Studies

on

Local Search Approaches

to One Dimensional Cutting Stock Problems

Shunji Umetani



STUDIES
ON
LOCAL SEARCH APPROACHES
TO ONE DIMENSIONAL CUTTING STOCK PROBLEMS

Shunji UMETANI

Submitted in partial fulfilment of

the requirement for the degree of

DOCTOR OF INFORMATICS
(Applied Mathematics and Physics)

KYOTO UNIVERSITY
KYOTO, JAPAN
JANUARY, 2003



Preface

As combinatorial optimization problems appear in important application areas, a wide va-
riety of algorithms has been developed for several decades. Unfortunately, most of these
combinatorial optimization problems are known to be NP-hard, i.e., they belong to a class of
intractable problems. Therefore, under the widely believed conjecture P 7% NP, their exact
algorithms must be exhaustively time consuming. However, in most real applications, we are
satisfied with good solutions obtained in reasonable computational time, even if we are not
able to obtain an exact optimal solution. In this sense, to deal with large instances of such
intractable combinatorial optimization problems, approximate (or heuristic) algorithms are

very important, and have been intensively studied in recent years.

"The local search and its extensions called metaheuristics are part of the most represen-
tative approaches for this purpose. These algorithms have been applied to many intractable
problems for their simplicity and flexibility, and succeeded in obtaining good solutions to some
extent. However, in recent years, due to the diversification and sophistication of systems in
real applications, these problems have become more intractable so that simple applications
of metaheuristic algorithms are not sufficient. To overcome these difficulties, we need to
construct meaningful mathematical models based on careful analysis of the problems, and

develop more powerful and/or flexible tools.

In the thesis, we consider one of such intractable combinatorial optimization problems,
called the one dimensional cutting stock problem (1D-CSP), which have been intensively stud-
ied since 1960s because of its wide applicability to material industries. In their earlier studies,
where minimizing the cost associated with materials was one of most important issues, 1D-
CSP have been studied as a variant of integer linear programming problems (ILP) and many
useful algorithms were developed. However, in recent industry, as the cost associated with

setup costs have become more dominant than the cost associated with materials, the solutions



of such algorithms become not desirable to users. We propose other formulations of 1D-CSP
in which we include the number of setups as an input parameter, and design local search
algorithms based on various heuristics and/or mathematical programming techniques. Our
approach gives users useful information of the trade-off curves between these cost functions
by controlling the input parameter.

The studies on 1D-CSP are still developing, and many important problems remain to be
solved in this field. The author hopes that the research gives useful tools and ideas to conquer

these intractable combinatorial optimization problems.

January, 2003

Shunji Umetani

i



Acknowledgment

This thesis would not have been possible without the help of many others. First of all, I
am heartily grateful to Professor Toshihide Ibaraki of Kyoto University for his enthusiastic
guidance, discussion and persistent encouragement. He commented in detail on the whole
work in the manuscript, which significantly improved the accuracy of the arguments and
quality of the exposition. Without his considerable help, none of this work could have been
completed.

A great deal of gratitude goes to Professor Mutsunori Yagiura of Kyoto University with
whom I wrote joint papers. His great collaboration was very important in forming the idea
of this thesis.

I also wish to express my gratitude to Professor Koji Nonobe of Kyoto University, Pro-
fessor Toshimasa Ishii of Toyohashi University of Technology, Professor Takashi Horiyama
of Kyoto University, Professor Hirotaka Ono of Kyushu University, Professor Liang Zhao
Utsunomiya University, and all members in Professor Ibaraki’s laboratory for many enlight-
ening discussions on the area of this work. I especially mention a member who gave me useful
comments, namely Shinji Imahori.

My deepest gratitude is to my family for their heartfelt cooperation and encouragement.

iii



Contents

Introduction

1.1 Combinatorial Optimization Problems - - « - - -+« « o v o v v v oo e
1.2 Local Search and Metaheuristics - - - - -« « -+« c o v e e o
1.3 One Dimensional Cutting Stock Problems - - - - - -+ « -« - - v o vv v

1.4 Previous Works on the Pattern Minimization in 1ID-CSP - - - - - - . - . . ..

1.5 Research Objectives and Overview of the Thesis - - - -« « « =« « oo ..

A Local Search Algorithm Based on Adaptive Pattern Generation

91 IntrodUCtiOn - = « « « « = = = =+ e e e e e e e e e e e e e e e e e
2.2 Generation of an Initial Solution - - « - - -+« c oo oo oo a sl
2.3 Solving Auxiliary Integer Linear Programming Problems - - - - - - - - - - - -
2.4 Construction of the Neighborhood - - - - -« -+ - v v v v v v v v v
2.5 Entire Algorithm of Local Search - - - - -« -« v o o v v v v oo
2.6 Computational Experiment - - « - - - -+« - o oo e c e e oo

2.7 Conclllsion . . ...................................

A Local Search Algorithm Based on Linear Programming Techniques
3 . 1 Introduction .....................................
3.2 Generation of an Initial Solution - -« - - - - -« - oo oo

3.3 Construction of the Neighborhood - - - - - -+« - - -« o oo v v oo
3.4 Solving many LP Relaxations - - =« + =+« « « - o o oo i
3.5 Entire Algorithm of Local Search - « « - « « « + -+« « c o v oo
3.6 Iterated Local Search Algorithm - - - -« -+« -« -« o oo
3.7 Computational Experiment - « « - - - < = < = ¢+ s 0o s e

3.8 Conclusion - - « - « « ¢ o i e e e e e e e e e e e e e e e e e e

13
16

23
23
24
27
29
35
36
43



4 A Variant of 1D-PRP Allowing Underproduction and Overproduction 75

4.1 IntrodUCHION « « = « = « = = & o o e e e e e e e e 75
4.2 Formulation of ID-QDP - -+ « =+« vttt 76
4.3 Solving Auxiliary Integer Quadratic Programming Problem - - - - - - - - - - 77
4.4 Construction of the Neighborhood - - - - -+ - - -+ oo v v v 79
4.5 Entire Algorithm of Local Search - - - - - - - - - -+« v v v v vl 83
4.6 Computational Experiment - - - - - - - -« - - - oo 86
4.7 Reduction of Computational Time - -« <« + - -« + - c v v v v ot 94
4.8 COMCIUSION « « + + « + & ot o e e e e e e 95
5 Conclusion 97

vi



List of Figures

1.1
1.2
1.3

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1
4.2

A sample of one dimensional cutting stock problem - - - - -« - oo e e e
The improvement of the current solution induced by a new cutting pattern
Trade-off curve between the number of stock rolls f and the number of different

cutting pattems R e e e e e e e e e e e e e e e e e e e e e

The number of stock rolls versus the number of different cutting patterns

(nLB 3 17) ............. IR T R A
The CPU time in seconds versus the number of different cutting patterns

The change of the dual optimal solution by PERTURB - - - - - - - -+ - - -
Exchanging the columns p; and p(i', j’) in the optimal simplex tableau T' - -
(i) Comparison the trade-off curves of UNIFORM_INIT and MFFINIT - - -
(ii) Comparison the trade-off curves of LS-LP using UNIFORMINIT and

MEFINIT - « - ¢ o v s e e e et e e e et e e et e e e et e e
(iii) Comparison the trade-off curves of ILS-LP using UNIFORMINIT and
MFEFINIT - -« « « v oo oo e e e e e e e e e e e e e

The number of stock rolls versus the number of different cutting patterns

(n LB = 17 ) .....................................
The CPU time in seconds versus the number of different cutting patterns (using

logarithmic scale for CPU time(sec.)) - « «+ « « « =« o v s o v e v e e o e

Comparison the objective values between IT and II' € Ny(II) - - - - - -+ - - -

Comparison the objective values between IT and IT' € NY*P9(IT) - - - - - - - -

vii

13

18

38
38

52
55
63



List of Tables

21
2.2

2.3

3.1
3.2

3.3
3.4
3.5
3.6

3.7

4.1
4.2
4.3
4.4

Computational results of SHP and KOMBI for the random instances generated

by CUTGEN - - - -« o ot e e e e e 39
Computational results of LS-APG with different fyp for the random instances
generated by CUTGEN - - - -« « v o oo 40
The average CPU time in seconds for the random instances generated by CUT-
GEN -« -« + v o e e e e e e e e e e e e e e e e 42
The average number of pivoting operations for solving single LP(II) - - - - - 57
Computational results of LS-LP using UNIFORM_NIT with different fyyp for
the random instances generated by CUTGEN - - « - - - - - - - o o0 v oo 65
Computational results of LS-LP using MFF_INIT with different fyp for the
random instances generated by CUTGEN - -+« - - - -« oo o oot 66
Computational results of SHP and KOMBI for the random instances generated
by CUTGEN -« « « c c o v ot et 68
Computational results of LS-APG with different fiyp for the random instances
generated by CUTGEN - - -« -« o o o oo oo 69
Computational results of ILS-LP with different fi;p for the random instances
generated by CUTGEN « - - - - -« v oo oo 70
The average CPU time in seconds for the random instances generated by CUT-
GEN -« -« e e e e e e e e 72

Computational results of SHP, KOMBI and ILS-QAPG for the random instances 88
CPU time in seconds of SHP, KOMBI and ILS-QAPG for random instances - 89
Computational results of SHP, GT and ILS-QAPG for real instances (L = 9080) 91
Computational results of SHP, GT and ILS-QAPG for real instances (L = 5180) 92

ix



4.5 The CPU time in seconds for real instances (L = 9080,5180) - - - - « - - - -

4.6 Performance of LS-QAPG for random instances



Chapter 1

Introduction

1.1 Combinatorial Optimization Problems
An optimization problem is generally defined as follows:

minimize  f(x) (1.1)

subject to  x € F,

where F is the set of solutions & which satisfy all the given constraints. F is called the
feasible region and each « € F is called a feasible solution. The function f is called the
objective function (or cost function), and a feasible solution =* € F is optimal if f(z*) <
f(x) holds for all other feasible solutions € F. We call an optimization problem (1.1) a
combinatorial optimization problem if F is combinatorial in some sense. We often encounter
combinatorial optimization problems in many real applications, e.g., production planning
[20], machine scheduling [8][4], plant location [5], vehicle routing [33][61], crew scheduling
[53][10][25], frequency assignment [82][66], VLSI design [2], etc. Other recent application
areas include problems in molecular biology, architecture and their importance has been
widely recognized. Many of these real problems can be described as extensions of the following

combinatorial optimization problems.

Bin Packing Problem (BPP)

Input: A set of items U = {uq,us,...,um}, their sizes s(u;) for each u; € U, and

the bin capacity B.



2 Chapter 1 Introduction

Output: A partition of U into the minimum number 7 of disjoint sets Uy, Us, ..., Uy,

such that the total size Zier s(u;) of items in each Uj is B or less.

Graph Coloring Problem (GCP)

Input: An undirected graph G = (V, E).
Output: A coloring 7:V — {1,...,x} of all vertices v; € V with the minimum
number of colors x, in which the end of vertices v;, v; of each edge {v;, v;} € E

has different colors 7(v;) # 7(v;).

Knapsack Problem (KP)

Input: A set of items U = {uj,us,...,Un}, their sizes s(u;) and values v(u;) for

each u; € U, and the knapsack capacity B.

Output: A subset U’ C U of the maximum total value 3.y v(u;) of items in

U’ such that the total size 3 ;< $(u;) of items is B or less.

Set Covering Problem (SCP)

Input: A finite set S and a collection C = {S1,52,...,Sm} of subsets S; C S.

Output: A set cover for S, i.e., a collection C’ C C of the minimum cardinality

|C’| such that every element in S belongs to at least one member S; € C’.

Traveling Salesman Problem (TSP)

Input: A set of cities C = {¢;,¢c2,...,cn} and distances d(c;, ¢;) for each pair of
cities ¢;,¢; € C.
Output: A tour o : {1,...,m} — C of all cities ¢; € C of the minimum total

length 3%, d(o(i),0(i + 1)) + d(a(m), o(1)).

For example, vehicle routing problem (VRP) is described as follow: there are a number of
customers to be served from a unique depot. Each customer has a quantity of goods and a
number of time periods (time windows) to be delivered. Each vehicle has the capacity on the
goods carried. VRP asks to design routes of vehicles with the minimum total cost such that
all goods are delivered to customers in their time windows. The main costs of VRP are the
number of vehicles used, and the total distance traveled. In this sense, VRP contains BPP

and a number of TSPs with time windows, i.e., the problem of determining the number of



1.1 Combinatorial Optimization Problems 3

vehicles is formulated as BPP, and the problem of determining the route of each vehicle is
formulated as a special TSP with time windows.

Another example is airline crew scheduling problem (ACSP): Given a schedule of flights
for a particular aircraft type. Each crew is assigned for a set of flights (a weekly schedule)
satisfying many constraints such as limited flying time, minimum rests between flights, re-

turning to starting point after a set of flights, etc. ACSP asks to assign crews for weekly
schedules such that all flights are covered by at least a given number of crews. The objective
is to minimize the amount paid to the crews. ACSP can be formulated as SCP, where the
set of all flights correspond to the set S and all possible weekly schedules correspond to ‘all
subsets S; € C. »

Most of these combinatorial optimization problems (e.g. the above all problems) are
known to be NP-hard, and it is unlikely that there exist polynomial time algorithms for
NP-hard problems [31]. One of the representative approaches is that it formulates these
combinatorial optimization problems as integer linear programming problem (ILP) and solves
them by efficient exact algorithms, e.g., branch-and-bound or dynamic programming algorithm
[72][99].

n
(ILP) minimize Y c;z; (1.2)
=1

n
subject to Zaijﬁ}]’ >by, fori=1,...,m
=1
z;€Zy,forj=1,...,n.

The mized-integer programming problem (MILP) is a superset of ILP, in that some of the
variables are allowed to be nonnegative continuous values. Although a variety of efficient
branch-and-bound solvers have been developed as general purpose tools, many combinatorial

optimization problems still remain to be intractable because of the following reasons:
e A solution is required rapidly, within a few second or minutes.

¢ The instance is so large and/or complicated that it can not be formulated as ILP or

MILP of reasonable size.

e Even though it has been formulated as an ILP (or MILP), it is difficult or impossible

for these exact algorithms to find optimal solutions.



4 Chapter 1 Introduction

e For certain combinatorial optimization problems such as TSP, it is easy to find feasible
solutions by inspection or knowledge of the problem structure, and a general purpose

integer programming approach is ineffective.

Fortunately, in most applications, we are satisfied with good solutions obtained in reasonable
computational time even if we are not able to obtain an exact optimal solution. In this
sense, to deal with large instances of such intractable combinatorial optimization problems,
approzimate or heuristic algorithms are important and such approaches have been intensively

studied in recent years.

1.2 Local Search and Metaheuristics

The basic ideas of approximate algorithms are the greedy algorithm and the local search
algorithm (LS) {74]{1). The greedy algorithm is a constructive method that constructs an
approximate solution step by step on the basis of the local information. For example, the
nearest neighbor method [64] is a greedy algorithm for TSP, which starts from an arbitrary
city, and repeatedly moves to the nearest unvisited city until all cities are visited. On the
other hand, the local search algorithm is an improvement method that iteratively modifies
the current solution to obtain a better solution until no better solution is obtained by its
modification. For example, the 2-exchange (2-opt) heuristic {74]{64][57] is a local search
algorithm for TSP, which repeatedly exchanges a pair of crossing edges of the tour until no
better tour is obtained by the operation.

The local search starts from an initial feasible solution and repeatedly replaces it with
a better solution in its neighborhood N(z) until no better solution is found in N (&), where
N(z) is a set of solutions obtainable from x by applying a slight perturbation. A solution x

is called locally optimal, if no better solution z’ is found in N(x). The simple local search

algorithm is described as follow:

Algorithm Local Search (LS)

Input: The initial feasible solution x**.
Output: A locally optimal solution .

Step 1: Set = := z'™.



1.2 Local Search and Metaheuristics . 5

Step 2: If there is a feasible solution ' € N(x) such that f(z') < f(x) holds,
set £ := ' and return to Step 1. Otherwise (i.e., f(z') > f(z) holds for all
z' € N(z)) output = and halt.

The search procedure of finding the next solution ' € N(x) is called the neighborhood search,
and the set of all solutions which may be potentially visited in a local search algorithm is

called the search space.

To design a local search algorithm for a combinatorial optimization problem, we must

consider the following ingredients:

(i) How to generate an initial feasible solution z*".

(ii) How to construct the neighborhood N(z) from the current solution x.
(iii) How to compute the objective function x efficiently.

(iv) How to specify the order of solutions to be evaluated in the neighborhood N(z), and

the selection rules of the next solution.

Although the local search algorithm is powerful for its simplicity, its naive implementation
does not attain sufficiently good solutions since it only visits a small number of new solutions.
To overcome this, many variants of the local search algorithm have been developed, where

their strategies are:

Initial solution: executing a number of the local search algorithms from different initial so-
lutions, e.g., multi-start local search (MLS) [60][65], iterated local search (ILS) [56](69],
greedy randomized adaptive search procedure (GRASP) [27][63], variable neighborhood
search (VNS) [71][51], genetic algorithm (GA) [54]{42], scatter search [37][38], and ant
colony system [19][30].

Neighborhood: adopting to a larger neighborhood or a sophisticated structure of neighbor-
hood, e.g., variable depth search (VDS) [60][65], very large-scale neighborhood search(3],
ejection chain [39]{75][9]{100].

Move strategy: allowing to move worse solutions and controlling moves by a randomized
or sophisticated strategy, e.g., simulated annealing (SA) [62][55], threshold accepting
(TA) [21], great deluge algorithm (GDA) [22], tabu search (TS) [36][41].



6 Chapter 1 Introduction

Search space: adopting a search space different from F (i.e., including infeasible region) and
modifying the objective function f so that we can evaluate the amount of infeasibility of
solutions, e.g., strategic oscillation [40][50]. (This approach often appears in many local
search algorithms since finding a feasible solution is not easy for many combinatorial

optimization problems.)

Objective function: adaptively perturbating the objective function in order to escape poor
locally optimal solutions, e.g., guided local search [86][96], noising method [13][16],
search space smoothing method [45], Lagrangian-based heuristics [28][6][11][10].

The framework of these variants of the local search algorithms are called metaheuristics.
Some representative algorithms in metaheuristics stated as follows:

The iterated local search (ILS) repeats the local search from different initial solutions,
where they are generated by random perturbations applied to the best solution obtained by

then.

Algorithm Iterated Local Search (ILS)

Input: The first initial solution zt".

Output: The best solution =*.

Step 1: Set z* := ',

Step 2: Generate an initial solution @ of the next local search algorithm by
slightly perturbating z* randomly.

Step 3: Apply the local search algorithm (LS) to obtain a locally optimal solution

.

Step 4: If f(x) < f(x*) holds, set =* := z. If some stopping criteria are satisfied,

output £* and halt; otherwise return to Step 2.

The genetic algorithm (GA) employs evolutionary process in nature. GA repeatedly gen-
erates the set of new candidate solutions N (P) by applying the operations such as crossover,
mutation and selection to the set of candidate solution P. A crossover generates one or more
solutions by combining two or more candidate solutions, and a mutation generates a solution
by slightly perturbating a candidate solution. GA starts from an initial set of candidate

solutions P and repeatedly replaces P with P’ C P U N(P) according to its selection rules.



1.2 Local Search and Metaheuristics 7

Algorithm Genetic Algorithm (GA)

Input: The set of initial candidate solutions P.
Output: The best solution z*.

Step 1: Construct an initial set of candidate solutions P. Let z* be the best

solution among P.

Step 2: Repeat the following Step 2-1 and/or Step2-2 to obtain the set of new

candidate solutions NV (P) from the current set of solutions P.

Step 2-1: Crossover two or more candidate solutions to generate a new
candidate solution.
Step 2-2: Mutate a candidate solution to generate a new candidate solu-

tion.
Step 3: If a solution = with f(z) < f(z*) is found in Step 2, set =* := x.

Step 4: Select the set of a given number of candidate solutions P’ from the

resulting P U N(P), and set P := P’.

Step 5: If some stopping criteria are satisfied, output =* and halt; otherwise

return to Step 2.

