.1 IntroductionL･･･････････････････････.........
 2.2 Generation of an Initial Solution ･

 2.3 Solving Auxiliary Integer Linear Programming Problems････････

 2.4 Construction of the Neighborhood ･

 2.5 Entire Algoritim of Local Search ･

 2.6 ComputationalExperiment ･･･････-････････････････

 2.7 Conclusion ･･･････････････''''''''''''''''''

1

1

4

9

13

16

23

23

24

27

29

35

36

43

3 A Local Search Algorithm Based on L

 3.1 Introduction ･ ･ ･ ･ ･ ･ ' ' ' ' ' ' ' ' '

 3.2 Generation ofan lnitial Solution ･･･

 3.3 Constructionofthe Neighborhood ' '

 3.4 Solving many LP Relaxations ･･'''

 3.5 Entire Algorithm of Local Search ･''

 3.6 Iterated Local Search Algorithm '''

 3.7 ComputationalExperiment ･･･'''

 3.8 Conclusion ･･･････････････

.

Inear Programming Techniques 45

45

46

49

52

58

59

61

71

v

4 A Variant of ID-PRP Allowing Underproduction and Overproduction 75

4.1 Introduction' 75

4.2 Formulation of 1D-QDP 76

4.3 Solving Auxiliary Integer Quadratic Programming Problem 77

4.4 Construction of the Neighborhood 79

4.5 Entire Algorithm of Local Search 83

4.6 Computational Experiment ... 86

4.7 Reduction of Computational Time 94

4.8 Conclusion 95

5 Conclusion 97

vi

List of Figures

1.1 A sample ofone dimensional cutting stock problem･････････-･････ 11

1.2 The improvement ofthe current splution induced by a new cutting pattern ･ 13

1.3 [[lr adeoff curve between the number of stock rolls f and the number of different

 cutting patterns n ･ ･ ･ ･ ･ ･ ･ ･ ･ ･'･ - ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ･ ' ･ - ' 18

2.1 The number of stock rolls versus the number of different cutting patterns

 (nLB=17) ･････････････.･･･････････････-････-･･･ 38
2.2 The CPU time in seconds versus the number ofdifferent cutting patterns ･･ 38

3.1 The change of the dual optimal solution by PERTURB ･ ･ ･ ･ -･ ･ ･ ･ i ･ ･ 52

3.2 Exchanging the columns Pi･, and P(i',]") in the optimal simplex tableau T ･ ･ 55

3.3 (i) Comparisonthe trade-offcurvesofUNIFORMJNIT and MFFJNIT ･ ･ ･ 63

3.4 (ii) Comparison the trade-off curves of LS-LP using UNIFORMJNIT and

 MFFJNIT ･････････････････････････････････････ 63
3.5 (iii) Comparison the trade-off curves of ILS-LP using UNIFORMJNIT and

 MFFJNIT ･････････････････････････････････････ 64
3.6 The number of stock rolls versus the number of different cutting patterns

 (nLB==17)･････････････････････････････････････ 67
3･7 The CPU time in seconds versus the number ofdiflerent cutting patterns (using

 logarithmic scale for CPU time(sec.))･･･････････････････････ 67

4･1 Comparison the objective values between n and n' E Ni(n)･･････････ 82

4･2 Comparison the objective values between fi and fi' E NiqaPg(n) ････････ 83

vii

List of Tables

2.1 Computational results of SHP and KOMBI for the random instances generated

by CUTGEN ., 39

2.2 Computational results of LS-APG with different JUB for the random instances

generated by CUTGEN , 40

2.3 The average CPU time in seconds for the random instances generated by CUT-

GEN· .. 42

3.1 The average number of pivoting operations for solving single LP(II) 57

3.2 Computational results of LS-LP using UNIFORMJNIT with different JUB for

the random instances generated by CUTGEN 65

3.3 Computational results of LS-LP using MFFJNIT with different JUB for the

random instances generated by CUTGEN 66

3.4 Computational results of SHP and KOMBI for the random instances generated

by CUTGEN ., 68

3.5 Computational results of LS-APG with different JUB for the random instances

generated by CUTGEN 69

3.6 Computational results ofILS-LP with different JUB for the random instances

generated by CUTGEN , 70

3.7 The average CPU time in seconds for the random instances generated by CUT-

GEN· .. 72

4.1 Computational results of SHP, KOMBI and ILS-QAPG for the random instances 88

4.2 CPU time in seconds of SHP, KOMBI and ILS-QAPG for random instances· 89

4.3 Computational results of SHP, GT and ILS-QAPG for real instances (L = 9080) 91

4.4 Computational results of SHP, GT and ILS-QAPG for real instances (L = 5180) 92

ix

4.5 The CPU time in seconds for real instances (L = 9080,5180)

4.6 Performance of LS-QAPG for random instances· , ..

x

93

94

Chapter 1

Introduction

1.1 Combinatorial Optimization Problems

An optimization problem is generally defined as follows:

minimize

subject to

f(x)

x EF,

(1.1)

where F is the set of solutions x which satisfy all the given constraints. F is called the

feasible region and each x E F is called a feasible solution. The function f is called the

objective function (or cost function), and a feasible solution x* E F is optimal if f(x*) ~

f(x) holds for all other feasible solutions x E F. We call an optimization problem (1.1) a

combinatorial optimization problem if F is combinatorial in some sense. We often encounter

combinatorial optimization problems in many real applications, e.g., production planning

[20], machine scheduling [8][4], plant location [5], vehicle routing [33][61], crew scheduling

[53][10][25], frequency assignment [82][66], VLSI design [2], etc. Other recent application

areas include problems in molecular biology, architecture and their importance has been

widely recognized. Many of these real problems can be described as extensions of the following

combinatorial optimization problems.

Bin Packing Problem (BPP)

Input: A set of items U = {Ul,U2,'" ,urn}, their sizes S(Ui) for each Ui E U, and

the bin capacity B.

1

2 Chapter 1 Introduction

Output: A partition ofU into the minimum number n of disjoint sets U1 , U2, ... , Un

such that the total size LiEUj S(Ui) of items in each Uj is B or less.

Graph Coloring Problem (GCP)

Input: An undirected graph G = (V, E).

Output: A coloring 1r : V -t {I, ... , X} of all vertices Vi E V with the minimum

number of colors X, in which the end of vertices Vi, Vj of each edge {Vi, Vj} E E

has different colors 1r(Vi) ¥= 1r(Vj) .

Knapsack Problem (KP)

Input: A set of items U = {U1,U2, ... ,um }, their sizes S(Ui) and values v(ud for

each Ui E U, and the knapsack capacity B.

Output: A subset U' ~ U of the maximum total value LUiEUI v(Ui) of items in

U' such that the total size LiEUI s(Ui) of items is B or less.

Set Covering Problem (SCP)

Input: A finite set S and a collection C = {S1, S2, ... , Sm} of subsets Si ~ S.

Output: A set cover for S, Le., a collection C' ~ C of the minimum cardinality

IC'I such that every element in S belongs to at least one member Si E C'.

Traveling Salesman Problem (TSP)

Input: A set of cities C = {C1' C2, ... ,em} and distances d(Ci, Cj) for each pair of

cities Ci, Cj E C.

Output: A tour CT : {I, ... , m} -t C of all cities Ci E C of the minimum total

length L~1 d(CT(i), CT(i + 1)) + d(CT(m), CT(I)).

For example, vehicle routing problem (VRP) is described as follow: there are a number of

customers to be served from a unique depot. Each customer has a quantity of goods and a

number of time periods (time windows) to be delivered. Each vehicle has the capacity on the

goods carried. VRP asks to design routes of vehicles with the minimum total cost such that

all goods are delivered to customers in their time windows. The main costs of VRP are the

number of vehicles used, and the total distance traveled. In this sense, VRP contains BPP

and a number of TSPs with time windows, i.e., the problem of determining the number of

1.1 Combinatorial Optimization Problems 3

vehicles is formulated as BPP, and the problem of determining the route of each vehicle is

formulated as a special TSP with time windows.

Another example is airline crew scheduling problem (ACSP): Given a schedule of flights

for a particular aircraft type. Each crew is assigned for a set of flights (a weekly schedule)

satisfying many constraints such as limited flying time, minimum rests between flights, re-

. turning to starting point after a set of flights, etc. ACSP asks to assign crews for weekly

schedules such that all flights are covered by at least a given number of crews. The objective

is to minimize the amount paid to the crews. ACSP can be formulated as SCP, where the

set of all flights correspond to the set S and all possible weekly schedules correspond to all

subsets Si E C.

Most of these combinatorial optimization problems (e.g. the above all problems) are

known to be NP-hard, and it is unlikely that there exist polynomial time algorithms for

NP-hard problems [31]. One of the representative approaches is that it formulates these

combinatorial optimization problems as integer linear programming problem (ILP) and solves

them by efficient exact algorithms, e.g., branch-and-bound or dynamic programming algorithm

[72][99J.

n

(ILP) minimize L CjXj

j=1
n

subject to L aijXj 2: bi' for i = 1, ... , m
j=1

Xj E Z+, for j = 1, ... ,n.

(1.2)

The mixed-integer programming problem (MILP) is a superset of ILP, in that some of the

variables are allowed to be nonnegative continuous values. Although a variety of efficient

branch-and-bound solvers have been developed as general purpose tools, many combinatorial

optimization problems still remain to be intractable because of the following reasons:

• A solution is required rapidly, within a few second or minutes.

• The instance is so large and/or complicated that it can not be formulated as ILP or

MILP of reasonable size.

• Even though it has been formulated as an ILP (or MILP), it is difficult or impossible

for these exact algorithms to find optimal solutions.

4 Chapter 1 Introduction

• For certain combinatorial optimization problems such as TSP, it is easy to find feasible

solutions by inspection or knowledge of the problem structure, and a general purpose

integer programming approach is ineffective.

Fortunately, in most applications, we are satisfied with good solutions obtained in reasonable

computational time even if we are not able to obtain an exact optimal solution. In this

sense, to deal with large instances of such intractable combinatorial optimization problems,

approximate or heuristic algorithms are important and such approaches have been intensively

studied in recent years.

1.2 Local Search and Metaheuristics

The basic ideas of approximate algorithms are the greedy algorithm and the local search

algorithm (LS) [74][1]. The greedy algorithm is a constructive method that constructs an

approximate solution step by step on the basis of the local information. For example, the

nearest neighbor method [64] is a greedy algorithm for TSP, which starts from an arbitrary

city, and repeatedly moves to the nearest unvisited city until all cities are visited. On the

other hand, the local search algorithm is an improvement method that iteratively modifies

the current solution to obtain a better solution until no better solution is obtained by its

modification. For example, the 2-exchange (2-opt) heuristic [74][64][57] is a local search

algorithm for TSP, which repeatedly exchanges a pair of crossing edges of the tour until no

better tour is obtained by the operation.

The local search starts from an initial feasible solution and repeatedly replaces it with

a better solution in its neighborhood N(x) until no better solution is found in N(x), where

N(x) is a set of solutions obtainable from x by applying a slight perturbation. A solution x

is called locally optimal, if no better solution x' is found in N (x). The simple local search

algorithm is described as follow:

Algorithm Local Search (LS)

Input: The initial feasible solution x init .

Output: A locally optimal solution x.

Step 1: Set x := x init .

1.2 Local Search and Metaheuristics 5

 Step 2: If there is a feasible solution x' E N(x) such that f(x') < f(x) holds,

 set x := x' and retum to Step 1. 0therwise (i.e., f(x')) f(x) holds for all

 x' E N(x)) output x and halt.

The search procedure of finding the next solution x' E N(x) is called the neighborhood search,

and the set of all solutions which may be potentially visited in a local search algoritim is

called the search space.

 Tb design a local search algorithm for a combinatorial optimization problem, we must

consider the following ingredients:

(i) How to generate an initial feasible solution xM2t.

(ii) How to construct the neighborhood N(x) from the current solution x.

(iii) How to compute the objective function x eficiently.

(iv) How to specify the order of solutions to be evaluated in the neighborhood N(x), and

 the selection rules of the next solution.

 Although the local search algorithm is powerfu1 for its simplicity, its naive implementation

does not attain sufficiently good solutions since it only visits a small number of new solutions.

Tb overcome this, many variants of the local search algorithm have been developed, where

their strategies are:

Initial solution: executing a number ofthe local search algorithms from different initial so-

 lutions, e.g., muki-start local search (MLS) [60][65], iterated local search (ILS) [561[69],

 greedy randomized adaptive search procedure (GRASP) [27] [63], variable neighborhood

 search (VNS) [71][51], genetic algorithm (GA) [54][42], scatter search [37][38], and ant

 colony system [19][30].

Neighborhood: adopting to a larger neighborhood or a sophisticated structure of neighbor-

 hood, e.g., variable depth search (VDS) [60] [65], very large-scale neighborhood search[3],

 ejection chain [39][75][9][100].

Move strategy: allowing to move worse solutions and controlling moves by a randomized

 or sophisticated strategy, e.g., simulated annealing (SA) [62][55], threshold accepting

 (TA) [21], great deluge algorithm (GDA) [22], tabu search (TS) [36][41].

Chapter 1 Introduction

Search space: adopting a search space different from F (Le., including infeasible region) and

modifying the objective function f so that we can evaluate the amount of infeasibility of

solutions, e.g., strategic oscillation [40][50]. (This approach often appears in many local

search algorithms since finding a feasible solution is not easy for many combinatorial

optimization problems.)

Objective function: adaptively perturbating the objective function in order to escape poor

locally optimal solutions, e.g., guided local search [86][96], noising method [13][16],

search space smoothing method [45], Lagrangian-based heuristics [28][6][11][10].

The framework of these variants of the local search algorithms are called metaheuristics.

Some representative algorithms in metaheuristics stated as follows:

The iterated local search (ILS) repeats the local search from different initial solutions,

where they are generated by random perturbations applied to the best solution obtained by

then.

Algorithm Iterated Local Search (ILS)

Input: The first initial solution x init .

Output: The best solution x*.

Step 1: Set x* := x init .

Step 2-: Generate an initial solution x of the next local search algorithm by

slightly perturbating x* randomly.

Step 3: Apply the local search algorithm (LS) to obtain a locally optimal solution

x.

Step 4: If f(x) < f(x*) holds, set x* := x. If some stopping criteria are satisfied,

output x* and halt; otherwise return to Step 2.

The genetic algorithm (GA) employs evolutionary process in nature. GA repeatedly gen­

erates the set of new candidate solutions N(P) by applying the operations such as crossover,

mutation and selection to the set of candidate solution P. A crossover generates one or more

solutions by combining two or more candidate solutions, and a mutation generates a solution

by slightly perturbating a candidate solution. GA starts from an initial set of candidate

solutions P and repeatedly replaces P with pI ~ P U N(P) according to its selection rules.

1.2 Local Search and MetaheuristiCs 7

 Algorithm Genetic Algorithm (GA)

 Input: The set of initial candidate solutions P.

 Output: The best solution x'.

 Step 1: Construct an initial set of candidate solutions P. Let v' be the best

 solution among P.

 Step 2: Repeat the following Step 2-1 and/or Step2-2 to obtain the set of new

 candidate solutions N(P) from the current set of solutions P.

 Step 2-1: Crossover two or more candidate solutions to generate a new

 candidate solution.

 Step 2-2: Mutate a candidate solution to generate a new candidate solu-

 tion.
 '
 Step 3: If a solution x with f(x) < f(x') is fbund in Step 2, set x' :== x.

 Step 4: Select the set of a given number of candidate solutions P' from the

 resulting PUN(P), and set P := P'.

 Step 5: If some stopping criteria are satisfied, output x' and halt; otherwise

 return to Step 2.

 The simulated annealing (SA) is a kind of probabilistic local search, in which test solutions

are randomly chosen from N(x) and accepted with probability that is 1 if the test solution

is better than the current solution x, and positive even if the test solution is worse than

the current solution x. By allowing moves to worse solutions, SA can escape from poor

Iocally optimal solutions. The acceptance probability is controlled by a parameter called

temperature, whose idea stems from the physical annealing process.

 Algorithm Simulated Annealing (SA)

 Input: The initial solution xi"it, and the initial temperature t.

 Output: The best solution x'.

 Step 1: Set x* := xinit, and x :== xzn2t.

 Step 2: Generate a solution x' E IV(x) randomly, and set A := f(x') - f(x).

 If A < O holds (i.e., a better solution is found), set x := x'; otherwise set

 X := x' with probability e-Alt.

8 Chapter 1 Introduction

Step 3: Iff(x) < f(x*) holds, set x* : : x. Ifsome stopping criteria are satisfied,

 output x' and halt; otherwise update the temperature t according to some

 rules and return to Step 2.

 The tabu search (TS) tries to enhance the local search by the memory of previous searches.

TS repeatedly replaces the current solution x by its best neighbor x' E N(x) even if f(x') 2

f(x) holds. Ib avoid cycling of solutions, TS restricts the neighborhood AT(x) N ({x} UT) by

a tabu ldst T which is design to prevent TS going back to recently visited solutions.

Algorithm Tabu Search (TS)

Input: The initial solution xzntt.

Output: The best solution x*.

Step 1: Set x' :--- xi"it, x := xinit, and T := ¢.

Step 2: Find the best solution x' E IV(x) N {x U T}, and set x := x'.

Step 3: Iff(x) < f(x') holds, set x' := x. Ifsome stopping criteria are satisfied,

 output x' and halti otherwise update T according to some rules and return

 to Step 2.

Many approaches in metaheuristics are based on the analogies with processes and disciplines

in nature such as statistical physics, biological evaluation, etc. More details about local search

and metaheuristics are found in [77][73][1][102]. .

 Theoretically, neither nontrivial bounds on the quality of local optimal solutions nor non-

trivial bounds on the time complexity of local search have been known. However, in practice,

many local search algorithms are successfu1 to obtain suMciently good solutions in reasonable

computational time. One of the attractive features of local search and metaheuristics consists

in its simplicity and robustness. We can develop local search and metaheuristic algorithms

without knowing detailed mathematical properties of the problem, and still attain reason-

ably good solutions in practically feasible time [101]. Another good feature causes from its

flexibility, i.e., we can much improve their performance by introducing sophisticated data

structures and effective heuristics of the problem.

1.3 One Dimensional Cutting Stock Problems

1.3 One Dimensional Cutting Stock Problems

9

The cutting and packing problem models the practical problem of considering how to arrange

the small items in the large items. In this sense, the following problems are essentially the

same except for kind of assignment, assortment, dimensionality, shapes, etc.: knapsack prob­

lem, bin packing problem, cutting stock problem, strip packing problem, pallet loading problem,

vehicle loading problem, container loading problem, layout problem, partitioning problem, etc.

Kind of assignment: (i) all large items and a selection of small items, and (ii) a selection

of large items and all small items.

Assortment of large items: (i) one item, (ii) many identical items, and (iii) many different

items.

Assortment of small items: (i) many different items, (ii) many items of relatively few

different figures, and (iii) many identical items.

Dimensionality: (i) one dimensional, (ii) two dimensional, (iii) three dimensional, and (iv)

n-dimensional with n > 3.

Shapes (e.g., two dimensional): (i) rectangle, (ii) polygon, (iii) circle, and (iv) irregular.

For example, the knapsack problem requires to assign a selection of small items to one large

item, and its dimensionality is one. Another example is the two dimensional bin packing

problem which requires to assign all small items to a selection of large items, and its dimen­

sionality is two. The detailed classification of cutting and packing problems is summarized

in [52][23][14][24].

The one dimensional cutting stock problem (lD-CSP) is one of the most representative

cutting problems, and it has been intensively studied since 1960s [59][76]. This problem arises

in many industries such as steel, paper, wood, glass and fiber. Due to its wide variety of

materials to handle, and industries, the ID-CSP has been stated in many models. In 1D­

CSP, we are given a sufficient number of stock rolls of the same length L, and m products

M = {I, 2, ... , m} of given lengths (iI, l2,"" 1m), whose demands are (dl , d2,"" dm).

A standard formulation of ID-CSP is to describe it in terms of the variables associated

with cutting patterns, where a cutting pattern (or pattern) is a feasible combination of prod­

ucts cut from one stock roll. A cutting pattern is described as Pj = (alj, a2j, ... , amj), where

10 Chapter 1 Introduction

aij E Z + (the set of nonnegative integers) is the number of products i cut from the cutting

pattern Pj. We say a cutting pattern Pj satisfying

'" a··l· < LL.J tJ t -

iEM

(1.3)

feasible, and let S denote the set of all feasible cutting patterns. It is often necessary in prac­

tice to consider additional constraints on cutting patterns. One of the common constraints

is that the residual length of a cutting pattern should be smaller than that of the smallest

product, Le.,

(1.4)

A cutting pattern satisfying (1.4) is called complete-cut cutting pattern [83]. A solution of

ID-CSP consists of a set of cutting patterns II = {PbP2,· .. ,PIIII} ~ S, and the corresponding

numbers of their applications X = {Xl,X2, ... ,x/III} E Z~I (i.e., the number of times the

cutting pattern is used). A typical cost function is the amount of residual pieces of the

used stock rolls, called trim loss, which are usually treated as waste product. The problem

of minimizing the trim loss (Le., minimizing the number of required stock rolls) has been

intensively studied as the standard ID-CSP. This problem asks a solution (II, X) which

minimizes the number of required stock rolls while satisfying the demands of all products,

and is formulated as follows:

(ID-CSP) minimize f(II, X) = L Xj

PjEII

subject to L aijXj ;:::: di for all i E M
pjEII

II~S

Xj E Z+ for all Pj ElI.

(1.5)

A sample of ID-CSP is illustrated in Figure 1.1. As the standard ID-CSP contains the bin

packing problem (BPP), which is known to be strongly NP-hard [31], as a special case, the

standard ID-CSP is clearly a hard problem. The standard ID-CSP has been studied since

1960s, as a variant of integer linear programming problem (ILP), which has a huge number

of columns corresponding to all feasible cutting patterns. The number of all feasible cutting

patterns is roughly estimated as O(mk) where k represents the average number of products

in a cutting pattern. Pierce [76] showed that the number of cutting patterns can easily run

1.3 One Dimensional Cutting Stock Problems 11

stock roll

2

products

demands
3

cutt

numb er o fapp lic atio ns

trim loss

cuttmg patterns

overproduction

 Figure 1.1: A sample of one dimemsional cutting stock problem

into millions in practice situations when the average length of products is relatively small to

that of stock rolls.

 A classical approach to the standard ID-CSP is based on an optimal solution of its

linear programming (LP) relaxation. As it is impractical to consider all feasible cutting

patterns, Gilmore and Gomory [34][35] proposed an ingenious column generation method,

which determines the next cutting pattern necessary to improve the current solution (n, X) by

solving the associated knapsack problem. This made it possible to solve the standard ID-CSP

by linear programming without enumerating all feasible cutting patterns, and consequently

they solved the standard ID-CSP in much less time than would be required if all feasible

cutting patterns were used.

 We first give the problem of computing an optimal X = {xi,x2,...,xn} for a given set of

n cutting patterns n = {pi,p2, . . . ,pn}, and it is formulated as an integer linear programming

problem (ILP):

 n
 (ILP(fi)) minimize f(n,X)=2x,･ (1･6)
 1'=1
 n
 subj ect to 2 aii xj >- di for i = 1, ... ,m

 2'=1
 xj E Z+ for 2' =1,...,n･

12 Chapter 1 Introduction

Now we consider the LP relaxation of (1.6) by replacing the integer constraints Xj E Z+ with

Xj ~ 0 for j = 1, ... , n. The LP relaxation is stated as the following linear programming

problem (LP):

n

(LP(II)) minimize J(II,X) = LXj

j=l
n

subject to L aijXj ~ di for i = 1, ... ,m
j=l

Xj ~ 0 for j = 1, ... ,n.

(1.7)

Let Yi be the dual variable associated with the i-th constraint of LP(II). The dual problem

of LP(II) can be formulated as

m

(DLP(II)) maximize L diYi

i=l
m

subject to L aijYi ~ 1 for j = 1, ... , n

i=l

Yi ~ 0 for i = 1, ... , m.

(1.8)

An optimal solution Y = {ih, 112,· .. ,Ym} of DLP(II) gives us the means for determining the

next cutting pattern to enter the basis of LP(II). Now we generate the next cutting pattern

p' = (a~, a2' ... , a~) by solving the following knapsack problem:

m

(KNAP(II)) minimize z(II,p') = LYia~
i=l

m

subject to L lia~ ~ L
i=l

a~ E Z+ for i = 1, ... , m.