The simulated annealing (SA) is a kind of probabilistic local search, in which test solutions
are randomly chosen from N(z) and accepted with probability that is 1 if the test solution
is better than the current solution x, and positive even if the test solution is worse than
the current solution . By allowing moves to worse solutions, SA can escape from poor
locally optimal solutions. The acceptance probability is controlled by a parameter called

temperature, whose idea stems from the physical annealing process.

Algorithm Simulated Annealing (SA)

Input: The initial solution *, and the initial temperature ¢.

Output: The best solution x*.

Step 1: Set z* := ™, and x := ™.

Step 2: Generate a solution ' € N(z) randomly, and set A := f(z') — f(z).
If A < 0 holds (i.e., a better solution is found), set & := x’; otherwise set

z := ' with probability e=2/%.



8 Chapter 1 Introduction

Step 3: If f(x) < f(x*) holds, set * := x. Ifsome stopping criteria are satisfied,
output z* and halt; otherwise update the temperature ¢ according to some

rules and return to Step 2.

The tabu search (TS) tries to enhance the local search by the memory of previous searches.
TS repeatedly replaces the current solution z by its best neighbor ' € N (x) even if f(z') >
f(z) holds. To avoid cycling of solutions, TS restricts the neighborhood N(z) \({z}UT) by

a tabu list T which is design to prevent TS going back to recently visited solutions.

Algorithm Tabu Search (TS)

Input: The initial solution z*™.

Output: The best solution z*.

Step 1: Set o* := '™, ¢ := g™ and T := .

Step 2: Find the best solution ' € N(z) \ {x UT}, and set = := «'.

Step 3: If f(x) < f(x*) holds, set &* := z. If some stopping criteria are satisfied,
output =* and halt; otherwise update 7" according to some rules and return

to Step 2.

Many approaches in metaheuristics are based on the analogies with processes and disciplines
in nature such as statistical physics, biological evaluation, etc. More details about local search

and metaheuristics are found in [77][73][1][102].

Theoretically, neither nontrivial bounds on the quality of local optimal solutions nor non-
trivial bounds on the time complexity of local search have been known. However, in praétice,
many local search algorithms are successful to obtain sufficiently good solutions in reasonable
computational time. One of the attractive features of local search and metaheuristics consists
in its simplicity and robustness. We can develop local search and metaheuristic algorithms
without knowing detailed mathematical properties of the problem, and still attain reason-
ably good solutions in practically feasible time [101]. Another good feature causes from its
flexibility, i.e., we can much improve their performance by introducing sophisticated data

structures and effective heuristics of the problem.



1.3 One Dimensional Cutting Stock Problems 9

1.3 One Dimensional Cutting Stock Problems

The cutting and packing problem models the practical problem of considering how to arrange
the small items in the large items. In this sense, the following problems are essentially the
same except for kind of assignment, assortment, dimensionality, shapes, etc.: knapsack prob-
lem, bin packing problem, cutting stock problem, strip packing problem, pallet loading problem,

vehicle loading problem, container loading problem, layout problem, partitioning problem, etc.

Kind of assignment: (i) all large items and a selection of small items, and (ii) a selection

of large items and all small items.

Assortment of large items: (i) one item, (ii) many identical items, and (iii) many different

items.

Assortment of small items: (i) many different items, (ii) many items of relatively few

different figures, and (iii) many identical items.

Dimensionality: (i) one dimensional, (ii) two dimensional, (iii) three dimensional, and (iv)

n-dimensional with n > 3.
Shapes (e.g., two dimensional): (i) rectangle, (ii) polygon, (iii) circle, and (iv) irregular.

For example, the knapsack problem requires to assign a selection of small items to one large
item, and its dimensionality is one. Another example is the two dimensional bin packing
problem which requires to assign all small items to a selection of large items, and its dimen-
sionality is two. The detailed classification of cutting and packing problems is summarized
in [52][23][14]{24]-

The one dimensional cutting stock problem (1D-CSP) is one of the most representative
cutting problems, and it has been intensively studied since 1960s [59][76]. This problem arises
in many industries such as steel, paper, wood, glass and fiber. Due to its wide variety of
materials to handle, and industries, the 1D-CSP has been stated in many models. In 1D-
CSP, we are given a sufficient number of stock rolls of the same length L, and m products
M =1{1,2,...,m} of given lengths (l1,ls,...,l), whose demands are (dy,ds, ...,dn).

A standard formulation of 1D-CSP is to describe it in terms of the variables associated
with cutting patterns, where a cutting pattern (or pattern) is a feasible combination of prod-

ucts cut from one stock roll. A cutting pattern is described as p; = (a1, azj, . . ., am;), where



10 Chapter 1 Introduction

aij € Z; (the set of nonnegative integers) is the number of products i cut from the cutting

pattern p;. We say a cutting pattern p; satisfying

> aili <L (1.3)
iEM
feasible, and let S denote the set of all feasible cutting patterns. It is often necessary in prac-
tice to consider additional constraints on cutting patterns. One of the common constraints
is that the residual length of a cutting pattern should be smaller than that of the smallest

product, i.e.,

L- ig,!aijli < %Ielgllli. (1.4)

A cutting pattern satisfying (1.4) is called complete-cut cutting pattern [83]. A solution of
1D-CSP consists of a set of cutting patterns IT = {p1, p2,-..,pm} C S, and the corresponding
numbers of their applications X = {1,z2,...,z;} € ZI_F' (i.e., the number of times the
cutting pattern is used). A typical cost function is the amount of residual pieces of the
used stock rolls, called trim loss, which are usually treated as waste product. The problem
of minimizing the trim loss (i.e., minimizing the number of required stock rolls) has been
intensively studied as the standard 1D-CSP. This problem asks a solution (II, X) which
minimizes the number of required stock rolls while satisfying the demands of all products,

and is formulated as follows:

(ID-CSP) minimize f(IL,X)= Y_ z; (1.5)
pi€ll
subject to Z a;jzrj > d; foralli e M
pi €l
IICS

z; € Z4 for all p; € II.

A sample of 1D-CSP is illustrated in Figure 1.1. As the standard 1D-CSP contains the bin
packing problem (BPP), which is known to be strongly NP-hard [31], as a special case, the
standard 1D-CSP is clearly a hard problem. The standard 1D-CSP has been studied since
1960s, as a variant of integer linear programming problem (ILP), which has a huge number
of columns corresponding to all feasible cutting patterns. The number of all feasible cutting
patterns is roughly estimated as O(m*) where k represents the average number of products

in a cutting pattern. Pierce [76] showed that the number of cutting patterns can easily run



1.3 One Dimensional Cutting Stock Problems 11

number of applications
stock roll products

)|

2 4 4 3
demands

trim loss overproduction

Figure 1.1: A sample of one dimensional cutting stock problem

into millions in practice situations when the average length of products is relatively small to
that of stock rolls.

A classical approach to the standard 1D-CSP is based on an optimal solution of its
linear programming (LP) relaxation. As it is impractical to consider all feasible cutting
patterns, Gilmore and Gomory [34][35] proposed an ingenious column generation method,
which determines the next cutting pattern necessary to improve the current solution (II, X) by
solving the associated knapsack problem. This made it possible to solve the standard 1D-CSP
by linear programming without enumerating all feasible cutting patterns, and consequently
they solved the standard 1D-CSP in much less time than would be required if all feasible
cutting patterns were used.

We first give the problem of computing an optimal X = {z1,Z2,...,zn} for a given set of
n cutting patterns II = {p1,p, . ..,Pn}, and it is formulated as an integer linear programming

problem (ILP):

(ILP(II)) minimize f(II,X) = Xn:xj (1.6)
j=1

n

subject to Zaijmj >d; fori=1,...,m
J=1
g€ Zy forj=1,...,n



12 'Chap_ter 1 Introduction

Now we consider the LP relaxation of (1.6) by replacing the integer constraints z; € Z, with
zj > 0 for j = 1,...,n. The LP relaxation is stated as the following linear programming

problem (LP):
(LP(II)) minimize f(II,X) = ij (1.7)

subject to Za,—jzj >d; fori=1,...,m
=1
z; 20 forj=1,...,n

Let y; be the dual variable associated with the i-th constraint of LP(IT). The dual problem
of LP(II) can be formulated as

(DLP(II)) maximize idiyi (1.8)
i=1

m
subject to Zaijy,- <1lforj=1,...,n
i=1
y; >0 fori=1,...,m
An optimal solution Y = {¥;,7y,- - -, ¥} of DLP(II) gives us the means for determining the

next cutting pattern to enter the basis of LP(II). Now we generate the next cutting pattern

p = (a},db,...,al,) by solving the following knapsack problem:
m
(KNAP(IT)) minimize 2(II,p') = Zy,-a'i (1.9)

m
subject to Zlmé <L
=1
a;€ Z; fori=1,...,m.

If 2(I1,p') < 1 holds, no feasible cutting pattern p’ € S can improve the current solution
(I, X) of LP(IT); otherwise the new cutting pattern p’ satisfying z(Il,p’) > 1 can be used
" to the next cutting pattern. Figure 1.3 illustrates the improvement of f induced by a new
cutting pattern p’ satisfying z(II,p’) > 1. The optimal value of the LP relaxation LP(II) is
equivalent to that of its dual problem DLP(II) due to the duality theorem. As the new plane
corresponding to a new cutting pattern p’ satisfying z(II, p’) > 1 necessarily cuts the feasible
space of dual problem DLP(IT), the optimal value of the LP relaxation is improved by the new

cutting pattern p’. Gilmore and Gomory’s algorithm starts from a feasible solution (II, X) of



1.4 Previous Works on the Pattern Minimization in 1D-CSP 13

new pattern p’

7D Vo ~

- N,

FAUO{p'}) v

—y

Dual feasible
space

Dual feasible
space

Figure 1.2: The improvement of the current solution induced by a new cutting pattern

the standard 1D-CSP, and repeatedly adds a next cutting pattern p’ satisfying z(II,p’) > 1
by solving KNAP(II) until no cutting pattern p’ satisfying 2(II, p’) > 1 is found.

Once an LP optimal solution is found, it can be modified in a number of ways to obtain
integer values X = {z1,23,..., 2} satisfying all demands. Marcotte [68] proved that cer-
tain classes of 1D-CSP have the integer round-up property (IRUP), which implies that the
difference between the optimal value of the original 1D-CSP and that of its LP relaxation
is small. Scheithauer and Terno [79][81] investigated the modified integer round-up property
(MIRUP) that the optimal value is not greater than that of the corresponding LP relaxation
rounded up plus one in a certain class of the standard 1D-CSP. They showed that the standard
1D-CSP has subproblems with property MIRUP. Wischer and Gau [98] conducted a large
number of numerical computations to compare several rounding heuristics for the standard
1D-CSP. They observed that these heuristics obtained the optimal values in most instances,
and the differences between the values of these heuristics and the optimal values are rather
small for other instances. Based on Gilmore and Gomory’s column generation method and
the integer round-up properties, several branch-and-bound algorithms have been developed

with certain computational success [80][93][94][18].

1.4 Previous Works on the Pattern Minimization in 1D-CSP

In recent years, the costs of other factors than the trim loss have become more dominant.
Among them is the setup costs for changing cutting patterns, and it is impractical to use

many different cutting patterns. Although the branch-and-bound algorithms based on column



14 Chapter 1 Introduction

generation could solve the standard 1D-CSP in the practical sense, their solutions are not
desirable in real applications since the number of different cutting pattern in their solutions
may become very close to the number of products. Hence, several types of heuristic algorithms
have been developed to reduce the number of different cutting patterns in 1D-CSP.

Haessler [48] proposed a modification of Gilmore and Gomory’s column generation method.
He restricted the number of product a} in the next cutting pattern p’ = (a},ab,...,a}) to
increase the number of its applications z’. His idea is based on .an observation that the
number of different cutting pattern is often small when the numbers of their applications are
relatively large. However, he could not achieve effective reductions on the number of different
cutting patterns in his computational results.

Walker [97] introduced the fixed charge into LP formulation of 1D-CSP for the setup of
cutting patterns, and considered the fized charge problem (FCP) as follows:

(FCP) minimize Y (c¢;z; + fjv;) (1.10)
p; €S
subject to Z a;jz; =d; foralli e M
p; €S

zj >0 forallp; € S
{ 1 ;>0
v; = for all p; € S,
0 z; =0
where f; represents the fixed cost to cutting pattern p;. He proposed a two phase heuristic
algorithm SWIFT which is a variant of the simplex algorithm. SWIFT utilizes an initial
solution found by the conventional simplex algorithm, and then selects a new cutting pattern
to enter the basis only if the additional setup cost is less than compensated for by the reduction
in the number of used stock rolls. After having a locally optimal solution in this manner (i.e.,
no solution satisfying the above condition is found by changing one cutting pattern in the
basis), then SWIFT searches an improving solution by exhaustively attempting to swap basic
cutting patterns with non-basic cutting patterns; it first applies single swaps, and at the last
phase applies double swaps. Farley and Richardson [26] proposed an improvement of SWIFT
to reduce the total setup cost of cutting patterns in 1D-CSP. The algorithm uses additional
pivoting rules not to increase the number of basic variables corresponding to cutting patterns.
Their computational results unfortunately showed that the total number of required stock
rolls increased rapidly as the number of different cutting patterns is reduced.

Haessler proposed a pattern generating heuristic algorithm called the sequential heuristic



1.4 Previous Works on the Pattern Minimization in 1D-CSP 15

procedure (SHP) [46][47][49]. SHP starts from an empty set of cutting patterns, and repeat-
edly adds a new cutting pattern to the current solution until all demands are satisfied, where
the next cutting patterns should have small trim loss and large number of applications. In

each step, SHP first computes the following parameters:
MAXTL: The maximum allowable trim loss

MINR (resp., MAXR): The minimum (resp., maximum) numbers of products permitted

in the next cutting pattern
MINU: The minimum number of applications to the next cutting patterns

SHP searches a next cutting pattern exhaustively among those satisfying all constraints
given by the above parameters. If a desirable cutting pattern is found, SHP applies it at
maximum possible times, under the constraint that the residual demands for all products
are not exceeded, i.e., ijen a;;z; < d;. If no cutting pattern is found, SHP decreases the
parameter MINU to the next cutting péttern and searches again. Vahrenkamp [92] proposed a
variant of SHP, in which a new cutting pattern is generated by a simple randomized algorithm.
Gradisar [44] applied SHP to a variant of 1D-CSP in which stock rolls may have different
lengths. Sweeney [84] proposed a hybrid algorithm based on SHP and linear programming
(LP). SHP and its variants can be used effectively to solve 1D-CSP when the lengths of the
products are small relative to that of the stock roll. Unfortunately, it is observed that they
do not work well when the lengths of the products are large relative to that of the stock roll.

Johnston [58] and Goulimis [43] proposed a pattern combination heuristic algorithm. The
algorithm starts from a solution obtained by another algorithm designed to minimize the
number of used stock rolls (e.g., solve the standard 1D-CSP), and reduces the number of
different cutting patterns by combining cutting patterns together; i.e., it select a number of
cutting patterns in the solution, and replaces them with a smaller number of new cutting
patterns such that the amount of products covered by the new cutting patterns is equivalent
to that covered by the removed cutting patterns. Johnston proposed a simple algorithm for
deciding whether two cutting patterns can be combined into one cutting pattern. He also
mentioned but did not fully describe an tree-search algorithm for combining three cutting
patterns into two cutting patterns. It repeats these two algorithms until no further reduc-

tion can be made. Foerster and Wascher [29] developed an algorithm based on the pattern



16 Chapter 1 Introduction

combination heuristics, called KOMBI, which applies many types of combination heuristics
in addition to Johnston’s heuristics.

Vanderbeck [95] considered a formulation of 1D-CSP which minimizes the number of
different cutting patterns while using a given number of stock rolls or less, and it was called

the pattern minimization problem (1D-PMP).
(1ID-PMP) minimize [II] (1.11)

subject to Z aijzj > d; forallie M
p; €Il

> z; < fum
p;€Ell
IIcs

zj € Z4 for allp; €11,

where fyp is the upper bound on the number of used stock rolls, which is an input parameter
given by users. As 1D-PMP contains the bin packing problem (BPP) as a special case that
all demands d; are set to 1, 1D-PMP is also strongly NP-hard. McDiarmid [67] considered
a special case of 1D-PMP where any two products fit on a stock roll (I; +; < L,Vi,j) but
no three do (I; +1; + Iy > L, Vi, j, k). Although the minimum number of used stock rolls is
known to be [Y ;¢ dili/2], he showed that this special case of 1D-PMP is still strongly NP-
hard. Vanderbeck proposed an exact algorithm for 1D-PMP. He first described 1D-PMP as
an integer quadratic programming problem (IQP), which is then decomposed into a number
of auxiliary integer linear programming problems (ILP) with strong LP relaxations. Then a
branch-and-cut algorithm is applied while using a column generation method. According to
his computational results, this algorithm could solve many small instances exactly, but failed

to obtain optimal solutions for several instances of moderate sizes in two hours.

1.5 Research Objectives and Overview of the Thesis

In this thesis, we take a new approach by considering the number of different cutting patterns
n as an input parameter given by users. We call this variant of 1D-CSP, as the pattern
restricted version of 1D-CSP (1D-PRP), which minimizes the number of stock rolls while
using n different cutting patterns or less.

(ID-PRP) minimize f(ILX)= Y. z; (1.12)
p;el



1.5 Research Objectives and Overview of the Thesis 17

subject to Z a;jz; > d; foralli € M
p;€ll
IIcs
I <n
zj € Z4 forallp; €1I,

where 7 is an input parameter set by users. We suppose that the number of different cutting
patterns n is less than that of products m. As 1D-PRP is a simple extension of the standard
1D-CSP that is obtained by only adding the constraint |II| < n to the standard 1D-CSP,
1D-PRP is also strongly NP-hard. This new approach is similar to the fixed-k approach to
the graph coloring problem (GCP) [55][12].

In general, it Becomes easier to find a solution using a smaller numberl of stock rolls as
the number of different cutting patterns becomes larger. In this sense, there is a trade-off
between the number of required stock rolls and the number of different cutting patterns. By
solving 1D-PRP for different parameter values n, we can obtain a trade-off curve as illustrated
in Figure 1.3. Using this we can make a more careful analysis of the trade-off between two
objective functions: the number of required stock rolls f and the number of different cutting
patterns n. It is also possible to solve the pattern minimization problem (1D-PMP) by
searching the minimum feasible n (i.e., using fyp stock rolls or less) by employing binary
search, for example, over the space n.

In this thesis, we focus on this new formulation of 1D-CSP, and propose new approximate
algorithms based on local search algorithm (LS). A solution of 1D-PRP consists of a set of
cutting patterns II = {p1,p2,...,pn} and the corresponding numbers of their applications
X = {z1,z2,...,2n} (i-e., z; means the number of times the cutting pattern p; used).
Our local search algorithms to 1D-PRP start from an initial feasible solution (IT#, X™it)
obtained by a certain heuristic algorithm. Solutions in the neighborhood of the current
solution (IT, X') are generated by perturbating one or two cutting patterns in the current set
of cutting patterns II. We give natural definitions of two neighborhoods N1(IT) and N»(II)

for our local search algorithms as follows:
M) = {Tu{p;}\{p;}|p; €ILp; € S\II}, (1.13)
NQ(H) = {H U {p_ljlap_ljz} \ {pj1apj2} ijlvpjz € Hap;'pp;z €S \ H}7 (114)

where S is the set of all feasible cutting patterns. For each neighbor II' € N;(II) (resp.,
No(I1)), the numbers of applications X' to the cutting patterns II' are computed by solving



18 Chapter 1 Introduction

2000 T — T L

1950 |- J
1900 - E
1850 |-
1800 |
1750
1700 I

1650 1

f {the number of stock rolls)

1600 -

1550 ~ .

1500 —L ' —L .

15 20 25 30 35 40
n (the number of different cutting pattems)

Figure 1.3: Trade-off curve between the number of stock rolls f and the number of different

cutting patterns n

the auxiliary integer linear programming problem (ILP) given in (1.6). A naive local search

algorithm to 1D-PRP is described as follows:

Algorithm Naive Local Search

Input: Lengths /; and demands d; of all products 7 € M, the number of different
cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns IT = {p1,p2,...,pn} and the numbers of their
applications X = {z1,2,...,2z,} or “failure”.

Step 1: Apply a heuristic algorithm to obtain an initial feasible solution (I, Xnit),
If no feasible solution is found, output “failure” and halt; otherwise set
(H,X) o= (Him‘t7Xim't).

Step 2: If there is a feasible solution IT' € Ny (IT) (or N2(II)) such that f(IT', X') <
f(II, X) holds, set (I, X) := (II', X’) and return to Step 2. Otherwise (i.e.,
FI', X'y > f(II, X) holds for all IT" € Ny (IT) (or N2(II))) output (II, X) and
halt.

Although local search and metaheuristic algorithms have many good features, they are



1.5 Research Objectives and Overview of the Thesis 19

not straightforwardly applicable to 1D-PRP. The intractability of 1D-PRP arises from the
following facts that:

Initial feasible solution: As all products i € M must appear at least one cutting pattern
p;j € II, the problem of finding a feasible solution to 1D-PRP is formulated as the bin
packing problem (BPP) known to be NP-hard,

Neighborhood: As the number of all feasible cutting patterns |S| is roughly estimated as
O(m*), where k represents the average number of products in a cutting pattern. It
can grow exponentially in the number of products m. It is not realistic to consider all

possible feasible cutting patterns,

Auxiliary integer programming problem: The problem ILP(IT) given in (1.6) is strongly
NP-hard since it contains the set covering problem (SCP) as a special case that all a;;,

d; and z; are set to 1,

and it necessitates to compute them much more efficiently. To overcome these difficulties, we
propose two local search algorithms in Chapter 2 and 3, respectively.

The first is a local search algorithm based on an adaptive pattern generation (LS-APG).
It starts from an initial solution obtained by a modified first fit heuristic (MFF) known for
the bin packing problem (BPP). Solutions in the neighborhood are constructed by removing
two cutting patterns in the current solution and adding two new cutting patterns. To restrict
the neighbor solutions, we develop a heuristic algorithm that tries to generate only promising
new cutting patterns, called the adaptive pattern generation (APG). The adaptive pattern
generation constructs new cutting patterns based on residual demands when two cutting
patterns are removed. The numbers of applications to the cutting patterns are computed by
a heuristic algorithm, which is based on an optimal solution of the LP relaxation (1.7) of the
auxiliary integer linear programming problem (1.6).

The second is a local search algorithm based on linear programming techniques (LS-
LP). It starts from an initial solution obtained by a modified first fit heuristic (FF) other
than that of LS-APG. Solutions in the neighborhood are restricted to those obtainable by
perturbating one cutting pattern in the current set of cutting patterns. In order to find
promising directions, we utilize a dual optimal solution of the LP relaxation (1.7). Although
the primal solution of the LP relaxation is not integer valued, it provides reasonably accurate

information as the integrality gap is rather small in most instances of 1D-CSP. Since the local



20 Chapter 1 Introduction

search algorithm requires to solve a large number of LP relaxations which are only slightly
different each other, we start the simplex algorithm from the optimal simplex tableau of the
previous solution, instead of starting it from scratch. We modify the simplex algorithm by
applying the sensitivity analysis techniques, and apply a variant of the simplex algorithm
called the criss-cross algorithm [103][85] to compute an optimal solution.

We also consider another formulation of 1D-CSP based on a real application in a chemical
fiber industry. We give a variant of 1D-PRP called the guadratic deviation minimization
problem (1D-QDP) which minimizes the amount of quadratic deviation from all demands

while using a given number of different cutting patterns n:

) 2
(1ID-QDP) minimize f(II,X) = Y_ (Z aijT; —di) (1.15)

iEM \p;ell
subject to IIC S
I <n
zj € Z4 for all p; €11,

where S is the set of all feasible cutting patterns. Although the above formulation ignores
the trim loss, if necessary, we can control the quality of trim loss to some extent by applying
approprié,te constraints on cutting patterns, e.g., restricting S to be the set of complete-cut
patterns defined in (1.4). In this formulation, we allow both overproduction and shortage
because the additional cost due to the shortage is relatively small in some applications such
as the chemical fiber industry. For this problem, we propose a local search algorithm based
on the quadratic version of the adaptive pattern generation (LS-QAPG). Solutions in the
neighborhood are generated by removing one cutting pattern in the current solution and
adding one new cutting pattern. To compute the numbers of applications to the cutting
patterns, we propose a heuristic algorithm based on the nonlinear Gauss-Seidel method [7].
As it is not realistic to consider all possible feasible cutting patterns, we restrict the candidate
cutting patterns to those generated by the quadratic version of adaptive pattern generation,
where we also indirectly reducing the trim loss by restricting candidate cutting pafterns to
those having small trim loss.

The thesis is organized as follows. In Chapter 2, a local search algorithm based on an
adaptive pattern generation (LS-APG) is proposed. In Chapter 3, a local search algorithm
based on linear programming techniques (LS-LP) is proposed. In Chapter 4, we propose a

local search algorithm (LS-QAPG) to a variant of 1D-PRP given in (1.15) called 1D-QDP,



1.5 Research Objectives and Overview of the Thesis 21

which comes from a real application of a chemical fiber industry. Finally, in Chapter 5, we

summarize our study in the thesis.



Chapter 2

A Local Search Algorithm Based

on Adaptive Pattern Generation

2.1 Introduction

In this chapter, we propose a local search algorithm for 1D-PRP based on an adaptive pat-
tern generation, in which neighbor solutions are constructed by removing two cutting patterns
and adding two new cutting patterns in the current solution. This algorithm is named the
local search algorithm based on adaptive pattern generation (LS-APG). As mentioned in
Section 1.5, we still have to specify some details before implementing local search algorithms
to 1D-PRP, i.e., (i) how to construct an initial feasible solution, (ii) how to compute auxil-
iary integer linear programming problems (ILP) efficiently, and (iii) how to find promising
solutions sufficiently among all neighbor solutions in the neighborhood. Our local search
algorithm in this chapter constructs an initial feasible solution by applying a variant of the
first-fit heuristic algorithm (FF) known for the bin packing problem (BPP) [31], solves the
auxiliary ILP by a heuristic algorithm based on its LP relaxations, and generates candidate
cutting patterns by applying an adaptive pattern generation (APG) which is based on resid-
ual demands when two cutting patterns are removed from the current solution. Finally, we
conduct computational experiment for randomly generated problem instances, and observe
that LS-APG obtains a wide variety of good solutions comparable to SHP and KOMBI, and
it provides useful trade-off curves between the number of different cutting patterns and the

number of required stock rolls.

23



24 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

2.2 Generation of an Initial Solution

If there is no restriction on the number of different cutting patterns, as in the standard 1D-
CSP, it is easy to construct a feasible solution. However, just finding a feasible solution is
not trivial in 1D-PRP. The problem of finding a feasible solution under a given number of
cutting patterns n is equivalent to the bin packing problem (BPP) known to be NP-complete
[31]. Here,.we suppose that the number of different cutting patterns n is less than that of

products m, because a feasible solution is easy to obtain in the case of n > m.

Bin Packing Problem (BPP)

Input: Lengths /; of all products ¢ € M, the number of different cutting patterns
n, and the length of stock rolls L.

Output: A partition of M into n disjoint subsets My, My, ..., M, C M subject
to ZieM,- [; <Lforall M; C M.

From a solution of BPP, we can construct cutting patterns p;j = (@15,025, ..., 0m;) and their
numbers of applications z; by setting a;; := 1 for i € M; (and a;; = 0 for i £ M;) and
T; := maX;en; di- The resulting set of cutting patterns II = {p;,ps,...,pn} and the numbers
of their applications X = {z1,z3,...,z,} is obviously a feasible solution to 1D-PRP. We first
consider how to construct a feasible solution by solving BPP, and then modify it to reduce
the number of stock rolls.

To construct a feasible solution, we prepare a heuristic algorithm based on the first fit
principle (FF), where FF is one of the representative approximation algorithms known for
BPP. After preparing n stock rolls of lengths L, FF sequentially assigns each product ¢ into
the stock roll with the lowest index among these having the residual capacity of at least ;.
However, to guarantee that every stock roll is assigned at least one product, and to improve
the quality as an initial solution of the local search algorithm, we modify FF as follows and
call this algorithm as the modified first fit algorithm (MFF). First, we sort all product i € M
in the descending order of demands d;, where o(k) denotes the k-th product in the resulting

order. We assign all products to stock rolls in this order. We also define an aspiration length
L' =al, (2.1)

where o is a program parameter satisfying 0 < o < 1. If the processed length of the current

stock roll exceeds L' after product o (k) is assigned, the next product o(k + 1) is assigned to



2.2 Generation of an Initial Solution 25

the next stock roll. This algorithm assigns at least one product to every stock roll if

Siemli ’
= —%4—‘ (2.2)

is used, and it is equivalent to the original FF if « is set to 1. If MFF terminates before m

products are assigned into n stock rolls, we conclude the failure of MFF.

Algorithm MFF

Input: Lengths /; and demands d; of products ¢ € M, the number of different
cutting patterns n, the length of stock rolls L and a given program parameter

o.

Output: n disjoint subsets My, Ms,..., M, C M or “failure”.

Step 1: Set M;:=0 for j=1,2,...,n, and L' := aL.

Step 2: Sort all products : € M in the descending order of d;, where o (k) denotes
the k-th product in this order. Set k :=1 and j := 1.

Step 3: If L) < L — Tieps, li and Tiepr, li < L' bold, set M; = M; U {o(k)},
k:=k+1 and j := 1; otherwise set j := j+ 1. If K < m and j < n hold,
return to Step 3; otherwise go to Step 4.

Step 4: If kK > m holds, output M, Ms,..., M, and halt; otherwise output

“failure” and halt.

In LS-APG, we first try MFF with o = Y ;.5 l;/nL. If MFF fails to obtain a feasible
solution, we switch to the first fit decreasing heuristic (FFD); i.e., it sorts all products in
the descending order of /; (not d;) in Step 2, and uses & = 1 in Step 1. The other part of
algorithm does not change. If this attempt also fails, we conclude the failure of LS-APG.

Now assume that MFF outputs n disjoint subsets M;, Ma,..., M, C M. For each Mj,
we consider the construction of cutting patterns p; = (a;; | ¢ € M;) and the number of its
applications z; so that the demands d;(¢ € M;) are met with the smallest x; (nonnegative
real number). The problem of generating a cutting pattern p; from a given Mj is described

as follows, where z; and a;; are both variables.

(1D-CSP1(j)) minimize =xj; (2.3)

subject to aq;x; > d; foralli € M;



26 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Y aili <L
IEM;
aij € Z, for alli € M;

zj > 0.

For this problem, we propose an exact algorithm called the single adaptive pattern generation
(SAPG). It starts from a;; := 1 for all ¢ € M; and z; := max;e; di, and gradually increases
a;; to reduce the number of applications z;. Here, we say that product ¢ is bottleneck if
a;;x; = d; holds for the current a;; and z;. Let L™ =L — 3", M; a;jl; denote the residual
length of the stock roll. If [; < L™ holds for a bottleneck product ¢, we have to increase a;;

by one) in order to reduce z;. We repeat this process as long as it is possible.
J g

Algorithm SAPG

Input: A set of products M; C M, demands d; and lengths [; of all products
i € Mj, and the length of the stock roll L (Mj satisfies 3 ;e I < L).

Output: A feasible cutting pattern p; = (a;; | ¢ € M;) and the number of its
applications z;.

Step 1: Set a;; :=1 for all i € M}, z; := max;enm; di and L™ := L ~ Ez’EMJ- l;.

Step 2: If there is no bottleneck product ¢ € M; such that I; < L™ holds, output
p;j = (ai; | ¢ € M;) and z;, and halt; otherwise take a bottleneck product
i € Mj; (ie., a;;z; = d; holds) such that [; < L™ holds, set a;; := a;; + 1,

Tj 1= maX;ep, fi";, L™ := L™ — |; and return to Step 2.
Here, we prove the following theorem about SAPG.

Theorem 1 SAPG outputs an optimal solution of problem 1D-CSP;(j).

Proof. Let z; and p; = (a;; | i € M;) be the output of SAPG. Since a;; increases only when

a;jz; = d; holds, and variable z; is non-increasing during the execution of SAPG, we have

di > zj for all a;; > 2. (2.4)
a; — 1

Now let z7 and p; = (a]; | i € M;) be an optimal solution of 1D-CSP;(j). If there is an a;

such that aj; < aij, it follows
d;
a;j — 1

T > —*i > > (2.5)

d
aj;



2.3 Solving Auxiliary Integer Linear Programming Problems 27

which contradicts to the optimality of z; Therefore, aj; 2 Gij holds for all 7 € M;. Now if
z; < z; holds (i.e., z; is not optimal), there is a bottleneck product ¢ for which a}; > ay;
holds. But this implies

0<L- Y aili—ly=L" -1y, (2.6)
1EM;

and ay; would have been increased in Step 2 of SAPG. This is a contradiction, and shows

that x; = z; holds. O

Finally, we summarize the algorithm MFF_INIT that constructs an initial feasible solution
using MFF and SAPG for j =1,2,...,n.

Algorithm MFF_INIT

Input: Lengths [; and demands d; of products ¢ € M, the number of different
cutting patterns n, and the length of stock rolls L.

Output: A set of n cutting patterns II = {p1,p2,...,pn} and the numbers of
their applications X = {z1,z2,...,2Zn}, or “failure”.

Step 1: Apply MFF to obtain n disjoint subsets My, Ma,..., M, C M. If this
attempt fails, apply the FFD version of MFF. If FFD still outputs “failure”,

we output “failure” and halt.

Step 2: For j = 1,2,...,n, compute cutting pattern p; and the number of its
applications z; by applying SAPG. Output the set of cutting patterns II =
{p1,p2,---,pn} and the numbers of their applications X = {z1,%2,...,2Zn}-

Note that the numbers of applications z; computed in MFF_INIT are real numbers, and
it is necessary to round them into integers before starting the local search algorithm. This
rounding process will be explained in the next section for any set of patterns II (not restricted

to the initial set obtained by MFF_INIT).

2.3 Solving Auxiliary Integer Linear Programming Prob-

lems

For a given set of cutting patterns II = {pi,p2,...,pn}, the problem of computing the

numbers of their applications X = {z1,2,...,2Z,} to minimize the cost function f(II, X)



28 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

can be formulated as the following integer linear programming problem ILP(II):

(ILP(II)) minimize f(II,X) =) z; (2.7)

=1

n

subject to Zaijxj >d; fori=1,2,...,m
=1
z;€Z, forj=1,2,...,n.

As it contains the set covering problem (SCP), known to be NP-hard [31], as a special case,
we consider to find an approximate solution X= {#1,%2,...,%n} and its cost value f (II,)Z’ )
by a heuristic algorithm. Our heuristic algorithm SOLVE_IP first solves the LP relaxation
LP(II) of ILP(II):

(LP(II)) minimize f(H,X):f:zj (2.8)
i=1

n
subject to Zaijxj >d; fori=1,2,...,m
=1
z; >0 forj=1,2,...,n.
Let X = {Z1,%2,..-,%rn} denote an optimal solution of the LP relaxation LP(IT). SOLVE_IP
starts from &; := |T;| for all j = 1,2,...,n. In order to obtain an integer feasible solution, it
first sorts variables Z; in the descending order of fractions Z; — |Z;|, and then rounds them

up in the resulting order until all demands are satisfied.

Algorithm SOLVE_IP

Input: Demands d; of all products ¢ € M, and a set of cutting patterns II =

{p1,p2,-..,pn}-
Output: The numbers of applications X = {&1,%9,...,2n}, or “failure”.
Step 1: Compute an optimal solution X = {Z1,Z»,...,Zn} of the LP relaxation

LP(II). If LP(II) is infeasible, output “failure” and halt.
Step 2: Set z; := |T;| for all j =1,2,...,n.

Step 3: Sort all variables £; in the descending order of fraction Z; — Z;], and

let (k) denote the k-th variable in this order. Set k := 1.

Step 4: If all demands are satisfied (i.e., Z?=1 a;j&; > d; holds for all i € M),

then output X = {Z1,Z2,...,Zn} and halt. Otherwise if there is at least



2.4 Construction of the Neighborhood 29

one ¢ € M such that 3°7_; a;;Z; < d; and a;;) > 0 hold, then set 2, :=
[Z4(k)]- Set k := k4 1 and return to Step 4.

In general, we employ the revised simplez algorithm [17] to solve the LP relaxation LP(II)
in the execution of SOLVE_IP. However, note that we still have a large number of LP relax-
ations to solve in even one execution of the local search algorithm, and it consumes much

computational time.

2.4 Construction of the Neighborhood

A natural definitions of the neighborhood may be:
N (I1) = {TTU{pj} \ {p;} | p; € I, pj € S\ 1}, (2.9)

where S is the set of all feasible cutting patterns. That is, a neighbor solution I’ € Ny(II)
is constructed by removing one cutting pattern p; € II, and adding one new cutting pattern
p; € S\II. However, according to our preliminary computational experiment, such II' does not
appear powerful enough to generate new solutions, which are substantially different from the
current solution. Therefore, our local search algorithm LS-APG uses a larger neighborhood

N,(II) defined as follows:
Ny(II) = {H U {p_ly'pp;g} \ {p]'npjz} ' Pj1,Pjp € va;'pp;g €85\ H}- (2.10)

As the number of feasible cutting patterns |S| can grow exponentially in the number of
products m, the size of No(II) may be too large to test all neighbor solutions II' € No(II),
and most of them may not lead to improvement. Hence, we consider a small subset N7/ (II) C
N3 (1I) hopefully containing promising solutions.

In order to explain NyP9(II), we define the residual demands r;(j1, j2) when cutting pat-

terns p;, and p;, are removed from the current solution (I, X):

ri(J1,J2) = max {0, d; — Z } fort e M. (2.11)
Pjen\{le,sz}

Now we introduce the following problem of constructing a pair of new cutting patterns p}l =

(aij, | i € M(j1,j2)) and Py, = (aij, | i € M(j1,52)), which replace the removed cutting

patterns p; and pj,, where M (j1,52) C M denotes the set of products i € M such that



30 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

ri(j1,j2) > 0, where z; and a;; are both variables.

(1D-CSP2(j1,j2)) minimize z; +z;, (2.12)

subject to a5, T, + @i, %4, > ri(j1,72) for alli € M(j1, jo2)

E aij, ;<L
i€M(j1.52)

E aijl; <L
i€M(j1.52)
Qijy s Qijy € Z+ foralli e M(jl,j2)
zj,zj5, 2 0.
However, 1D-CSP5(j1, j2) is NP-hard since the partition problem, known to be NP-complete,
can be transformed to 1D-CSP4(j1, j2) by the following theorem.

Partition Problem

Input: Lengths /; of all products ¢ € M.
Output: A subset M’ C M such that 3;cpp li = 3\ Ui holds.

Theorem 2 1D-CSPy(j1,3j2) is a NP-hard problem.

Proof. Given an instance of the partition problem, we construct an instance of 1D-CSP, (51, 72)
by setting M (j1,72) :== M, r; := 1 for all i € M(j1,J2) and L := —‘ze—”f—;’i-]ﬂﬁ (1) It is triv-
ial to see that -this construction of the instance of 1D-CSP2(71,j2) is done in polynomial
time. (ii) We claim that a solution of the partition problem can be obtained if a feasible
solution of 1D-CSPs(j1,j2) is obtained. Let M (j1,72) and M>s(41,j2) be the set of prod-
ucts in the pattern p; and p},, respectively. We now suppose there is a feasible solution of

1D-CSPs(ji1, j2) satisfying 3 ;enr, (s, o) li < L. As any feasible solution of 1D-CSP3(j1, jz)
2

must satisfy M (j1,j2) U Ma(j1.52) = M(j1,j2) and L = ——‘%Z’J—JLI, YieMa(rgo) i > L
holds. However, it contradicts to the feasibility of 1D-CSP2(j1,j2). Therefore, any feasible
solution of 1D-CSP(j1, j2) must satisfy Yic s, (j,.jo) b = L (tesp., Fieary (s jp) i = L), and
we can obtain a solution of the partition problem by setting M; := M;(j1,72). From the

facts (i), (ii) and the NP-completeness of the partition problem, this theorem is proved. O

Therefore, we propose a two phase heuristic algorithm called the double adaptive pat-

tern generation (DAPG) to obtain a good solution of 1D-CSP2(j1,72), and introduce the



;2.4 Construction of the Neighborhood 31

neighborhood N;P9(I1) C N, (1) using DAPG:
NpP(TT) = {T1U {pf;, 15, } \ {5s>Pio} | Psr» P € IL, D), 15, € 5'(51,72)} (2.13)

where S'(j1,72) C S is the set of new cutting patterns generated by DAPG.