(1.9)

If z(II,p') ~ 1 holds, no feasible cutting pattern p' E S can improve the current solution

(II, X) of LP(II); otherwise the new cutting pattern p' satisfying z(II,p') > 1 can be used

, to the next cutting pattern. Figure 1.3 illustrates the improvement of 1 induced by a new

cutting pattern p' satisfying z(II,p') > 1. The optimal value of the LP relaxation LP(II) is

equivalent to that of its dual problem DLP(II) due to the duality theorem. As the new plane

corresponding to a new cutting pattern p' satisfying z(II,p') > 1 necessarily cuts the feasible

space of dual problem DLP(II), the optimal value of the LP relaxation is improved by the new

cutting pattern p'. Gilmore and Gomory's algorithm starts from a feasible solution (II, X) of

1.4 Previous Works on the Pattern Minimization in ID-CSP

",.,,-,

l(n u {p'}) ···r:::.:.:·······:::.
I

I... ,/

13

Figure 1.2: The improvement of the current solution induced by a new cutting pattern

the standard ID-CSP, and repeatedly adds a next cutting pattern p' satisfying z(Il,p') > 1

by solving KNAP(Il) until no cutting pattern p' satisfying z(Il,p') > 1 is found.

Once an LP optimal solution is found, it can be modified in a number of ways to obtain

integer values X = {Xl, X2, •.. , XlIII} satisfying all demands. Marcotte [68] proved that cer­

tain classes of ID-CSP have the integer round-up property (IRUP), which implies that the

difference between the optimal value of the original ID-CSP and that of its LP relaxation

is small. Scheithauer and Terno [79][81] investigated the modified integer round-up property

(MIRUP) that the optimal value is not greater than that of the corresponding LP relaxation

rounded up plus one in a certain class of the standard ID-CSP. They showed that the standard

ID-CSP has subproblems with property MIRUP. Wascher and Gau [98] conducted a large

number of numerical computations to compare several rounding heuristics for the standard

ID-CSP. They observed that these heuristics obtained the optimal values in most instances,

and the differences between the values of these heuristics and the optimal values are rather

small for other instances. Based on Gilmore and Gomory's column generation method and

the integer round-up properties, several branch-and-bound algorithms have been developed

with certain computational success [80][93][94][18].

1.4 Previous Works on the Pattern Minimization in ID-CSP

In recent years, the costs of other factors than the trim loss have become more dominant.

Among them is the setup costs for changing cutting patterns, and it is impractical to use

many different cutting patterns. Although the branch-and-bound algorithms based on column

14 Chapter 1 Introduction

generation could solve the standard ID-CSP in the practical sense, their solutions are not

desirable in real applications since the number of different cutting pattern in their solutions

may become very close to the number ofproducts. Hence, several types of heuristic algorithms

have been developed to reduce the number of different cutting patterns in ID-CSP.

Haessler [48] proposed a modification of Gilmore and Gomory's column generation method.

He restricted the number of product a~ in the next cutting pattern II = (a~, a2' ... ,a~) to

increase the number of its applications x'. His idea is based on·an observation that the

number of different cutting pattern is often small when the numbers of their applications are

relatively large. However, he could not achieve effective reductions on the number of different

cutting patterns in his computational results.

Walker [97J introduced the fixed charge into LP formulation of ID-CSP for the setup of

cutting patterns, and considered the fixed charge problem (FCP) as follows:

(FCP) minimize L (cjXj + fjvj)

pjES

subject to L aijXj = di for all i E M
pjES

Xj 2: 0 for allpj E S

{
I Xj > 0

Vj = for allpj E S,
o Xj = 0

(1.10)

where !J represents the fixed cost to cutting pattern Pj. He proposed a two phase heuristic

algorithm SWIFT which is a variant of the simplex algorithm. SWIFT utilizes an initial

solution found by the conventional simplex algorithm, and then selects a new cutting pattern

to enter the basis only if the additional setup cost is less than compensated for by the reduction

in the number of used stock rolls. After having a locally optimal solution in this manner (Le.,

no solution satisfying the above condition is found by changing one cutting pattern in the

basis), then SWIFT searches an improving solution by exhaustively attempting to swap basic

cutting patterns with non-basic cutting patterns; it first applies single swaps, and at the last

phase applies double swaps. Farley and Richardson [26J proposed an improvement of SWIFT

to reduce the total setup cost of cutting patterns in ID-CSP. The algorithm uses additional

pivoting rules not to increase the number of basic variables corresponding to cutting patterns.

Their computational results unfortunately showed that the total number of required stock

rolls increased rapidly as the number of different cutting patterns is reduced.

Haessler proposed a pattern generating heuristic algorithm called the sequential heuristic

1.4 Previous Works on the Pattern Minimization in ID-CSP 15

procedure (SHP) [46][47][49]. SHP starts from an empty set of cutting patterns, and repeat­

edly adds a new cutting pattern to the current solution until all demands are satisfied, where

the next cutting patterns should have small trim loss and large number of applications. In

each step, SHP first computes the following parameters:

MAXTL: The maximum allowable trim loss

MINR (resp., MAXR): The minimum (resp., maximum) numbers of products permitted

in the next cutting pattern

MIND: The minimum number of applications to the next cutting patterns

SHP searches a next cutting pattern exhaustively among those satisfying all constraints

given by the above parameters. If a desirable cutting pattern is found, SHP applies it at

maximum possible times, under the constraint that the residual demands for all products

are not exceeded, Le., 'E
Pi

Err aijx j ::; di. If no cutting pattern is found, SHP decreases the

parameter MIND to the next cutting pattern and searches again. Vahrenkamp [92] proposed a

variant of SHP, in which a new cutting pattern is generated by a simple randomized algorithm.

Gradisar [44] applied SHP to a variant of lD-CSP in which stock rolls may have different

lengths. Sweeney [84] proposed a hybrid algorithm based on SHP and linear programming

(LP). SHP and its variants can be used effectively to solve lD-CSP when the lengths of the

products are small relative to that of the stock roll. Unfortunately, it is observed that they

do not work well when the lengths of the products are large relative to that of the stock roll.

Johnston [58] and Goulimis [43] proposed a pattern combination heuristic algorithm. The

algorithm starts from a solution obtained by another algorithm designed to minimize the

number of used stock rolls (e.g., solve the standard lD-CSP), and reduces the number of

different cutting patterns by combining cutting patterns together; Le., it select a number of

cutting patterns in the solution, and replaces them with a smaller number of new cutting

patterns such that the amount of products covered by the new cutting patterns is equivalent

to that covered by the removed cutting patterns. Johnston proposed a simple algorithm for

deciding whether two cutting patterns can be combined into one cutting pattern. He also

mentioned but did not fully describe an tree-search algorithm for combining three cutting

patterns into two cutting patterns. It repeats these two algorithms until no further reduc­

tion can be made. Foerster and Wascher [29] developed an algorithm based on the pattern

16 Chapter 1 Introduction

combination heuristics, called KOMBI, which applies many types of combination heuristics

in addition to Johnston's heuristics.

Vanderbeck [95] considered a formulation of ID-CSP which minimizes the number of

different cutting patterns while using a given number of stock rolls or less, and it was called

the pattern minimization problem (lD-PMP).

(lD-PMP) minimize IIII

subject to L aijXj ~ di for all i E M
PjEII

L Xj ::; JUB
PjEII

II~S

Xj E Z+ for allpj E II,

(1.11)

where JuB is the upper bound on the number of used stock rolls, which is an input parameter

given by users. As ID-PMP contains the bin packing problem (BPP) as a special case that

all demands di are set to 1, ID-PMP is also strongly NP-hard. McDiarmid [67] considered

a special case of ID-PMP where any two products fit on a stock roll (li + Ij ::; L, Vi, j) but

no three do (li + lj + lk > L, Vi, j, k). Although the minimum number of used stock rolls is

known to be rLiEM di1i/21 , he showed that this special case' of ID-PMP is still strongly NP­

hard. Vanderbeck proposed an exact algorithm for ID-PMP. He first described ID-PMP as

an integer quadratic programming problem (IQP), which is then decomposed into a number

of auxiliary integer linear programming problems (ILP) with strong LP relaxations. Then a

branch-and-cut algorithm is applied while using a column generation method. According to

his computational results, this algorithm could solve many small instances exactly, but failed

to obtain optimal solutions for several instances of moderate sizes in two hours.

1.5 Research Objectives and Overview of the Thesis

In this thesis, we take a new approach by considering the number of different cutting patterns

n as an input parameter given by users. We call this variant of ID-CSP, as the pattern

restricted version of ID-CSP (lD-PRP), which minimizes the number of stock rolls while

using n different cutting patterns or less.

(lD-PRP) minimize J(I1, X) = L Xj

PjEII

(1.12)

1.5 Research Objectives and Overview of the Thesis 17

 subject to 2) aii･xJ･ >- di for al1iEM

 pJ･ En
 ngs

 lnl sn

 . xj-EZ+ fbr all pj･En,

where n is an input parameter set by u$ers. We suppose that the number of different cutting

patterns n is less than that of products m. As ID-PRP is a simple extension of the standard

ID-CSP that is obtained by only adding the constraint lnl S n to the standard ID-CSP,

ID-PRP is also strongly NP-hard. This new approach is similar to the fixed-k approach to

the graph coloring problem (GCP) [55][12].

 In general, it becomes easier to find a solution using a smaller number of stock rolls as

the number of different cutting patterns becomes larger. In this sense, there is a trade-off

between the number of required stock rolls and the number of different cutting patterns. By

solving ID-PRP for different parameter values n, we can obtain a trade-off curve as illustrated

in Figure 1.3. Using this we can make a more carefu1 anaJysis of the trade-off between two

objective functioms: the number of required stock rolls f and the number of different cutting

patterns n. It is also possible to solve the pattern minimization problem (ID-PMP) by

searching the minimum feasible n (i.e., using fuB stock rolls or less) by employing binary

search, for example, over the space n.

 In this thesis, we focus on this new fbrmulation of ID-CSP, and propose new approximate

algorithns based on local search algorithm (LS). A solution of ID-PRP consists of a set of

cutting patterns ll = {p!,p2,...,pn} and the corresponding numbers of their applications

X = {xi,x2,...,xn} (i.e., x2･ means the number of times the.cutting pattern pJJ used).

Our local search algorithms to ID-PRP start from an initial feasible solution (ninit,Xinit)

obtained by a certain heuristic algorithm. Solutions in the neighborhood of the current

solution (fi,X) are generated by perturbating one or two cutting patterns in the current set

of cutting patterns fl. We give natural definitions of two neighborhoods Ni(fi) and AT>(n)

for our local search algorithms as fo11ows:

 Ni(n) = {IIU{pS･}X{p,･}lpjEn,pS･ESXn}, (1.13)
 IV2 (n) = {n U {pS･,, pS･,} X {p,･,,p,･,} l pj,, p,･, E ", pS･,, pS, E SN n}, (1･14)

where S is the set of all feasible cutting patterns. For each neighbor H' E Ni(fi) (resp.,

Al)(n)), the numbers of applications X' to the cutting patterns H' are computed by solving

18 Chapter 1 Introduction

2000 r------,-------r------,----,----...,
1950

1900

~ 1850e...
8 1800o
~ 1750
1l
§ 1700
l:
G>

Eo 1650
.....

1600

1550

4020 25 30 35
n (the number of different cutting pattems)

1500 '--__----" ----L. -"- -'-__---'

15

Figure 1.3: Trade-off curve between the number of stock rolls! and the number of different

cutting patterns n

the auxiliary integer linear programming problem (ILP) given in (1.6). A naive local search

algorithm to ID-PRP is described as follows:

Algorithm Naive Local Search

Input: Lengths li and demands di of all products i E M, the number of different

cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns II = {pI,p2, ... ,Pn} and the numbers of their

1· . X { } "r·l "app IcatlOllS = Xl, X2, • •. , X n or J.al ure .

Step 1: Apply a heuristic algorithm to obtain an initial feasible solution (IIinit, Xinit).

If no feasible solution is found, output "failure" and halt; otherwise set

(II, X) := (IIinit , Xinit).

Step 2: If there is a feasible solution II' E N I (II)· (or N2 (II)) such that! (II', X') <
!(II,X) holds, set (II,X) := (II', X') and return to Step 2. Otherwise (Le.,

!(II', X') 2': !(II, X) holds for all II' E N I (II) (or N2(II))) output (II, X) and

halt.

Although local search and metaheuristic algorithms have many good features, they are

1.5 Research Objectives and Overview ofthe Thesis 19

not straightfbrwardly applicable to ID-PRP. The intractability of ID-PRP arises from the

fo11owing facts that:

Initial feasible solution: As all products i E M must appear at least one cutting pattern

 pj- E n, the problem of finding a feasible solution to ID-PRP is formulated as the bin

 packing problem (BPP) known to be NP-hard,

Neighborhood: As the number of al1 feasible cutting patterns ISI is roughly estimated as

 O(mk), where k represents the average number of products in a cutting pattern. It

 can grow exponentially in the number of products m. It is not realistic to consider all

 possible feasible cutting patterns,

Auxiliary integer programming problem: The problem ILP(n) given in (1.6) is strongly

 NP-hard since it contains the set covering problem (SCP) as a special case that all ai2･,

 di and ¢j are set to 1,

and it necessitates to compute them much more eMciently. Tb overcome these dilliculties, we

propose two local search algorithms in Chapter 2 and 3, respectively.

 The first is a local search algorithm based on an adaptive pattern generation (LS-APG).

It starts from an initial solution obtained by a modfied first fit heuristic (MFF) known for

the bin packing problem (BPP). Solutions in the neighborhood are constructed by removing

two cutting patterns in the current solution and adding two new cutting patterns. Tb restrict

the neighbor solutions, we develop a heuristic algorithm that tries to generate only promising

new cutting patterns, called the adaptive pattern generation (APG). The adaptive pattern

generation constructs new cutting patterns based on residual demands when two cutting

patterns are removed. The numbers of applications to the cutting patte'rns are computed by

a heuristic algorithm, which is based on an optimal solution of the LP relaxation (1.7) of the

auxiliary integer linear programming problem (1.6).

 The second is a local search algorithm based on linear programming techniques (LS-

LP). It starts from an initial solution obtained by a modified first fit heuristic (FF) other

than that of LS-APG. Solutions in the neighborhood are restricted to those obtainable by

perturbating one cutting pattern in the current set of cutting patterns. In order to find

promising directions, we utilize a dual optimal solution of the LP relaxation (1.7). Although

the primal solution of the LP relaxation is not integer valued, it provides reasonably accurate

information as the integrality gap is rather small in most instances of ID-CSP. Since the local

20 Chapter 1 Introduction

(1.15)

search algorithm requires to solve a large number of LP relaxations which are only slightly

different each other, we start the simplex algorithm from the optimal simplex tableau of the

previous solution, instead of starting it from scratch. We modify the simplex algorithm by

applying the sensitivity analysis techniques, and apply a variant of the simplex algorithm

called the criss-cross algorithm [103][85] to compute an optimal solution.

We also consider another formulation of ID-CSP based on a real application in a chemical

fiber industry. We give a variant of ID-PRP called the quadratic deviation minimization

problem (ID-QDP) which minimizes the amount of quadratic deviation from all demands

while using a given number of different cutting patterns n:

(ID-QDP) minimize f(IT, X) = L(L aijXj _ di) 2

iEM PjETI

subject to IT ~ S

IITI ~ n

Xj E Z+ for allpj E IT,

where S is the set of all feasible cutting patterns. Although the above formulation ignores

the trim loss, if necessary, we can control the quality of trim loss to some extent by applying

appropriate constraints on cutting patterns, e.g., restricting S to be the set of complete-cut

patterns defined in (1.4). In this formulation, we allow both overproduction and shortage

because the additional cost due to the shortage is relatively small in some applications such

as the chemical fiber industry. For this problem, we propose a local search algorithm based

on the quadratic version of the adaptive pattern generation (LS-QAPG). Solutions in the

neighborhood are generated by removing one cutting pattern in the current solution and

adding one new cutting pattern. To compute the numbers of applications to the cutting

patterns, we propose a heuristic algorithm based on the nonlinear Gauss-Seidel method [7].

As it is not realistic to consider all possible feasible cutting patterns, we restrict the candidate

cutting patterns to those generated by the quadratic version of adaptive pattern generation,

where we also indirectly reducing the trim loss by restricting candidate cutting patterns to

those having small trim loss.

The thesis is organized as follows. In Chapter 2, a local search algorithm based on an

adaptive pattern generation (LS-APG) is proposed. In Chapter 3, a local search algorithm

based on linear programming techniques (LS-LP) is proposed. In Chapter 4, we propose a

local search algorithm (LS-QAPG) to a variant of ID-PRP given in (1.15) called ID-QDP,

1.5 Research Objectives and Overview of the Thesis 21

which comes from a real application of a chemical fiber industry

summarize eur study in the thesis.

. Finally, in Chapter 5, we

Chapter 2

A Local Search Algorithm Based

on Adaptive Pattern Generation

2.1 Introduction

In this chapter, we propose a local search algorithm for 1D-PRP based on an adaptive pat­

tern generation, in which neighbor solutions are constructed by removing two cutting patterns

and adding two new cutting patterns in the current solution. This algorithm is named the

local search algorithm based on adaptive pattern generation (LS-APG). As mentioned in

Section 1.5, we still have to specify some details before implementing local search algorithms

to 1D-PRP, i.e., (i) how to construct an initial feasible solution, (ii) how to compute auxil­

iary integer linear programming problems (ILP) efficiently, and (iii) how to find promising

solutions sufficiently among all neighbor solutions in the neighborhood. Our local search

algorithm in this chapter constructs an initial feasible solution by applying a variant of the

first-fit heuristic algorithm (FF) known for the bin packing problem (BPP) [31], solves the

auxiliary ILP by a heuristic algorithm based on its LP relaxations, and generates candidate

cutting patterns by applying an adaptive pattern generation (APG) which is based on resid­

ual demands when two cutting patterns are removed from the current solution. Finally, we

conduct computational experiment for randomly generated problem instances, and observe

that LS-APG obtains a wide variety of good solutions comparable to SHP and KOMBI, and

it provides useful trade-off curves between the number of different cutting patterns and the

number of required stock rolls.

23

24 Chapter 2 A Local Search Algoritim Based on Adaptive Pattern Generation

2.2 Generation of an Initial Solution

 If there is- no restriction on the number of different cutting patterns, as in the standard ID-

 CSP, it is easy to construct a feasible solution. However, just finding a feasible solution is

 not trivial in ID-PRP. The problem of finding a feasible solution under a given number of

 cutting patterns n is equivalent to the bin packing problem (BPP) known to be NP-complete

 [31]. Here, we suppose that the number of different cutting patterns n is less than that of

 products m, because a feasible solution is easy to obtain in the case of n 2 m.

 Bin Packing Problem (BPP)

 Input: Lengths li of all products i E M, the number of diffkerent cutting patterns

 n, and the length of stock rolls L.

 Output: A partition of M into n diajoint subsets Mi, th, . . . , Mn g M subject

 tO £iEM) li SL for all M) g M.

Firom a solution of BPP, we can construct cutting patterns pJ･ = (aij, a22･, . . . , amj･) and their

numbers of applications xj- by setting aij･ := 1 fbriE M) (and aij･ := O fbriEM)) and

xj- := maxiEMI di. The resulting set of cutting patterns n = {pi,p2, . . . ,p.} and the numbers

of their applications X : {xi, x2, . . . , xn} is obviously a feasible solution to ID-PRP. We first

consider how to construct a feasible solution by solving BPP, and then modify it to reduce

the number of stock rolls.

 Tb construct a feasible solution, we prepare a heuristic algorithn based on the first fit

principle (FF), where FF is one of the representative approximation algorithms known for

BPP. After preparing n stock rolls of lengths L, FF sequentially assigns each product i into

the stock roli with the lowest index arnong these having the residual capacity of at least li.

However, to guarantee that every stock roll is assigned at least one product, and to improve

the quality as an mitial solution of the local search algorithn, we modify FF as fbllows and

call this algorithm as the modified first fit algorithm (MFF). First, we sort all product i E M

in the descending order of demands di, where a(k) denotes the k-th product in the resulting

order. We assign all products to stock rolls in this order. We also define an aspiration length

 L' =aL, (2.1)

where a is a program parameter satisfying O < a S 1. If the processed length of the current

stock roll exceeds L' after product a(k) is assigned, the next product o(k + 1) is assigned to

1:2 Generation of an Initial Solution

the next stock roll. This algorithm assigns at least one product to every stock roll if

L:iEM li
a=

nL

25

(2.2)

is used, and it is equivalent to the original FF if a is set to 1. If MFF terminates before m

products are assigned into n stock rolls, we conclude the failure of MFF.

Algorithm MFF

Input: Lengths li and demands di of products i E M, the number of different

cutting patterns n, the length of stock rolls L and a given program parameter

a.

Output: n disjoint subsets M I , M2, .. " M n ~ M or "failure".

Step 1: Set Mj := 0 for j = 1,2, ... , n, and L' := aL.

Step 2: Sort all products i E M in the descending order of di' where O"(k) denotes

the k-th product in this order. Set k := 1 and j := 1.

Step 3: If ll7(k) :::; L - L:iEMj li and L:iEMj li :::; L' hold, set Mj := Mj U {O"(k)},

k := k + 1 and j := 1; otherwise set j := j + 1. If k :::; m and j :::; n hold,

return to Step 3; otherwise go to Step 4.

Step 4: If k > m holds, output MI, M 2 , .•• ,Mn and halt; otherwise output

"failure" and halt.

In LS-APG, we first try MFF with a = L:iEM li/nL. If MFF fails to obtain a feasible

solution, we switch to the first fit decreasing heuristic (FFD); i.e., it sorts all products in

the descending order of li (not di) in Step 2, and uses a = 1 in Step 1. The other part of

algorithm does not change. If this attempt also fails, we conclude the failure of LS-APG.

Now assume that MFF outputs n disjoint subsets M I, M2, ... , Mn ~ M. For each Mj,

we consider the construction of cutting patterns Pj = (aij liE Mj) and the number of its

applications Xj so that the demands di(i E Mj) are met with the smallest Xj (nonnegative

real number). The problem of generating a cutting pattern Pj from a given Mj is described

as follows, where Xj and aij are both variables.

(ID-CSPI(j)) minimize Xj

subject to aijXj ~ di for all i E Mj

(2.3)

26 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

L aijli :S L
iEMj

aij E Z + for all i E Mj

Xj ~ o.

For this problem, we propose an exact algorithm called the single adaptive pattern generation

(SAPG). It starts from aij := 1 for all i E Mj and Xj := maxiEMj di' and gradually increases

aij to reduce the number of applications Xj. Here, we say that product i is bottleneck if

aijXj = di holds for the current aij and Xj. Let U es = L - I:iEMj aijli denote the residual

length of the stock roll. If li :S L res holds for a bottleneck product i, we have to increase aij

(by one) in order to reduce Xj. We repeat this process as long as it is possible.

Algorithm SAPG

Input: A set of products Mj ~ M, demands di and lengths li of all products

i E Mj, and the length of the stock roll L (Mj satisfies I:iEMj li :S L).

Output: A feasible cutting pattern Pj = (aij liE M j) and the .number of its

applications Xj.

Step 1: Set aij := 1 for all i E M j , Xj := maxiEMj di and L res := L - I:iEMj li.

Step 2: If there is no bottleneck product i E Mj such that li :S Lres holds, output

Pj = (aij liE Mj) and Xj, and halt; otherwise take a bottleneck product

i E Mj (i.e., aijXj = di holds) such that li :S U es holds, set aij := aij + 1,

Xj := maxiEMj -t;, L res := Lres -li and return to Step 2.

Here, we prove the following theorem about SAPG.

Theorem 1 SAPG outputs an optimal solution of problem lD-CSP1(j).

Proof. Let Xj and Pj = (aij liE M j) be the output of SAPG. Since aij increases only when

aijXj = di holds, and variable Xj is non-increasing during the execution of SAPG, we have

di--- > Xj for all aij ~ 2.
aij - 1

(2.4)

Now let xj and pj = (aij liE Mj) be an optimal solution of 1D-CSP1(j). If there is an aij

such that aij < aij, it follows

(2.5)

2.3 Solving Auxiliary Integer Linear Programming Problems 27

which contradicts to the optimality of x;･. Therefbre, a;･j･ >. aij holds for all i E MIi. Now if

xj'. < xj･ holds (i.e., xj･ i not optimal), there is a bottleneck product i for which a,'･tJ- > ai,i'

holds. But this implies

 OSL-2 ai,･li-li,= LreS-li,, (2.6)
 iEAt()

and ai,J- would have been increased in Step 2 of SAPG. This is a contradiction, and shows

that xi"･ = xj holds. a

 Finally, we summarize the algorithm MFFJNIT that constructs an initial feasible solution

using MFF and SAPG for 2' = 1, 2, . . . , n.

 Algorithm MFFJNIT

 Input: Lengths li and demands di of productsiE M, the number of diflerent

 cutting patterns n, and the length of stock rolls L.