First, DAPG finds a partition of M(j1,j2) into a pair of disjoint subsets M (j1, j2) and
M;(j1,j2) such that > MiGgo) b € L and Fiensy(jy,50) b < L hold, respectively. This part
of DAPG is done by the following algorithm BALANCE-FIT. After sorting all products
i € M(j1,72) in the descending order of l;, BALANCE-FIT sequentially assigns all products
i € M(j1,72) to the cutting pattern having longer residual length in the resulting order.
Here, L7® and L% represent the current residual lengths of the cutting patterns p; and pfh,

respectively.

Algorithm BALANCE-FIT

Input: A set M(j1,j2) C M, lengths [; of all products i € M(ji,7j3), and the
length of stock rolls L.

Output: A pair of subsets M;(j1, j2), M2(j1,52) € M (41, 72).

Step 1: Sort all products : € M(j1,72) in the descending order of /;, and let o(k)
denote the k-th product in this order. Set Mi(j1,J2) := 0, M2(j1,72) := 0,
Lies =L, [ := L, and k := 1.

Step 2: If L1®® > L% (resp., Lj® < L5%°) holds, let h := 1 (resp., h := 2).
If l;y £ Li° holds, set My(j1,72) = Mn(j1,52) U {o(k)} and L} :=
L% — 15(k); else output “failure” and halt.

Step 3: Set k := k+ 1. If k < |M(j1,72)| holds, return to Step 2; otherwise
output the subsets Mi(j1,j2), M2(j1,j2), and halt.

Second, DAPG starts from the following feasible pair of the cutting patterns p}l =
(aij, | i € M1(j1,52)) and pj, = (aij, | ¢ € M2(j1,J2)), which are constructed from sub-
sets M1(j1,j2) and Ma(j1, jo2):

aij, = 1 foralli € Mi(j1,72) (2.14)
aij, = 1 foralli € My(ji1,jo)
zj, = max{ri(j1,J2) | aij; > 0,2 € Mi(j1,J2)}

zj, = max{ri(j1,72) | aij, > 0,7 € M2(j1,52)}



32 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

DAPG repeats adding products to these cutting patterns in order to reduce the number of
stock rolls (i.e., zj, + z;,) to cover the residual demands r;(j1, jo) for all i € M(j1,j2). Call
a product i € M(j1,j2) bottleneck if a;;, xj, + aij,xj, = ri(j1,j2) holds for the current pair
of cutting patterns p;'v p;-2 and the numbers of their applications z;,, zj,. In each step,
DAPG increases either a;;j, or a;;, of a bottleneck product ¢, and correspondingly updates
the numbers of applications z;,, zj,. This is repeated until the number of stock rolls and
the amount of overproduction becomes unable to improve. This process is similar to that
of SAPG in Section 2.2 because both algorithms repeatedly increase bottleneck products
in order to reduce the number of applications. However, as there are two cutting patterns
involved, DAPG has to consider the balance between them.

For the current pair of cutting patterns p; and pj,, the numbers of their applications can

be computed by solving the following linear programming problem LP2(j1, j2):

(LP2(j1,72)) minimize zj + zj, (2.15)
subject to asj, Tj, + aij, T4, > 1341, 42) for alli € M (41, jo2)

Zj,Zj, 2 0,

where several O(n) algorithms have been developed for this problem [70][15]. This solution
may yield overproduction §; of product ¢ € M(jy, j2) as defined below.

di = a4, Tj, + @i, x5, — rij1,j2) for alli € M(jy,j2). (2.16)

As overproduction is not desirable in order to minimize the number of stock rolls, we try to
reduce the amount of overproduction. If a;; is increased to a;; + 1 for a bottleneck product :
(i.e., 6; = 0 holds before modification), the resulting overproduction becomes d; = z;. From
this observation, a simple rule (2.17) may be to select the cutting pattern p; € {p},,p};, } with
smaller z; and increase the a;; of a bottleneck product i. Let ¢ be the index of a bottleneck

product, and assume z; > z;j, without loss of generality.
aij, = asj, + 1. (2.17)

But, this rule may keep selecting one particular cutting pattern in early stage of the algorithm,
because the number of application x; decreases further when a;; is increased. To alleviate

this drawback, we propose the following rule of perturbating a;; and a;;,.

: .
a;j, := ai;;, + 1 and a;;, := max <0, a5, — {f}) . (2.18)
J2



2.4 Construction of the Neighborhood 33

The rule (2.17) or (2.18) can be applied if the cutting patterns pgl and pj, have enough
residual lengths to permit the increase a;j;, := ajj;, + 1 or ayj, = a5, + 1, respectively. If the
rule (2.17) is applied, the resulting overproduction becomes §; = z;,, while if the rule (2.18)
is applied, we have é; = z;, — min(a;;,Zj,, |z, ]). If both rules are applicable, DAPG selects
the one having smaller overproduction.

After modifying the cutting patterns by the above rule (2.17) or (2.18), and computing
the numbers of their applications z;,, z;,, DAPG tries to readjust the residual lengths in the
two cutting patterns, while satisfying all the demand constraints. The readjustment reduces
the amount of overproduction and/or increases the residual lengths of the cutting patterns,
where increasing residual lengths may be useful to eliminate other bottlenecks in subsequent
steps. The readjustment is carried out in the following manner. Assume z; > z;, without
loss of generality. Apply the following rules in the stated order if they are applicable (i.e.,
if cutting patterns have enough residual lengths in rule (2.21) and (2.22) below) and do not

violate any demand constraint.

aj, = @i —l, (2.19)

aij, = G5, — 1, (2.20)

aij; = ay; — 1 and ay, == a4y, +1, (2.21)

aij, = a5 —1 and ay, = a;5, — [gﬂ-’ . (2.22)
J2

The whole procedure is repeated as long as either the number of stock rolls z;;, +z;;, decreases
or the amount of overproduction:
A=Y &, (2.23)
t€M(j1,52)
decreases, as a result of modification. When none of the two criteria are achieved, DAPG

halts.
Now DAPG is described as follows, where L7 and L5*° represent the residual lengths of

pj, and pj , respectively.

Algorithm DAPG

Input: Lengths /; and demands d; of all products ¢ € M, a set M(j1,72) C M,
residual demands r;(j1, jo) for all ¢ € M (j1, j2), and the length of stock rolls
L.



34 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Output: A pair of cutting patterns p; = (aij, | ¢ € M(j1,52)) and pj;, =
(aij, | i € M(j1,32))-

Step 1: (Generation of a partition of M(j1, j2))
Apply BALANCE-FIT to obtain a partition of M (j1,j2) into a pair of dis-
joint subsets M;(j1,72) and My(j1,j2). If BALANCE-FIT outputs “failure”,
then output “failure” and halt.

Step 2: (Construction of an initial cutting patterns)
Construct a pair of cutting patterns p; and p}, by applying (2.14), and
compute L1** := L — 3 icar, (j1.go) Gisi bis L35 = L = 3ie iy 5y o) Qi lis 0 +=
@ijy Tjy + aijy T, — 1i(J1, J2) for all i € M(j1,52), and A == 3,010, ) i

Step 3: (Elimination of bottleneck products)
Let B C M(j1,j2) be the set of bottleneck products, i.e., B := {i | ajj, zj, +
aij, Tj, = 1i(j1,J2),% € M(j1,j2)}. Foreachi € B, ifzj, < z;, —min (:z:jz, I_i—;:_l)
and [; < L3* hold, apply rule (2.17) and let L3% := L3¢ — [;. Other-
wise if /; < L1*® holds, apply rule (2.18), let L1® := L{*® —; and L} :=
L5 + min (@i, | 22])

Step 4: (Computing the numbers of applications z;,, z;,)
Compute the real numbers of applications z;,, z;, to the cutting patterns
Pj,» Pj, by solving the LP problem LP(j1, j2)-

Step 5: (Readjustment of the cutting patterns)
For all © € M(j1,372), apply (2.19)-(2.22) in this order if applicable with-
out violating the length constraints of the cutting patterns and the demand

constraints of all products.

Step 6: (Termination)
Compute the real numbers of applications z;,, z;, to the cutting patterns
Dj,» Pj, by solving the LP problem LP;(j1,j2). Compute the amount of
overproduction A. If either the number of stock rolls z;, +z;, or the amount
of overproduction A decreases in the current loop of Steps 2-6, return to Step
2. Otherwise output the current pair of cutting patterns p;'w pg-z together

with the numbers of their applications z;,, z;,, and halt.

After completing DAPG, the cutting patterns may still have residual length enough to



2.5 Entire Algorithm of Local Search 35

accommodate some products ¢ € M(ji1,j2). In this case, after computing the real numbers
of applications X' = {Z},%},...,T,} of the new set of cutting patterns IT' = IT U {p},, P51\
{pj,»pj,} by solving the LP relaxation LP(II), we try to reduce the number of stock rolls
further by adding bottleneck products (i.e., product i € M such that Ypjerr ai;T; = d; holds)
to such residual lengths (see Step 3 of LS-APG in the next section).

2.5 Entire Algorithm of Local Search

We now explain the framework of the local search algorithm LS-APG using MFF_INIT,
SOLVEP and DAPG. Let (II, X) be the current solution. LS-APG uses the first admissible
move strategy by searching neighborhood Ny7/(II) as follows. It first selects an index ji,
and then tries neighbor solutions II' = I U {p ,p},} \ {p;,,ps,} for all jo = 51 + 1,51 +
2,...,n,1,...,71 — 1 (in this order). This is repeated for all j; = 1,2,...,n. If LS-APG finds
a better solution (II', X”) in this process, it immediately replaces the current solution (II, X)
with the neighbor solution (II', X’). To measure the improvement of solutions in LS-APG,
we employ the main criterion of f(II, X) as well as the secondary criterion of tloss(Il, X),

defined by

tloss(I, X) = > (L -y aijzi) ;. (2.24)

p;€ll ieM

That is, LS-APG moves from (II, X) to (I, X') if either f(II, X) < f(II', X') holds, or
fI,X) = f(I', X') and tloss(I1, X) < tloss(Il', X') hold.

Algorithm LS-APG

Input: Lengths /; and demands d; of all products 7 € M, the number of different
cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns IT = {p;,ps,...,pn}, and the numbers of their

applications X = {1, 22, ...,2Zn}, or “failure”.

Step 1: (Generation of an initial solution)
Apply MFF_INIT to obtain an initial set of cutting patterns I = {p1,p2,...,pn}-
If MFF_INIT outputs “failure”, then output “failure” and halt. Other-
wise apply SOLVE_IP to compute the corresponding numbers of applications
X ={r1,22,...,Zn}, set 3* := 1 and j; := j*, and go to Step 2.



36 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Step 2: (Construction of a neighbor solution IT')
Set jo := 7* + 1 (mod n). Compute r;(j1,j2) of (2.11) for all i € M, and
let M(j1,72) :={¢ | ri > 0,i € M}. Apply DAPG to obtain a pair of new
cutting patterns p} , p,, and let I' = ILU {p]; , p;,} \ {pj;, ps, }-

Step 3: (Elimination of bottleneck products)
Let X = {Z,,},-..,T,} be the real numbers of applications to the new set
of cutting patterns I' obtained from the LP relaxation LP(IT'). Let B be
the set of bottleneck products, i.e., B := {i | ijenl aijfg = d;}, and let
ax; = ay; + 1 for all k € B for which there is a cutting pattern p; € II such
that [, < L - Y icm aijli- Let II' be the resulting set of cutting patterns.

Step 4: (Move)
Compute the integer numbers of applications X' = {z},z},...,z.} to the
new set of cutting patterns II' by applying SOLVEIP (see Section 2.3). If
either f(II, X) < f(IT', X') holds, or f(II, X) = f(I', X’) and tloss(Il, X) <
tloss(Il', X') hold, then set (I, X) := (I', X'}, 7* := 5*+1 (mod n), j; :=j*

and return to Step 2.

Step 5: (Termination)
Set jo := j2+ 1 (mod n). If jo = j; holds (i.e., all j2 have been checked), set
j1:=7j1+1 (mod n). If j; = j* holds (i.e., all j; and j2 have been checked),
output (I, X) and halt. Otherwise return to Step 2.

2.6 Computational Experiment

We conducted computational experiment for random instances generated by CUTGEN [32],
to compare LS-APG with the existing two algorithms SHP [46][47] and KOMBI [29].

SHP heuristically minimizes both the number of stock rolls f and the number of different
cutting patterns n, and balances them by controlling the input parameter MAXTL (i.e., the
upper bound of trim loss for new cutting patterns). KOMBI starts from a near optimal
solution of the standard 1D-CSP (i.e., no restriction on the number of different cutting
patterns) obtained by Stadtler’s algorithm [83], and repeats reduction of the number of
different cutting patterns by combining more than one cutting pattern into one. In other

word, KOMBI tries to solve 1D-PMP that minimizes the number of different cutting patterns



2.6 Computational Experiment 37

while using a given number of stock rolls.

LS-APG and SHP were coded in C language and executed on an IBM-compatible personal
~ computer (Pentium ITI 1GHz, 1GB memory). The results of KOMBI were taken from [29], as
we could not get the source code of KOMBI. KOMBI was run on an IBM-compatible 486/66
personal computer using MODULA-2 as the programming language under MS-DOS 6.0.

We generated 18 classes of random instances by CUTGEN, which are defined by combining
different values of parameters L, m,vy,vs,d. The lengths [; are treated as random variables
taken from interval [vL,»»L]). d is the average of demands (di,ds,...,dn,) (the rule of
generating d; is described in [32]). In our computational experiments, L was set to 1000,
m was set to 10, 20 and 40, and d was set to 10 and 100. Furthermore, (v1,v2) was set to
(0.01, 0.2) for classes 1-6, (0.01, 0.8) for classes 7-12, and (0.2, 0.8) for classes 13-18. The
parameter seed for generating random numbers was set to 1994. For each class, 100 problem
instances were generated and tested. These classes of problem instances were also solved by
KOMBI, where 100 instances are tested for each class.

As mentioned in Section 1.5, our local search algorithm can obtain a trade-off curve
between the number of different cutting patterns n and the number of stock rolls f. For this,
we conducted preliminary computational experiment. We took a random instance of class 12

generated by CUTGEN, and applied LS-APG for all n between nyp and m, where

nLB = [-&%Mh-l (2.25)

is a trivial lower bound of different cutting patterns and m is the number of products.
Figure 2.1 shows the number of stock rolls f with respect to the number of different cutting
patterns n. As SHP has an input parameter MAXTL to control the maximum trim loss of
cutting patterns, we also illustrated the solutions of SHP for different values of MAXTL. For
this instance, we observe that LS-APG attains comparable number of stock rolls to SHP with
smaller number of different cutting patterns. Figure 2.2 shows the CPU time of LS-APG for
different n. We observe that the CPU time of LS-APG tends to increase as n increases.
Table 2.1 and 2.2 show computational results, where 7 g denotes the average of the lower
bound ny g on different cutting patterns, 7 denotes the average of different cutting patterns n,
and f denotes the average of required stock rolls for each class. Table 2.1 contains the results
of SHP and KOMBI, where SHP was run on three different values of MAXTL= 0.05, 0.03
and 0.01. The results of LS-APG are shown in Table 2.2. To capture the general behavior

of trade-off curves of LS-APG, we show several points of trade-off curves that attain the



38 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

2000 T T B T LS- ;FEG
SHP x

1950 L 1

+

1900 .
1850
1800 |-
1750
1700 |

1650

f (the number of stock rolls)

1600

1850 b

1500 L ] L 1 )
15 20 25 30 35 40 45

n (the number of different cutting pattemns)

Figure 2.1: The number of stock rolls versus the number of different cutting patterns (npp =

17)

140 | -
120 + :
100 |
80 (

60

CPU time (sec.)

40

0 — 1 1 1
15 20 25 30 35 40
n {the number of different cutting patterns)

Figure 2.2: The CPU time in seconds versus the number of different cutting patterns



.6 Computational Experiment 39

Table 2.1: Computational results of SHP and KOMBI for the random instances generated
by CUTGEN

SHP
MAXTL=0.05 0.03 0.01 KOMBI
cass |m | d | s i3 f a f fi f n f
1110 10 1.67 | 4.08 11.68 4.25 11.62 4.49 11.57 | 3.40 11.49
21101100 1.67 | 6.33 112.80 6.33 111.81 6.75 110.85 7.81 110.25
3120 10| 2.56 5.77 22.55 5.89 22.37 5.98 22.17 5.89 22.13
4120|100 ]| 2.56 9.06 220.63 8.98 21894 9.25 217.00 | 14.26  215.93
5 40 10 | 4.26 9.07 43.89 9.03 43.60 9.01 43.17 | 10.75 42.96
6|40 100 | 4.26 | 13.90 434.59 13.45 430.79 13.77 426.81 | 25.44  424.71
7110 10| 4.62 | 10.14 52.21 10.33 52.19 10.82 52.77 7.90 50.21
8110 100 | 4.62 | 11.30 519.88 11.46 520.36 11.97 526.81 9.96 499.52
9120 10| 8.65 | 18.58 97.42 19.22 97.96 19.91 98.82 | 15.03 93.67
10120 | 100} 8.65 | 20.96 970.43 21.74 973.63 21.99 984.32 | 19.28  932.32
11 | 40 10 | 16.27 | 35.06 186.45 36.29 187.37 37.78 189.91 | 28.74 176.97
12 | 40 | 100 | 16.27 | 39.90 1854.79 40.53 1865.41 41.86 1891.90 [ 37.31 1766.20
13 | 10 10| 5.54 | 10.55 65.46 10.55 65.41 10.67 65.52 8.97 63.27
14 [ 10 | 100 ] 5.54 | 10.92 652.95 10.95 654.80 11.12 654.95 | 10.32  632.12
15 | 20 10 | 10.52 | 20.11 123.36  20.30 124.36 20.86 124.60 | 16.88 119.93
16 | 20 | 100 | 10.52 | 21.09 1232.42 21.09 1240.39 21.32 1243.43 | 19.91 1191.80
17 | 40 10 | 19.85 | 38.02 235.64 38.52 238.06 39.10 239.77 | 3146  224.68

40 | 100 | 19.85 | 40.16 2351.38 40.38 2366.95 40.67 2389.49 | 38.28 2242.40

—
0o




40 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Table 2.2: Computational results of LS-APG with different fup for the random instances
generated by CUTGEN

00 f*+005f,8  f*+003fp  f*+001lfip
class {m | d | Ars i f i f i f i f

1/10{ 10| 1.67| 2.00 14.47  2.90 1254 290 1254 290 12.54
210|100 | 167 | 2.00 14128 4.09 11532 474 11380 5.73 112.73
3(20( 10| 256 | 257 3076 4.83 2366 483 2366 4.83  23.66
4120100 | 256 | 257 305.78 6.07 226.04 6.96 22349 9.28 220.31
5(40 | 10| 426 | 428 6163 8.65 45.72 941 4525 941  45.25
640|100 | 4.26| 428 600.73 949 44794 1123 44173 1523 434.79
710 10| 462 5.01 55.77 6.14 5145 626 5128 6.26  51.28
810|100 | 462 | 501 55869 6.42 51060 6.73 507.78 7.38  504.77
92 10| 865| 927 10507 10.81  97.39 1141 9643 11.81  96.14
1020|100 | 865 | 9.27 1053.08 11.44 962.27 12.22 953.92 13.91 94445
11|40 10| 1627 | 1695 201.46 19.60 185.68 20.77 183.79 23.98 181.34
12140 | 100 | 16.27 | 16.95 2010.26 20.71 1837.90 22.44 1817.07 26.03 1787.39
13[10| 10| 554| 626 6873 7.06 6445 730 6436 7.30  64.36
1410|100 | 554 | 626 687.14 7.19 644.87 745 641.05 7.77 638.53
15 (20| 10 10.52 | 11.76  129.10 12.76 123.43 13.33 12265 14.18 121.81
16 { 20 | 100 | 10.52 | 11.76 1292.09 13.38 1226.05 14.01 1216.66 15.13 1205.10
17|40 | 10| 19.85 | 21.50 246.34 22.89 235.85 23.49 23355 25.58 230.94
18 | 40 | 100 | 19.85 | 21.50 2471.32 23.99 2334.88 25.35 2305.35 28.35 2274.79




2.6 Computational Experiment : 41

minimum numbers of different cutting patterns n satisfying fyp stock rolls or less. In this

experiment, the upper bounds fyp are set to as follows:

fus=f*+BfLs, (2.26)

where f* is the number of required stock rolls obtained by LS-APG for n = m, and frpis a

trivial lower bound of required stock rolls:

fip= [Z’—el}f%] : (2.27)

We tested LS-APG for fyp = 0o and fyp = f* + BfLs with 3 = 0.05,0.03, 0.01.

From Table 2.1 and 2.2, we first observe that the numbers of stock rolls attained by
KOMBI are smaller than those of SHP and LS-APG for all classes. However, SHP and LS-
APG can obtain a wide variety of solutions by controlling their input parameters, i.e., they can
realize trade-off curves between the number of different cutting patterns n and the number
of stock rolls by their input parameters. SHP attains smaller number of different cutting
patterns than KOMBI for classes 2-6 using only a slightly larger number of stock rolls, while
the solutions of SHP are much worse than those of KOMBI for classes 7-18. It shows that
SHP does not provide good trade-off curves for instances in which the ratio of product lengths
l; to the length of stock roll L is relatively large. On the other hand, LS-APG attains smaller
number of different cutting patterns than KOMBI for all classes, without much increasing
the number of additional stock rolls. Note that LS-APG obtains feasible solutions even for
very small n, close to nyp, while SHP and KOMBI could not produce feasible solutions for
such n. From these observation, we may conclude that LS-APG is useful, as it can provide

useful trade-off curves for a very wide range of n.

Table 2.6 gives the average CPU time of SHP (MAXTL=0.03), KOMBI and LS-APG
(fus = f*+0.03fLB), respectively, for all classes. For these problem instances, SHP is faster
than LS-APG except for classes 5 and 6, and KOMBI may be faster than LS-APG, taking
account of the power of computers in use. However, the average CPU time of LS-APG is
within 20 seconds for all classes, and it may be sufficiently short even if LS-APG repeatedly

applied for all n in order to obtain trade-off curves.



42 Chapter 2 A Local Search Algorithm Based on Adaptive Pattern Generation

Table 2.3: The average CPU time in seconds for the random instances generated by CUTGEN

class | m | d | SHP KOMBI LS-APG
1(10 10 0.04 0.14 0.01
2 (10| 100 0.08 1.14 0.07
3120 10 1.56 1.74 0.19
4120 | 100 1.57 16.00 0.76
5| 40 10 | 631.74 38.03 5.32
6|40 § 100 | 107.11 379.17 | 11.41
7110 10 0.00 0.07 0.03
8110 | 100 0.00 0.20 0.04
9120 10 0.01 1.34 0.48
10 | 20 | 100 0.02 3.25 0.71
11 | 40 10 0.09 36.27 13.07
12 1 40 | 100 0.14 76.31 19.53
13| 10 10 0.00 0.08 0.03
14 {10 | 100 0.00 0.13 0.03
151 20 10 0.01 1.81 0.4
16 | 20 | 100 0.01 2.60 0.60
17 (40} 10 0.06 50.93 10.34
18 | 40 | 100 0.10 70.94 14.32




2.7 _Conclusion 43

2.7 Conclusion

We proposed a local search algorithm based on an adaptive pattern generation (LS-APG) for
1D-PRP. It starts from an initial solution obtained by a modified first fit heuristic (MFF)
known for the bin packing problein (BPP). Solutions in the neighborhood are defined by
removing two cutting patterns from the current solution and adding two new cutting patterns
from the set of candida,te cutting patterns. However, the number of all feasible cutting
patterns is too large to evaluate all of them, since it grows exponentially in the number of
products. To facilitate the search in the neighborhood, we introduced the adaptive pattern
generation (APG) to construct a small subset of the neighborhood containing good solutions.
The adaptive pattern generation is based on the residual demands when two cutting patterns
are removed from the current solution. We conducted computational experiment for random
instances, and observed that LS-APG attains a wide variety of good solutions comparable
to SHP and KOMBI, and LS-APG provides useful trade-off curves between the number of

different cutting patterns and the number of required stock rolls for a very wide range.



Chapter 3

A Local Search Algorithm Based
on Linear Programming

Techniques

3.1 Introduction

n this chapter, we propose a local search algorithm based on linear programming techniques
LS-LP). As mentioned in Section 1.5, we have to specify the following details to implement
ocal search algorithms to 1D-PRP, i.e., (i) how to construct an initial solution, (ii) how to
ompute auxiliary integer linear programming problems (ILP), and (iii) how to find promising
olutions sufficiently among all neighbor solutions in the neighborhood. In Chapter 2, we
rroposed a heuristic algorithm to overcome them, called the adaptive pattern generation
APG), and designed a local search algorithm based on the adaptive pattern generation (LS-
\PG). However, we could not attain sufficient efficiency since we still have a large number
f LP relaxation problems to be solved in an execution of LS-APG. We try to overcome this
lifficulty by keeping an optimal simplex tableau in addition to the current solution; i.e., we
tart the simplex algorithm from an optimal simplex tableau of the current solution, instead
f starting it from scratch.

The proposed algorithm utilizes a dual optimal solution of LP relaxation as well as the
olumn generation method proposed by Gilmore and Gomory [34][35], which is one of the

10st representative linear programming approaches to the standard 1D-CSP (see Section

45



46 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

1.3). The column generation method utilizes a dual optimal solution of LP relaxation to
determine a new cutting pattern to enter the basis of the LP relaxation; i.e., it gives us
an aspiration that the new cutting pattern induces improvement of the current solution. It
starts from a feasible solution of the standard 1D-CSP, and repeatedly adds new cutting
patterns satisfying the aspiration of improvement by solving associated knapsack problems.
As the column generation method never removes the cutting patterns in the current solution,
it can always reduce the objective value f by adding new cutting patterns satisfying the
aspiration of improvement. ‘ However, in 1D-PRP, in order to keep the number of different
cutting patterns, we must remove a cutting pattern in the current solution while adding a
new cutting pattern. Hence, we can not necessarily improve the objective value f by the
new cutting pattern satisfying the aspiration of improvement. We propose a local search
algorithm that uses the neighborhood obtained by adding a new cutting pattern satisfying
the aspiration of improvement and removing a cutting pattern from the current solution; i.e.,
we test many pair of adding and removing cutting patterns efficiently by introducing the
local search approach. . '

Finally, we conducted computational experiment for randomly generated problem in-
stances, and observed that LS-LP attains a wide variety of solutions comparable to those
of LS-APG, and it provides useful trade-off curves between the number of different cutting

patterns and the number of required stock rolls.

3.2 Generation of an Initial Solution

As mentioned in Section 2.2, if there is no restriction on the number of different cutting
patterns, as in the standard 1D-CSP, it is easy to construct a feasible solution. But just
finding a feasible solution is not trivial in 1D-PRP, since it contains as a special case the
bin packing problem (BPP). Hence, to design a local search algorithm to 1D-PRP, we first
consider how to construct a feasible solution heuristically. Here, we assume that the number
of different cutting patterns = is less than the number of products m, because otherwise a
feasible solution is easily obtained. In this section, we develop two heuristic algorithms MFF
(see Section 2.2) and UNIFORM-FIT to find a feasible solution (I, X ), where both algorithms
are based on the first-fit algorithm (FF) known for BPP. Note that LS-LP directly uses the
output of UNIFORM-FIT as an initial solution of the local search algorithm, while LS-APG
improves the output of MFF by applying SAPG for each cutting pattern. We test local search



3.2 Generation of an Initial Solution 47

algorithms based on both algorithms for random instances in Section 3.7.

Let IT = {p1, p2,- - ., pn} denote a set of cutting patterns, and X = {z;,z2,...,Z,} denote
the numbers of their applications. Before starting UNIFORM-FIT, all cutting patterns p; € II
are initialized to empty, i.e., a;; := 0 for all i € M. UNIFORM-FIT first sorts all products
1 € M in the descending order of demand d;, and then assigns these products one by one in
this order into the cutting pattern p; as long as the resulting sum of lengths does not exceed
the length of stock roll L. In general steps for cutting patterns p; (j > 2), UNIFORM-FIT
sorts all products i € M in the ascending order of the number of their appearance in the set
of cutting patterns {p1,ps,...,p;j—1} (while breaking ties in the descending order of demand
d;), and assigns them into the cutting pattern p; in this order. Note that UNIFORM-FIT
assigns at most once for each product ¢ € M in one cutting pattern p; € II, implying that
the cutting patterns may have large trim losses since the minimization of the number of
required stock rolls is not done by UNIFORM-FIT. Here, in the step of constructing p; let
L7% represent the residual length of the cutting pattern p;, and A; represent the number of

appearances of the product : € M in the set of cutting patterns {p1,p2,...,pj-1}:

A= Z Ak » (3.1)

pr€{p1.p2,--Pj-1}

Algorithm UNIFORM-FIT

Input: Lengths /; and demands d; of all products ¢ € M, the number of different
cutting patterns n, and the length of stock roll L.

Output: A set of cutting patterns Il = {p1,p2,...,pn}, where p; = (a1, a2j,---,
Qmj)-

Step 1: For all cutting patterns p; € II, set a;; :== O for all ¢ € M and L7** := L.
Set j := 1.

Step 2: If j = 1 holds, sort all i € M in the descending 6rder of demand d;;
otherwise compute the number of appearances A; for all ¢ € M, and sort

them in the ascending order of J);, while breaking ties in the descending

order of d;. Let o(k) denote the k-th product in the resulting order. Set
k:=1

Step 3: If l,(x) < L7 holds, set ay(k); := 1 and L7* := L% — lo(x)- Ifk<m
holds, set k := k + 1 and return to Step 3; otherwise go to Step 4.



48 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Step 4: If j = n holds, output Il = {p;,p2,...,pn} and halt; otherwise set
j:=j+1 and return to Step 2.

If there is a product ¢ € M such that no cutting pattern p; € II contains it in the resulting
set of cutting patterns II, i.e., UNIFORM-FIT fails to obtain a feasible solution, we switch to
the first-fit decreasing heuristic algorithm (FFD) known for BPP. FFD first sorts all products
© € M in the descending order of {;, and assigns them into the cutting pattern with the lowest
index among those having the residual capacity of at least /;. If this attempt also fails, we

conclude “infeasibility” (i.e., failure).

Algorithm FFD

Input: Lengths /; and demands d; of all products i € M, the number of different
cutting patterns n, the length of stock rolls L.

Output: A set of cutting patternsIT = {p1,po,...,pn}, where p; = (a1j, azj, ..., am;),
or “failure”.
Step 1: For all cutting patterns p; € II, set a;; := 0 for all ¢ € M, and L7 := L.

Step 2: Sort all products ¢ € M in the descending order of /;, where o (k) denotes
the k-th product in this order. Set £ :=1 and j := 1.

Step 3: If [,y < L7* holds, set a,); := 1, L% = L7 —l,4), k:=k+1 and
J = 1; otherwise set j := j + 1. If k < m and j < n hold, return to Step 3;
otherwise go to Step 4.

Step 4: If £k > m holds, output IT = {p1,p2,...,pn} and halt; otherwise output

“failure” and halt.

Finally, we summarize the algorithm UNIFORM_INIT that constructs an initial feasible
solution using UNIFORM-FIT and FFD.

Algorithm UNIFORM_INIT

Input: Lengths /; and demands d; of products i € M, the number of different
cutting patterns n, and the length of stock rolls L.

Output: A set of n cutting patterns II = {p;,p2,...,pn} and the numbers of

their applications X = {z1,z2,...,z,}, or “failure”.



.3 Construction of the Neighborhood ' 49

am———

Step 1: Apply UNIFORM-FIT to obtain a set of n cutting patterns. If this
attempt fails, apply FFD. If FFD still outputs “failure”, we output “failure”
and halt.

Note that it is necessary to compute the numbers of applications z; by SOLVE_IP (see Section
2.3).

3.3 Construction of the Neighborhood

A natural definition of neighborhood N, (II) is given by replacing one cutting pattern p; € II
with another cutting pattern p}; € S\ II:

Ny(TT) = {TTU{p;} \ {p;} | p; € IL,p; € S\ T}, (3-2)

where S is the set of all feasible cutting patterns. As mentioned in Section 1.5, the number
of all feasible cutting patterns |S| exponentially grows as the number of products m, and
most of them may not lead to improvement. To overcome this, we propose a new heuristic
algorithm PERTURB, which is different from the adaptive pattern generation (APG) in
Section 2.4. PERTURB generates a subset NT¢4(IT) of the neighborhood Ny(II), containing
good solutions. The construction is based on a dual optimal solution Y = {%;,%a,-- ., ¥} Of

the LP relaxation LP(II). We now recall the LP relaxation LP(II) of (2.8):

(LP(II)) minimize f(H,X)zEn::cj (3.3)
j=1

n

subject to Eaij:cj—s,~=d,- fori=1,...,m
i=1
zj >0 forj=1,2,...,n

;20 fori=1,2,...,m,

where s; are the slack variables and represent the quantity of overproduction for products

i € M. Here, the dual problem DLP(II) of the LP relaxation LP(II) is described as follows:

(DLP(II)) maximize idiyi (3.4)

1=1

m
subject to Zaijyi <1fory=1,2,...,n
i=1

y; 20 fori=1,2,...,m.



50 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

We consider the neighborhood NJ¢4(II) C Ny (II) as follows:

N7 = {TU {p(¢', /)} \ {py} | ' € M'(TD), j' € N}, (3.5)

where
M@ = {i|7 >0, iec M}, (3.6)
N = {jlpjem} | (3.7)

and p(#', j') = (af; | i € M) is the new cutting pattern generated by PERTURB for a pair of
i’ and j'. The dual variables y; give us information of how much improvement can be induced
by slightly reducing the right hand side d; of the i-th constraint of LP(II). The reduction of
d; may be also achieved by increasing an a;; in the i-th constraint of LP(II). In this sense, y;
may serve as an indication of the effectiveness of increasing a;; in a cutting pattern p; € II.
Note that the number of positive 7; of an optimal solution is at most the number of cutting
patterns n, and hence the size of N7¢4(II) is O(n?).

Based on this observation, we now explain the algorithm PERTURB. It is executed for a
pair of 7/ and j’ to generate a new cutting pattern p(¢', j'), which is obtained by increasing
ayj and decreasing some a;;/ (i # ¢') with smaller 7;/I; (to recover feasibility of the cutting
pattern (1.3)). For this, PERTURB first sorts all products z € M in the ascending order of
7;/li; while using the descending order of the overproduction s; as the secondary criterion for
i € M\ M'(TIl) (ie., J; = 0 holds). Then, PERTURB adds one product i’ € M'(II) to the
cutting pattern p;s € II (i.e., a,;» := ayj +1). If the new cutting pattern p(i', ;') violates the
constraint (1.3), PERTURB sequentially removes other products in the above order until the
cutting pattern p(i’, ;') satisfies (1.3), and then adds back the products in the reversed order .

as long as the cutting pattern p(i', j') still satisfies (1.3). Here, let L™ represent the residual

length of the cutting pattern p(¢’, j').
Algorithm PERTURB

Input: A product i/ € M, a cutting pattern py = (ayy,azj,...,am;) € II,
lengths /; and demands d; of all 'products i € M, the length of stock rolls L,
and a dual optimal solution Y = {%,,%s,-- ., ¥m} of DLP(II).

Output: A new cutting pattern p(i', j') = (a};,a3;:, - - -, @) or “failure”.

Step 1: Sort all 1 € M in the ascending order of ;/I; while using the descending
order of overproduction s; as the secondary criterion for ¢ € M \ M'(II). Let

o(k) denote the k-th product in the resulting order.



3.3 Construction of the Neighborhood 51

Step 2: Set ajy; = apy + 1, aly, == ayy for all i € M\ {i'}, and L™ :=

L- ZiEM G:J/lz Set k:=1.

]‘I

Step 3: If L™ > 0 holds, set k := m and go to Step 5; otherwise if k > m holds,
output “failure” and halt.

Step 4: If o(k) # i’ and a;(k)j, > 0 hold, set a;(k)j, = a’a(k)j, —1,and L™ :=
L™ 4 lyy. Set k:=k + 1 and return to Step 3.

Step 5: If l,(x) < L™ holds, set af,(k)j, = a;(k) j +1land L™ := L™ — (k)
If £ > 1 holds, set k := k — 1 and return to Step 5; otherwise output the

resulting the cutting pattern p(¢, §') = (ay;,a5p, .-+, Gynjr) 2nd halt.
Here, we note that the set M'(II) is also given by
M) = {i ] 5 =0, i € M}, (3.8)

which is obtained by the complementary slackness of linear programming. In this sense,
PERTURB tends to eliminate the bottleneck products (i.e., s; = 0 holds) as well as the
adaptive pattern generation of LS-APG (see Section 2.4) does.

Now we recall the column generation method to the standard 1D-CSP in Section 1.3. The
column generation method also utilizes an optimal solution Y = {#1,Ua-- - »Um} of DLP(II)
to generate a new cutting pattern. It uses the following aspiration to induce improvement of

the current solution:

2(ILp) = Y _ Tiai, (3.9)
teM
where p’ = {a},d}, ..., al,} represents the new cutting pattern. If the new cutting pattern P

satisfies z(II,p') > 1, we can improve the current solution by adding the new cutting pattern.
However, in 1D-PRP, in order to keep the number of different cutting patterns, we must
remove a cutting pattern in the current solution while adding a new cutting pattern, ie.,
PERTURB substantially replaces the cutting pattern pj in the current solution with the
new cutting pattern p(i',j’). Figure 3.3 shows the change of the dual optimal solution by
applying PERTURB. It is observed that the objective value f may increase even if the new
cutting pattern p(i', j') satisfies z(II, p(¢', j')) > 1.

On the other hand, if the new cutting pattern p(¢', ;) satisfies z(I,p(7',j)) < 1, it
never lead to improvement of the current solution. In this case, we prepare another pattern

generation algorithm PATGEN which generates a new cutting pattern p(', ') from scratch.



52 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

JATU{p(, j)\p,3)

dual optimal
solution y

£

new pattern
p(ila .],) \

removed
pattern p .

Figure 3.1: The change of the dual optimal solution by PERTURB

PATGEN first sorts all products i € M'(II) in the descending order of 7,/l;, and repeatedly
adds them in this order until 3¢ s a;;/%; > 1 holds.

Algorithm PATGEN

Input: A cutting pattern p; = (a1, a2y, .., amj) € I, lengths [; and demands
d; of all products i € M, the length of stock rolls L, and a dual optimal
solution Y = {7y, T, -- ., Um} of DLP(II).

Output: A new cutting pattern p(i', j') = (a};, a5, .. ,a;nj,) or “failure”.

Step 1: Sort all i € M'(II) in the descending order of 3;/I;. Let o(k) denote the
k-th product in the resulting order.

Step 2: Set a;; :=0foralli € M, L™ :=L, and k := 1.

Step 3: If L™ < mingeppmyli or 3seprajpY; > 1 holds, output the resulting
cutting pattern p(7, ;') = (a’lj,,a’Qj,, .+ ap,;) and halt; otherwise if [, (x) <
L™ holds, set a;(k)j, = a;(k) . +1and L™ := L™ —l,4). If k = n holds,

J
set k := 1; otherwise k := k + 1. Return to Step 3.

3.4 Solving many LP Relaxations

For a given set of cutting patterns II = {pi,p2,...,Pn}, the problem of computing the

numbers of their applications X = {z1,z2...., Zn} to minimize the cost function f(II, X)



3.4 Solving many LP Relaxations 53

can be formulated as the following integer linear programming problem (ILP):
n
(ILP(II)) minimize f(II,X) = ij (3.10)
=1

n

subject to Zaijxj—si:d,- fore=1,...,m
=1
z;€Z4 forj=12,...,n

s;€Zy fori=1,2,....m,

As mentioned in Section 2.3, this problem contains the set covering problem (SCP) known to
e NP-hard [31] as a special case. Hence, we propose a heuristic algorithm SOLVE_IP to find
in approximate solution X = {Z1,%2,...,2,}, which is based on an optimal solution of its
_P relaxation X = {Z|,Ts,...,Zn}. Indeed we can compute the number of applications X
or a set of cutting patterns II in relatively small CPU time. However, in order to determine
me move operation, we still have a large number of LP relaxations LP(II) to be solved. For
:xample, LS-LP needs to solve O(n?) LP relaxations, and it is quite time consuming. In this
ection, we consider an exact algorithm SOLVE_LP to solve LP relaxation LP(IT).