 Output: A set of n cutting patterns n = {pi,p2,...,pn} and the numbers of

 their applications X = {xi,x2, . . . , xn}, or "failure" .

 Step 1: Apply MFF to obtain n diojoint subsets Mi,M2,...,Mn g M. If this

 attempt fails, apply the FFD version of MFF. If FFD still outputs "failure" ,

 we output "failure" and halt.

 Step 2: For 2' = 1,2,...,n, compute cutting pattern pj･ and the number of its

 applications xjJ by applying SAPG. Output the set of cutting patterns n =

 {pi,p2,...,pn} and the numbers of their applications X = {xi,x2,...,xn}.

Note that the numbers of applications xi･ computed in MFFJNIT are real numbers, and

it is necessary to round them into integers before starting the local search algorithm. This

rounding process will be explained in the next section for any set of patterns H (not restricted

to the initial set obtained by MFF-INIT).

2.3 Solving Auxiliary Integer Linear Programming Prob-

 lems

For a given set of cutting patterns n = {pi,p2,...,p.}, the problem of computing the

numbers of their applications X = {xi,x2,...,xn} to minimize the cost function f(n,X)

28 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

can be formulated as the following integer linear programming problem ILP(II):

n

(ILP(II)) minimize f(II, X) = L Xj

j=l
n

subject to L aijXj ~ di for i = 1,2, ... , m
j=l
Xj E Z+ for j = 1,2, ... ,n.

(2.7)

As it contains the set covering problem (SCP), known to be NP-hard [31], as a special case,

we consider to find an approximate solution X = {Xl,X2, ... ,xn } and its cost value f(II,X)

by a heuristic algorithm. Our heuristic algorithm SOLVEJP first solves the LP relaxation

LP(II) ofILP(IT):

n

(LP(IT)) minimize /(II,X) = LXj

j=l
n

subject to L aijXj ~ d i for i = 1,2, ... , m
j=l
Xj ~ 0 for j = 1,2, ... , n.

(2.8)

Let X = fx1, X2, .•. , xn } denote an optimal solution of the LP relaxation LP (II). SOLVEJP

starts from Xj := lXjJ for all j = 1,2, ... , n. In order to obtain an integer feasible solution, it

first sorts variables Xj in the descending order of fractions Xj - lXjJ, and then rounds them

up in the resulting order until all demands are satisfied.

Algorithm SOLVE-lP

Input: Demands di of all products i E M, and a set of cutting patterns II =

{Pl,P2, ... ,Pn}.

Output: The numbers of applications X = {Xl, X2, , Xn }, or "failure".

Step 1: Compute an optimal solution X = {Xl, X2, , xn } of the LP relaxation

LP(IT). If LP(IT) is infeasible, output "failure" and halt.

Step 2: Set Xj := lXjJ for all j = 1,2, ... , n.

Step 3: Sort all variables Xj in the descending order of fraction Xj - lXjJ, and

let CT (k) denote the k- th variable in this order. Set k := 1.

Step 4: If all demands are satisfied (i.e., 2:/;=1 aijXj ~ di holds for all i EM),

then output X = {Xl, X2, ... , xn } and halt. Otherwise if there is at least

2.4 Construction of the Neighborhood

one i E M such that "2://=1 aijXj < di and aiq(k) > 0 hold, then set Xq(k) :=

rXq(k)l Set k:= k+ 1 and return to Step 4.

29

In general, we employ the revised simplex algorithm [17] to solve the LP relaxation LP(II)

in the execution of SOLVE.J:P. However, note that we still have a large number of LP relax­

ations to solve in even one execution of the local search algorithm, and it consumes much

computational time.

2.4 Construction of the Neighborhood

A natural definitions of the neighborhood may be:

N1(II) = {II U {Pj} \ {Pj} IPj E II, pj E 5 \ II}, (2.9)

where 5 is the set of all feasible cutting patterns. That is, a neighbor solution II' E N1 (II)

is constructed by removing one cutting pattern Pi E II, and adding one new cutting pattern

pj E 5\II. However, according to our preliminary computational experiment, such II' does not

appear powerful enough to generate new solutions, which are substantially different from the

current solution. Therefore, our local search algorithm LS-APG uses a larger neighborhood

N2(II) defined as follows:

(2.10)

As the number of feasible cutting patterns 151 can grow exponentially in the number of

products m, the size of N2(II) may be too large to test all neighbor solutions II' E N2(II),

and most of them may not lead to improvement. Hence, we consider a small subset N;P9 (II) ~

N2 (II) hopefully containing promising solutions.

In order to explain N;P9(II), we define the residual demands ri(j1,h) when cutting pat­

terns Pjj and Ph are removed from the current solution (II, X):

(2.11)

Now we introduce the following problem of constructing a pair of new cutting patterns PJ! =

(aij! liE M (j1, h)) and PJ2 = (aih liE M (iI, h)), which replace the removed cutting

patterns Pj! and Ph, where M(j1,h) ~ M denotes the set of products i E M such that

30 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

n(h,h) > 0, where Xj and aij are both variables.

(2.12)

subject to aiilxil + aij2xh ~ ri(h,h) for all i E M(jl,h)

L aiilli ~ L
iEM(jl,h)

L aihli ~ L
iEM(jl,h)

aijll aih E Z+ for all i E M(h,h)

However, 1D-CSP2(h,h) is NP-hard since the partition problem, known to be NP-complete,

can be transformed to 1D-CSP2(jl,h) by the following theorem.

Partition Problem

Input: Lengths Ii of all products i E M.

Output: A subset M' ~ M such that LiEMI Ii = LM\MI Ii holds.

Theorem 2 lD-CSP2(jl,h) is a NP-hard problem.

Proof. Given an instance of the partition problem, we construct an instance of 1D-CSP2(jl, h)

by setting M(jl,h) := M, ri := 1 for all i E M(jl,h) and L := LiEM~iJ'h)li. (i) It is triv­

ial to see that -this construction of the instance of 1D-CSP2(h,h) is done in polynomial

time. (ii) We claim that a solution of the partition problem can be obtained if a feasible

solution of 1D-CSP2(h,h) is obtained. Let M 1(jI,h) and M2(jl,h) be the set of prod­

ucts in the pattern P'il and P'h' respectively. We now suppose there is a feasible solution of

1D-CSP2(iI,h) satisfying LiEM
1
(jd2) Ii < L. As any feasible solution of 1D-CSP2(jl,h)

. fy M (. .) M (. .) - M(' .) d L - LiEM(iJ ,h) li " I Lmust sabs 1 Jl, J2 U 2 Jl,)2 - Jl,)2 an - 2 ' LJiEM2(jl,h) i >
holds. However, it contradicts to the feasibility of 1D-CSP2(jl,h). Therefore, any feasible

solution of 1D-CSP2(h,h) must satisfy LiEMdir,j2) Ii = L (resp., LiEM2(i!,h) Ii = L), and

we can obtain a solution of the partition problem by setting M 1 := M1(h,h). From the

facts (i), (ii) and the NP-completeness of the partition problem, this theorem is proved. 0

Therefore, we propose a two phase heuristic algorithm called the double adaptive pat­

tern generation (DAPG) to obtain a good solution of 1D-CSP2(jl, h), and introduce the

j 2.4 Construction of the Neighborhood

neighborhood N;P9(ll) ~ N2 (ll) using DAPG:

31

(2.13)

where 8'(ii, h) ~ 8 is the set of new cutting patterns generated by DAPG.

First, DAPG finds a partition of M(iI,h) into a pair of disjoint subsets Ml(jI,h) and

M2(jl,h) such that 2:iEM IUd2) li ~ L and 2:iEM 2(jl,h) li ~ L hold, respectively. This part

of DAPG is done by the following algorithm BALANCE-FIT. After sorting all products

'i E M(iI,i2) in the descending order of li, BALANCE-FIT sequentially assigns all products

i E M(jl,h) to the cutting pattern having longer residual length in the resulting order.

Here, LIes and L~es represent the current residual lengths of the cutting patterns Pjl and Pj2 '

respectively.

Algorithm BALANCE-FIT

Input: A set M(jl,h) ~ M, lengths li of all products i E M(iI,h), and the

length of stock rolls L.

Output: A pair of subsets M 1(iI,h), M2(jl,h) ~ M(iI,h).

Step 1: Sort all products i E M(jl,h) in the descending order of li, and let a(k)

denote the k-th product in this order. Set M1(jl,h) := 0, M2(iI,h) := 0,

Lies := L, L~es := L, and k := 1.

Step 2: If LIes ~ L~es (resp., LIes < L~es) holds, let h := 1 (resp., h := 2).

If lU(k) ~ Lhes holds, set Mh(jl,h) := Mh(jl,h) U {a(k)} and Lh
es :=

Lhes - lU(k); else output "failure" and halt.

Step 3: Set k := k +~. If k ~ \M(jl,h)1 holds, return to Step 2; otherwise

output the subsets M1(iI,h), M2(jl,h), and halt.

Second, DAPG starts from the following feasible pair of the cutting patterns Pjl =

(aijl liE M 1(iI,h)) and PJ2 = (aih liE M2(h,h)), which are constructed from sub­

sets M1(jl,h) and M2(h,h):

aijl .- 1 for all i E M 1(jl,h) (2.14)

aij2 .- 1 for all i E M2(jl,h)

Xjl .- max{Ti(iI,h) Iaijl > O,i E M 1(jl,h)}

xh .- max{ri(jl' h) Iaij2 > 0, i E M 2(jl,h)}

32 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

DAPG repeats adding products to these cutting patterns in order to reduce the number of

stock rolls (Le., Xjl + xh) to cover the residual demands ri(iI,h) for all i E M(iI,h). Call

a product i E M(jl,h) bottleneck if aijIxiI + aihxh = ri(jl,h) holds for the current pair

of cutting patterns PJI' PJ2 and the numbers of their applications xiI, Xj2. In each step,

DAPG increases either aiiI or aih of a bottleneck product i, and correspondingly updates

the numbers of applications Xj!' xh. This is repeated until the number of stock rolls and

the amount of overproduction becomes unable to improve. This process is similar to that

of SAPG in Section 2.2 because both algorithms repeatedly increase bottleneck products

in order to reduce the number of applications. However, as there are two cutting patterns

involved, DAPG has to consider the balance between them.

For the current pair of cutting patterns PJI and PJ2' the numbers of their applications can

be computed by solving the following linear programming problem LP2 (jl,h):

(LP2(jl,h)) minimize xiI + xh

subject to aiiIxjl + aij2xh ~ ri(jl,h) for all i E M(iI,h)

(2.15)

where several O(n) algorithms have been developed for this problem [70][15]. This solution

may yield overproduction 6i of product i E M(jll h) as defined below.

(2.16)

As overproduction is not desirable in order to minimize the number of stock rolls, we try to

reduce the amount of overproduction. If aij is increased to aij + 1 for a bottleneck product i

(i.e., 6i = 0 holds before modification), the resulting overproduction becomes 6i = Xj. From

this observation, a simple rule (2.17) may be to select the cutting pattern Pj E {PJI,PJ2} with

smaller Xj and increase the aij of a bottleneck product i. Let i be the index of a bottleneck

product, and assume Xii ~ xh withoutloss of generality.

(2.17)

But, this rule may keep selecting one particular cutting pattern in early stage of the algorithm,

because the number of application Xj decreases further when aij is increased. To alleviate

this drawback, we propose the following rule of perturbating aiil and aih.

aiji := aiji + 1 and aih := max (0, aih -l:~:J) . (2.18)

2.4 Construction of the Neighborhood 33

The rule (2.17) or (2.18) can be applied if the cutting patterns PJl and PJ2 have enough

residual lengths to permit the increase aijI := aijI + 1 or aih := aih + 1, respectively. If the

rule (2.17) is applied, the resulting overproduction becomes 8i = xh' while if the rule (2.18)

is applied, we have 8i = xjI - min(aihxh' LXjIJ). If both rules are applicable, DAPG selects

the one having smaller overproduction.

After modifying the cutting patterns by the above rule (2.17) or (2.18), and computing

the numbers of their applications Xjll xh, DAPG tries to readjust the residual lengths in the

two cutting patterns, while satisfying all the demand constraints. The readjustment reduces

the amount of overproduction and/or increases the residual lengths of the cutting patterns,

where increasing residual lengths may be useful to eliminate other bottlenecks in subsequent

steps. The readjustment is carried out in the following manner. Assume Xjl ~ xh without

loss of generality. Apply the following rules in the stated order if they are applicable (i.e.,

if cutting patterns have enough residual lengths in rule (2.21) and (2.22) below) and do not

violate any demand constraint.

aijI .- aijI - 1,

aih .- aih - 1,

aijl .- aijl - 1 and aih := aih + 1,

aijI .- aijI - 1 and aij2 := aih - rXjIl·xJ2

(2.19)

(2.20)

(2.21)

(2.22)

The whole procedure is repeated as long as either the number of stock rolls Xijl +xih decreases

or the amount of overproduction:

~ = L: 8i,
iEM(jI,h)

(2.23)

decreases, as a result of modification. When none of the two criteria are achieved, DAPG

halts.

Now DAPG is described as follows, where Lies and L;,es represent the residual lengths of

, d I t' 1Pjl an Ph' respec lve y.

Algorithm DAPG

Input: Lengths li and demands di of all products i E M, a set M(jl,j2) ~ M,

residual demands Ti(jl,h) for all i E M(jl,h), and the length of stock rolls

L.

34 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

 Output: A pair of cutting patterns pS-, = (aij', 1 i E M(ji,2'2)) and pS, ==

 (aij, l i E M(7'i,2'2))･

 Step 1: (Generation ofa partition of M(h,j'2))

 Apply BALANCE-FIT to obtain a partition of M(2'i, j'2) into a pair of dis-

 joint subsets Mi(1'i,j'2) and Ml)(2'i,j'2). IfBALANCE-FIT outputs "failure",

 then output "failure" and halt.

 Step 2: (Construction of an initial cutting patterns)

 Construct a pair of cutting patterns pS･, and p;, by applying (2.14), and

 compute LleS := L - 2iEM, (h,j2) aij,li, L5eS := L - £iEM2(h ,j･,) ai2'21i, 6i :=

 aij,xj･, + ai)･2xj･2 - ri(7'i,j'2) fbr all i E M(j'i,7'2), and A := £iEM(J･,,j･,) 6i･

 Step 3: (Elimination of bottleneck products)

 Let B g M(j'i,j'2) be the set of bottleneck products, i.e･, B : = {i l aiJ'ixj'i +

 aij-2xJ-2 : ri(h,j'2),i E M(2'i,2'2)}･ For eachi E B, ifxJ'2 < xi'i-min (x2',, [l:jll-,1)

 and li S L5eS hold, apply rule (2.17) and let L5eS := Lr2eS - li. Other-

 wise if li S LIeS holds, apply rule (2.18), let LleS : : LleS - li and L5eS :=

 Lses + min (aie'2 , Iilljll', 1) ii･

 Step 4: (Computing the numbers of applications x2'i7 xj'2)

 Compute the real numbers of applications xh, xJ･, to the cutting patterns

 pS･, , pS, by solving the LP problem LP2(j'i, j'2).

 Step 5: (Readjustment of the cutting patterns)

 For all i E M(2'i,j'2), apply (2.19)-(2.22) in this order if applicable with-

 out violating the length constraints of the cutting patterns and the demand

 constraints of all products.

 Step 6: ('Ibrmination)

 Compute the real numbers of applications xj･,, xi･, to the cutting patterns

 pS･,, pS-, by solving the LP problem LP2(2'i,2'2). Compute the amount of

 overproduction A. If either the number of stock rolls xj', +xj, or the amount

 of overproduction A decreases in the current loop of Steps 2-6, return to Step

 2. 0therwise output the current pair of cutting patterns pS･,, pS･, together

 with the numbers of their applications xe-,, x2',, and halt･

After completing DAPG, the cutting patterns may still have residual length enough to

2.5 Entire Algorithm ofLocal Search 35

accommodate some products i fM(2'i,e'2). In this case, after computing the real numbers

of applications T == {hi1,!iS, . . . , !E;,} of the new set of cutting patterns H' = fi U {pS･,,pS-,} N

{Ili,,pj,} by solving the LP relaxation LP(H'), we try to reduce the number of stock rolls

further by adding bottleneck products (i.e., product i E M such that 2)pjEnt aij'!iS = di holds)

to such residual lengths (see Step 3 of LS-APG in the next section).

2.5 Entire Algorithm of Local Search

We now explain the framework of the local search algorithm LS-APG using MFFJNIT,

SOLVEIP and DAPG. Let (",X) be the current solution. LS-APG uses the first admissible

move strategy by searching neighborhood ATSPg(fi) as follows. It first selects an index j'i,

and then tries neighbor solutions n' = nU {pS･,,pS･,}X {ni,pJ'2} for all o'2 = ji + 1,0'i +

2,...,n,1,...,o'i -1 (in this order). This is repeated fbr all]'i = 1,2,...,n. IfLS-APG finds

a better solution (n', X') in this process, it immediately replaces the current solution (ll, X)

with the neighbor solution (n',X'). To measure the improvement of solutions in LS-APG,

we employ the main criterion of f(n,X) as well as the secondary criterion of tloss(fi,X),

defined by

 tloss(n,X) == £ (L-2a,jl,> xj. (2.24)

 pjEnN iEM l

That is, LS-APG moves from (n,X) to (n',X') if either f(n,X) < f(n',X') holds, or

f(n,X) = f(fi',X') and tloss(n,X) < tloss(n',Xt) hold.

Algorithm LS-APG

Input: Lengths li and demands di of all products i E M, the number of different

 cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns n = {pi,p2, . . . ,pn}, and the numbers of their

 applications X = {xi,x2, ... ,xn}, or "failure".

Step 1: (Generation of an initial solution)

 Apply MFFJNIT to obtain an initial set ofcutting patterns n == {pi,p2, ･ ･ ･ ,pn}･

 If MFFJNIT outputs "failure", then output "failure" and halt. Other-

 wise apply SOLVEJP to compute the corresponding numbers of applications

 X= {xi,x2,･･･,xn}, set a'' := 1 and 2'i :=]'*, and go to Step 2.

36 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Step 2: (Construction of a neighbor solution II')

Set h := j* + 1 (mod n). Compute ri(jI,h) of (2.11) for all i E M, and

let M(jl,h):= {i I ri > O,i EM}. Apply DAPG to obtain a pair of new

cutting patterns Pjl ' Pj2' and let II' = II U {Pjl ,Pj2} \ {Pi!' Ph }.

Step 3: (Elimination of bottleneck products)

Let X = {~, X2, ... ,~} be the real numbers of applications to the new set

of cutting patterns II' obtained from the LP relaxation LP(II'). Let B be

the set of bottleneck products, Le., B := {i I LpjEII1 aijXj = dd, and let

akj := akj + 1 for all k E B for which there is a cutting pattern Pj E II such

that lk ::; L - LiEM aijli. Let II' be the resulting set of cutting patterns.

Step 4: (Move)

Compute the integer numbers of applications X' = {x~, X2' ... ,x~} to the

new set of cutting patterns II' by applying SOLVEJP (see Section 2.3). If

either f(II, X) < f(II', X') holds, or f(II, X) = f(II', X') and tloss(II, X) <
tloss(II', X') hold, then set (II, X) := (II', X'), j* := j* +1 (mod n), JI :=j*

and return to Step 2.

Step 5: (Termination)

Set h := j2 + 1 (mod n). If j2 = jl holds (Le., all 12 have been checked), set

jl := jl + 1 (mod n). If jl = j* holds (Le., all jl and 12 have been checked),

output (II, X) and halt. Otherwise return to Step 2.

2.6 Computational Experiment

We conducted computational experiment for random instances generated by CUTGEN [32],

to compare LS-APG with the existing two algorithms SHP [46][47] and KOMBl [29].

SHP heuristically minimizes both the number of stock rolls f and the number of different

cutting patterns n, and balances them by controlling the input parameter MAXTL (Le., the

upper bound of trim loss for new cutting patterns). KOMBl starts from a near optiinal

solution of the standard ID-CSP (Le., no restriction on the number of different cutting

patterns) obtained by Stadtler's algorithm [83], and repeats reduction of the number of

different cutting patterns by combining more than one cutting pattern into one. In other

word, KOMBl tries to solve ID-PMP that minimizes the number of different cutting patterns

2.6 Computational Experiment 37

while using a given number of stock rolls.

LS-APG and SHP were coded in C language and executed on an IBM-compatible personal

computer (Pentium III 1GHz, 1GB memory). The results of KOMBI were taken from [29], as

we could not get the source code of KOMBI. KOMBI was run on an IBM-compatible 486/66

personal computer using MODULA-2 as the programming language under MS-DOS 6.0.

We generated 18 classes of random instances by CUTGEN, which are defined by combining

different values of parameters L, m, VI, V2, d. The lengths li are treated as random variables

taken from interval [vIL, v2L]. d is the average of demands (dI' d2,.'" dm) (the rule of

generating di is described in [32]). In our computational experiments, L was set to 1000,

m was set to 10, 20 and 40, and d was set to 10 and 100. Furthermore, (VI, V2) was set to

(0.01, 0.2) for classes 1-6, (0.01, 0.8) for classes 7-12, and (0.2, 0.8) for classes 13-18. The

parameter seed for generating random numbers was set to 1994. For each class, 100 problem

instances were generated and tested. These classes of problem instances were also solved by

KOMBI, where 100 instances are tested for each class.

As mentioned in Section 1.5, our local search algorithm can obtain a trade-off curve

between the number of different cutting patterns n and the number of stock rolls f. For this,

we conducted preliminary computational.experiment. We took a random instance of class 12

generated by CUTGEN, and applied LS-APG for all n between nLB and m, where

(2.25)

is a trivial lower bound of different cutting patterns and m is the number of products.

Figure 2.1 shows the number of stock rolls f with respect to the number of different cutting

patterns n. As SHP has an input parameter MAXTL to control the maximum trim loss of

cutting patterns, we also illustrated the solutions of SHP for different values of MAXTL. For

this instance, we observe that LS-APG attains comparable number of stock rolls to SHP with

smaller number of different cutting patterns. Figure 2.2 shows the CPU time of LS-APG for

different n. We observe that the CPU time of LS-APG tends to increase as n increases.

Table 2.1 and 2.2 show computational results, where nLB denotes the average of the lower

bound nLB on different cutting patterns, n denotes the average of different cutting patterns n,

and f denotes the average of required stock rolls for each class. Table 2.1 contains the results

of SHP and KOMBI, where SHP was run on three different values of MAXTL= 0.05, 0.03

and 0.01. The results of LS-APG are shown in Table 2.2. To capture the general behavior

of trade-off curves of LS-APG, we show several points of trade-off curves that attain the

38 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

~ ~ ~ ~ ~ ~

n (the number of different cutting patterns)

._--------------\

+ ' x
+ + + + l.,* oi<

+ +

2000

1950

1900

:if 1850"2
.><
(,) 1800
~
"5 175015.c
E 1700'"c:
CIl
§ 1650....

1600

1550

1500
15

x

LS-APG +
SHP x

x

Figure 2.1: The number of stock rolls versus the number of different cutting patterns (nLB =

17)

140

120

100
d
CIle 80CIl

,§
::>

60a.
U

40

20

0
15 ~ ~ ~ ~ ~

n (the number of different cutting patterns)

Figure 2.2: The CPU time in seconds versus the number of different cutting patterns

2.6 Computational Experiment 39

lible 2.1: Computational results of SHP and

by CUTGEN

KOMBI for the random instances generated

class m d nLB n
MAXTL=O.05
f

SHP

O.03 O.Ol

n j n

KOMBI

j

123456 10

10

20

20

40

40

10

100

10

100

10

100

1.67

1.67

2.56

2.56

4.26

4.26

4.08

6.33

5.77

9.06

9.07

13.90

11.68

112.80

22.55

220.63

43.89

434.59

4.2511.62
6.33111.81

5.8922.37
8.98218.94

9.0343.60
13.45430.79

4.49

6.75

5.98

9.25

9.01

13.77

11.57

110.85

22.17

217.00

43.17

426.81

3.40

7.81

5.89

14.26

10.75

25.44

11.49

110.25

22.13

215.93

42.96

424.71

789101112 10

10

20

20

40

40

10

100

10

100

10

100

4.62

4.62

8.65

8.65

16.27

16.27

10.14

11.30

18.58

20.96

35.06

39.90

52.21

519.88

97.42

970.43

186.45

1854.79

10.3352.19
11.46520.36

19.2297.96
21.74973.63

36.29187.37

40.531865.41

10.82

11.97

19.91

21.99

37.78

41.86

52.77

526.81

98.82

984.32

189.91

1891.90

7.90

9.96

15.03

19.28

28.74

37.31

50.21

499.52

93.67

932.32

176.97

1766.20

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

100

5.54

5.54

10.52

10.52

19.85

19.85

10.55

10.92

20.11

21.09

38.02

40.16

65.46

652.95

123.36

1232.42

235.64

2351.38

10.5565.41
10.95654.80

20.30124.36

21.091240.39

38.52238.06

40.382366.95

10.67

11.12

20.86

21.32

39.10

40.67

65.52

654.95

124.60

1243.43

239.77

2389.49

8.97

10.32

16.88

19.91

31.46

38.28

63.27

632.12

119.93

1191.80

224.68

2242.40

40 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Tbble 2.2: Computational results

generated by CUTGEN

of LS-APG with different fuB for the random instances

class m
d" itLB

oof*+O.05fLBf*+O.03fLBf*+O.OlhB

l,i 10

10

20

20

40

40

10

100

10

100

10

100

1.67

1.67

2.56

2.56

4.26

4.26

2.0014.472.9012.542.9012.542.9012.54
2.00141.284.09115.324.74113.805.73112.73
2.5730.764.8323.664.8323.664.8323.66
2.57305.786.07226.046.96223.499.28220.31
4.2861.638.6545.729.4145.259.4145.25
4.28609.739.49447.9411.23441.7315.23434.79

10

10

20

20

40

40

10

100

10

100

10

100

4.62.

4.62

8.65

8.65

16.27

16.27

5.0155.776.1451.456.2651.286.2651.28
5.01558.696.42510.606.73507.787.38504.77
9.27105.0710.8197.3911.4196.4311.8196.14
9.271053.0811.44962.2712.22953.9213.91944.45
16.95201.4619.60185.6820.77183.7923.98181.34
16.952010.2620.711837.9022.441817.0726.031787.39

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

loe

5.54

5.54

10.52

10.52

19.85

19.85

6.2668.737.0664.457.3064.367.3064.36
6.26687.147.19644.877.45641.057.77638.53
11.76129.1012.76123.4313.33122.6514.18121.81
11.761292.0913.381226.0514.011216.6615.131205.10

21.50246.3422.89235.8523.49233.5525.58230.94
21.502471.3223.992334.8825.352305.3528.352274.79

2.6 Computational Experiment 41

minimum numbers of diflerent cutting patterns n satisfying fuB stock rolls or less.

experiment, the upper bounds fuB are set to as follows:

In this

fuB = f* + 6hB, (2.26)

where f' is the number of required stock rolls obtained by LS-APG fbr n = m, and .fLB is a

trivial lower bound of required stock rolls:

hB ==[ZiEM dili

L

1･
(2.27)

We tested LS-APG for fuB == oo and fuB = f' +6.fbB with 6= O.05,O.03,O.Ol.

 From thble 2.1 and 2.2, we first observe that the numbers of stock rolls attained by

KOMBI are smaller than those of SHP and LS-APG for all classes. However, SHP and LS-

APG can obtain a wide variety of solutions by controlling their input parameters, i.e., they can

realize trade-off curves between the number of diflbrent cutting patterns n and the number

of stock rolls by their input parameters. SHP attains smaller number of different cutting

patterns than KOMBI fbr classes 2-6 using only a slightly larger number of stock rolls, while

the solutions of SHP are much worse than those of KOMBI for classes 7-18. It shows that

SHP does not provide good tradeoff curves fbr instances in which the ratio of product lengths

li to the length of stock roll L is relatively large. On the other hand, LS-APG attains smaller

number of different cutting patterns than KOMBI for all classes, without much increasing

the number of additional stock rolls. Note that LS-APG obtains feasible so}utions even fbr

very small n, close to nLB, while SHP and KOMBI could not produce feasible solutions fbr

such n. Erom these observation, we may conclude that LS-APG is usefu1, as it can provide

usefu1 trade-off curves fbr a very wide range of n.

 Table 2.6 gives the average CPU time of SHP (MAXTL=e.03), KOMBI and LS-APG

(fuB = f* +O.03fLB), respectively, for all classes. For these problem instances, SHP is faster

than LS-APG except fbr classes 5 and 6, and KOMBI may be faster than LS-APG, taking

account of the power of computers in use. However, the average CPU time of LS-APG is

within 20 seconds for all classes, and it may be sufficiently short even if LS-APG repeatedly

applied for all n in order to obtain trade-off curves.

42 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Thble 2.3 : The average CPU time in seconds fbr the random instances generated by CUTGEN

class m d SHP KOMBI LS-APG
1 10 10 O.04O.14O.Ol
2 10 1OO O.081.14O.07
3 20 10 1.561.74O.19
4 20 100 1.5716.00O.76
5 40 10 631.7438.035.32
6 40 100 107.11379.1711.41
7 10 10 O.OOO.07O.03
8 10 100 O.OOO.20O.04
9 20 10 O.Ol1.34O.48
10 20 100 O.023.25O.71
11 40 10 O.0936.2713.07
12 40 100 O.1476.3119.53
13 10 10 O.OOO.08O.03'
14 10 100 O.OOO.13O.03
15 20 10 O.Ol1.81O.44
16 20 100 O.Ol2.60O.60
17 40 10 O.0650.9310.34
18 40 100 O.1070.9414.32

2.7 Conclusion 43

2.7 Conclusion

We proposed a local search algorithm based on an adaptive pattern generation (LS-APG) fbr

ID-PRP. It starts from an initia1 solution obtained by a modified first fit heuristic (MFF)

known for the bin packing problem (BPP). Solutions in the neighborhood are defined by

removing two cutting patterns from the current solution and adding two new cutting patterns

from the set of candidate cutting patterns. However, the number of all feasible cutting

patterns is too iarge to evaluate all of them, since it grows exponentially in the number of

products. Tb facilitate the search in the neighborhood, we introduced the adaptive pattern

generation (APG) to construct a small subset of the neighborhood containing good solutions.

The adaptive pattern generation is based on the residual demands when two cutting patterns

are removed from the current solution. We conducted computational experiment for random

instances, and observed that LS-APG attains a wide variety of good solutions comparable

to SHP and KOMBI, and LS･-APG provides usefu1 tradeoff curves between the number of

different cutting patterns and the number of required stock rolls for a very wide range.

Chapter 3

A Local Search Algorithm Based

on Linear Programming

Techniques

l.1 Introduction

n this chapter, we propose a local search algorithm based on linear programming techniques

LS-LP). As mentioned in Section 1.5, we have to specify the fbllowing details to implement

ocal search algorithms to ID-PRP, i.e., (i) how to construct an initial solution, (ii) how to

:ompute auxiliary integer linear programming problems (ILP), and (iii) how to find promising

olutions sufliciently among all neighbor solutions in the neighborhood. In Chapter 2, we

)roposed a heuristic algorithm to overcome them, called the adaptive pattern generation

APG), and designed a local search algorithm based on the adaptive pattern generation (LS-

LPG). However, we could not attain suMcient eMciency since we still have a large number

,f LP relaxation problems to be solved in an execution of LS-APG. We try to overcome this

[iMculty by keeping an optimal simplex tableau in addition to the.current solution; i.e., we

tart the simplex algorithm from an optimal simplex tableau of the current solution, instead

Ff starting it from scratch.

 The proposed algorithm utilizes a dual optimal solution of LP relaxation as well as the

olumn generation method proposed by Gilmore and Gomory [34][35], which is one of the

iost representative linear programming approaches to the standard ID-CSP (see Section

45

46 Chapter3 A Local Search Algorithm Based on Linear Programming Techniques

1.3). The column generation method utilizes a dual optimal solution of LP relaxation to

determine a new cutting pattern to enter the basis of the LP relaxation; i.e., it gives us

an aspiration that the new cutting pattern induces improvement of the current solution. It

starts from a feasible solution of the standard ID-CSP, and repeatedly adds new cutting

patterns sadsfying the aspiration of improvement by solving associated knapsack problems.

As the column generation method never removes the cutting patterns in the current solution,

it can always reduce the objective value f by adding new cutting patterns satisfying the

aspiration of improvement. However, in ID-PRP, in ,order to keep the number of different

cutting patterns, we must remove a cutting pattern in the current solution while adding a

new cutting pattern. Hence, we can not necessarily improve the objective value f by the

new cutting pattern satisfying the aspiration of improvement. We propose a local search

algoritim that uses the neighborhood obtained by adding a new cutting pattern satisfying

the aspiration of improvement and removing a cutting pattern from the current solution; i.e.,

we test many pair of adding and removing cutting patterns eMciently by introducing the

local search approach.

 Finally, we conducted computational experiment fbr randomly generated problem in-

stances, and observed that LS-LP attains a wide variety of solutions comparable to those

of LS-APG, and it provides usefu1 trade-off curves between the number of different cutting

patterns and the number of required stock rolls.

3.2 Generation of an Initial Solution

As mentioned in Section 2.2, if there is no restriction on the number of diflerent cutting

patterns, as in the standard ID-CSP, it is easy to construct a feasible solution. But just

finding a feasible solution is not trivial in ID-PRP, since it contains as a special case the

bin packing problem (BPP). Hence, to design a local search algorithm to ID-PRP, we first

consider how to construct a feasible solution heuristically. Here, we assume that the number

of diflbrent cutting patterns n is less than the number of products m, because otherwise a

feasible solution is easily obtained. In this section, we develop two heuristic algorithms MFF

(see Section 2.2) and UNIFORM-FIT to find a feasible solution (n, X), where both algorithms

are based on the first-fit algorithm (FF) known fbr BPP. Note that LS-LP directly uses the

output of UNIFORM-FIT as an initial solution of the local search algorithm, while LS-APG

improves the output ofMFF by applying SAPG fbr each cutting pattern. We test local search

3.2 Generation of an Initial Solution 47

algorithms based on both algorithms for random irstances in Section 3.7.

 Let n = {pi,p2,. . . , pn} denote a set of cutting patterns, and X = {xi, x2, . . . , xn} denote

the numbers oftheir applications. Before starting UNIFORM-FIT, all cutting patterns pi･ E n

are initialized to empty, i.e., aij･ : = O fbr all i E M. UNIFORM-FIT first sorts all products

i E M in the descending order of demand di, and then assigns these products one by one in

this order into the cutting pattern pi as long as the resulting sum of lengths does not exceed

the length of stock roll L. In general steps for cutting patterns pj (2' >. 2), UNIFORM-FIT

sorts all productsiE M in the ascending order of the number of their appearance in the set

of cutting patterns {pi,p2,...,pj･.i} (while breaking ties in the descending order of demand

di), and assigns them into the cutting pattern pi in this order. Note that UNIFORM-FIT

assigns at most once for each product i E M in one cutting pattern pJ･ E n, implying that

the cutting patterns may have large trim losses since the minimization of the number of

required stock rolls is not done by UNIFORM-FIT. Here, in the step of constructing p2" let

L;･eS represent the residual length of the cutting pattern va, and Ai represent the number of

appearances ofthe product i E M in the set of cutting patterns {pi,p2,...,pi'-i}:

 Ai= 2 aik･ (3.1)
 PkE{Pl,P2,･･･,PJ'-1}

 Algorithm UNIFORM-FIT

 Input: Lengths li and demands di of all products i E M, the number of different

 cutting patterns n, and the length of stock roll L.

 Output: A set of cutting patterns n = {pi,p2,..･,pn}, where pj' = (aij',a2j7･ ･･,

 amj')'

 Step 1: Iior all cutting patterns pj E ll, set aii･ := O fbr all i E M and Lj'･eS := L.

 Set 2' := 1.

 Step 2: If 1' = 1 holds, sort all i E M in the descending 6rder of demand di;

 otherwise compute the number of appearances Ai fbr alliE M, and sort

 them in the ascending order of Ai, while breaking ties in the descending

 order of di. Let a(k) denote the k-th product in the resulting order. Set

 k := 1.

 Step 3: If l.(le) S Ljr･eS holds, set a.(k)i･ := 1 and Lj'･eS := Lj'･eS - l.(k). If k < m

 holds, set k := k + 1 and return to Step 3; otherwise go to Step 4.

48 Chapter 3 A Local Search Algorithm Based on Linear Programrning Tbchniques

 Step 4: If j = n holds, output n = {pi,p2,...,pn} and halt; otherwise set

 2' := j +1 and return to Step 2.

 Ifthere is a product i E M such that no cutting pattern pJi E n contains it in the resulting

set of cutting patterns n, i.e., UNIFORM-FIT fails to obtain a feasible solution, we switch to

the first-fit decreasing heuristic algorithm (FFD) known for BPP. FFD first sorts all products

i E M in the descending order of li, and assigns them into the cutting pattem with the lowest

index among those having the residual capacity of at least li. If this attempt also fails, we

conclude "infeasibility" (i.e., failure).

 Algorithm FFD

 Input: Lengths li and demands di of all products i E M, the number ofdifferent

 cutting patterns n, the length of stock rolls L.

 Output: A set ofcutting patterns fi = {pi,p2,･･･,pn}, where pi' = (aiJ',a2J',･･･,amj'),

 or "fai1ure".

 Step 1: For all cutting patterns pj･ E fi, set aiJ- := O fbr all i E M, and L;･eS := L.

 Step 2: Sort all products i E M in the descending order of li, where a(k) denotes

 the le-th product in this order. Set k := 1 and j' := 1.

 Step 3: If l.(k) S L;･eS holds, set a.(k)j･ := 1, LS･eS := L)'･eS - l.(k), k := k+ 1 and

 1' : = 1; otherwise set j' := j + 1. If k S m and j' -< n hold, return to Step 3;

 otherwise go to Step 4.

 Step 4: If k > m holds, output n == {pi,p2,...,pn} and halt; otherwise output

 "failure" and halt.

 Finally, we summarize the algorithm UNIFORMJNIT that constructs an initial feasible

solution using UNIFORM-FIT and FFD.

 Algorithm UNIFORMJNIT

 Input: Lengths li and demands di of productsiE M, the number of diflbrent

 cutting patterns n, and the length of stock rolls L.

 Output: A set ofn cutting patterns " = {pi,p2,...,pn} and the numbers of

 their applications X = {xi,x2,...,xn}, or "failure".

3.3 Construction ofthe Neighborhood 49

 Step 1: Apply UNIFORM-FIT to obtain a set of n cutting patterns. If this

 attempt fails, apply FFD. IfFFD still outputs "failure", we output "failure"

 and halt.

Note that it is necessary to compute the numbers of applications x)･ by SO[VEJP (see Section

2.3).

3.3 ConstructionoftheNeighborhood

A natural definition of neighborhood Ni(fi) is given by replacing one cutting pattern pj･ E fi

with another cutting pattern pS･ ESXn: ,

 Ni (n) ={nu {ps･}x {p,･}l p,･ E n, ps･ Esx n}, (3.2)

where S is the set of all feasible cutting patterns. As mentioned in Section 1.5, the number

of all feasible cutting patterns ISI exponentially grows as the number of products m, and

most of them may not lead to improvement. 'Ib overcome this, we propose a new heuristic

algorithm PERTURB, which is different from the adaptive pattern generation (APG) in

Section 2.4. PERTURB generates a subset Ni'ed(n) of the neighborhood Ni(n), containing

good solutions. The construction is based on a dual optimal solution Y = {Yi, Y2, ･ ･ ･ , Y.} of

the LP relaxation LP(n). We now recall the LP relaxation LP(n) of (2.8):

 n
 (LP(n)) minimize f-(ll,X)=2x,･ (3.3)
 j=1
 n
 subj ect to 2aij- xj･ - si = di for i = 1, ...,m

 J'=1
 xj >- O for 7' -- 1,2,...,n

 si -> O for i= 1, 2, ...,m,

where si are the slack variables and represent the quantity of overproduction fbr products

i E M. Here, the dual problem DLP(ll) of the LP relaxation LP(n) is described as fbllows:

 m
 (DLP(H)) maximize 2dig, (3.4)
 ii:,i

 subject to EaiJ yz S 1 for j' = 1, 2, ...,n

 i=1
 yi)O fori= 1,2,...,m.

50 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

We consider the neighborhood N[ed(IT) ~ N l (IT) as follows:

N[ed(IT) = {IT U {p(i',j')} \ {Pj'} Ii' E M'(IT), j' EN},

where

M' (IT) = {i Ifh > 0, i E M},

N = {j IPj E IT},

(3.5)

(3.6)

(3.7)

and p(i', j') = (a~j' liE M) is the new cutting pattern generated by PERTURB for a pair of

i' and j'. The dual variables Yi give us information of how much improvement can be induced

by slightly reducing the right hand side di of the i-th constraint of LP(IT). The reduction of

di may be also achieved by increasing an aij in the i-th constraint of LP(IT). In this sense, Yi

may serve as an indication of the effectiveness of increasing aij in a cutting pattern Pj E IT.

Note that the number of positive fh of an optimal solution is at most the number of cutting

patterns n, and hence the size of N[ed(IT) is O(n2).

Based on this observation, we now explain the algorithm PERTURB. It is executed for a

pair of i' and j' to generate a new cutting pattern p(i',j'), which is obtained by increasing

ai'j' and decreasing some aij,(i # i') with smaller fh/li (to recover feasibility of the cutting

-pattern (1.3)). For this, PERTURB first sorts all products i E M in the ascending order of

fh/li while using the descending order of the overproduction Si as the secondary criterion for

i E M \ M'(IT) (i.e., fh = 0 holds). Then, PERTURB adds one product i' E M'(IT) to the

cutting pattern Pi' E IT (Le., a~'j' := aifjf + 1). If the new cutting pattern p(i', j') violates the

constraint (1.3), PERTURB sequentially removes other products in the above order until the

cutting pattern p(i', j') satisfies (1.3), and then adds back the products in the reversed order.

as long as the cutting pattern p(i', j') still satisfies (1.3). Here, let Lres represent the residual

length of the cutting pattern p(i', j').

Algorithm PERTURB

Input: A product i' EM, a cutting pattern PJ' = (alj', a2j', ... , amj') E IT,

lengths li and demands di of all products i EM, the length of stock rolls L,

and a dual optimal solution Y = Hh, fh, ... ,Ym} of DLP(IT).

Output: A new cutting pattern p(i', j') = (a~j" a2i" ... , a~j') or "failure".

Step 1: Sort all i E M in the ascending order of YJli while using the descending

order of overproduction Si as the secondary criterion for i E M \ M'(IT). Let

cr(k) denote the k-th product in the resulting order.

3.3 Construction ofthe Neighborhood 51

 Step 2: Set a:-j･t :== aitj･, +1, a;･,j-t := ai,j･, for all i E MX{i'}, and LreS :=

 L- £iEM a:･jtli. Set k : = 1.

 Step 3: If L'eS) O holds, set h := m and go to Step 5; otherwise if k > m holds,

 output "failure" and halt.

 Step 4: If a(k) 7! i' and a3(k)j, > O hold, set a}(k)i r- ae(k)j, -- 1, and VeS :=

 L'eS + l.(k). Set k := k+ 1 and return to Step 3.

 Step 5: If l.(k) S LreS holds, set a3(k)j･, := a'.(k)j., + 1 and L'eS := LreS - l.(ic).

 If k > 1 holds, set k:= k - 1 and return to Step 5; otherwise output the

 resulting the cutting pattern p(i', o") = (a'ii･,, aSi･,, . . . , ahj･,) and halt.

Here, we note that the set M'(ll) is also given by

 M'(n)={ilsi=O, iE M}, (3.8)

which is obtained by the complementary slackness of linear programming. In this sense,

PERTURB tends to eliminate the bottleneck products (i.e., si = O holds) as well as the

adaptive pattern generation of LS-APG (see Section 2.4) does.

 Now we recall the column generation method to the standard ID-CSP in Section 1.3. The

column generation method also utilizes an optimal solution i7 = {Yi,Y2, . . . , Y.} of DLP(n)

to generate a new cutting pattern. It uses the fo11owing aspiration to induce improvement of

the current solution:

 z(II,p') =2yia;･, (3･9)
 iEM
where p' == {al, a'2, . . . , a'.} represents the new cutting pattern. If the new cutting pattern p'

satisfies z(n,p') > 1, we can improve the current solution by adding the new cutting pattern.

However, in ID-PRP, in order to keep the number of different cutting patterns, we must

remove a' cutting pattern in the current solution while adding a new cutting pattern, i.e.,

PERTURB substantially replaces the cutting pattern pJ･, in the current solution with the

new cutting pattern p(i',J"). Figure 3.3 shows the change of the dual optimal solution by

applying PERTURB. It is observed that the objective value f may increase even if the new

cutting pattern p(i',i) satisfies z(n,p(i',i)) > 1.

 On the other hand, if the new cutting pattern p(i',o") satisfies z(II,p(i',i)) S 1, it

never lead to improvement of the current solution. In this case, we prepare another pattern

generation algorithm PATGEN which generates a new cutting pattern p(i', j") from scratch.

52 Chapter3 A Local Search Algorithm Based on Linear Programming Techniques

dnal optimal

solution y-

 f(n)

new pattern
p(i,, 1") Nx,A,

 IAs
 IN tN IN ll IN txfltt Ns x

f(H v {p(i', 1")} N {p,, })

 pt. tsge"X:

'-- $""geigi///$'/j././N,es-'--

 Figure 3.1: The change of the dual optimal solution by PERTURB

PATGEN first sorts all products i E M'(ll) in the descending order of Yi/li, and repeatedly

adds them in this order until ZiEMa:･2･tYi > 1 holds･

 Algorithm PATGEN

 Input: A cutting pattern p)･t = (aij･,,a2j,,. ..,a.j･,) E n, lengths li and demands

 di of all products i E M, the length of stock rolls L, and a dual optimal

 solution Y = {Yi,Y2,...,Y.} of DLP(ll).

 Output: A new cutting pattern p(i',j') = (alo･,,aSo･,,...,ahjv) or "failure".

 Step 1: Sort all i E M'(H) in the descending order of Yi/li. Let a(k) denote the

 k-th product in the resulting order.

 Step 2: Set al･jt :== O fbr all i E M, L'eS := L, and k :== 1.

 Step 3: If LreS S miniEM,(n) li or £iEMa:･j,Yi > 1 holds, output the resulting

 cutting pattern p(i',j') = (a'ij･,,aSjv,. . . ,ahj･,) and halt; otherwise if l.(k) S

 L'eS holds, set a3(k)j･, := a3(k)o･, + 1 and LreS := L'eS - l.(k). If k = n holds,

 set k := 1; otherwise k := k+ 1. Return to Step 3.

3.4 Solving many LP Relaxations

For a given set of cutting patterns n == {pi,p2,･･･,pn}, the

numbers of their applications X == {xi,x2,...,xn} to MiniMiZe

problem

the cost

of computing the

function f(fl,X)

3.4 Solving many LP Relaxations 53

ean be fbrmulated as the fbllowing integ

(ILP(n)) minimize

subject to

er linear programming problem (ILP):

 n
f(ll,x) - 2 xj

 j'=1
 n
£ aii xj - si = dz for i == 1,...,m

j'=1

xj E Z+ fbr j` = 1, 2,...,n

si E Z+ for i = 1, 2, ...,m,

(3.10)

4s mentioned in Section 2.3, this problem contains the set covering problem (SCP) known to

)e NP-hard [31] as a special case. Hence, we propose a heuristic algorithm SOLVEJP to find

in approximate solution .Sl = {thi,t2, ... ,al.}, which is based on an optimal solution of its

]P relaxation IXr = {hii,hi2,. .. ,Tn}. Indeed we can compute the number of applications l9

br a set of cutting patterns n in relatively small CPU time. However, in order to determine

)ne move operation, we still have a large number of LP relaxations LP(II) to be solved. For

)xample, LS-LP needs to solve O(n2) LP relaxations, and it is quite time consuming. In this

:ection, we consider an exact algorithm SOLVE-LP to solve LP relaxation LP(I[).

 Let fi' = n U {p(i',i)} X {pJ,} denote a solution in the neighborhood Arfed(rr), where

)(i',]'') is the new cutting pattern generated by PERTURB. Since the instance LP(II') is only

lightly diflerent from LP(n), we can start simplex algorithm from the optimal tableau of

he instance LP(n), instead of starting it from scratch. Now we consider an optimal solution

r = {hii,hi2,...,hi.} of LP(II) and the optimal values of its slack variables {3i,32,...,3.}.

Iere, we use Z!ij > O and 3k > O (resp., hii･ = O and Sk = O) to denote basic (resp., non-basic)

'ariables. The cutting patterns in the current solution pj･ -- (aj'i,a2b･,...,amj-) correspond to

he columns of the simplex tableau of LP(n). Let wk and qk = (bki, b2h,.･･,bmk) denote the

oeMcient of the cost function and the columns corresponding to the slack variables 3ic. Let

:B and B (resp., cN and N) denote the coefficients of the cost function and the columns

orresponding to the basic (resp., non-basic) variables, i.e., cB = (cj' 1 Ztfj > O)U(wk 1 3ic > O),

l= (pS･Ihij > O)U(qk13k > O), cN :(c,･lhij' = O)U(wkl3k = O), and N == (pS･I!Ej =

)U (qL l 3k - O).