Let I = I U {p(¢,5')} \ {py} denote a solution in the neighborhood NT¢¢(II), where
(7', j') is the new cutting pattern generated by PERTURB. Since the instance LP(IT') is only
lightly different from LP(II), we can start simplex algorithm from the optimal tableau of
he instance LP(II), instead of starting it from scratch. Now we consider an optimal solution
¥ = {Z1,Z2,...,%n} of LP(II) and the optimal values of its slack variables {31,5o,... ,Sm}-
Iere, we use Z; > 0 and 5 > O (resp., Z; = 0 and 5; = 0) to denote basic (resp., non-basic)
ariables. The cutting patterns in the current solution p; = (a1, a2}, .., am;) correspond to
he columns of the simplex tableau of LP(II). Let wy and gx = (bk1, bok, - - - , bk ) denote the
oeflicient of the cost function and the columns corresponding to the slack variables 5;. Let
g and B (resp., ¢y and IN) denote the coefficients of the cost function and the columns
orresponding to the basic (resp., non-basic) variables, i.e., cg = (¢; | T; > 0) U (wy | 5 > 0),
3= 1T, >0)U(gh |3% >0),en = (¢ | T; = 0) U (wy [ 5 =0), and N = (p, | 7; =
) U (g} | 3% = 0).

The optimal simplex tableau T = (B,N, Cp,Cy) contains the basic columns B =
5; | Tj > 0) U (dx | 5 > 0), the non-basic columns N = (p; | F; = 0) U (G | 5 = 0),
he reduced costs corresponding to the basic variables ¢p = (¢; | T; > 0) U (W | Sk > 0), and

he reduced costs corresponding to the non-basic variables ¢x = (&; | T; = 0) U (@ | 5k = 0),



54 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

where the columns §; = (&1j,Gj,. . .,am;)* correspond to the variables z; and the columns
dr = (I;lk, bok, - - . , I;mk)t correspond to the variables sx. They are computed by
p; = B7'p (3.11)
g = B¢ (3.12)
& = 1-) %y (3.13)
ieM
W = — Y Yibik, (3.14)
ieM

where Y = {4,,%a, .-, } is an optimal solution of DLP(IT) and it can be easily computed
based on the duality theorem:

Y=c4B L.  (3.15)

To construct a new simplex tableau T = (B’,N ’,éﬁg,é'N) of the new set of cutting
patterns IT', we first add the new column $(’, j') corresponding to the new cutting pattern
p(¢,§') = (ayr, adjrs - - »Gpr) generated by PERTURB:

p(i',j") = B~ p(, j")". (3.16)

The reduced cost Eg, and the number of applications corresponding to the new cutting pattern

p(7', 7') are also computed as follows:

iEM
T, = 0 | (3.18)

We remove the column p; from basis and add the new column (7', j') to basis by applying
a pivoting operation to exchange T;; and E}-, (consequently T;; becomes 0 and T;., becomes
nonnegative). Figure 3.4 represents the above operations to the optimal simplex tableau
T. Then we apply the criss-cross algorithm [103] to the resulting simplex tableau. Even if
this starting simplex tableau is neither feasible (i.e., there is at least one Z; < 0, 3; < 0 or
‘i;, < 0) nor dual feasible (i.e., there is at least one &; < 0, W < 0 or 63-, < 0), the criss-cross
algorithm is guaranteed to converge to an optimal solution of LP(Il') often in a small number

of pivoting operations.

Algorithm SOLVE_LP




3.4 Solving many LP Relaxations 55

o new pattern p(i,j') (C; <0)
pivoting columns

EN >0
1 0
0 1
% Sm-n Sm-n+l
- /U
- Yl . .
basic variables non-basic variables

Figure 3.2: Exchanging the columns p; and p(¢, j') in the optimal simplex tableau T



56 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Input: An optimal solution X = {Z1,%2,...,Tj,Zn} together with its simplex
tableau T = (B, N,ép,&y) of LP(II), where II = {p1,p2,.-.,pPn} is the

current set of patterns, and a new pattern p(i', j') = (a};, Ajrs - -+ y Byt )-

Output: An optimal solution X' = {Z},Z5, - .- ,‘a':';.,, ..., T} and its simplex tableau
T = (BI,N’,ESB,EQV) of LP(IT') for the new set of patterns II' = IT U
{p(7, 5} \ {pj}, or “failure”.

Step 1: Add #(¢,j') := B~ lp@,j"), Ty =0, &y =1~ Yiem ialj to the

simplex tableau T'.

Step 2: Apply the pivoting operation to exchange columns p; and (7, 5). If
the resulting simplex tableau is feasible, apply the revised simplex algorithm;
otherwise apply the criss-cross algorithm to obtain an optimal solution x

and its tableau 7”.

Step 3: If the resulting solution X' contains at least one negative variable T;,

outputs “failure”; otherwise output X' and its simplex tableau 7". Halt.

The criss-cross algorithm does not monotonously decrease the objective value f(II, X).
It shows that we can not necessarily obtain an improving solution (IT', X') of LP(II) (i.e.,
f{I', X'y < f(I1, X) holds) by applying a new cutting pattern p(i', ;') satisfying z(II, p(¢', j')) >
1. On the other hand, if the resulting simplex tableau is feasible (i-e., all basic variables take
nonnegative values), as the revised simplex algorithm decreases monotonously the objective
value f(II, X), and we can always obtain an improving solution (II', X’) of LP(II). From
this observation, we see that the feasibility of the resulting simplex tableau is a sufficient
condition to obtain an improving solution. If the resulting simplex tableau is feasible, the
revised simplex algorithm is usually faster than the criss-cross algorithm. Therefore, in such
case, we use the revised simplex algorithm instead of the criss-cross algorithm.

To see the effectiveness of SOLVE_LP, we compared two types of LS-LP, one is entirely
based on the revised simplex algorithm (i.e., starting from scratch and the other is based on
SOLVE_LP (i.e., starting from the optimal simplex tableau of the previous solution). We
tested two algorithms on 18 classes of randomly generated instances (see Section 2.6). Table
3.1 shows the number of pivoting operations required to solve one LP relaxation, averaged
over 10 instances for each class, where n (i.e., the number of different cutting patterns) is set

to those of SHP solutions.



3.4 Solving many LP Relaxations

57

Table 3.1: The average number of pivoting operations for solving single LP(IT)

class | m | d | revised simplex | SOLVE_LP
1|10 10 11.86 2.83
2|10 { 100 14.32 2.90
320 10 26.07 3.81
4120 | 100 31.91 5.61
5 | 40 10 52.47 3.95
6 { 40 | 100 82.49 10.21
7110 10 11.99 1.27
8| 10| 100 14.14 0.88
9|20 10 19.46 0.88
10 | 20 | 100 31.48 1.19
11 | 40 10 52.16 0.84
12 { 40 | 100 73.23 1.64
13 | 10 10 11.49 1.06
14 { 10 | 100 12.64 1.30
15| 20 10 22.53 0.79
16 | 20 | 100 23.14 1.01
17 | 40 10 42.23 0.60
18 | 40 | 100 44.96 1.27




58 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

From Table 3.1, the number of pivoting operations of the revised simplex algorithm is
roughly proportional to the number of product m, but that of SOLVE_LP is almost constant
and is much smaller than that of the revised simplex algorithm. It is also observed that
SOLVE_LP often attains an optimal solution without applying any pivoting operation. Since
local search algorithms to 1D-PRP consumes most of CPU time for solving LP relaxations,

SOLVE_LP is very important to make them praétical.

3.5 Entire Algorithm of Local Search

We now explain the framework of the local search algorithm LS-LP using UNIFORMINIT (or
MFF_INIT), SOLVEIP (based on SOLVE_LP), PERTURB and PATGEN as its components.
Let (IT, X) be the current solution. It adopts the first admissible move strategy, i.e., if LS-LP
finds a better solution (II', X') in its neighborhood NJ®¢(II), LS-LP immediately moves to
it, and repeats the neighborhood search from there. To measure improvement of solutions
in LS-LP, we employ the main criterion of f(II, X) as well as the secondary criterion of the

total overproduction:

AMLX) = > 6 (3.19)
1eEM
6 = max {0, > aijz; — di}. (3.20)
pi€ll

That is, LS-LP moves from (II,X) to (I', X') if either f(II',X') < f(II, X) holds, or
F(IT, X") = F(IL, X) and A(I, X') < A(TI, X) hold.

Algorithm LS-LP

Input: Lengths /; and demands d; of all products ¢ € M, the number of different
cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns II = {p,p2,...,pn} and the numbers of their
applications X = {z1,z2,...,Zn}, or “failure”.

Step 1: Apply UNIFORM_INIT or MFF_INIT to obtain an initial set of cutting
patterns I = {p1,p2,...,pn}, and apply SOLVE_IP to compute the numbers
of their applications X = {zj,z2,...,2n}. If SOLVE_IP outputs “failure”,

output “failure” and halt; otherwise set i* := 1, j* := 1, i :=1* and j' := j*.



3.6 Iterated Local Search Algorithm 59

Step 2: If i/ € M'(II) holds, apply PERTURB to generate the new cutting pat-
tern p(¢',j') = (ay;1, @9z, - - - » @ ); otherwise go to Step 5. If 3o, p 0}:7; <
1 holds for the new cutting pattern p(7,3'), apply PATGEN to reconstruct
the new cutting pattern p(#’, ). Let II' := ITU {p(¢', 5")} \ {py}.

Step 3: For the set of cutting patterns II' = {p},p}, ...,p}}, compute the num-
bers of their applications X' = {z{,z5,...,z},} by SOLVE_IP (which em-
ploys SOLVE_LP). If SOLVE_IP outputs “failure”, go to Step 5.

Step 4: Ifeither f(II', X') < f(II, X) holds, or f(Il', X') = f(II, X) and A(IT", X') <
A(I1, X) hold, move to the new solution; i.e., set (I, X) := (I, X'). Set
i* := * + 1 (mod m), j* := j* + 1 (mod n), ¢’ := 1*, j' := 5%, and return to
Step 2.

Step 5: Set ¢’ :=i' + 1 (mod m). If #/ = i* holds (i.e., all 7/ have been checked),
set 7' := j'+1 (mod n). If ' = j* holds (i.e., all i’ and ;' have been checked),
output (II, X) and halts; otherwise return to Step 2.

3.6 Iterated Local Search Algorithm

Since the neighborhood NT¢4(II) is rather small, LS-LP often converges to a poor local op-
timal solution after a small number of move operations. To overcome such phenomenon, we
introduce an extension of the local search algorithm called the iterated local search algorithm
(ILS) (see Section 1.2). We now consider the iterated version of LS-LP (ILS-LP) in this
section. ILS-LP first applies the simple local search algorithm LS-LP to an initial solution
generated by UNIFORM_INIT (or MFF_INIT). It then repeats LS-LP from different initial
solutions generated by perturbating the best solution obtained by then. The perturbation is
swap

done by a random move to a neighbor solution II' € N;“*?(I1), where N;“?P(II) is another

type of neighborhood defined as follows:
NP () = {ITU{q(i', 1), a(¢', 52)} \ {pj;, Py} |1 € M, j1,45 € N}, (3.21)

where
N={jlp; € 11}, (3.22)

and ¢(7',7;) and ¢(¢,j5) are the new cutting patterns generated by a heuristic algorithm

SWAP for the given i’ € M and j{,j5 € N.



60 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Given j] and j;, assume without loss of generality that the cutting patterns pj; and pj,
satisfy Tj 2 Tj. If the overproduction of the product i’ takes positive value (i.e., 6y > 0),
SWAP increases the product ¢’ in the cutting pattern pj, (e, ayj = ayj, +1), and decreases
the product ¢’ in the cutting pattern pj (ie., i = aypj —1), if ayj; > 0 holds. If the cutting
pattern p;: violates the pattern feasibility (1.3), SWAP moves some products i € M \ {i'}
from pj to p; in the ascending order of overproduction J; until the cutting pattern pj,
satisfies (1.3) (in this case, if the cutting pattern pj; has no residual length to accommodate
the products from pj,, SWAP only removes the products from pjé). Here, L;i” and L;fs
represent the residual lengths of the cutting patterns ¢(i', j{) and ¢(4', j3), respectively.

Algorithm SWAP

Input: A product i € M satisfying 6y > 0, a pair of cutting patterns Py =
(alji’GZJ'i’ .-+, 8my; ) and pj, = (ayjy,a95, - - -, @mjy), the number of their ap-
plications T and T, where zj 2 zj . Lengths l; and overproduction §; of

all products ¢ € M and the length of stock rolls L.

Output: A pair of cutting patterns ¢(i', j1) = (allj; , al?ji’ ey a;nj;) and q(¢', j) =
(a’ljé, a’%, ... ,a;njé), or “failure”.

Step 1: Sort alli € M\ {i'} in the ascending order of overproduction §;. Let o (k)
denote the k-th product in the resulting order. Set L3 i= L = Yiem aijy s
and L;Zs =L =% em a;j1 b;.

Step 2: Ifay i = 0 holds, output “failure” and halt; otherwise set a, g = Qi —
1, “21'1 := ayy; for alli € M\ {i'}, and L;fs = L;fs + 1. Set a;,jé = ayj +1,
agj,z = a;j for all i € M\ {¢'}, and Ly =L —ly. Set k:=1.

Step 3: If L;ées > 0 holds, output ¢(¢, 1) and g(¢', 7}), and halt; else if k > m
holds, output “failure” and halt. Otherwise go to Step 4.

Step 4: Ifo(k) # ¢’ and 8s(k)j;, > 0 hold, set a;(k)j,z = Aok — Ly L;fs = L;fs +
loky and if L) < L;fs holds, set a;(k)ji '= g(k)y +1 and L;fs = L;fs—l,(k).

Set k := k + 1 and return Step 3.

Now algorithm ILS-LP is formally described as follows. Here, trial denotes the current
number of iterations of LS-LP from the last improvement, and MAXTRIALS (an input

parameter given by users) specifies the upper bound of trial. (II*, X*) denotes the best



3.7 Computational Experiment 61

solution obtained by then. In generating an initial solution (II*", X**) for LS-LP in each
iteration, ILS-LP repeats applying SWAP until a feasible set of cutting patterns is obtained

or the terminating condition holds.

Algorithm ILS-LP

Input: Lengths /; and demands d; of all products ¢ € M, the number of differ-
ent cutting patterns n, the length of stock rolls L, and a positive integer

MAXTRIALS.

Output: A set of cutting patterns II* = {p], p3,...,p},} and the numbers of their
g 1,P2 n

applications X* = {z],z3,...,z}.}

Step 1: Set trial := 1. Apply LS-LP to compute (II, X), and set (IT*,X*) :=
(IL, X).

Step 2: Choose an initial set of cutting patterns II"** of LS-LP randomly from
N;¥°P(11*), and apply SOLVE_IP to compute X. If the initial solution
(ITinét| X'nit) g infeasible, go to Step 4; otherwise go to Step 3.

Step 3: Apply LS-LP to the obtained initial solution (T, X#) to compute
(I, X). Tf f(IT, X) < f(II*, X*) holds, or f(II, X) = f(II*, X*) and A(IL, X) <
A(IT*, X*) hold, set (IT*, X*) := (I, X) and trial := 0.

Step 4: If trial > MAXTRIALS holds, output (IT*, X*) and halt; otherwise set
trial := trial + 1 and return to Step 2.

3.7 Computational Experiment

We conducted computational experiment for random instances generated by CUTGEN [32],
to compare ILS-LP with other algorithms SHP [46](47], KOMBI [29] and LS-APG (see Chap-
ter 3). We generated 18 classes of random instances by CUTGEN and tested the above
algorithms for each class, where the details are the same as in Section 2.6. We coded SHP,
LS-APG and ILS-LP in C language and executed on an IBM-compatible personal computer
(PentiumIIl 1GHz, 1GB memory). The results of KOMBI were taken from [29], as we could
not get the source code of KOMBI. KOMBI was run on an IBM-compatible 486/66 personal
computer using MODULA-2 as the programming language under MS-DOS 6.0.



62 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

We first compare trade-off curves of UNIFORM_INIT and MFF_INIT for an instance as a
preliminary experiment, where we take a random instance of class 12 generated by CUTGEN.

We tested the following algorithms:

(i) using UNIFORM_INIT and MFF_INIT only,

(ii) starting LS-LP from the initial solutions of UNIFORM_INIT and MFF_INIT,

(iii) starting ILS-LP from the initial solutions generated by UNIFORM_NIT and MFF_INIT.

We apply these algorithms for all n between n;p and m, where

nLp = [-Z:L%Mﬁ-' (3.23)

is a trivial lower bound of different cutting patterns and m is the number of products. Figure
3.3, 3.4 and 3.5 represent the number of stock rolls f with respect to the number of different
cutting patterns n for these algorithms. From Figure 3.3, we observe that the initial solutions
of UNIFORM.INIT are better than those of MFF_INIT, but, from Figure 3.4 the solutions
of LS-LP using UNIFORM.INIT are much worse than those of LS-LP using MFF_INIT. It
shows that the initial solutions generated by UNIFORM_INIT are relatively hard to improve
by LS-LP. From Figure 3.5, we observe that the solution of ILS-LP do not much depend on
its first initial solution.

We now compare the two local search algorithms LS-LP using UNIFORM_INIT and
MFF_INIT to construct an initial feasible solution, where we tested them for 10 instances
of 18 classes of random instances. To captﬁre the general behavior of trade-off curves of
the above algorithms, we show several points of trade-off curves that attain the minimum
numbers of different cutting patterns n satisfying fyp stock rolls or less. Here, the upper

bounds of stock rolls fyyp are set to as follows:

fue = f* + BfLs, (3.24)

where f* are the numbers of required stock rolls obtained by these algorithms for n = m,

and frp is the trivial lower bound of required stock rolls:

fie = [M] . (3.25)

We tested these algorithms for fyp = f* + BfLp with 3 = 0.05,0.03,0.01. Tables 3.2 and

3.3 show the computational results for 18 classes of random instances, where 7 denotes the



3.7 Computational Experiment

2400

2200

T

MFF ——
UNIFORM

2000 b
1800 E
1600 | E
A 1 1 L 1
15 20 25 30 35 40

45

Figure 3.3: (i) Comparison the trade-off curves of UNIFORM INIT and MFF_INIT

T 1 1 T MIFF
20 b Y UNIFORM -------
2200 | .
2000 | _
1800 F .
1600 - i
1 1 L 1 L
15 20 25 30 35 40 45
Figure 3.4: (ii) Comparison the trade-off curves
MFF_INIT

of LS-LP using

UNIFORMNIT and



64 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

T T 1 T

MFF
2400 UNIFORM ------- 1

2200 [ E

2000

1800

1600

15 20 25 30 35 40 45

Figure 3.5: (iii) Comparison the trade-off curves of ILS-LP using UNIFORM_NIT and
MFFINIT

average of different cutting patterns, and f denotes the average of required stock rolls for
each class. From Tables 3.2 and 3.3, it is observed that the numbers of different cutting
patterns obtained by LS-LP based on MFF_INIT is much smaller than those obtained by LS-
LP based on UNIFORM_NIT, and we conclude that MFF_INIT is more suitable to LS-LP
than UNIFORM_INIT.

We compare trade-off curves of ILS-LP (using MFF.INIT) and LS-APG for an instance
as a preliminary experiment, where we take a random instance of class 12 generated by
CUTGEN. We apply ILS-LP and LS-APG for all n between nz g and m. Figure 3.6 represents
the number of stock rolls f with respect to the number of different cutting patterns n for
ILS-LP and LS-APG. For this instance, we observe that ILS-LP attains comparable number
of stock rolls to LS-APG if the number of different cutting patterns is small. Figure 3.7
shows their CPU time of ILS-LP and LP-APG for different n. We observed that ILS-LP
is comparable to LS-APG in its CPU time. From these results, it appears that ILS-LP is
comparable to LS-APG while using smaller neighborhood than that of LS-APG.