 The optimal simplex tableau T = (B.N,bB,bN) contains the basic columns B =

b,- l IIfj > O) U(q'"k 1 3k > O), t･he non-basic columns N == (P,- l hi,- = O) U(ijk l 3h = O),

he reduced costs corresponding to the basic variables EB = (ej･ I hij- > O) U (ndk 1 3k > O), and

be reduced costs corresponding to the non-basic variables bAr = (aj I ZEj -- O) U (ibk I :iik = O),

54 Chapter3 A Local Search Algorithm Based on Linear Prograrnming Tbchniques

 where the columns P]･ --' (aij･,a2J･,...,ami-)t correspond to the variables xj･ and the columns

 qNk = (bik, b2k,...,bmk)t correspond to the variables sk. They are computed by

 fi,･ --. B'ipS･ (3.11)

 q"k :B-'qZ (3.12)
 oj == i-2yiaij- (3.i3)
 iEM

 2bk = -2Y,bik, (3.14)
 iEM

where Y = {Yi, Y2, . . . , Y.} is an optimal solution of DLP(n) and it can be easily computed

based on the duality theorem:

 Y'= ctBB-i. (3.15)

 Tb construct a new simplex tableau T' = (B',N',E'B,E'N) of the new set of cutting

patterns n', we first add the new column P(i',i) corresponding to the new cutting pattern

p(i',i) = (alj,, a5j-,, . . . , afuv) generated by PERTURB:

 p(i',i)=B-ip(i',1")t. (3.16)

The reduced cost c"e'･, and the number of applications corresponding to the new cutting pattern

p(i',j") are also computed as fo11ows:

 c",'･r = 1-2Yia;･," (3.17)
 iEM
 pt,=O. . (3.18)

We remove the column A･, from basis and add the new column P(i',i) to basis by applying

a pivoting operation to exchange bli･t and hiS･, (consequently hij･t becomes O and iilt becomes

nonnegative). Figure 3.4 represents the above operations to the optimal simplex tableau

T. Then we apply the criss-cross algorithm [103] to the resulting simplex tableau. Even if

this starting simplex tableau is neither feasible (i.e., there is at least one hii- < O, 3k < O or

IT;, < O) nor dual feasible (i.e., there is at least one aj < O, thic < O or eg, < O), the criss-cross

algorithm is guaranteed to converge to an optimal solution of LP(fi') often in a small number

of pivoting operations.

 Algorithm SOLVE-LP

3.4 Solving many LP Relaxations 55

pivoting columns
new pattern p-(i,,jr) (zi,"., <O)

Z;B =O zr. Ilz o

1

o

.

Xl

 X-2

 l

S-

m-n

 Xl ''' "' Xn Sl ''' Sm-n Sm-n+1 ''' Sm

 basic variables non-basic variables

Figure 3.2: Exchanging the colums Pj-, and P(i',i) in the optimal simplex tableau T

56 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Input: An optimal solution X = {Xl, X2, ... , Xjl, xn } together with its simplex

tableau T = (il, IV, CB, CN) of LP(II), where II = {PI,p2,'" ,Pn} is the

current set of patterns, and a new pattern p(i', j') = (a~jl' a;jl' ... ,a~jl).

Output: An optimal solution X = {~,~, ... ,XJ', ... ,~} and its simplex tableau
-, -,

T' = (B, N ,CB' cN) of LP(II') for the new set of patterns II' = II u
{p(i', j')} \ {Pjl }, or "failure".

Step 1: Add p(i',j') := B-Ip(i',j')t, XJI .- 0, CJI .- 1 - LiEM lha~jl to the

simplex tableau T.

Step 2: Apply the pivoting operation to exchange columns Pi' and p(i',j'). If

the resulting simplex tableau is feasible, apply the revised simplex algorithm;

otherwise apply the criss-cross algorithm to obtain an optimal solution X'

and its tableau T'.

Step 3: If the resulting solution X contains at least one negative variable Xj,

outputs "failure"; otherwise output X and its simplex tableau T'. Halt.

The criss-cross algorithm does not monotonously decrease the objective value /(II, X).

It shows that we can not necessarily obtain an improving solution (II', X') of LP(II) (Le.,

f(II', X') < /(II, X) holds) by applying a new cutting patternp(i',j') satisfying z(Il,p(i',j')) >

1. On the other hand, if the resulting simplex tableau is feasible (Le., all basic variables take

nonnegative values), as the revised simplex algorithm decreases monotonously the objective

value /(Il, X), and we can always obtain an improving solution (II', X') of LP(II). From

this observation, we see that the feasibility of the resulting simplex tableau is a sufficient

condition to obtain an improving solution. If the resulting simplex tableau is feasible, the

revised simplex algorithm is usually faster than the criss-cross algorithm. Therefore, in such

case, we use the revised simplex algorithm instead of the criss-cross algorithm.

To see the effectiveness of SOLVKLP, we compared two types of LS-LP, one is entirely

based on the revised simplex algorithm (Le., starting from scratch and the other is based on

SOLVE-LP (Le., starting from the optimal simplex tableau of the previous solution). We

tested two algorithms on 18 classes of randomly generated instances (see Section 2.6). Table

3.1 shows the number of pivoting operations required to solve one LP relaxation, averaged

over 10 instances for each class, where n (Le., the number of different cutting patterns) is set

to those of SHP solutions.

3.4 Solving many LP Relaxations 57

kble 3.1: The average number of pivoting operations for solving single LP(n)

class m d- revised simplex SOrvE-LP

1 10 10 11.86 2.83

2 10 100 14.32 2.90

3 20 10 26.07 3.81

4 20 100 31.91 5.61

5 40 10 52.47 3.95

6 40 100 82.49 10.21

7 IQ 10 11.99 1.27

8 10 100 14.14 O.88

9 20 10 19.46 O.88

10 20 100 31.48 1.19

11 40 10 52.16 O.84

12 40 100 73.23 1.64

13 10 10 11.49 1.06

14 10 100 12.64 1.30

15 20 10 22.53 O.79

16 20 100 23.14 1.01

17 40 10 42.23 O.60

18 40 100 44.96 1.27

58 Chapter3 A Local Search Algorithm Based on Linear Programming 1]echniques

 From [I]able 3.1, the number of pivoting operations of the revised simplex algorithm is

roughly proportional to the number of product m, but that of SOIjVE-LP is almost constant

and is much smaller than that of the revised simplex algorithm. It is also observed that

SOI VE-LP often attains an optimal solution without applying any pivoting operation. Since

local search algorithms to ID-PRP consumes most of CPU time fbr solving LP relaxations,

SOLVE-LP is very important to make them practical.

3.5 Entire Algorithm ofLocal Search

We now explain the framework ofthe local search algorithm LS-LP using UNIFORMJNIT (or

MFFJNIT), SOI:VEJP (based on SOLVEJ)P), PERTURB and PATGEN as its components.

Let (n,X) be the current solution. It adopts the first admissible move strategy, i.e., ifLS-LP

finds a better solution (n',X') in its neighborhood N{ed(n), LS-LP immediately moves to

it, and repeats the neighborhood search from there. Tb measure improvement of solutions

in LS-LP, we employ the main criterion 6f f(n,X) as well as the secondary criterion of the

total overproduction:

 A(fi,X) = Z) ii (3.19)
 iEM
 6i = max go, 2 a,, x, -d,). (3.2o)

 /< pjEn J/ '
That is, LS-LP moves from (fi,X) to (n',X') if either f(n',X') < f(n,X) holds, or

f(n',X') = f(ll, X) and A(nt,Xt) < A(n, X) hold.

Algorithm LS-LP

Input: Lengths li and demands di of all products i E M, the number of different

 cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns fi = {pi,p2,...,pn} and the numbers oftheir

 applications X = {xi, x2, . . . , xn}, or "failure" .

Step 1: Apply UNIFORMJNIT or MFFJNIT to obtain an initial set of cutting

 patterns n = {pi,p2, . . . ,pn}, and apply SOLVEJP to compute the numbers

 of their applications X = {xi,x2,...,xn}. If SOLVE [P outputs "failure",

 output "failure" and halt; otherwise set i' := 1, 2" := 1, i' := i* and j' := j'".

3,6 Iterated Local Search Algorithm 59

Step 2: If i' E M'(n) holds, apply PERTURB to generate the new cutting pat-

 tern p(i',7") == (a'ij･,, aSJ･,?.. . ,a;.j,); otherwise go to Step 5. If 2)iEMa:i-,Yi S

 1 holds for the new cutting pattern p(i',1"), apply PATGEN to reconstruct

 the new cutting pattern p(i',2"). Let n' := n u {p(i',i)} N {pjv}.

Step 3: Ifor the set of cutting patterns n'= {pl,p5,...,ph}, compute the num-

 bers of their applications X' = {xl,x'2,...,xh} by SOLVEJP (which em-

 ploys SOLVE.LP). If SOLVEJP outputs "failure", go to Step 5.

Step 4: Ifeitherf(n',X') < f(n,X) holds, orf(n',X') = f(fi,X) and A(n',X') <

 A(n,X) hold, move to the new solution; i.e., set (n,X) := (n',X'). Set

 i' := i' +1(mod m), e" := j" +1 (mod n), i' := i', 2" := 2", and return to

 Step 2.

Step 5: Set i' := i'+1 (mod m). If i' = i' holds (i.e., al1 i' have been checked),

 set j" := j'+1 (mod n). Ifi : j' holds (i.e., all i' and 1" have been checked),

 output (fi,X) and halts; otherwise return to Step 2.

3.6 Iterated Local Search Algorithm

Since the neighborhood IVred(II) is rather small, LS-LP often converges to a poor local op-

timal solution after a small number of move operations. Tb overcome such phenomenon, we

introduce an extension of the }ocal search algorithm called the iterated local search algorithm

(ILS) (see Section 1.2). We now consider the iterated version of LS-LP (ILS-LP) in this

section. ILS-LP first applies the simple local search algorithm LS-LP to an initial solution

generated by UNIFORMJNIT (or MFF-INIT). It then repeats LS-LP from different initial

solutions generated by perturbating the best solution obtained by then. The perturbation is

done by a random move to a neighbor solution II' E ATSWaP(n), where ATSWaP(n) is another

type of neighborhood defined as fbllows:

 IVSWaP(II) = {fi U {q(i',ii), q(i', j'2')} X {p,v,,p,･,,} i i' E M, ir,i E N}, (3.21)

where

 N:{J' lp,' Efi}, (3.22)

and q(i',j'i') and q(i',2'2') are the new cutting patterns generated by a heuristic algorithm

SWAP fbr the given i' E M and ii,1'2' E N･

60 Chapter 3 A Local Search Algorithm Based on Linear Prograrnming Tbchniques

 Given 2'i' and j'2', assume without loss of generality that the cutting patterns pil and ?js

satisfy xj･,, 2 xj,t . If the overproduction of the product i' takes positive value (i.e., 6i, > O),

SWAP increases the product i' in the cutting pattern pj･,t (i.e., aiti･,t := aitj･,, +1), and decreases

the product i' in the cutting pattern pj,, (i.e., ai,j･,, := ai,j･,, -1), ifai,J･,t > O holds. Ifthe cutting

pattern pjs violates the pattern feasibility (1.3), SWAP moves some products i E M X {i'}

from pJ･,t to pjl in the ascending order of overproduction 6i until the cutting pattern pis

satisfies (1.3) (in this case, if the cutting pattern lzil has no residual length to accommodate

the products from pJ･,,, SWAP only removes the products from ks). Here, L;.leS and L;.seS

represent the residual lengths of the cutting patterns q(i', J'i') and q(i', j'2'), respectively.

Algorithm SWAP

Input: A product i' E M satisfying 6i, > O, a pair of cutting patterns pi･,, =

 (aljl,a21'1,,･･･,amil)and Pj･i = (all･2,,a21･i,･･･,ame･2,), the number oftheir ap-

 plications x7･,t and xi2, where xi･t, }!r xj･i . Lengths li and overproduction 6i of

 all products i E M and the length of stock rolls L.

Output: A pair of cutting patterns q(i', 2'i') = (alj･{ , aSi, , ･ ･ ･ , ahi,) and q(i', a'2') =

 (a'ijs,a5i-2t,･･･,ahJii), or "failure".

Step 1: Sort all i E MX{i'} in the ascending order ofoverproduction 6i. Let a(k)

 denote the k-th product in the resulting order･ Set L;･,e, S := L - 2)iEM aij,,li

 and L;･;S := L - 2iEM aij2' li'

Step 2: Ifai,i, = O holds, output "failure" and halt; otherwise set al･,e･,, := ai,i, -

 1, al･i, := aij･,, for all i E MN{i'}, and L;･leS := L;･{eS+li,. Set a;.j･,, := aitJ･,, +1,

 al･i, := aij･,, for all i E MN {i'}, and L;.seS := L,r.ses - li,. set k := 1.

Step 3: If L;･6eS 2 O holds, output q(i',e'i') and q(i',j'2'), and halt; else if k > m

 holds, output "failure" and halt. Otherwise go to Step 4.

Step 4: Ifa(k) 7E i' and a.(k)e･,, > O hold, set a3(k)i, := a.(k)j･,, -1, LJ'･seS := L;･seS+

 l.(k) and ifl.(k) s{ Li'･{eS holds, set ae(k)i, := a.(k)j･,t +1 and L;･{eS := L;･leS-l.(h).

 Set k := k + 1 and return Step 3.

 Now algorithm ILS-LP is formally described as fbllows. Here, trial denotes the current

number of iterations of LS-LP from the last improvement, and MAXTRIALS (an input

parameter given by users) specifies the upper bound of trial. (H',X') denotes the best

3.7 Computational Experiment 61

solution obtained by then. In generating an initial solution (nt"tt,Xt"tt) for LS-LP in each

iteration, ILS-LP repeats applying SWAP until a feasible set of cutting patterns is obtained

or the terminating condition holds.

Algorithm ILS-LP

Input: Lengths li and demands di of all products i E M, the number of diiifer-

 ent cutting patterns n, the length of stock rolls L, and a positive integer

 MAXTRIALS.

Output: A set of cutting patterns n* = {pl,p5, . . . ,pn} and the numbers of their

 applications X' = {xl,x>,･･･,xn}

Step 1: Set trial := 1. Apply LS-LP to compute (n,X), and set ("',X') :=

 (n,x).

Step 2: Choose an initial set of cutting patterns lli"it of LS-LP randomly from

 IVSWaP(IJI*), and apply SOLVEJP to compute XZ"Zt. If the initial solution

 (llinit, xinit) is infeasible, go to Step 4; otherwise go to Step 3･

Step 3: Apply LS-LP to the obtained initial solution (ni"it,Xi"it) to compute

 (n,X). Iff(n,X) < f(n',X') holds, or f(n,X) == f(n',X') and A(H,X) <

 A(n",X') hold, set (H*,X') := (n,X) and trial := O.

Step 4: If trial 2 MAXTRIALS holds, output (n',X') and halt; otherwise set

 triat := triat + 1 and return to Step 2.

3.7 ComputationalExperiment

We conducted computational experiment fbr random instances generated by CUTGEN [32],

to compare ILS-LP with other algorithms SHP [46] [47], KOMBI [29] and LS-APG (see Chap-

ter 3). We generated 18 classes of random instances by CUTGEN and tested the above

algorithms fbr each class, where the details are the same as in Section 2.6. We coded SHP,

LS-APG and ILS-LP in C language and executed on an IBM-compatible personal computer

(Pentiumlll IGHz, IGB memory). The results of KOMBI were taken from [29], as we could

not get the source code of KOMBI. KOMBI was run on an IBM-compatible 486/66 personal

computer using MODULA-2 as the programming language under MS-DOS 6.0.

.

62 Chapter3 A Local Search Algoritim Based on Linear Programming Tbchniques

 We fust compare trade-off curves of UNIFORMJNIT and MFFJNIT for an instance as a

 preliminary experiment, where we take a random instance of class 12 generated by CUTGEN.

 We tested the fo11owing algorithms:

 (i) using UNIFORMJNIT and MFFJNIT only,

 (ii) starting LS-LP from the initial solutions of UNIFORMJNIT and MFFJNIT,

 (iii) starting ILS-LP from the initial solutions generated by UNIFORMJNIT and MFFJNIT.

 We apply these algorithms fbr all n between nLB and m, where

 nLB=[£iELM Iil '(3.23)

 is a trivial lower bound of diffk)rent cutting patterns and m is the number of products. Figure

 3.3, 3.4 and 3.5 represent the number of stock rolls f with respect to the number of different

cutting patterns n for these algorithms. Flrom Figure 3.3, we observe that the initial solutions

of UNIFORMJNIT are better than those of MFFJNIT, but, from Figure 3.4 the solutions

of LS-LP using UNIFORMJNIT are much worse than those of LS-LP using MFFJNIT. It

shows that the initial solutions generated by UNIFORMJNIT are relatively hard to improve

by LS-LP. From Figure 3.5, we observe that the solution of ILS-LP do not much depend on

its first initial solution.

 We now compare the two local search algorithms LS-LP using UNIFORMJNIT and

MFFJNIT to construct an initial feasible solution, where we tested them for 10 instances

of 18 classes of random instances. Tb capture the general behavior of trade-off curves of

the above algorithms, we show several points of tradeoff curves that attain the minimum

numbers of difft)rent cutting patterns n satisfying fuB stock rolls or less. Here, the upper

bounds of stock rolls fuB are set to as fbllows:

 fuB=f'+6fLB, (3.24)

where f' are the numbers of required stock rolls obtained by these algorithms for n == m,

and fLB is the trivial lower bound of required stock rolls:

 f,.=[£iEiiii dilil. (3.2s)

We tested these algorithms fbr fuB = f' + 6fLB with 6 = O.05,O.03,O.Ol. tcbles 3.2 and

3.3 show the computational results for 18 classes of random instances, where n denotes the

3.7 Computational Experiment 63

2400

2200

2000

1800

1600

...-..' Zi

 x,
ilt

itl

l

 MFF
UNIFORM

-- s
N
s
s
N

15 20 25 30 35 40 45

Figure 3.3: (i) Comparison the trade-off curves of UNIFORMJNIT and MFFJNIT

2400

2200

2000

1800

1600

""--t:

 lxl

x,

,

N
s

s
s
N
v
s

S---" l N

 MFF
UNIFORM

ss

t

N

,

N

s

N

x

N

Ns

15 20 25 30 35 40 45

Figure 3.4:

MFFJNIT

(ii) Comparison the trade-off curves of LS-LP using UNIFORMJNIT and

64 Chapter3 A Local Search Algorithm Based on Linear Prograrnming [l)echniques

2400

2200

2000

1800

1600

 tt--l

 ti ll ti. .-i ,, A
 tll lt1 it i v4 t':'

 lIs i ts 1tS lts lls tl
,

 MFF
UNIFORM ------

--tvit--'-N
 -t tX ---s --- t/tSss

 .s

15 20 as 30 35 40 45

Figure 3.5: (iii) Comparison the trade-off curves of ILS-LP using UNIFORMJNIT

MFFJNIT
and

average of different cutting patterns, and f denotes the average of required stock rolls for

each class. From thbles 3.2 and 3.3, it is observed that the numbers of different cutting

patterns obtained by LS-LP based on MFFJNIT is much smaller than those obtained by LS-

LP based on UNIFORMJNIT, and we conclude that MFF-INIT is more suitable to LS-LP

than UNIFORMJNIT.

 We compare trade-off curves of ILS-LP (using MFFJNIT) and LS-APG for an instance

as a preliminary experiment, where we take a random instance of class 12 generated by

CUTGEN. We apply ILS-LP and LS-APG for all n between nLB and m. Figure 3.6 represents

the number of stock rolls f with respect to the number of diflerent cutting patterns n for

ILS-LP and LS-APG. For this instance, we observe that ILS-LP attains comparable number

of stock rolls to LS-APG if the number of difurent cutting patterns is small. Figure 3.7

shows their CPU time of ILS-LP and LP-APG for different n. We observed that ILS-LP

is comparable to LS-APG in its CPU time. IFlrrom these results, it appears that ILS-LP is

comparable to LS-APG while using smaller neighborhood than that of LS-APG.

 Table 3.4, 3.5 and 3.6 show the computational results for 18 classes of random instances,

where we tested ILS-LP (using MFFJNIT), SHP and KOMBI fbr 100 instances of each class.

The program parameter MAXTL (controlling the upper bound of trim losses fbr new cutting

3.7 Computational Experiment 65

Tbble 3.2: Computational results ofLS-LP using UNIFORMJNIT with different fuB fbr the

random instances generated by CUTGEN

class m d
f*+O.05fLBf*+O.03fLBf'+O.OlfLB

123456 10

10

20

20

40

40

10

1oo

10

100

10

100

3.413.33.413.33.413.3
5.1119.56.0117.26.7116.5
8.225.48.225.48.225.4
7.4242.58.9238.512.0235.2
14.945.717.344.917.344.9
14.5446.017.5438.523.543.6

789101112 10

10

20

20

40

40

10

100

10

1oo

10

100

7.152.77.152.77.152.7
7.4525.68.0521.98.2521.0
15.4105.415.6105.215.8104.6
15.71055.515.81050.016.41042.6

29.5184.53e.8182.133.6179.1
31.31805.432.61785.735.11765.6

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

1OO

8.166.88.166.88.166.8
8.2667.58.2667.58.6666.1
15.5133.016.1132.116.5131.5
15.41332.715.41332.716.11321.2

34.4236.135.5233.436.5231.6
35.82336.536.32305.837.42282.3

66 Chapter3 A Local Search Algorithm Based on Linear Programming Techniques

Table 3.3: Computational results of LS-LP using MFFJNIT with different fuB fbr the ran-

dom instances generated by CUTGEN

class m d
f*+O.05fLBf*+O.03fLBf'+O.OlfLB

123456 10

10

20

20

40

40

10

100

10

100

10

100

2.513.62.513.62.513.6
4.5116.54.9115.55.2114.9
4.926.64.926.64.926.6
7.3245.38.7241.410.0239.2
8.849.79.648.89.648.8
11.3454.713.4447.516.3440.4

10

10

20

20

40

40

10

100

10

100

10

100

6.352.56.352.56.352.5
7.1512.87.1512.87.5511.4
11.8111.812.2110.212.2110.2
13.91041.215.01035.616.11024.6

19.9205.321.2203.125.2200.3
27.01858.430.01822.631.91804.6

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

100

7.166.97.766.37.766.3
7.7644.57.9641.080640.5
13.5135.613.9135.514.9135.1
14.01321.614.71307.615.71300.7

26.0247.026.3246.528.1244.8
30.42376.231.62355.732.82337.9

3.7 Computational Experiment 67

:.

9
5
9
th

6
ts

DE
=
c
o
£

vs

2000

1950

1900

1850

1800

1750

1700

1650

1600

1550

1500

K
N

x

,x

s
N

K
t

v

x

,

Nx-.
N
x

+

+
+

'. XX
X--. + ×+ Xse--h. X¥ Xx

x----- ----. × x

×

ILS-LP
LS-APG

'x-- ----- -

Figure 3.6

17)

 15 20 25 30 35 40 45
 n (the number of different patterns)

: The number of stock rolls versus the number of different cutting patterns (nLB =

g'

e
o
･!

-D
ao

120

1OO

80

60

40

20

 o

K .x
-x. It

 ,., g
IXx lit XL ttt

ts 1NtJL'YY

'

 ¥
 tt lt/

fi L
k

t/ IT

'

k

x
-)(--x-

'
i

 ILS-LP -
 LS-APG ---x--- i"

 ttt:

 x r'`
 itSxt id

 :, hY
 '
 x--X 1 tNJ ix j ltI JSt J Lt Nl , x,i sdILd×N*

x. '

 15 20 25 30 35 40
 n (the number of different patterns)

r, igure 3.7: The CPU time in seconds versus the number of different cutting patterns

ogarithmic scale for CPU time(sec.))

(using

68 Chapter3 A Local Search Algorithm Based on Linear Programming Tbchniques

patterns) of SHP is set to O.05, O.03 and O.Ol, and MAXTRIALS (the maximum number of

iterations of LS-LP) is set to 100. 'Ilable 3.4 shows the results of SHP and KOMBI, where

SHP was run on three different values of MAXTL= O.05, O.03 and O.Ol, where thble 3.4 is the

same as Table 2.1 in Section 2.6. thbles 3.5 and 3.6 show the results of LS-APG and ILS-LP,

respectively, where Tbble 3.5 is the same as '] able 2.2 in Section 2.6. We tested algorithms

for fuB = f' + fifLB with X3 = O.05,O.03 and O.Ol.