Table 3.4, 3.5 and 3.6 show the computational results for 18 classes of random instances,
where we tested ILS-LP (using MFF_INIT), SHP and KOMBI for 100 instances of each class.

The program parameter MAXTL (controlling the upper bound of trim losses for new cutting



3.7 Computational Experiment 65

Table 3.2: Computational results of LS-LP using UNIFORM_INIT with different fyp for the
random instances generated by CUTGEN

f*+005f,g f*+003fts f*+ 0.01frs

class | m | d i f i f fl f
1(10| 10| 34 13.3 34 13.3 34 13.3
2110|100 51 1195 6.0 1172 6.7 116.5
3(20( 10 82 254 82 254 8.2 25.4
420|100 74 2425 89 2385 120 2352
5140 10| 14.9 45.7 173 449 173 4.9
640|100 | 145 4460 175 4385 235 43.6
7110 10| 7.1 52.7 7.1 527 7.1 52.7
810100 74 5256 80 5219 82 5210
92| 10154 1054 156 1052 158  104.6

10 | 20 | 100 { 15.7 1055.5 15.8 1050.0 16.4 1042.6
11 /40| 10(29.5 1845 308 1821 336 179.1
12 | 40 [ 100 | 31.3 1805.4 326 1785.7 35.1 1765.6
13|10 10| 8.1 66.8 8.1 66.8 8.1 66.8
14|10}100| 82 6675 82 6675 86 666.1
15{20| 10155 1330 161 1321 165 1315
16 | 20 | 100 | 15.4 1332.7 154 1332.7 16.1 1321.2
17140 | 10| 344 2361 355 2334 365 2316

40 | 100 | 35.8 2336.5 36.3 23058 37.4 22823

—
oo




66 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Table 3.3: Computational results of LS-LP using MFF_INIT with different fip for the ran-
dom instances generated by CUTGEN

f*+005ftp f*+003frp fr+0.01frp

class | m | d i f 7 f f f
1]10| 10| 25 136 2.5 136 2.5 13.6
2110|100 | 45 1165 49 1155 5.2 1149
3{20| 10| 49 266 4.9 266 4.9 26.6
4120(|100] 7.3 2453 87 2414 100 239.2
5140 10| 88 49.7 9.6 488 9.6 48.8
6 {40 | 100 | 11.3  454.7 134 4475 163 4404
7110 10| 6.3 525 6.3 52.5 6.3 52.5
g (10]100f 7.1 5128 7.1 5128 7.5 5114
9,20 10118 111.8 122 110.2 122 110.2

10 {20 { 100 | 13.9 1041.2 15.0 10356 16.1 1024.6
11140 | 10)19.9 2053 21.2 203.1 252 2003
12 | 40 | 100 | 27.0 18584 30.0 18226 31.9 1804.6
13110 10| 71 66.9 7.7 66.3 7.7 66.3
14110100 77 6445 79 641.0 8.0 640.5
15120 10135 1356 139 1355 149 1351
16 | 20 | 100 | 14.0 13216 14.7 13076 157 1300.7
17 | 40 | 10| 260 247.0 26.3 246.5 281 2448

40 | 100 | 30.4 2376.2 31.6 2355.7 32.8 23379

—
oo




3.7 Computational Experiment 67

2000 T T T

1950

1900

T

[ (the number of stock rolls)
o a4 o
»n ~ ~} [ o3
(4,3 o [223 [=] o
o o o [«3 o

T

1600

T

1550 E

1500 1 1 1 1
15 20 25 30 35 40 45

n (the number of different patterns)

Figure 3.6: The number of stock rolls versus the number of different cutting patterns (nyp =

17)

120 T T T

100 +

80

CPU time (sec.)
D
<
T

40

20 |

n (the number of different patterns)

“igure 3.7: The CPU time in seconds versus the number of different cutting patterns (using

ogarithmic scale for CPU time(sec.))



68 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

patterns) of SHP is set to 0.05, 0.03 and 0.01, and MAXTRIALS (the maximum number of
iterations of LS-LP) is set to 100. Table 3.4 shows the results of SHP and KOMBI, where
SHP was run on three different values of MAXTL= 0.05, 0.03 and 0.01, where Table 3.4 is the
same as Table 2.1 in Section 2.6. Tables 3.5 and 3.6 show the results of LS-APG and ILS-LP,
respectively, where Table 3.5 is the same as Table 2.2 in Section 2.6. We tested algorithms
for fup = f* + BfLs with 8 =0.05,0.03 and 0.01.

Table 3.4: Computational results of SHP and KOMBI for the random instances generated
by CUTGEN

SHP
MAXTL=0.05 0.03 0.01 KOMBI
class | m | d | fLs il f 7 f 7l f i f
1|10 10| 1.67| 408 11.68 4.25 11.62 449  11.57 | 340  11.49
2(10]100]| 167| 633 11280 6.33 11181 6.75 11085 | 7.81 110.25
3(20] 10| 256| 577 2255 589 2237 598 2217 | 589  22.13
4(20(100| 256 | 9.06 22063 898 21894 925 217.00 | 14.26  215.93
5/40| 10| 426| 907 4389 9.03 4360 9.01  43.17 | 10.75  42.96
6|40 [ 100 | 426 |13.90 43459 13.45 430.79 13.77 426.81 | 25.44 424.71
7]110]| 10| 4.62{1014 5221 1033  52.19 1082 5277 | 790  50.21
810100 4621|1130 519.88 11.46 520.36 11.97 52681 | 9.96 499.52
92| 10| 8651858 9742 19.22  97.96 1991  98.82 | 1503  93.67
1020 100 | 8652096 970.43 21.74 973.63 21.99 984.32 | 19.28  932.32
11 |40] 10| 1627 | 35.06 186.45 36.29 187.37 37.78 189.91 | 28.74  176.97
12 | 40 | 100 | 16.27 | 39.90 1854.79 40.53 1865.41 41.86 1891.90 | 37.31 1766.20
13/10| 10| 5.54|1055 6546 10.55 6541 10.67 6552 | 897  63.27
1410|100 | 5.54|10.92 65295 1095 654.80 11.12 654.95 | 10.32  632.12
15 {20 | 10| 10.52 | 20.11 123.36 20.30 124.36 20.86 124.60 | 16.88  119.93
16 | 20 { 100 | 10.52 | 21.09 1232.42 21.09 1240.39 21.32 1243.43 | 19.91 1191.80
17 | 40 | 10| 19.85 | 38.02 235.64 38.52 238.06 39.10 239.77 | 31.46  224.68
18 | 40 | 100 | 19.85 | 40.16 2351.38 40.38 2366.95 40.67 2389.49 | 38.28 2242.40

In Tables 3.4, 3.5 and 3.6, we first observe that the numbers of stock rolls attained by

KOMBI are smaller than those of other algorithms for all classes. However, other algorithms



3.7 Computational Experiment 69

Table 3.5: Computational results of LS-APG with different fyp for the random instances
generated by CUTGEN

) f*+0.05fLB f*+003fLs f*+001f8
class | m | d | ALs 7 f 7l f i f 7l f
110 10 1.67 2.00 1447 2.90 12.54 2.90 12.54 2.90 12.54
2|10 | 100 1.67 2.00 141.28 4.09 115.32 4.74 113.80 5.73 112.73
3120 10 2.56 2.57 30.76  4.83 23.66 4.83 23.66 4.83 23.66
4|20 | 100 2.56 2.57 305.78 6.07 226.04 6.96 223.49 9.28 220.31
5| 40 10| 4.26 4.28 61.63 8.65 45.72 941 45.25 941 45.25
640 | 100 [ 4.26 4.28 609.73 949 44794 11.23 441.73 15.23 434.79
7110 10 | 4.62 5.01 55.77 6.14 51.45 6.26 51.28 6.26 51.28
810 ] 100 | 4.62 5.01 558.69  6.42 510.60 6.73 507.78 7.38  504.77
9120 10| 8.65 9.27 105.07 10.81 97.39 1141 96.43 11.81 96.14
10 {20 | 100 | 8.65 9.27 1053.08 11.44 962.27 12.22 953.92 1391 944 .45
11 | 40 10 | 16.27 | 16.95 201.46 19.60 185.68 20.77 183.79 23.98 181.34
12140 100 | 16.27 | 16.95 2010.26 20.71 1837.90 22.44 1817.07 26.03 1787.39
13110 10 5.54 6.26 68.73 7.06 64.45 7.30 64.36 7.30 64.36
14 | 10 | 100 5.54 6.26 687.14 7.19 644.87 7.45 641.05 777  638.53
15| 20 10 | 10.52 | 11.76 129.10 12.76 123.43 13.33 122.65 14.18 121.81
16 | 20 | 100 | 10.52 | 11.76 1292.09 13.38 1226.05 14.01 1216.66 15.13 1205.10
17 | 40 10 | 19.85 | 21.50 246.34 22.89 235.85 23.49 233.55 25.58  230.94
18 | 40 | 100 | 19.85 | 21.50 2471.32 23.99 2334.88 25.35 2305.35 28.35 2274.79




70 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Table 3.6: Computational results of ILS-LP with different fyp for the random instances
generated by CUTGEN

00 f*+0.05fp f*+0.03fLB f*+001frp
class | m | d | firs fi f i f i f 7 f
1110} 10 1.67 1.67 1599 261 12.73 261 12.73  2.61 12.73
2|10} 100 1.67 1.67 156.73  3.63 114.41 4.06 113.33  5.09 112.14
3120 10 2.56 2.57 2949 451 2434 451 2434 451 24.34
4 (20| 100 2.56 2.57 293.16 5.71 225.58 6.50 222.83 8.50 219.97
5| 40 10 | 4.26 4.28 59.26 8.49 4749 9.22 4693 9.22 46.93
6 { 40 | 100 4.26 | 4.27 593.21 9.51 446.59 10.80 440.11 14.27  433.97
7({101 10 4.62 5.01 55.70  6.43 51.01 6.69 50.75 6.69 50.75
8|10 | 100 { 4.62 5.01 556.84 6.44 507.02 6.74 504.72 7.11 502.96
9120 10 8.65 9.27 107.24 11.84 96.56 12.50 95.68 13.28 95.13
10| 20 | 100 8.65 9.27 1067.01 11.90 957.01 12.66 947.31 14.23 938.08
11 | 40 10 | 16.27 | 16.95 210.56 23.85 183.74 25.51 181.50 29.68 179.20
12140 ] 100 | 16.27 | 16.95 2123.61 23.19 1823.74 25.14 1798.60 28.11 1777.14
13(10| 10 5.54 6.26 68.69 7.48 64.29 7.64 64.13 7.64 64.13
14 | 10 | 100 5.54 | 6.26 685.47 7.33- 641.82 7.59 63897 8.12 635.83
1520 | 10| 10.52 | 11.76 130.80 13.75 122.62 1447 121.71 15.21 121.10
16 | 20 | 100 | 10.52 | 11.76 1297.19 13.91 1216.75 14.71 1206.47 15.89 1196.96
17 140 | 10} 19.85 | 21.50 254.11 26.15 234.71 27.58 232.38 29.94 229.67
18 1 40 | 100 | 19.85 | 21.50 2510.91 26.96 2314.79 28.72 2285.04 31.06 2259.61




3.8 Conclusion 71

can obtain a wide variety of solutions by controlling their input parameters, i.e., they can
give trade-off curves between the number of different cutting patterns n and the number of
stock rolls f. It is observed that SHP can not reduce the number of different cutting patterns
even though it allows cutting patterns having larger trim loss. On the other hand, LS-APG
and ILS-LP attain smaller number of different cutting patterns than KOMBI for all classes,
without much increasing the number of additional stock rolls. We can also observe that ILS-
LP can reduce the number of different cutting patterns effectively as well as LS-APG for all
classes. It is necessary to emphasize that ILS-LP introduces basically smaller neighborhood
than that LP-APG introduces. As a future topic, we may be able to introduce more powerful
neighborhood for ILS-LP. From these observation, we may conclude that ILS-LP can also
provide reasonable trade-off curves to some extent, and obtain good solutions comparable to
LS-APG while using smaller neighborhood than that of LS-APG.

Table 3.7 shows the average CPU time of SHP (MAXTL=0.03), KOMBI, LS-APG (fyp =
f*+0.03frg) and ILS-LP (fup = f* + 0.03f.B), respectively, for all classes. From these
instances, SHP is faster than ILS-LP except for class 5 and 6, and KOMBI may be faster
than ILS-LP, taking into consideration the power of computers in use. However, the average
CPU time of ILS-LP is within 20 seconds except for class 6 and 18, and it may be sufficiently
short even if ILS-LP repeatedly applies for all n to obtain a trade-off curve. We also note
that ILS-LP can control the trade-off between the quality of solutions and its computational

time by the input parameter MAXTRIALS (i.e., the upper bound of iterations of LS-LP).

3.8 Conclusion

We proposed a local search algorithm based on linear programming techniques (LS-LP). It
starts from an initial solution obtained by a modified first fit heuristic (MFF) known for the
bin packing problem (BPP). Solutions in the neighborhood are restricted to those obtainable
by perturbating one cutting pattern in the current set of cutting patterns. In order to find
promising directions, we utilize a dual optimal solution of the LP relaxation problem of the
auxiliary integer programming problem. Although solutions of LP relaxation is not integer
valued, it provides reasonably accurate information as integrality gap is rather small in most
instances of 1D-CSP. Since the local search algorithm requires to solve a large number of
LP relaxations which are only slightly different each other, we start simplex algorithm from

the optimal simplex tableau of the previous solution, instead of starting it from scratch.



72 Chapter 3 A Local Search Algorithm Based on Linear Programming Techniques

Table 3.7: The average CPU time in seconds for the random instances generated by CUTGEN

class |m| d | SHP KOMBI LS-APG ILS-LP

110 10 0.04 0.14 0.01 0.05
2110 | 100 0.08 1.14 0.07 0.18
31207 10 1.56 1.74 0.19 0.66
4120 | 100 1.57 16.00 0.76 3.72
5140 | 10 ] 631.74 38.03 5.32 17.83
6 | 40 | 100 | 107.11 379.17 11.41 92.40
7110 10 0.00 0.07 0.03 0.06
8|10 | 100 0.00 0.20 0.04 0.06
9120 10 0.01 1.34 0.48 0.80
10 | 20 | 100 0.02 3.25 0.71 0.95
11 {40 ( 10 0.09 36.27 13.07 18.49
12 | 40 | 100 0.14 76.31 19.53 18.80
13110} 10 0.00 0.08 0.03 0.06
14 | 10 | 100 0.00 0.13 0.03 0.07
1520 | 10 0.01 1.81 0.44 0.87
16 { 20 | 100 0.01 2.60 0.60 1.00
17 140 | 10 0.06 50.93 10.34 14.74

40 | 100 0.10 70.94 14.32 20.55

—
oo




3.8 Conclusion 73

We modify the simplex algorithm by applying the sensitivity analysis techniques, and apply
a variant of the simplex algorithm called the criss-cross algorithm to compute an optimal
solution. In order to enhance the local search algorithm, we introduce an iterated local
search approach. According to computational experiments, we observed that the iterated
local search algorithm based on linear programming techniques (ILS-LP) attains a wide
variety of good solutions, and also provides reasonable trade-off curves between the number

of different cutting patterns and the number of stock rolls.



Chapter 4

A Variant of 1D-PRP Allowing
Underproduction and

Overproduction

4.1 Introduction

In this chapter, we consider another formulation of 1D-CSP based on a real application of
a chemical fiber industry. As the residual lengths of stock rolls can be easily reused in the
chemical fiber industry, minimizing the setup costs for changing cutting patterns is more
dominant than minimizing the total trim loss. Furthermore, in some applications, such as
the chemical fiber industry, the shortage of demands may be allowed because the additional
cost due to the shortage is relatively small. From these observation, we propose a variant
of 1D-PRP, called the quadratic deviation minimization problem (1D-QDP) which minimizes
the amount of quadratic deviation from all demands while using a given number of different
cutting patterns.

We propose an iterated local search algorithm based on the gquadratic version of the
adaptive pattern generation (ILS-QAGP), where we have to consider the following three in-
gredients in the same manner as other proposed algorithms, i.e., (i) how to construct an
initial feasible solution, (ii) how to compute auxiliary integer quadratic programming prob-
lems (IQP) efficiently, and (iii) how to find promising solutions among all neighbor solutions

in the neighborhood. Solutions in the neighborhood are generated by removing one cutting

75



76 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

pattern and adding one new cutting pattern in the current solution. To compute the num-
bers of applications of the cutting patterns, we propose a heuristic algorithm based on the
nonlinear Gauss-Seidel method [7]. As it is not realistic to consider all possible feasible cut-
ting patterns, we restrict the candidate cutting patterns to those generated by the quadratic
version of adaptive pattern generation (QAPG), where we also indirectly reduce the trim loss
by restricting candidate cutting patterns to those having small trim losses. QAPG is also
used to generate an initial solution of the local search algorithm.

We conduct computational experiments for random instances generated by CUTGEN [32],
and real instances of a chemical fiber industry. ILS-QAPG is compared with other existing
heuristic algorithms, e.g., SHP, KOMBI and a heuristic algorithm called the generation and
test method (GT) used in the chemical fiber industry. According to the computational results,
it is observed that LS-QAPG provides comparable solutions to them.

4.2 Formulation of 1D-QDP

In this section, we define the one dimensional cutting stock problem to minimize the quadratic
deviation from demands while using a given number of different cutting patterns n. We are
given a sufficient number of stock rolls of length L, and m types of products M = {1,2,...,m}
which have given lengths (I1,ls,...,l») and demands (d;,ds,...,dy). A cutting pattern is
described as p; = (a1j, a2, .. ., am;) satisfying
> aijl; < L. (4.1)
ieM
A solution of 1D-QDP also consists of a set of cutting patterns IT = {p;,p2,...,pn}, and the

numbers of their applications X = {z1,z3,...,z,}. The 1D-QDP is formulated as follows:

2
(1D-QDP) minimize f(II,X) =Y ( Y aijzi— d,-) (4.2)

tEM \p;€ll
subject to IIC S

o <n
zj € Z4 forallp; €I,
where S is the set of all feasible cutting patterns. Notice that minimizing the total trim loss

is not equivalent to minimizing the number of stock rolls in 1D-QDP, because shortage of

demands is allowed in this problem.



4.3 Solving Auxiliary Integer Quadratic Programming Problem 77

Although the above formulation ignores to minimize the trim loss, if necessary, we can
control the quality of trim loss to some extent by applying appropriate constraints on cutting
patterns, e.g., restricting S to be the set of complete-cut patterns defined in (1.4). QAPG
indirectly reduces the trim loss by restricting the candidate cutting patterns to those having

small trim losses.

4.3 Solving Auxiliary Integer Quadratic Programming Prob-

lem

For a given set of cutting patterns I = {p;,p2,...,pn}, the problem of computing the

numbers of their applications X = {z1,23,...,Zs} can be described as the following integer

quadratic programming problem (IQP):

2
(IQP(II)) minimize f(II,X)=)_ (Z aijT; — di> (4.3)

i=1 \j=1
subject to z; € Z4 forj=1,2,...,n.

Since it is hard to solve IQP(II) exactly, we adopt an approximate solution X = {%1,%2,...,&n}
to IQP(II) instead of an exact optimal solution. We first solve the quadratic programming
(QP) relaxation problem QP(II) of IQP(II), in which the integer constraints x; € Z are
replaced with z; > 0. After computing an optimal solution X = {Z1,%3,...,Ta} of QP(II),

we round Z; to its nearest integer value z;,

|Z;] otherwise.

2 ;2{ [z;] ;- (%] 205 (4.4)

There may be several algorithms to solve QP (II). We use the nonlinear Gauss-Seidel method
[7], and abbreviate it NGS, because it is easy to implement and appear to be efficient according
to our preliminary computational experiment. In the k-th iteration of NGS, one variable x,(lk)
in the current solution X (%) = {mgk), :rgk), . ,m&k)} is updated as follows. Let £, be the value

= 0. Such z, can be computed by

.o . 8
of z, satisfying the equation 2L
q fying q 3z, Ij=z§k),j;-l'q

of
5, = o) _ Falx=x®) (4.5)

Tg =
g =Ty 7
23 im0y




78 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

where
;f- = -2 lay (4.6)
Zq X=Xk ieEM
Ai o= d;— Z a,-jzg-k). (4.7)
pj€ll

Then the z, is updated by z, := max{0,%,}, and other variables in X(¥) are unchanged.
Iterations are done so that all variables z4 are scanned in a prespecified order, and all variables
z, are checked in n iterations. NGS is described as follows, where ¢ is a sufficiently small

positive constant.