Table 3.4: Computational results of SHP and KOMBI for the random instances generated

by CUTGEN

SHP
KOMBI

MAXTL=O.05 O.03 O.Ol

class m
d'-

nLB n j n f n f n i

1 10 10 1.67 4.08 11.68 4.25 11.62 4.49 11.57 3.40 11.49

2 10 100 1.67 6.33 112.80 6.33 111.81 6.75 110.85 7.81 110.25

3 20 10 2.56 5.77 22.55 5.89 22.37 5.98 22.17 5.89 22.13

4 20 100 2.56 9.06 220.63 8.98 218.94 9.25 217.00 14.26 215.93

5 40 10 4.26 9.07 43.89 9.03 43.60 9.01 43.17 10.75 42.96

6 40 100 4.26 13.90 434.59 13.45 430.79 13.77 426.81 25.44 424.71

7 10 10 4.62 10.14 52.21 10.33 52.19 10.82 52.77 7.90 50.21

8 10 100 4.62 11.30 519.88 11.46 520.36 11.97 526.81 9.96 499.52

9 20 10 8.65 18.58 97.42 19.22 97.96 19.91 98.82 15.03 93.67

10 20 100 8.65 20.96 970.43 21.74 973.63 21.99 984.32 19.28 932.32

11 40 10 16.27 35.06 186.45 36.29 187.37 37.78 189.91 28.74 176.97

12 40 100 16.27 39.90 1854.79 40.53 1865.41 41.86 1891.90 37.31 1766.20

13 10 10 5.54 10.55 65.46 10.55 65.41 10.67 65.52 8.97 63.27

14 10 100 5.54 10.92 652.95 10.95 654.80 IL12 654.95 10.32 632.12

15 20 10 10.52 20.11 123.36 20.30 124.36 20.86 124.60 16.88 119.93

16 20 100 10.52 2109 1232.42 21.09 1240.39 21.32 1243.43 19.91 1191.80

17 40 10 19.85 38.02 235.64 38.52 238.06 39.10 239.77 31.46 224.68

18 40 100 19.85 40.16 2351.38 40.38 2366.95 40.67 2389.49 38.28 2242.40

 In Tables 3.4, 3.5 and 3.6, we first observe that the numbers of stock rolls attained by

KOMBI are smaller than those of other algorithms for all classes. However, other algorithms

3.7 Computational Experiment 69

thble 3.5: Computational results of LS-APG with different fuB for the random instances

generated by CUTGEN

class m d nLB
oof*+O.05fLBf*+O.03fLBf'+O.OlfLB

123456 10

10

20

20

40

40

10

100

10

100

10

100

1.67

1.67

2.56

2.56

4.26

4.26

2.0014.472.9012.542.9012.542.9012.54
2.00141.284.091!5.324.74113.805.73112.73
2.5730.764.8323.664.8323.664.8323.66
2.57305.786.07226.046.96223.499.28220.31
4.2861.638.6545.729.4145.259.4145.25
4.28609.739.49447.9411.23441.7315.23434.79

10

10

20

20

40

40

10

100

10

100

10

100

4.62

4.62

8.65

8.65

16.27

16.27

5.0155.776.1451.456.2651.286.2651.28
5.01558.696.42510.606.73507.787.38504.77
9.27105.0710.8197.3911.4196.4311.8196.14
9.271053.0811.44962.2712.22953.9213.91944.45

16.95201.4619.60185.6820.77183.7923.98181.34
16.952010.2620.711837.9022.441817.0726.031787.39

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

100

5.54

5.54

10.52

10.52

19.85

19.85

6.2668.737.0664.457.3064.367.3064.36
6.2668Z147.19644.877.45641.057.77638.53
11.76129.1012.76123.4313.33122.6514.18121.81
11.761292.0913.381226.0514.011216.6615.131205.10

21.50246.3422.89235.8523.49233.5525.58230.94
21.502471.3223.992334.8825.352305.3528.352274.79

70 Chapter3 A Local Search Algorithm Based on Linear Programrning Tbchniques

Table 3.6: Computational

generated by CUTGEN

results of ILS-LP with different fUB for the random 1mstances

class m d fiLB n
oo

j

f"+
ri

O.05hB

f

f"+

n

O.03fLB

f
f'+

n

O.OlfLB

f

10

10

20

20

40

40

10

100

10

100

10

100

1.67

1.67

2.56

2.56

4.26

4.26

1.67

1.67

2.57

2.57

4.28

4.27

15.99

156.73

29.49

293.16

59.26

593.21

2.61

3.63

4.51

5.71

8.49

9.51

12.73

114.41

24.34

225.58

47.49

446.59

2.61

4.06

4.51

6.50

9.22

10.80

12.73

113.33

24.34

222.83

46.93

440.11

2.61

5.09

4.51

8.50

9.22

14.27

12.73

112.14

24.34

219.97

46.93

433.97

10

10

20

20

40

40

10

100

10

100

10

100

4.62

4.62

8.65

8.65

16.27

16.27

5.01

5.01

9.27

9.27

16.95

16.95

6.43

6."

11.84

11.90

23.85

23.19

51.01

507.02

96.56

957.01

183.74

1823.74

6.69

6.74

12.50

12.66

25.51

25.14

50.75

504.72

95.68

947.31

181.50

1798.60

6.69

7.11

13.28

14.23

29.68

28.11

50.75

502.96

95.13

938.08

179.20

1777.14

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

100

5.54

5.54

10.52

10.52

19.85

1985

6.26

6.26

11.76

11.76

21.50

21.50

68.69

685.47

130.80

1297.19

254.11

2510.91

7.48

7.33.

13.75

13.91

26.15

26.96

64.29

641.82

122.62

1216.75

234.71

2314.79

7.64

7.59

14.47

14.71

27.58

28.72

64.13

638.97

121.71

1206.47

232.38

2285.04

7.64

8.12

15.21

15.89

29.94

31.06

64.13

635.83

121.10

1196.96

229.67

2259.61

3.8 Conclusion 71

can obtain a wide variety of solutions by controlling their input parameters, Le., they can

give trade-off curves between the number of different cutting patterns n and the number of

stock rolls f. It is observed that SHP can not reduce the number of different cutting patterns

even though it allows cutting patterns having larger trim loss. On the other hand, LS-APG

and ILS-LP attain smaller number of different cutting patterns than KOMBI for all classes,

without much increasing the number of additional stock rolls. We can also observe that ILS­

LP can reduce the number of different cutting patterns effectively as well as LS-APG for all

classes. It is necessary to emphasize that ILS-LP introduces basically smaller neighborhood

than that LP-APG introduces. As a future topic, we may be able to introduce more powerful

neighborhood for ILS-LP. From these observation, we may conclude that ILS-LP can also

provide reasonable trade-off curves to some extent, and obtain good solutions comparable to

LS-APG while using smaller neighborhood than that of LS-APG.

Table 3.7 shows the average CPU time ofSHP (MAXTL=0.03), KOMBI, LS-APG "(Jus =

f* + 0.03hs) and ILS-LP (Jus = f* + 0.03hs), respectively, for all classes. From these

instances, SHP is faster than ILS-LP except for class 5 and 6, and KOMBI may be faster

than ILS-LP, taking into consideration the power of computers in use. However, the average

CPU time of ILS-LP is within 20 seconds except for class 6 and 18, and it may be sufficiently

short even if ILS-LP repeatedly applies for all n to obtain a trade-off curve. We also note

that ILS-LP can control the trade-off between the quality of solutions and its computational

time by the input parameter MAXTRIALS (Le., the upper bound of iterations of LS-LP).

3.8 Conclusion

We proposed a local search algorithm based on linear programming techniques (LS-LP). It

starts from an initial solution obtained by a modified first fit heuristic (MFF) known for the

bin packing problem (BPP). Solutions in the neighborhood are restricted to those obtainable

by perturbating one cutting pattern in the current set of cutting patterns. In order to find

promising directions, we utilize a dual optimal solution of the LP relaxation problem of the

auxiliary integer programming problem. Although solutions of LP relaxation is not integer

valued, it provides reasonably accurate information as integrality gap is rather small in most

instances of 1D-CSP. Since the local search algorithm requires to solve a large number of

LP relaxations which are only slightly different each other, we start simplex algorithm from

the optimal simplex tableau of the previous solution, instead of starting it from scratch.

72 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Table 3.7: The average CPU time in seconds for the random instances generated by CUTGEN

Iclass~ SHP KOMBI LS-APG ILS-LP I
1 10 10 0.04 0.14 0.01 0.05

2 10 100 0.08 1.14 0.07 0.18

3 20 10 1.56 1.74 0.19 0.66

4 20 100 1.57 16.00 0.76 3.72

5 40 10 631.74 38.03 5.32 17.83

6 40 100 107.11 379.17 11.41 92.40

7 10 10 0.00 0.07 0.03 0.06

8 10 100 0.00 0.20 0.04 0.06

9 20 10 0.01 1.34 0.48 0.80

10 20 100 0.02 3.25 0.71 0.95

11 40 10 0.09 36.27 13.07 18.49

12 40 100 0.14 76.31 19.53 18.80

13 10 10 0.00 0.08 0.03 0.06

14 10 100 0.00 0.13 0.03 0.07

15 20 10 0.01 1.81 0.44 0.87

16 20 100 0.01 2.60 0.60 1.00

17 40 10 0.06 50.93 10.34 14.74

18 40 100 0.10 70.94 14.32 20.55

3.8 Conclusion 73

We modify the simplex algorithm by applying the sensitivity analysis techniques, and apply

a variant of the simplex algorithm called the criss-cross algoritlm to compute an optimal

solution. In order to enhance the local search algoritlm, we introduce an iterated local

search approach. According to computational experiments, we observed that the iterated

local search algorithm based on linear programming techniques (ILS-LP) attains a wide

variety of good solutions, and also provides reasonable tradeoff curves between the number

of different cutting patterns and the number of stock rolls.

Chapter 4

A Variant of ID-PRP AIIowing

Underproduction and

Overproduction

4.1 Introduction

In this chapter, we consider another formulation of ID-CSP based on a real application of

a chemical fiber industry. As the residual lengths of stock rolls can be easily reused in the

chemical fiber industry, minimizing the setup costs for changing cutting patterns is more

dominant than minimizing the total trim loss. Furthermore, in some applications, such as

the chemical fiber industry, the shortage of demands may be allowed because the additional

cost due to the shortage is relatively small. From these observation, we propose a variant

of ID-PRP, called the auadratic deviation minimization problem (ID-QDP) which minimizes

the amount of quadratic deviation from all demands while using a given number of diffk)rent

cutting patterns.

 We propose a4 iterated local search algorithm based on the quadratic version of the

adaptive pattern generation (ILS-QAGP), where we have to consider the fbllowing three in-

gredients in the same manner as other proposed algorithms, i.e., (i) how to construct an

initial feasible solution, (ii) how to compute auxiliary integer quadratic programming prob-

lems (IQP) eMciently, and (iii) how to find promising solutions among all neighbor solutions

in the neighborhood. Solutions in the neighborhood are generated by removing one cutting

75

76 Chapter4 A Variant of ID-PRP AIIowing Underproduction and Overproduction

pattern and adding one new cutting pattern in the current solution. Tb compute the num-

bers of applications of the cutting patterns, we propose a heuristic algorithm based on the

nonlinear Causs-Seidel method [7]. As it is not realistic to consider aJl possible feasible cut-

ting patterns, we restrict the candidate cutting patterns to those generated by the quadratic

version of adaptive pattern generation (QAPG), where we also indirectly reduce the trim loss

by restricting candidate cutting patterns to those haying small trim losses. QAPG is also

used to generate an initial solution of the local search algorithm.

 We conduct computational experiments for random instances generated by CUTGEN [32],

and real instances of a chemical fiber industry. ILS-QAPG is compared with other existing

heuristic algorithms, e.g., SHP, KOMBI and a heuristic algorithm called the generation and

test method (GT) used in the chemical fiber industry. According to the computational results,

it is observed that LS-QAPG provides comparable solutions to them.

4.2 FormulationofID-QDP

In this section, we define the one dimensional cutting stock problem to minimize the quadratic

deviation from demands while using a given number of different cutting patterns n. We are

given a sufiicient number of stock rolls of length L, and m types of products M = {1, 2, . . . , m}

which have given lengths (li,l2,...,lm) and demands (di,d2,...,dm). A cutting pattern is

described as pi･ ---- (aij',a2j',･･･,amo') satisfying

 2aij･lisL･ (4.i)
 iEM
A solution of ID-QDP also consists of a set of cutting patterns n = {pi,p2, . . . ,pn}, and the

numbers of their applications X = {xi,x2, . . . ,x.}. The ID-QDP is formulated as fbllows:

 l/ N2
 minimize f(n,X)=il iMll VII.2Enaijxj-d7 (4･2) (ID-QDP)

 subject to n g S

 lnl sn

 xj E Z+ fbr all pj E n,

where S is the set of all feasible cutting patterns. Notice that minimizing the total trim loss

is not equivalent to minimizing the number of stock rolls in ID-QDP, because shortage of

demands is allowed in this problem.

4.3 Solving Auxiliary Integer Quadratic Programming Problem 77

 Although the above fbrmulation ignores to minimize the trim loss, if necessary, we can

control the quality of trim loss to some extent by applying appropriate constraints on cutting

patterns, e.g., restricting S to be the set of complete-cut patterns defined in (1.4). QAPG

indirectly reduces the trim loss by restricting the candidate cutting patterns to those having

small trim losses.

4e3 Solving Auxiliary Integer Quadratic Programming Prob-

lem

For a given set of cutting patterns n = {pi,p2,...,p.}, the problem of computing the

numbers of their applications X = {xi,x2, . . . , xn} can be described as the fo11owing integer

quadratic programming problem (IQP):

 m/n N2
 (iQP(ll)) minimize f(n,X)=l=, V2.=,aio'xi'-di) (4･3)

 subject to xj･ E Z+ fbro' --- 1,2,...,n.

 ASince it is hard to solve IQP(fi) exactly, we adopt an approximate solution X = {ti,t2,...,2n}

to IQP(n) instead of an exact optimal solution. We first solve the quadratic programming

(QP) relaxation problem QP(n) of IQP(n), in which the integer constraints xi･ E Z+ are

replaced with xj- >- O. After computing an optimal solution X = {bli,bl2,. . .,hin} of QP(fi),

we round hii- to its nearest integer value xJ･,

 xj =([i'l] 3'l,1,:"-ki>-05 (44)

There may be several algorithms to solve QP(n). We use the nonlinear Gauss-Seidel method

[7], and abbreviate it NGS, because it is easy to implement and appear to be eMcient according

to our preliminary computational experiment. In the k-th iteration of NGS, one variable xek)

in the current solution X(k) = {xlk),xSk),. . . ,x£k)} is updated as fbllows. Let Xq be the value

of xq satisfying the equation 181.l, .j..;.,),i.#q = O. Such Xq can be computed by

 of
 diq := xeic)- 2aXi3,iii]iEi(zk.I, (4.s)

78 Chapter 4 A Variant of ID-PRP Allowing Underproduction and Overproduction

where

8j
-2 L Aiaiq (4.6)=

8xq X=XCk) iEM

Ai = d· - L a"x(k) (4.7)t tJ J •
pjEn

Then the xq is updated by x q := max{O, xq}, and other variables in X(k) are unchanged.

Iterations are done so that all variables x q are scanned in a prespecified order, and all variables

xq are checked in n iterations. NGS is described as follows, where e is a sufficiently small

positive constant.

Algorithm NGS

Input: Demands di of all products i E M, and a set of cutting patterns II =

{PI,P2, ... ,Pn}.

Output: The numbers of applications X = {Xl, X2, ... , x n }.

Step 1: Set Ai := di for all i E M and xJO) := 0, ttlx=xco) := -2 EiEM Aiaij

for all Pj E II. Set k := O.

Step 2: If either of the condition (1) lii-x./ c)1 < eholds, or (2) ii-x.1 >
u J x=x k U J x=xCk)

oand Xj = 0 hold, for allpj E II, then output X = {XI,X2,'" ,xn } and halt.

Step 3: Choose a variable xq satisfying neither (1) nor (2) in Step 2, and set
.2L

~Xq := - :",q = C;), and x~k+l) := max{O,x~k)+ ~Xq}. Set x~k+l) := x~k)
iEM aiq

for all j i=- q.

Step 4: Update Ai := Ai-aij~Xqfor all i E M, and ttlx=xCk+1) := -2 EiEM Aiaij

for all Pj E II. Set k := k + 1 and return to Step 2.

Finally, we summarize the entire algorithm to compute the numbers of applications X =

{XI,X2,'" ,xn} for a given set of cutting pattern IT = {PI,P2, ... ,Pn}.

Algorithm SOLVEJQP

Input: Demands di of all products i E M, and a set of cutting patterns II =

{pI,p2,'" ,Pn}.

Output: The numbers of applications X = {Xl, X2, ... ,xn }.

Step 1: ApplyNGS to obtain an optimal solution X = {XI,X2, ... ,xn} to QP(II).

4.4 Construction of the Neighborhood

Step 2: For all Pj E II, round Xj to the nearest integer:

X
.•- { rXjl Xj -lxjJ ~ 0.5

J .-
lXjJ otherwise.

Output X = {Xl, X2, ... , xn } and halt.

4.4 Construction of the Neighborhood

(4.8)

79

A natural definition of neighborhood N 1(II) is given by replacing one cutting pattern Pj E II

with another new cutting pattern pj E 8 \ II:

N1(II) = {II U {pj} \ {Pj} IPj E II,Pj E 8 \ II}, (4.9)

where 8 is the set of all feasible cutting patterns. However, as mentioned in Section 1.5, the

number of all feasible cutting patterns 181 is too many to test all of them, and most of these

cutting patterns may not lead to improvement. Hence, it is necessary to use much smaller

neighborhood which includes only promising solutions. For this purpose, we introduce a small

subset 8'(j) C 8 for each Pj E II, and define a small neighborhood Nrp9(II) as follows:

Niap9 (II) =

N Qap9 (II 0)1 ,J

U Nrp9 (II,j)
pjEIl

{II U {pj} \ {Pj} Ipj E 8'(j)} for Pj E II.

(4.10)

(4.11)

Now we propose a quadratic version of the adaptive pattern generation algorithm (QAPG),

which generates a set of promising cutting patterns 8'(j). QAPG is also based the residual

demands like other APGs (see Section 2.4), and we utilize the residual demands ri(j) when

a cutting pattern Pj E II is removed from II.

ri(j) = max {o, di - L aiQXq } for i E M. (4.12)
pqEIl\{pj}

We generate a new cutting pattern pj = (aij liE M(j)) by solving the following problem

ID-QDP1(j):

(ID-QDP1 (j)) minimize

subject to

L (aijXj - ri(j))2
iEM(j)

'" a"l· < LL.. ZJ Z -

iEM(j)

aij E Z+ for all i E M(j)

(4.13)

80 Chapter4 A Variant of ID-PRP AIIowing Underproduction and Overproduction

 where M(1') is the subset of M defined as fo11ows:

 M(7`)={ilri(j')>O}. (4.14)

As ID-QDPi(j') contains a kind of the knapsack problem (KP) which is known to be NP-

hard [31], we use an approximation algorithn based on the relaxation of ID-QDPi (2'), i.e., the

integer constraints xJ･ E Z+ and aiJ･ E Z+ are replaced with xj) O and aijf >- O, respectively.

An optimal solution of the relaxation problem is easily found, where it has no trim loss:

 dZ' = (E ,,.(,L) .,(2)l,)rt(j) for allzEM(2) (4.ls)

 - XiEM(J･) ri (2')li
 Xj '-- L '

Hence, we consider to obtain a new cutting pattern by rounding the above solution. The

problem of rounding diJ･ to integer value aijJ is described as follows:

 (RP(j')) minimize E (ai,･-di,･)2 (4.16)
 iEM(j')

 subj ect to 2 aii' li SL

 iEM(j')
 aij' E { tdiJ'], [dij･1} for all i E M(]').

Since all decision variables aij･ can take only two values Ldij･1 or rdiJ･1, the above problem

RP(j') is equivalent to the fbllowing O-1 knapsack problem:

 (RP'(1')) marcimize 2) (1-2(di,'-Ldi,']))ui (4.17)
 iEM(J')
 subject to 2) uili ff{ L - 2 Ldial li

 iEM(j') iEM(j')
 ui E {O, 1} for all i E M(j).

An optimal solution of RP(2') is obtained from an optimal solution u;･ of RP'(j') by setting:

 azj =(E':l;l ."i, .-.'9 (4 is)

 Taking into account that an optimal solution of RP(j') may not necessarily give a usefu1

cutting pattern, since RP(j') is only an approximation to ID-QDPi(n), we try to generate

a number of good solutions fbr RP(j') heuristically. The quadratic version of the adaptive

4.4 Construction ofthe Neighborhood 81

pattern generation algorithm (QAPG) is based on Sahni's heuristic algorithm [78] for the O-1

knapsack problem. It first apply a simple greedy algorithm and outputs a solution (ai l i E

M(J')). The greedy algorithm starts from ui == O for all i E M(j'), and in each step, it chooses

the k E M(j') with the largest (dkj･ - Ldkal)/tk among those satisfying:

 uk =O and lk s{ L- 2 (Ldi,･]+ui)li, (4.19)
 iEM(J')

and then set uk :== 1. The algorithm halts when no k E M(j`) satisfies condition (4.19), arrd

outputs the resulting (ui 1 i E M(2')) as (tii 1 i E M(j')). After this, the greedy algorithm is

repeatedly applied to m problem instances, each of which is obtained by fixing one variable

ui := 1 - tii for i E M(2'), and consequently m + 1 candidate cutting patterns are generated.

The greedy algorithm GREEDY and the quadratic version of the adaptive pattern generation

algoritlm QAPG are described as fbllows:

 Algorithm GREEDY

 Input: A set of products M(1') c M, lengths li of all products i E M(2'), an opti-

 mal solution P = (dij- 1 i E M(2')) of the relaxation problem of ID-QDPi(1'),

 and the length of stock rolls L.

 Output: A set of variables (ui 1 i E M(2'))･

 Step 1: Set ui := O for all i E M(1').

 Step 2: Sort all products i E M(j') in the descending order of (dij- - tdii'j)/li,

 and let a(k) denote the k-th product in this order.

 Step 3: For each kE M, let

 ..(k) ,.. I 1' la(k) SL-2iEM(j')(tdij'j+"i)li (4.2o)

 < O, otherwise.

 Step 4: Output (ui l i E M(2')) and halt.

 Algorithm QAPG

 Input: A set of products M(j') c M, lengtbs li of all products i E M(o'), an opti-

 mal solution p-j'･ = (dij･ 1 i E M(1')) of the relaxation problem of ID-QDPi(1'),

 and the length of stock rolls L.

 Output: m + 1 candidate cutting patterns of pS･ --'- (ai2' 1 i E M(1'))･

82 Chapter 4 A Variant of ID-PRP Allowing Underproduction and Overproduction

Step 1: Apply GREEDY to obtain a solution (Ui liE M(j)), and set Ui := Ui

for all i E M(j). Set

(4.21)

and output the cutting pattern pj = (aij liE M(j)). Set k := 1.

Step 2: Fix Uk := Uk, and apply GREEDY to obtain a solution (Ui liE M(j)).

Set aij for all i E M(j) according to (4.21), output the cutting pattern

pj = (aij liE M(j)). If k = m holds, halt; otherwise k := k + 1 and return

to Step 2.

To see how many of the cutting patterns generated by QAPG are useful, we conducted

computational experiment. We took instances from real applications provided by a chemical

fiber industry. The details of these instances are stated in Section 4.6. In this experiment,

their sizes are small enough to enumerate all the feasible cutting patterns, and we tested for

a solution II and a cutting pattern Pi E II.

3000

rJl 2500 -- ~
(I)
;j

iii 2000>
(I)

> 15001:5
(I)

:0- 10000
(I)

oS 500 ~

.5
rJl 0(I)
(.)
s::
~ -500
~
"0 -1000 •

~

-1500
0 10 20 30 40 50

deviation from the continuous pattern

Figure 4.1: Comparison the objective values between II and II' E N l (II)

Figure 4.1 represents the difference in the objective values f(II', X') - f(II, X) (vertical

axis), where II' are given by removing the cutting pattern Pi E II and adding a new cutting

pattern pj E S. If f(II', X') - f(II, X) < 0 holds, the neighbor solution (II', X') is better

than the current solution (II, X). From Figure 4.1, we observed that the number of neighbor

4.5 Entire Algorithm of Local Search 83

co

m
2to
>
o
.2

6
.g
Do
ò
-

.E

$
8
9
-o
i'

3000

2500

2000

1500

1OOO

 500

 o
 -5oo

-1 000

-1500

ss

e
o

o 10 20 30 40 50deviation from the oontinuous pattem

Figure 4.2: Comparison the objective values between ll and n' E NiqaP9(n)

solutions "' satisfying f(n',X') - f(n,X) < e is quite small among the neighbor solutions,

and that there is a strong correlation between the horizontal and vertical axes in Figure 4.1,

i.e., cutting patterns with small deviation from dij･ are likely to improve the current solution.

Next, in Figure 4.2, we show the objective values of solutions n' E IVeaP9(n) which are

generated by removing the cutting pattern pe･ E rl and adding a new cutting pattern generated

by QAPG. The horizontal and the vertical axes are the same as those in Figure 4.1. Figure

4.2 tells that all cutting patterns pS･ generated by QAPG satisfy f(fi',X') - f(n,X) < O.

Iilrom those results, QAPG appears to be effective to generate good solutions n' from the

current solution n.

4.5 Entire Algorithm ofLocal Search

In this section, we explain the framework of the iterated local search algorithm ILS-QAPG.

First, we consider a heuristic algorithm to construct an initial solution ni"it using QAPG.

This algorithm starts from the empty set of cutting patterns H = e, and repeats adding a

new cutting pattern p' with the minimum f(n',X') (i.e., n' = nU {p'}) among candidate

cutting patterns generated by QAPG. Here, we use the fo11owing residual demands ri instead

84 Chapter 4 A Variant of ID-PRP Allowing Underproduction and Overproduction

of ri(j) in (4.12):

ri = max {o, di - L aiiXi} for i E M.
pjEII

Algorithm INIT

Input: Lengths li and demands di of all products i EM, the number of different

cutting patterns n, and the length of stock rolls L.

(4.22)

Output: A set of cutting patterns IT = {PI,P2, ... ,Pn}, and their numbers of

applications X = {Xl, X2, ... ,Xn }.

Step 1: Set IT:= 0 and k := O.

Step 2: Let S' be the set of cutting patterns generated by QAPG with the resid­

ual demands ri for all products i E M. Compute !(IT',X') for allp' E S' by

applying SOLVEJQP, where IT' = IT U {p'}.

Step 3: Choose the cutting pattern P' E S' with the minimum !(IT', X'). Set

IT := IT U {p'} and k := k + 1.

Step 4: If k = n holds, output the solution (IT, X); otherwise return to Step 2.

We now explain the details of the local search algorithm based on the quadratic version

of the adaptive pattern generation (LS-QAPG). As noted in Section 4.4, LS-QAPG is based

on the small neighborhood Nrp9 (IT) constructed by QAPG. Furthermore, to reduce the

number of candidate cutting patterns IS'(j)I, we check only 'Y candidate cutting patterns by

preferring smaller EiEM(j) (aii - (iii)2, where 'Y is an input parameter. LS-QAPG uses the

first admissible move strategy, implemented by a queue that maintains the cutting patterns

Pi E IT. For the cutting pattern Pi on the top of the queue, we find the cutting pattern pj that

minimizes !(IT', X') among those in S'(j), where IT' = ITU{pj} \ {Pi}. If !(IT', X') < !(IT,X)

holds, we immediately move to the new solution IT', and put pj to the tail of the queue;

otherwise we move the cutting pattern Pi from the top to the tail of the queue.

Algorithm LS-QAPG is described as follows. Recall that 'Y is an input parameter which

specifies the number of candidate cutting patterns to be checked. Let Q denote the queue

that maintains the cutting patterns Pi E IT. The procedure ENQUEUE(Q,Pi) adds the

cutting pattern Pj at the tail of Q, TOP(Q) returns the cutting pattern Pi at the top of Q,

and DEQUEUE(Q,pj) removes the cutting pattern Pj from Q.

4.5 Entire Algorithm of Local Search

Algorithm LS-QAPG

Input: Lengths Ii and demands d;, of all products i E M, the number of dif­

ferent cutting patterns n, and the length of stock rolls L. A set of cut­

ting patterns II = {pI,p2,'" ,Pn}, and the numbers of their applications

X = {XI,X2,""Xn}.

Output: A set of cutting patterns II = {Pl,P2,." ,Pn}, and the numbers of their

applications X = {Xl, X2,··., Xn}.

Step 1: Set Q be an empty queue, and ENQUEUE(Q,Pj) for all Pj E II in an

arbitrary order. Set k := O.

Step 2: Set Pj := TOP(Q), and DEQUEUE(Q,pj). Apply QAPG to generate

a set of candidate cutting patterns S'(j). Let S'(j) restrict to the set of

cutting patterns which have 'Y smallest deviations '2:iEM(j) (aij - aij)2.

Step 3: Compute f(II', X') for all pj E S'(j) by applying SOLVE.JQP, where

II' = II U {pj} \ {Pj}. Choose pj E S'(j) with the minimum f(II', X').

Step 4: If f(II', X') < f(II, X) holds, set (II, X) := (II', X'), ENQUEUE(Q,Pj),

k := 0, and return to Step 2; otherwise ENQUEUE(Q,pj).

Step 5: Set k := k +1. If k < n holds, return to Step 2; otherwise output (II, X)

and halt.

85

Although we facilitate the neighborhood search by QAPG, the size of neighborhood be­

comes rather small, and consequently LS-QAPG often converges to a local optimal solution

after only a small number of move operations. To overcome such phenomenon, we intro­

duce an extension of local search algorithm called the iterated local search algorithm (ILS).

ILS-QAPG starts from LS applied to the initial solution constructed by INIT, and repeats

LS from different initial solutions generated by perturbating the best solution obtained by

then. The perturbation is done by a random move to a neighbor solution, i.e., it allows a

move to a worse solution. Here, let trial denote the current number of iterations of LS, and

MAXTRIALS (an input parameter given by users) denote the upper bound of trial. Let

(II*, X*) denote the best solution obtained by then, and (II, X) denote the current solution.

Algorithm ILS-QAPG

Input: Lengths li and demands di of all products i E M, the number of different

cutting patterns n, and the length of stock rolls L.

86 Chapter4 A Variant of ID-PRP Ailowing Underproduction and Overproduction

Output: A set of cutting patterns n = {pi,p2, . . . ,pn}, and the numbers oftheir

 applications X == {xi, x2, . . ･ , xn}･

Step 1: Set trial := 1. Apply INIT to obtain an initial solution (n,X), and set

 (n*,x*) := (ll,x).

Step 2: Apply LS-QAPG to the initial solution to obtain a new local optimal

 solution (ll,x). If f(n,x) s f(n',x*) holds, set (n*,x*) := (n,x).

Step 3: If trial 2 MAXTRIALS holds, output (n',X') and halt; otherwise

 randomly choose an initial solution n of the next LS-QAPG from the neigh-

 borhood of the best solution N?aPg(n'), set trial :== trial + 1, and return to

 Step 2.

4.6 ComputationalExperiment

We conducted computational experiment fbr random instances generated by CUTGEN [32],

and real instances in a chemical fiber industry. We compared ILS-QAPG with the fbllowing

three algorithm: SHP [46][47][49], KOMBI [29], and a heuristic algorithm called the gen-

eration and test method (GT), which is used in the chemical fiber industry in Japan. GT

sequentially adds new cutting patterns step by step, in which, in each step, it generates a set

of candidate cutting patterns based on heuristic rules.

 We coded ILS-QAPG and SHP in C language and executed on an IBM-compatible per･-

sonal computer (Pentiumll 450MHz, 128MB memory). The results of GT were provided

by the chemical fiber industry, where GT was run on an IBM-compatible personal computer

(Pentium 133MHz, 32MB memory). The results ofKOMBI were taken from [29], as we could

not get the source code of KOMBI. KOMBI was run on an IBM-compatible 486/66 personal

computer using MODULA-2 as the programming language under MS--DOS 6.0. The program

parameter MAXTL of SHP is set to O.03, and the program patrameter 7 of ILS-QAPG is set

to r(m+1)/lol.

 Before presenting computational results, it is necessary to emphasize that the problem

solved by SHP and KOMBI is different from that solved by ILS-QAPG and GT, because

demand constraints are treated differently. ILS-QAPG and GT allow the shortage and/or

overproduction of the products, where ILS-QAPG minimizes their total quadratic deviation

while using a given number of different cutting patterns, and GT reduces both their total

4.6 Computational Experiment 87

deviation and the number of different cutting patterns heuristically. KOMBI do not allow

the shortage, and SHP allows neither the shortage nor overproduction. Therefbre, precise

comparison of these algorithms is not possible: However, we may be able to capture their

general tendency from the computational results.

 Our primary objective is to attain sufficiently small deviation while using a given number

of different cutting patterns. [[b evaluate the quality, it may be convenient to introduce a

simple criterion of goodness. Let us consider f(n,X) be acceptable (i.e., sufficiently small) if

f(n,X) S baept holds, where

 bacpt =2max{(O･Oldi)2,1･O}, (4.23)
 iEM

i.e., 1% of the demand or a single deviation for each product i E M. In the following results,

the number of acceptable instances n.cpt is always given for ILS-QAPG.

 We first conducted computational experiment for the random instances generated by

CUTGEN, and compared ILS-QAPG with SHP and KOMBI. We used 18 classes of random

instances by CUTGEN like in Sections 2.6 and 3.7, where the details of these instances are

described in Section 2.6. For each class, 10 instances were generated and solved by SHP and

ILS-QAPG, and 100 instances were solved by KOMBI. "]lable 4.1 shows the results of SHP,

KOMBI and ILS-QAPG, where tloss is the ratio (percentage) of the total trim loss to the

length of stock rolls:

 100 2 pj EH(L - £iEM aijli)
 . (4.24) tloss =
 L £pj E" xj

Note that lnl and tloss are averaged over 10 instances fbr SHP and ILS-QAPG, while they

are averaged over 100 instances for KOMBI (the data are taken form [29]). As the primal goal

of this experiment was to test the perfbrmance of ILS-QAPG with small number of diffbrent

cutting patterns n, we ran ILS-QAPG for six cases n = a,a- 1,a-2 and n = 6,6-1,6-2.

The parameters a and 6 are defined as fbllows:

 a= III[sHpl (4.25)
 5 = {lnsHpl, [II]IsHpl-lfiKoMBil]}, (4･26)

where lnsHp1 denotes the number ofdifferent cutting patterns obtained by SHP, lnsHpl denotes

the average of IIIsHpfi fbr the corresponding instances, and InKoMBil denotes the average of

different cutting patterns obtained by KOMBI. That is, P is intended to represent the smaller

88 Chapter4 A Variant of ID-PRP AIIowing Underproduction and Overproduction

of lfisHpl and lnKoMBil appraximately (recall that lnKoMBil for indivi

in [29]).

dual instance is not given

T[)ible 4.1: Computational results of SHP, KOMBI and ILS-QAPG for the random instances

ILS-QAPG

SHP KOMBI lnl:p 1ll1=6-1 1lll=fi-2
class m

d- lnltloss lnltloss nacpttloss nacpttloss nacpttloss
123456 10

10

20

20

40

40

10

100

10

100

10

100

3.95.09

5.51.83

6.13.42

8.41.20

9.33.04

13.11.57

3.404.47

7.81O.47

5.892.52

14.26O.25

10.751.10

25.44O.12

42.74
92.67
9O.96
71.37
10O.71
6O.72

92.81
72.90
9O.96
51.17
10O.61
6O.70

216*2.51

92.73
51.83
71.14
10O.67
4O.69

10

10

20

20

40

40

10

1OO

10

100

10

100

10.316.78

11.916.58

18.915.12

21.715.61

37.611.93

41.211.15

7.9015.41

11.99.96

18.915.03

19.2810.72

28.747.33

37.317.29

915.01

916.09

911.45

1011.86

84.97
76.37

714.06

817.11

912.06

911.72

84.88
76.00

513.87

615.54

913.19

1012.08

107.52
96.77

13

14

15

16

17

18

10

10

20

20

40

40

10

100

10

100

10

100

10.818.66

11.218.48

19.517.48

21.318.00

37.714.33

40.714.45

8.9719.17

10.3218.55

16.8814.76

19.9114.67

31.4610.30

38.2810.22

918.23

918.16
1016.69

917.88
1010.10

1010.32

817.08

618.05

1016.74

916.93
1010.00

1010.76

517.74

417.66

916.45

517.22

109.69
1010.36

* only 6 instances are executable.

 From Thble 4.1, we observe that ILS-QAPG obtains acceptable solutions in many cases

while using smaller number of different cutting patterns than SHP and KOMBI. This may

indicate that the primal goal of ILS-QAPG is achieved. [I]able 4.1 also shows that tloss of

ILS-QAPG is smaller than that of SHP in 17 classes, and is smaller than that of KOMBI in

9 classes. Although ILS-QAPG has weaker constraint than SHP and KOMBI, these results

indicate that the trim loss of ILS-QAPG is suMcient!y small for practical purposes.

 'I}able 4.2 shows the CPU time of SHP, KOMBI and ILS-QAPG (with lnl = 6) fbr random

4.6 Computational Experiment 89

kble 4.2: CPU time in seconds of SHP, KOMBI and ILS-QAPG fbr random instances

class m
d' SHP KOMBI ILS-QAPG

1 10 10 O.09 O.14 O.07

2 10 100 O.11 1.14 O.57

3 20 10 2.28 1.74 O.38

4 20 100 2.71 16.00 2.89

5 40 10 180.10 38.03 3.25

6 40 100 256.58 379.17 20.85

7 10 10 O.Ol O.07 O.20

8 10 100 O.02 O.20 O.86

9 20 10 O.04 1.34 1.54

10 20 100 O.06 3.25 9.46

11 40 10 O.22 36.27 25.14

12 40 100 O.32 76.31 318.45

13 10 10 O.Ol O.08 O.15

14 10 100 O.02 O.13 O.33

15 20 10 O.03 1.81 O.85

16 20 100 O.04 2.60 2.52

17 40 10 O.16 50.93 4.87

18 40 100 O.24 70.94 40.75

90 Chapter4 A Variant of ID-PRP AIIowing Underproduction and Overproduction

instances, respectively. For these classes of instances, SHP and KOMBI are fbster than ILS･-

QAPG except for 2 classes (recall that KOMBI was run on a slower personal computer). In

summary, for random instances, we may conclude that, ILS-QAPG tends to produce solutions

of better quality in the sense of smaller numbers of different cutting patterns and small trim

loss, at the cost of consuming more computational time.

 We next conducted computational experiments for real instances provided by a chemical

fiber industry. The data of these are available at our world wide web sitei. There are 40

instances with m ranging from 6 to 29, L = 9080,5180, ck ranging from 2 to 264, and li

ranging from 500 to 2000. thble 4.3 (resp., kble 4.4) shows the results of SHP, GT and

ILS-QAPG fbr the instances with L = 9080 (resp., L = 5180).

 [Ebble 4.3 (resp., Table 4.4) tells that 20/20 (resp., 19/20) are acceptable for lnl == a,

16/20 (resp., 17/20) are acceptable for lnl = a - 1, and 10/20 (resp., 15/20) are acceptable

for lnl = a - 2. GT aiso gives acceptable solutions in 19/20 instances (it fails to obtain a

feasible solution fbr one instance). SHP is designed so that a solution with f = O is output

(i.e., always acceptable). However, SHP and GT achieve this perfbrmance at the cost of using

larger number of different cutting patterns in most cases, as observed in Tbbles 4.3 and 4.4.

If we compare ILS-QAPG with SHP and GT from the view point of the obtained number of

different cutting patterns, SHP outperforms GT in Table 4.3, but the relation is reversed in

thble 4.4. This suggests that SHP performs well for instances in which the ratio of product

lengths li to the length of stock rolls L is relatively small, but not so if the ratio is relatively

large. If we evaluate the quality of solutions from tloss (trim loss), SHP has smaller tloss

than those of ILS-QAPG and GT. The pembrmance of SHP is remarkable in this respect, but

ILS-QAPG also perfbrms reasonably well (considering that the minimization of the trim loss

is not a primal target of ILS-QAPG). It is worth mentioning that ILS-QAPG achieve almost

the same tloss even if smaller number of different cutting patterns are used; its performance

is robust is the sense of tloss.

 Thble 4.5 shows the CPU time of SHP, GT and ILS-QAPG with lrll = a for real instances,

respectively. The CPU time of SHP becomes extremely Iarge fbr some instances, because SHP

generates a 1arge number of candidate cutting patterns for such instances. Similar tendency

is observed for GT. The CPU time of ILS-QAPG is comparable to other two algorithms, and

appears to be more stable.

 ihttp:11www-or.amp.i.kyoto-u.ac.jplmemberslurnetani/data･html

4.6 Computational Experiment 91

Tbble 4.3: Computational results of SHP, GT and ILS-QAPG for real instances (L = 9080)

ILS-QAPG

SHP GT inl=a lnl=a-i lll1=a---2

m bacpt lnlftloss Inlftloss ftloss ftloss ftloss
6

7

8

9

10

11

13

13

14

15

16

17

18

19

20

23

26

28

28

29

 6.oo

 7.00

13.97

 9.96

10.82

11.69

13.00

13.00

14.oo

16.07

16.84

17.12

18.00

21.59

20.00

25.92

38.75

28.00

29.46

29.00

 50
 40
 40
 50
 50
 50
 60
 40
 50
 50
 60
12 O

 60
 80
90
80
90
80
12 O

13 O

2.95

5.62

1.02

2.78

1.73

2.33

2.52

2.99

5.33

1.29

2.87

1.02

2.29

2.33

4.69

2.58

1.91

3.42

2.36

2.95

3

3

6

6

6

7

7

6

5

7

8

8

10

10

11

13

14

14

10

1

9

1

10

4

4

2

o

13

19

3

5

5

9

o

o

18

5

9

 3.61

 1.58

 O.43

 O.76

 1.17

 1.75

 1.87

 2.99

3.01

 2.12

 7.02

6.98

10.77

4.04

6.02

14.39

6.31

 7.79

11.39

1

1

4

2

4

8

2

2

5

7

2

o

8

3

2

18

23

8

1

2

3.67

O.99

4.71

6.75

2.18

2.24

7.52

4.14

O.63

1.81

2.88

3.08

2.73

2.52

3.35

3.14

2.78

3.52

2.15

2.38

13

1

7

2

23

23

4

3

17

11

7

6

12

3

3

17

15

7

2

3

3.27

O.99

4.73

6.86

2.15

3.00

6.97

3.95

1.03

O.95

2.69

3.31

2.65

2.76

3.44

3.91

2.82

3.78

2.04

2.02

236

 15

 34

 21

 97

 10

 4
30

105

40

 19

 3
43

17

 4
15

16

25

 1

 4

10.62

 1.00

4.73

6.39

2.19

6.31

6.17

4.14

O.83

1.78

2.44

2.94

2.14

2.69

1.72

3.64

1.73

2.77

2.15

1.75

92 Chapter4 A Variant of ID-PRP AIIowing Underproduction and Overproduction

Table 4.4 : Computational results of SHP, GT and ILS-QAPG fbr real instances (L = 5180)

ILS-QAPG

SHP GT lnl=a lnl=a-1 IllI=a-2

m bacpt IIIiftloss lfilftloss ftloss ftloss ftloss
 6

 7

 8

 9

10

11

13

13

14

15

16

17

18

19

20

23

26

28

28

29

 6.00

 7.00

13.97

 9.96

10.82

11.69

13.00

13.00

14.00

16.07

16.84

17.12

18.00

21.59

20.00

25.92

38.75

28.00

29.46

29.00

 70
10 O

10 O

 90
14 O

12 O

14 O

 90
11 O

16 O

10 O

 90
11 O

25 O

 80
15 O
29 O
11 O

15 O

13 O

4.93

7.55

3.16

6.75

4.03

2.89

2.36

2.83

3.20

2.87

2.71

2.92

1.88

4.75

3.81

1.39

2.26

1.25

1.37

1.22

4

6

4

6

8

8

6

7

6

7

8

9

11

12

8

11

16

13

12

13

2

4

 1

3

 1

1

10

1

1

2

1

9

14

5

2

9

1

10

5

4

5.01

3.69

3.43

8.37

3.71

4.10

2.07

3.29

3.60

4.37

2.42

3.34

2.51

5.05

2.63

4.72

3.23

1.73

2.58

8.20

1

o

16

1

3

1

9

1

1

3

3

2

5

3

1

2

o

5

7

2

5.22

7.55

7.72

8.78

3.91

4.61

2.05

3.20

5.56

4.83

1.92

3.27

4.07

5.34

3.52

5.09

4.77

3.81

4.51

5.33

 3
 3
138

 3
 1

 2
25

 1

 6

 2
19

 2

 1

 1

 4

 5

 4
12

 5

 2

4.65

7.16

3.57

8.66

7.71

5.57

3.83

3.20

3.72

5.04

4.15

3.36

5.61

5.59

2.33

5.15

4.62

3.89

4.74

5.48

103

 3
179

 6
 3
 4
106

 1
37

 2
38

 2
17

 2

 9
14

 1

14

16

 2

4.35

7.17

3.82

8.53

7.79

5.12

2.36

3.20

5.54

4.37

3.05

3.27

4.06

5.02

5.74

4.86

4.40

3.36

4.72

5.23

4.6 Computational Experiment

Table 4.5: The CPU time in seconds for real instances (L = 9080, 5180)

L=9080 L=5180

m SHP GT ILS-QAPG SHP GT ILS-QAPG

 6

 7

 8

9

10

11

13

13

14

15

16

17

18

19

20

23

26

28

28

29

 O.02

 O.Ol

 O.02

 O.02

 O.08

 O.05

 O.17

 O.30

 O.16

 O.13

 O.17

46.62

O.22

2.33

4.09

O.40

 1.27

4.80

197.74

597.02

 O.22

 O.82

 1.32

 O.93

 1.54

 2.42

 3.62

 2.85

 1.54

 2.47

 9.11

 3.57

26.97

 3.24

36.03

 7.80

596.99

 25.70

 78.27

O.03

O.28

O.10

O.41

O.35

O.41

O.68

O.23

O.32

O.73

O.56

1.52

O.48

2.06

O.68

2.64

5.06

2.62

8.09

2.37

O.Ol

O.09

O.07

O.10

O.20

O.30

O.20

O.06

O.07

1.54

O.04

O.06

O.05

2.37

O.03

O.17

2.26

O.27

O.49

O.23

O.11

O.27

O.22

1.65

O.44

O.99

2.41

O.88

192

1.04

6.86

3.85

2.85

5.55

10.87

12.80

15.92

20.87

9.17

6.15

 O.09

 O.23

 O.20

 O.43

 O.59

 1.00

 O.45

 O.32

 O.31

 O.46

 O.98

 1.46

 1.93

3.27

O.46

2.70

14.52

3.88

5.08

4.42

93

94 Chapter4 A Variant of ID-PRP AIIowing Underproduction and Overproduction

4.7 ReductionofComputational Time '

Tb understand the rapid growth of CPU time of ILS-QAPG with m in Table 4.2, we conducted

additional computational experiment. That is, fbr the instances generated by CUTGEN with

d = 100, (ui,v2) = (O.Ol,O.8) and m = 10, 15, 20,30,40, we applied the simple local search

algoritlm LS-QAPG from mitial solutions generated by INIT. LS-QAPG was applied to 10

instances for each m, in which two cases of 7 = m + 1 and 7 = 5 were tested (recan that 7

is a program parameter which restricts the number of candidate cutting patterns scanned).

Here, the number of different cutting patterns 1il1 is set to 1llsHpl - 2. thble 4.6 gives the

results of this experiment, where

ft : the average of different cutting patterns lfi1 (lnl = lnsHpl - 2).

#f : the average of evaluations of f(n,X) in one execution of LS-QAPG (i.e., the number

 of calls to NGS).

#loops : the ayerage of iterations of the loop (Step 2-4) in one execution of NGS.

#moves : the average of moves in one execution of LS-QAPG.

CPU time : the average of CPU time in one execution of LS-QAPG in seconds.

Table 4.6: Perfbrmance of LS-QAPG fbr random instances

ry m n #f #loops #moves CPUtime n.,pt tloss
10 9.9 179.5 32.57 2.0 O.0953 8 16.13

15 14.7 352.3 38.96 2.4 O.468 7 11.24

m+1 20 19.7 974.8 34.65 7.7 1.91 6 11.17

30 28.7 2098.0 49.33 10.4 11.4 6 5.54

40 39.2 4014.9 65.54 17.4 51.4 7 5.47

10 9.9 92.6 29.27 2.3 O.0455 8 15.82

15 14.7 175.6 23.95 4.8 O.145 9 11.72

5 20 19.7 265.8 31.12 7.3 O.459 6 11.12

30 28.7 397.3 35.04 5.7 1.50 6 5.25

40 39.2 553.8 61.41 11.4 6.65 6 5.19

4.8 Conclusion 95

 Flrom Thble 4.6, we see that n, #f, #loops and #moves are approximately proportional

to mO･99, m2･24, mO･50 and mi･56, respectively. As the time to execute one loop of NGS can

be estimated as O(mn), this tells that the average CPU time of one execution of LS-QAPG

is roughly given by

 #f･#loops･O(mn)=O(m`'7`), (4.27)

which may be justified by the column of CPU time (i.e., proponional to m4'54).

 These observations suggest that, in order to prevent the rapid growth of the CPU time

with m, it is important

(i) to reduce the size of neighborhood without sacrificing the power of the local search algo-

 rithm,

(ii) to improve the Gauss-Seidel method (or to use other methods) so that #loops and the

 time for one loop can be reduced.

Although the point (ii) still remains to be a topic of future research, we tried point (i) by

controlling the parameter 7 in Step 2 of LS-QAPG (recall that or restricts the number of

cutting patterns scanned). For example, in all computational experiments of Section 4.7, we

used or = r(m + 1)/101 instead of 7 = m+ 1. This modification reduced the CPU time to

about 1/10 ofthat of Table 4.6, almost without sacrificing the power of local search algorithm.

TleLble 4.6 also contains the results with 7 = 5 (i.e., constant). In this case, #f decreases to

mi'29 from m2'24, the average CPU time of one execution of LS-QAPG decreases to m3'60

from m4'54. This modification stiil does not appear to sacrifice the power of local search

algorithm much.

4.8 Conclusion

We considered in this chapter another formulation of ID-CSP based on a real application of

a chemical fiber industry, called the quadratic deviation minimization problem (ID-QDP), in

which both underproduction and overproduction of products are allowed. Ifor this problem,

we proposed an iterated local search algorithm based on the quadratic version ofthe adaptive

pattern generation (ILS-QAPG). ILS-QAPG tries to find a set of n cutting patterns yielding

suMciently small deviation from demands. Solutions in the neighborhood is obtained by

removing one cutting pattern in the current set and adding one new cutting pattern in the

96 Chapter 4 A Variant of ID-PRP Allowing Underproduction and Overproduction

candidate list. To generate only promising solutions in the neighborhood search, we introduce

the quadratic version of the adaptive pattern generation (QAPG) which generates new cutting

patterns based on the residual demands when one cutting pattern is removed. We conducted

computational experiments for random instances generated by CUTGEN and real instances

in a chemical fiber industry, and observed that the performance of ILS-QAPG is comparable

to other existing heuristic algorithm SHP, KOMBI and GT (which solve a slightly different

formulation of ID-CSP).

Chapter 5

Conclusion

Throughout this thesis, we considered several mathematical models and metaheuristic algo

rithms for one dimensional cutting stock problems (ID-CSP). The contribution of this thesis

is summarized as follows.

 First, we proposed a new formulation by considering the number of diflerent cutting

patterns n as an input parameter given by users. We call this variant of ID-CSP as the

pattern restricted version of ID-CSP (ID-PRP), which minimizes the number of stock rolls.

By solving ID-PRP fbr different parameter values n, we can obtain trade-off curves between

the diflerent number of cutting patterns and the number of stock rolls. Using this, we can

make more carefu1 analyses of these objective functions, and give more desirable solutions

according to requirements of users.

 Second, fbr this problem ID-PRP, we proposed a local search algorithm based on an

adaptive pattern generation (LS-APG). It starts from an initial solution obtained by a mod-

ified first fit heuristic (MFF) known for the bin packing problem (BPP). Solutions in the

neighborhood are defined by removing two cutting patterns from the current solution and

adding two new cutting patterns from the set of candidate cutting patterns. However, the

number of all feasible cutting patterns is too large to evaluate all of them, since it grows

exponentially in the number of products. Tb facilitate the search in the neighborhood, we

introduced the adaptive pattern generation (APG) to construct a small subset of the neigh-

borhood containing good solutions. The adaptive pattern generation is based on the residual

demands when two cutting patterns are removed from the current solution. From computa-

tional experiments fbr random instances, we observed that LS-APG attains a wide variety of

97

98 Chapter 5 Conclusion

 good solutions comparable to SHP and KOMBI, and LS-APG provides reasonable trade-off

 curves between the number of different cutting pattems and the number of stock rolls over a

 very wide range.

 Next, we proposed another local search algoritim based on linear programming techniques

 (LS-LP). It starts from an initial solution obtained by a modMed first fit heuristic (MFF)

 other than that of LS-APG. Solutions in the neighborhood are restricted to those obtainable

 by perturbating one cutting pattern in the current set of cutting patterns. In order to find

promising directions, we utilize a dual optimal solution of LP relaxation problem of the

auxiliary integer programming problem. Although solutions of LP relaxation is not integer

valued, they provide reasonably accurate infbrmation as these integrality gaps are rather

small in most instances of ID-CSP. Since the local search algorithm requires to solve a large

number of LP relaxations which are only slightly different each other, we start the simplex

algorithm from the optimal simplex tableau of the previous solution, instead of starting it

from scratch. We modify the simplex algorithm by applying sensitivity analysis techniques,

and apply a variant of the simplex algorithm called the criss-cross algorithm to compute an

optimal solution. In order to enhance the local search algorithm, we introduce an iterated

local search approach. According to computational experiments fbr random instances, we

observed that the iterated local search algorithm based on lmear programming techniques

(ILS-LP) obtains a wide variety of good solutions, and provides reasonable trade-off curves

between the number of different cutting patterns and the number of stock rolls, similarly to

LS-APG.

 Finally, we considered another fbrmulation of ID-CSP on a real application of a chemical

fiber industry, called the quadratic deviation minimization problem (ID-QDP), in which both

underproduction and overproduction of products are allowed. For this problem, we proposes

an iterated local search algorithm based on the quadratic version of the adaptive pattern

generation (ILS-QAPG). It tries to find a set of n cutting patterns yielding suficiently small

deviation from demands. Solutions in the neighborhood is obtained by removing one cutting

pattern in the current set and adding one new cutting pattern in the candidate list. 'Ib

generate only promising solutions in the neighborhood search, we introduce the quadratic

version of the adaptive pattern generation (QAPG) which generates new cutting patterns

based on the residual demands when one cutting pattern is removed. We conducted com-

putational experiments for random instances and real instances in a chemical fiber industry,

and observed that the perfbrmance of ILS-QAPG is comparable to other existing heuristic

algorithm SHP, KOMBI and GT (which solve a slightly different fbrmulation of ID･-CSP).

 In recent years, as most of systems in real applications have become more sophisticated,

problems have become more complicated than those simple local search and metaheuristic

algorithns can handle. In order to cope with these phenomena, many hybrid atgorithms

have been studied, i.e., various heuristic algorithms and exact algorithms are introduced

to local search algorithms and metaheuristic algorithms, or basic principle of metaheuristic

algorithns are combined together to make more powerfu1 tools solving these intractable

problems. However, we must take into account the fact that these hybridization ofalgorithms

may often spoil the flexibility and simplicity of local search and metaheuristic algorithms. The

author hopes that this thesis will provide some assistance to the community of metaheuristic

algorithms.

Bibliography

 [1] E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorz'al Optimization,

 John Wiley and Sons (1997).

 [2] E.H.L. Aarts, P.J.M. Laarhoven, C.L. Liu and P. Pan, "VLSI layout synthesis," in:

 Local Search in Combinatorial Optimiiation, E.H.L. Aarts and J.K. Lenstra (eds.),

 John Wiley and Sons (1997) 415-440.

 [3] R.K. Ahuja, J.B. Orlin and D. Sharma, "Very largescale neighborhood search,"

 intemational 71rransactions in Operational Research 7 (2000) 301-317.

 [4] E.J. Anderson, C.A. Glass and C.N. Potts, "Machine scheduling," in: Local Search

 in Combinatorial Optirnization, E.H.L. Aarts and J.K. Lenstra (eds.), John Wiley and

 Sons (1997) 361-397.

 [5] J.E. Beasley, "An algorithm for solving 1arge capacitated warehouse location problems,"

 European Journal of(iperational Research 33 (1988) 314-325.

 [6] J.E. Beasley, "Lagrarigian heuristics fbr location problems," European Journal of

 Operational Research 65 (1993) 383-399.

 [7] D.P. Bertsekas, IVbnlinear Programming, Athena ScientMc (1995).

 [8] P. Brucker, Scheduling Algorithms, Springer-Vk)rlag (1995).

 [9] B. Cao and F. Glover, "Tabu search and ejection chains - application to a node

 weighted version of the cardinality-constrained TSP," Management Science 43 (1997)

 908-921.

[10] A. Caprara, M. Fischetti and P. Tbth, "A heuristic method fbr the set covering

 problem," Operations Research 47 (1999) 730-743.

 101

102 BIBLIOGRAPHY

[11] S. Ceria, P. Nobili and A. Sassano, "A Lagrangian-based heuristic for large-scale set

 covering problems," Mathematical Programming 81 (1998) 215-228.

[12] M. Chams, A. Hertz and D. de Werra, "Some experiments with simulated annealing

 for coloring graphs," European Joumal of Operational Research 32 (1987) 260-266.

[13] I. Charon and O. Hudry, "The noising method: a new method for combinatorial

 optimization," Operatt'ons Research Letters 14 (1993) 133L137.

[14] C.H. Cheng, B.R. Feiring and T.C.E. Cheng, "The cutting stock problem - a survey,"

 international Joumal of Production Economics 36 (1994) 291-305.

[15] K.L. Clarkson, "A Las Vegas algorithm for linear and integer programming when the

 dimension is small," Joumal of the ACM42(2) 488-499.

[16] B. Codenotti, G. Manzini, L. Margara and G. Resta, "Perturbation: an eMcient

 technique fbr the solution of very large instances of the Euclidean TSP," IATFORMS

 Journal of Computing 8 (1996) 125-133.

[17] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press (1963).

[18] Z. Degraeve and L. Schrage, "Optimal integer solutions to industrial cutting stock

 problems," IAIFORMS Journal of Computing 11(4) (1999) 406-419.

[19] M. Dorigo and L.M. Gambardella, "Ant colony system: a cooperative learning approach

 to the traveling salesman problem," LEEE 71ransactions on Evolutionary Computation

 1 (1997) 53-66.

[20] A. Drexl and A. Kimms, "Lot sizing and scheduling - survey and extensions," Euro-

 pean Jottrnal of Ciperational Research 99 (1997) 221-235.

[21] G. Dueck and T.Scheuer, "Threshold accepting: a general purpose optimization algo-

 rithm appearing superior to simulated annealing," Joumal of Computational Physics

 90 (1990) 161-175.

[22] G. Dueck, "New optimization heuristics: the great deluge algorithm and record-to-

 record travel," Journal of Computational Physics 104 (1993) 86-92.

BIBLIOGRAPHY 103

[23] H. Dychoff, "A typology of cutting and packing problems," European Journal of

 Operational Research 44 (1990) 145-159.

[24] H. Dyckhoff, G. Scheithauer and J. 'Ibrno, "Cutting and packing," in: M. Dell'Amico,

 F. Maflioli and S. Martello (eds.), Annotated Bibliographies in Combinatom'al Qptimiza-

 tion, Jolm Wiley and Sons (1997) 393-413.

[25] T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann and B. Vaaben, "Constraints

 prograrnming based column generation for crew assigument," Joumal of Heuristics 8

 (2002) 59-81.

[26] A.A. farley and K.V. Richardson, "Fixed charge problems with identical iixed charges,"

 European Journal of Qperational Research 18 (1984) 245-249.

[27] T.A. Feo, M.G.C. Resende and S.H. Smith, "A greedy randomized adaptive search

 procedure for maximum independent set," Operations Research 42 (1994) 635-643.

[28] M.L. Fisher, "The Lagrangian relaxation method for solving integer programming

 problems," Management Science 43 (1997) 1520-1536.

[29] H. Iioerster and G. Wdscher, "Pattern reduction in one-dimensional cutting stock

 problems," intemational Journal of Production Research 38 (2000) 1657-1676.

 '[30] L.M. Gambardella, E.D. 1aillard and M. Dorigo, "Ant colonies fbr the quadratic

 assignment problem," Joumal of Operations Research Society 50 (1999) 167-176.

[31] M.R. Garey and D.S. Johnson, Computers and intractability: A Guide to the T7ieorg

 of NP-completeness, W.H.Freeman and Company (1979).

[32] T. Gau and G. W5scher, "CUTGENI: a problem generator for the standard one-

 dimensional cutting stock problem," European Journal of Operational Research 84

 572-579.

[33] M. Gendreau, G. Laporte and J.Y. Potvin, "Vehicle routing: modern heuristics,"

 in: Local Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra (eds.),

 John Wiley and Sons (1997) 311-336.

[34] P.C. Gilmore and R.E. Gomory, "A linear programming approach to the cutting-stock

 problem," Operations Research 9 (1961) 849-859.

104 BIBLIOGRAPHY

[35] P.C. Gimore and R.E. Gomory, "A linear programming approach to the cutting-stock

 problem - part II," Qperations Researeh 11 (1963) 863-888.

[36] F. Glover, "thbu search - Part I," ORSA Journal on Computing 1 (1989) 190-206;

 "Part II", ditto 2 (1990) 4-32.

[37] F. Glover, "Genetic algorithms and scatter search: unsuspected potentials," Statistics

 and Computing 4 (1994) 131-140.

[38] F. Glover, "Scatter search and star-patks: beyond the genetic metaphor," OR Spektrum

 17 (1995) 125-137.

[39] F. Glover, "Ejection chains reference structures and alternating path methods fbr

 traveling salesman problems," Discrete Applied Mathematics 65 (1996) 223-253.

[40] F. Glover and G.A. Kochenberger, "Critical events tabu search fbr multidimensional

 knapsack problems," in: I.H. Osaman and J.P. Kelly (eds.), Meta-Heuristics: The

 T:heory and Applications, Kluwer Academic Publisher (1996) 407-427.

[41] F. Glover and M. Laguna, tThbu Search, Kluwer Academic Publishers (1997).

[42] D.E. Goidberg, Genetic Algore'thms in Search, Optimization and Machine Learning,

 Addison-Wesley (1989).

[43] C. Goulirnis, "Optimal solutions for the cutting stock problem," European Jbumal of

 Operational Research 44 (1990) 197-208.

[44] M. Gradisar, M. Kljaji6, G. Resinovic and J. Jesenko, "A sequential heuristic procedure

 for onedimensional cutting," European Joumal of Operational Research 114 (1999)

 557-568.

[45] J. Gu and X. Huang, "EMcient local search with search space smoothing: a case study

 of the traveling salesman problem (TSP)," IEEE 7bransactions on Systems, Man, and

 Cybernetics 24 (1994) 728-735.

[46] R.W. Haessler, "A heuristic programming solution to a nonlinear cutting stock prob-

 lem," Management Science 17(12) (1971) 793-802.

BIBLIOGRAPHY 105

 [47] R.W. Haessler, "ControMng cutting pattern changes in onedimensional trim prob-

 Iems," Qperations Researeh 23(3) (1975) 483-493.

[48] R.W. Haessler, "A note on computational modMcations to the GilmoreGomory cutting

 stock algorithm," Clperations Research 28(4) (1980) 1001-1005.

[49] R.W. Haessler and P.E. Sweeney, "Cutting stock problems and solution procedures,"

 European Joumal of Ciperational Research 54 (1991) 141-150.

[50] S. Hanafi and A. Flreville, "An eficient tabu search approach fbr the O-1 multidi-

 mensional knapsack problem," European Joumal of Operational Researeh 106 (1998)

 659-675.

[51] P. Hansen and N. Mladenovi6, "An introduction to variable neighborhood search," in:

 S. VbB, S. Martello, I.H. Osman and C. Roucairol (eds.), Meta-Heuristics: Advances

 and 7b,ends in Local Search Paradigms for Optimization, Kluwer Academic Publishers

 (1999) 433-458.

[52] A.I. Hinxman, "The trim-loss and assortment problems: a survey," European Journal

 of Operational Research 5 (1980) 8-18.

[53] K.L. Hoffman and M. Padberg, "Solving airline crew scheduling problems by branch-

 and-cut," Management Science 39(6) (1993) 657-682.

[54] J.H. Holland, Adaptation in ATatural and Artoficial Systems: An introductory Analysis

 with Applications to Biolopy, Control, and Artiifieial intelligence, The University of

 Michigan Press (1975), and MIT Press (1992).

[55] D.S. Johnson, C.R. Aragon, L.A. McGreoch and C. Schevon, "Optimization by sim-

 ulated annealing: an experimental evaluation; part I, graph partitioning," Operations

 Research 37 (1989) 865-892; "part II, graph coloring and number partitioning," ditto

 39 (1991) 378-406.

[56] D.S. Johnson, "Local optimization and the traveling salesman problem," in: M.S. Pa-

 terson (eds.), Automata, Languages and Prqgramming, Lecture Alotes in Computer

 Science 443 (1990) 446-461.

106 BIBLIOGRAPHY

[57] D.S. Johnson and L.A. McGeoch, "The traveling salesman problem: a case study,"

 in: E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization,

 John Wiley and Sons (1997).

[58] R.E. Johnston, "RDunding algorithm for cutting stock problems," Joumal of Asian-

 Pacofic Operations Research Societies 3 (1986) 82-92.

[59] L.V. Kantorovich, "Mathematical methods of organising and plaiming production,"

 Management Science 6 (1960) 366-422.

[60] B.W. Kernighan and S. Lin, "An eMcient heuristic procedure fbr partitioning graphs,"

 Bell System 71echnical Joumal 49 (1970) 291-307.

[61] G.A.P. Kindervater, "Vehicle routing: handling edge exchanges," in: Local Search in

 Combinator2'al Optimization, E.H.L. Aarts and J.K. Lenstra (eds.), John Wiley and

 Sons (1997) 337-360.

[62] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, "Optimization by simulated anneal-

 ing," Science 220 (1983) 671-680.

[63] M. Laguna, T.A. Feo and H.C. Eirod, "A greedy randomized adaptive search procedure

 for the two-partition problem," Operations Research 42 (1994) 677-687.

[64] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Stmoys (eds.), 7he TVTaveling

 Salesman Problem: A Guided 7bur of Combinatorial Optimization, John Wiley and

 Sons (1985).

[65] S. Lin and B.W. Kernighan, "An eMcient heuristic algorithm for the traveling salesman

 problem," Qperations Research 21 (1973) 498-516.

[66] R.A. Murphey, P.M. Pardalos and M.G.C. Resende, "Frequency assignment problems,"

 in: Handbook of Cornbinatorial Optimization, Kluwer Academic Publishers (1999).

[67] C. McDiarmid, "Pattern minimisation in cutting stock problems," Discrete Applied

 Mathematics 98 (1999) 121-130.

[68] O. Marcotte, "The cutting stock problem and integer rounding," Mathematical Pro-

 gramrning 33 (1985) 82-92.

BIBLIOGRAPHY 107

 [69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

 O.C. Martin, S.W. Otto and E.W. Felten, "Large-step markov chains fbr the TSP

 incorporating local search heuristic," Qperations Research Letters 11 (1992) 219-224.

 N. Megiddo, "Linear programming in linear time when the dimension is fixed," Joumal

 of the ACM 31 114-127.

 N. Mladenovi6 and P. Hansen, "Vkiriable neighborhood search," Computers and

 Qperations Resenreh 24 (1997) 1097-1100.

 '
 G.L. Nemhauser and L.A. Wolsey, integer and Combinatorial Qptimization, John

 Wiley and Sons (1988).

 I.H. Osman and J.P. Kelly (eds.), Meta-Heuristics: 17ieory and Applications, Kluwer

Academic Publishers (1996).

 C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algon'thms and

complex2'ty, Printice-Hall (1982).

 E. Pesch and F. Glover, "TSP ejection chains," Discrete Applied Mathematics 76

(1997) 165-181.

 J.F. Pierce, "On the solution of integer cutting stock problems by combinatorial

programming, Part I," LBM 713chnical Report 36.Y02, Cambridge Scientific Center,

Cambridge, MA (1966).

C.R. Reeves, Modem Heuristics 7lechniques for Combinatorial Problems, Black-well

ScientMc Publications (1993); re-issued by McGraw-Hill (1995).

S. Sahni, "Approximates fbr the O/1 knapsack problem," Journal of the Association

for Computing Machinery 22 (1) (1975) 115-124.

G. Scheithauer and J. Tbrno, "The modified integer round-up property of the one

dimensional cutting stock problem," European Journal of 0perational Research 84

(1995) 562-571.

 G. Scheithauer and J. Terno, "A branch-and-bound algorithm fbr solving one-

dimensional cutting stock problems exactly," Applied Mathematics 23 (1995) 151-167･

108 BIBLIOGRAPHY

[81] G. Scheithauer and J. [brno, "Theoretical investigations on the modMed integer

 round-up property for the onedimensional cutting stock problem," (iperations Research

 Letters 20 (1997) 93-100.

[82] D.H. Smith, S. Hurley and S.U. Thiel, "Improving heuristics fbr the frequency assign-

 ment problem," European Joumal of (iperational Research 107 (1998) 76-86.

[83] H. Stadtler, "A onedimensional cutting stock problem in the aluminum industry and

 its solution," European Joumal of Operational Research 44 (1990) 209-223.

[84] E. Sweeney and R. W. Hacssler, "One-dimensional cutting stock decisions fbr rolls with

 multiple quality grades," European Joumal of Qperational Research 44 (1990) 224-231.

[85] T. Terlaky, "A convergent Criss-cross method," Mathematische Operationsforscheung

 und Statistics ser. Optimization 16 (1985) 683-690.

[86] E. Tsang and C. Vbudouris, "Fast local search and guided local search and their

 application to British Telecom's workfbrce scheduling problem," Operations Research

 Letters 20 (1997) 119-127.

[87] S. Umetani, M. Yagiura and T. Ibaraki, "One dimensional cutting stock problem to

 minimize the number of different cutting patterns," European Journal of Operational

 Research 146(2) (2003) 388-402.

[88] S. Umetani, M. Yagiura and T. Ibaraki, "A local search approach to the pattern

 restricted one dimensional cutting stock problem," submitted for publication.

[89] S. Umetani, M. Yagiura and T. Ibaraki, "An LP-based local search to the one dimen-

 sional cutting stock problem using a given number of cutting patterns," to appear The

 IEICE7 71ransactions on Rundamentals.

[90] S. Umetani, M. Yagiura and T. Ibaraki, "A local search approach for one dimensional

 cutting stock problem," Proceedings of 4th Metaheune'stics international Conference

 (MIC2001) (2001) 69-73.

[91] S. Umetani, M. Yagiura and T. Ibaraki, "An LP-based local search to the one dimen-

 sional cutting stock problem using a given number of cutting patterns," Proceedings of

 the lst International Wbrkshop on Heuristics (IWH2002) (2002) 28-38.

BIBLIOGRAPHY 109

 [92] R- Vahrenkamp, "Random search in the onedimensional cutting stock problem,"

 European Joumal of Qperational Research 95 (1996) 191-2eO･

 [93] P･H･ Vance, "Branch-and-price algorithms for the one-dimensional cutting stock prob-

 lem," Computational Qptimiiation and Applications 9 (1998) 211-228.

 [94] F. Vanderbeck, "Computatioma1 study of a column generation algorithm fbr bin packing

 and cutting stock problems," Mathematical Prqgramming 86 (1999) 565-594.

 [95] F. Vhnderbeck, "Exact algorithm for minirnising the number of setups in the one-

 dimensional cutting stock problem," Operations Research 48 (2000) 915-926.

 [96] C. Vbudouris and E. Tsang, "Guided local search and its application to the traveling

 Salesman problem," European Joumal of Operationat Research 113 (1999) 469-499.

 [97] W.E. Walker, "A heuristic adjacent extreme point algorithm for the fixed charge

 problem," Management Science 22(5) (1976) 587-696.

 [98] G. Wischer and T. Gau, "Heuristics for the integer one-dimensional cutting stock

 problem: a computational study," OR Spektrum 18 (1996) 131-144.

 [99] L.A. Wolsey, integer Programming, John Wiley and Sons (1998).

[100] M. Yagiura, T. Ibaraki and F. Glover, "An ejection chain approach fbr the generalized

 assignment problem," ZPechnical Report #99013, Department of Applied Mathematics

 and Physics, Graduate School of Informatics, Kyoto University (1999).

[101] M. Yagiura and T. Ibaraki, "On metaheuristic algorithms for combinatorial optimiza-

 tion Problems," Systems and Computers in Japan 32(3) (2001) 33-55.

[102] M. fagiura and T. Ibaraki, "Local search," in: P.M. Pardalos and M.G.C. Resende

 (eds.), Handbook ofApplied Qptimization, Oxfbrd University Press (2002) 104-123.

[103] S. Zionts, `CThe criss-cross method for solving linear programming problems," Man-

 agement Science 15 (1969) 426-445.