Algorithm NGS

Input: Demands d; of all products ¢ € M, and a set of cutting patterns II =
{P17P2, .o 7p'n.}'
Output: The numbers of applications X = {z1,z2,...,Zp}.

Step 1: Set A\; :=d; for all 1 € M and m§0) =0, %;—_
for all p; € II. Set k :=0.

x=x© = T2 Liem Ay

Step 2: If either of the condition (1) '% x| <€ holds, or (2) % x>
0 and z; = 0 hold, for all p; € II, then output X = {z;,z3,...,zn} and halt.

Step 3: Choose a variable z, satisfying neither (1) nor (2) in Step 2, and set

B
Az, = — :zq = a(z") , and :z:ng) = ma.x{O,x,(,k) + Azg}. Set xgk"'l) = xgk)

i€EM Tig
for all j # q.

Step 4: Update A; := A\;—a;;Az, foralli € M, and ;%’:f eyt = =23 iem il

for all p; € II. Set k := k + 1 and return to Step 2.

Finally, we summarize the entire algorithm to compute the numbers of applications X =

{z1,22,...,2,} for a given set of cutting pattern II = {p1,p2,...,pn}

Algorithm SOLVE_1QP

Input: Demands d; of all products ¢ € M, and a set of cutting patterns IT =
{P17p2, oo ’Pn}—
Output: The numbers of applications X = {z1,22,...,Zn}.

Step 1: Apply NGS to obtain an optimal solution X = {Z1,%o,...,Z,} to QP(II).



4.4 Construction of the Neighborhood 79

Step 2: For all p; € II, round T; to the nearest integer:
;| T;—1|T;] > 0.5
|Z;] otherwise.

Output X = {z1,%9,...,z,} and halt.

4.4 Construction of the Neighborhood

A natural definition of neighborhood N, (II) is given by replacing one cutting pattern p; € II
with another new cutting pattern p}; € S\ II:

N(I) = {TTU {pj} \ {p;} | p; € II,pj € S\ T}, (4.9)

where S is the set of all feasible cutting patterns. However, as mentioned in Section 1.5, the
number of all feasible cutting patterns |S| is too many to test all of them, and most of these
cutting patterns may not lead to improvement. Hence, it is necessary to use much smaller
neighborhood which includes only promising solutions. For this purpose, we introduce a small

subset S'(j) C S for each p; € I, and define a small neighborhood N{*P9(II) as follows:

N{PSM) = | NPT, 5) (4.10)
p; €Il
N{*%(M,5) = {TU{p;}\{p;}|pj € S'(4)} forp; € IL (4.11)

Now we propose a quadratic version of the adaptive pattern generation algorithm (QAPG),
which generates a set of promising cutting patterns S’(j). QAPG is also based the residual
demands like other APGs (see Section 2.4), and we utilize the residual demands r;(j) when

a cutting pattern p; € II is removed from II.

ri(7) = max {0, d; — Z aiqxq} fori e M. (4.12)
pe€M\{p;}

We generate a new cutting pattern p; = (ai; | i € M(j)) by solving the following problem
1D-QDP (j):

(ID-QDP,(j)) minimize Y. (ai;z; — r:(4))° (4.13)
i€ M(j)
subject to > ayli <L
i€ M(j)

a;; € Z4 for alli € M(j)

Lj € Z+1



80 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

where M (j) is the subset of M defined as follows:
M(@5) = {i| ri(5) > 0}. (4.14)

As 1D-QDP,(j) contains a kind of the knapsack problem (KP) which is known to be NP-
hard [31], we use an approximation algorithm based on the relaxation of 1D-QDP; (), i.e., the
integer constraints z; € Z and a;; € Z, are replaced with z; > 0 and a;; > 0, respectively.

An optimal solution of the relaxation problem is easily found, where it has no trim loss:

L
@ = = | 7ri(j) foralli € M(5 415
’ (EieM(]’)f’i(])li> i(J) (7) ( )
— iemy rig)k
A A

Hence, we consider to obtain a new cutting pattern by rounding the above solution. The

problem of rounding @;; to integer value a;; is described as follows:

(RP(j)) minimize Y (ay — ;) (4.16)
1€M(5)
subject to E ail; < L
i€EM(4)

a;; € {|@i;], [@i;]} for alli € M(3).

Since all decision variables a;; can take only two values |@j;] or [@;;], the above problem

RP(j) is equivalent to the following 0-1 knapsack problem:

(RP'(j)) maximize Y (1-2(3; — |@i;)))us (4.17)
iE€M(j)
subject to Z ul; < L — Z I_ailei
i€M(j) i€ M(j)

u; € {0,1} for alli € M(j).

An optimal solution of RP(j) is obtained from an optimal solution u} of RP'(j) by setting:
@i, | uf=

a;j = [_” | (4.18)
[@ij,] uf=

Taking into account that an optimal solution of RP(j) may not necessarily give a useful

cutting pattern, since RP(j) is only an approximation to 1D-QDP,(II), we try to generate

a number of good solutions for RP(j) heuristically. The quadratic version of the adaptive



4.4 Construction of the Neighborhood 81

pattern generation algorithm (QAPG) is based on Sahni’s heuristic algorithm [78] for the 0-1
knapsack problem. It first apply a simple greedy algorithm and outputs a solution (%; | i €
M (j)). The greedy algorithm starts from u; = 0 for all ¢ € M (j), and in each step, it chooses
the k € M(j) with the largest (@x; — |@k;])/lx among those satisfying:

up =0 and ly < L - z (L@ ] + wi)ls, (4.19)

iEM(5)

and then set uy := 1. The algorithm halts when no k € M(j) satisfies condition (4.19), and
outputs the resulting (u; | ¢ € M(j)) as (4; | 1 € M(j)). After this, the greedy algorithm is
repeatedly applied to m problem instances, each of which is obtained by fixing one variable
u; := 1 —14; for i € M(j), and consequently m + 1 candidate cutting patterns are generated.
The greedy algorithm GREEDY and the quadratic version of the adaptive pattern generation
algorithm QAPG are described as follows:

Algorithm GREEDY

Input: A set of products M (j) C M, lengths [; of all products i € M(j), an opti-
mal solution 7; = (@;; | i € M(j)) of the relaxation problem of 1D-QDP, (j),
and the length of stock rolls L.

Output: A set of variables (u; |7 € M(j5)).
Step 1: Set u; := 0 for all ¢ € M(j).

Step 2: Sort all products i € M(j) in the descending order of (a@;; — |@i;])) /1,
and let o(k) denote the k-th product in this order.

Step 3: For each k € M, let

1, Iy < L - Tien (@] +wi)li
v = { o) S L= iears) (F] +w) @)

0, otherwise.
Step 4: Output (u; | ¢ € M(j)) and halt.

Algorithm QAPG

Input: A set of products M(j) C M, lengths [; of all products ¢ € M(j), an opti-
mal solution B} = (@;; | 1 € M(j)) of the relaxation problem of 1D-QDP, (j),
and the length of stock rolls L.

Output: m + 1 candidate cutting patterns of p}; = (ai; | i € M(j)).



82 Chapter 4 A Variant of 1D-PRP Allowing Underpreduction and Overproduction

Step 1: Apply GREEDY to obtain a solution (u; | ¢ € M(j)), and set 4; := u;
for all i € M(j). Set
Gij, i=0
A L (4.21)
[Eija., u; = 17
and output the cutting pattern p; = (a;; | i € M(5)). Set k:=1.

Step 2: Fix u := i, and apply GREEDY to obtain a solution (u; | i € M(5)).
Set a;; for all ¢ € M(j) according to (4.21), output the cutting pattern
P; = (aij | i € M(j)). If k = m bolds, halt; otherwise k := k + 1 and return
to Step 2.

To see how many of the cutting patterns generated by QAPG are useful, we conducted
computational experiment. We took instances from real applications provided by a chemical
fiber industry. The details of these instances are stated in Section 4.6. In this experiment,
their sizes are small enough to enumerate all the feasible cutting patterns, and we tested for

a solution IT and a cutting pattern p; € II.

3000 - T T T T T
g 2500 - ° 4
S 2000 .
2
£ 1500 -
2
€ 1000 1
2
p 500 1
2 0
Q
5
é -500 E
S -1000 .
-1500 1 .l 1 s —
0 10 20 30 40 50

deviation from the continuous pattern

Figure 4.1: Comparison the objective values between II and II' € Ny (II)

Figure 4.1 represents the difference in the objective values f(II', X') — f(II, X') (vertical
axis), where II' are given by removing the cutting pattern p; € IT and adding a new cutting
pattern p; € S. If Ff(@I',X") = f(II, X) < O holds, the neighbor solution (II', X’) is better

than the current solution (II, X). From Figure 4.1, we observed that the number of neighbor



4.5 Entire Algorithm of Local Search , 83

differences in the objective values

_1 500 1 1 L L L
0 10 20 30 40 50
deviation from the continuous pattern

Figure 4.2: Comparison the objective values between II and II' € N{*P9(II)

solutions IT’ satisfying f(II', X') — f(II, X) < 0 is quite small among the neighbor solutions,
and that there is a strong correlation between the horizontal and vertical axes in Figure 4.1,
i.e., cutting patterns with small deviation from @;; are likely to improve the current solution.
Next, in Figure 4.2, we show the objective values of solutions II' € N{*9(IT) which are
generated by removing the cutting pattern p; € II and adding a new cutting pattern generated
by QAPG. The horizontal and the vertical axes are the same as those in Figure 4.1. Figure
4.2 tells that all cutting patterns p/; generated by QAPG satisfy f (', X"y - f(II,X) < 0.
From those results, QAPG appears to be effective to generate good solutions II' from the

current solution IL

4.5 Entire Algorithm of Local Search

In this section, we explain the framework of the iterated local search algorithm ILS-QAPG.
First, we consider a heuristic algorithm to construct an initial solution II*"* using QAPG.
This algorithm starts from the empty set of cutting patterns II = 0, and repeats adding a
new cutting pattern p’ with the minimum f(II', X') (i.e., II' = IT U {p'}) among candidate

cutting patterns generated by QAPG. Here, we use the following residual demands r; instead



84 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

of r;(j) in (4.12):

r;i = max {0, d; — Z aijzj} fori e M. (4.22)
p; €N

Algorithm INIT

Input: Lengths /; and demands d; of all products ¢ € M, the number of different
cutting patterns n, and the length of stock rolls L.

Output: A set of cutting patterns I = {p1,p2,...,pn}, and their numbers of

applications X = {z,z2,...,Zn}
Step 1: Set Il := @ and &k :=0.

Step 2: Let S’ be the set of cutting patterns generated by QAPG with the resid-
ual demands r; for all products i € M. Compute f(II', X’) for all p’ € S’ by
applying SOLVEIQP, where II' =TI U {p'}.

Step 3: Choose the cutting pattern p’ € S’ with the minimum f(IT', X’). Set
H:=Nu{p'}and k:=k+1.

Step 4: If k = n holds, output the solution (II, X); otherwise return to Step 2.

We now explain the details of the local search algorithm based on the quadratic version
of the adaptive pattern generation (LS-QAPG). As noted in Section 4.4, LS-QAPG is based
on the small neighborhood N{**(Il) constructed by QAPG. Furthermore, to reduce the
number of candidate cutting patterns |S’(j)|, we check only v candidate cutting patterns by
preferring smaller };cps(jy(aij — @;;)%, where v is an input parameter. LS-QAPG uses the
first admissible move strategy, implemented by a queue that maintains the cutting patterns
p; € II. For the cutting pattern p; on the top of the queue, we find the cutting pattern p;- that
minimizes f(II', X) among those in §'(5), where IT' = TU{p}}\ {p;}. If f(IT', X') < f(I1, X)
holds, we immediately move to the new solution II', and put p; to the tail of the queue;
otherwise we move the cutting pattern p; from the top to the tail of the queue.

Algorithm LS-QAPG is described as follows. Recall that v is an input parameter which
specifies the number of candidate cutting patterns to be checked. Let @ denote the queue
that maintains the cutting patterns p; € II. The procedure ENQUEUE(Q,p;) adds the
cutting pattern p; at the tail of Q, TOP(Q) returns the cutting pattern p; at the top of Q,
and DEQUEUE(Q, p;) removes the cutting pattern p; from Q.



4.5 Entire Algorithm of Local Search 85

Algorithm LS-QAPG

Input: Lengths /; and demands d; of all products : € M, the number of dif-
ferent cutting patterns n, and the length of stock rolls L. A set of cut-
ting patterns II = {p;,p2,...,pn}, and the numbers of their applications
X = {z1,z2,...,25}.

Output: A set of cutting patterns II = {p1,p2,...,pn}, and the numbers of their
applications X = {z1,z2,...,Zn}.

Step 1: Set Q be an empty queue, and ENQUEUE(Q, p;) for all p; € Il in an
arbitrary order. Set k := 0.

Step 2: Set p; := TOP(Q), and DEQUEUE(Q, pj). Apply QAPG to generate
a set of candidate cutting patterns S'(j7). Let S'(j) restrict to the set of
cutting patterns which have y smallest deviations 3 ;cp(jy(aij — @)

Step 3: Compute f(II', X') for all p;; € S'(j) by applying SOLVEIQP, where
I =T U {p;} \ {p;}. Choose p; € §'(j) with the minimum f(IT', X").

Step 4: If f(I', X') < f(II, X) holds, set (I, X) := (II', X"), ENQUEUE(Q, p}),
k := 0, and return to Step 2; otherwise ENQUEUE(Q, p;).

Step 5: Set k:= k+1. If £ < n holds, return to Step 2; otherwise output (II, X)
and halt.

Although we facilitate the neighborhood search by QAPG, the size of neighborhood be-
comes rather small, and consequently LS-QAPG often converges to a local optimal solution
after only a small number of move operations. To overcome such phenomenon, we intro-
duce an extension of local search algorithm called the iterated local search algorithm (ILS).
ILS-QAPG starts from LS applied to the initial solution constructed by INIT, and repeats
LS from different initial solutions generated by perturbating the best solution obtained by .
then. The perturbation is done by a random move to a neighbor solution, i.e., it allows a
move to a worse solution. Here, let trial denote the current number of iterations of LS, and
MAXTRIALS (an input parameter given by users) denote the upper bound of trial. Let
(IT*, X*) denote the best solution obtained by then, and (II, X') denote the current solution.

Algorithm ILS-QAPG

Input: Lengths /; and demands d; of all products i € M, the number of different
cutting patterns n, and the length of stock rolls L.



86 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

Output: A set of cutting patterns IT = {p1,p2,...,pn}, and the numbers of their

applications X = {z1,%2,...,Zn}-

Step 1: Set trial := 1. Apply INIT to obtain an initial solution (II, X), and set
(IT*, X*) := (11, X).

Step 2: Apply LS-QAPG to the initial solution to obtain a new local optimal
solution (II, X). If f(IT, X) < f(IT*, X*) holds, set (II*, X*) := (II, X).

Step 3: If trial > MAXTRIALS holds, output (II*,X*) and halt; otherwise
randomly choose an initial solution II of the next LS-QAPG from the neigh-
borhood of the best solution N7*P(IT*), set trial := trial + 1, and return to

Step 2.

4.6 Computational Experiment

We conducted computational experiment for random instances generated by CUTGEN [32],
and real instances in a chemical fiber industry. We compared ILS-QAPG with the following
three algorithm: SHP [46][47][49], KOMBI [29], and a heuristic algorithm called the gen-
eration and test method (GT), which is used in the chemical fiber industry in Japan. GT
sequentially adds new cutting patterns step by step, in which, in each step, it generates a set
of candidate cutting patterns based on heuristic rules.

We coded ILS-QAPG and SHP in C language and executed on an IBM-compatible per-
sonal computer (PentiumIl 450MHz, 128MB memory). The results of GT were provided
by the chemical fiber industry, where GT was run on an IBM-compatible personal computer
(Pentium 133MHz, 32MB memory). The results of KOMBI were taken from [29], as we could
not get the source code of KOMBI. KOMBI was run on an IBM-compatible 486/66 personal
computer using MODULA-2 as the programming language under MS-DOS 6.0. The program
parameter MAXTL of SHP is set to 0.03, and the program parameter v of ILS-QAPG is set
to [(m +1)/10].

Before presenting computational results, it is necessary to emphasize that the problem
solved by SHP and KOMBI is different from that solved by ILS-QAPG and GT, because
demand constraints are treated differently. ILS-QAPG and GT allow the shortage and/or
overproduction of the products, where ILS-QAPG minimizes their total quadratic deviation

while using a given number of different cutting patterns, and GT reduces both their total



4.6 Computational Experiment 87

deviation and the number of different cutting patterns heuristically. KOMBI do not allow
the shortage, and SHP allows neither the shortage nor overproduction. Therefore, precise
comparison of these algorithms is not possible. However, we may be able to capture their
general tendency from the computational results.

Our primary objective is to attain sufficiently small deviation while using a given number
of different cutting patterns. To evaluate the quality, it may be convenient to introduce a
simple criterion of goodness. Let us consider f(II, X) be acceptable (i.e., sufficiently small) if

F(II, X) < bgcpt holds, where

bacpt = Y, max{(0.01d;)?,1.0}, (4.23)
1IEM
i.e., 1% of the demand or a single deviation for each product 7 € M. In the following results,
the number of acceptable instances nqep: is always given for ILS-QAPG.

We first conducted computational experiment for the random instances generated by
CUTGEN, and compared ILS-QAPG with SHP and KOMBI. We used 18 classes of random
instances by CUTGEN like in Sections 2.6 and 3.7, where the details of these instances are
described in Section 2.6. For each class, 10 instances were generated and solved by SHP and
ILS-QAPG, and 100 instances were solved by KOMBI. Table 4.1 shows the results of SHP,
KOMBI and ILS-QAPG, where tloss is the ratio (percentage) of the total trim loss to the

length of stock rolls:
100 ijen (L = Yien aijli)
L Epj enj .

Note that |II| and tloss are averaged over 10 instances for SHP and ILS-QAPG, while they

tloss = (4.24)

are averaged over 100 instances for KOMBI (the data are taken form [29]). As the primal goal
of this experiment was to test the performance of ILS-QAPG with small number of different
cutting patterns n, we ran ILS-QAPG for six cases n = a,a—1,a—2andn = 3,6-1,8-2.

The parameters a and (3 are defined as follows:

a = |supl | (4.25)
B = {IHSHPla [IHSHP| - IHKOMBIl.I} ) (4.26)

where |TIsup| denotes the number of different cutting patterns obtained by SHP, |IIsup| denotes
the average of |IIsyp| for the corresponding instances, and |IIxomg:| denotes the average of

different cutting patterns obtained by KOMBI. That is, § is intended to represent the smaller



88 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

of |IIsup| and |Ixomei| approximately (recall that [IIxowms;| for individual instance is not given

in [29]).

Table 4.1: Computational results of SHP, KOMBI and ILS-QAPG for the random instances

ILS-QAPG
SHP KOMBI I} =g HI=-11| O=8-2
class | m d I} tloss | tloss | Nacpt tloss | nacpr  tloss Nocpt  tloss
1110 10| 39 509 | 340 447 4 2.74 9 281 2/6x 251
2110100 | 5.5 183 7.81 047 9 267 7 290 9 273
3120 10| 61 342 | 589 2.52 9 096 9 096 5 1.83
4)120100| 84 1201426 0.25 7 1.37 ) 1.17 7 114
5|40 10} 9.3 3.04|10.75 1.10 10 0.71 10 0.61 10 0.67
6|40 | 100 | 13.1 1.57 1 2544 0.12 6 0.72 6 0.70 4 0.69
7110 10 | 10.3 16.78 | 7.90 15.41 9 15.01 7 14.06 5 13.87
8110|100} 119 16.58| 11.9 9.96 9 16.09 8§ 17.11 6 15.54
9120 10 { 189 15.12 ]| 189 15.03 9 1145 9 12.06 9 13.19
10 { 20 | 100 | 21.7 15.61 | 19.28 10.72 10 11.86 9 11.72 10 12.08
11 | 40 10 { 376 11.93 | 28.74 7.33 8 497 8 488 10 7.52
12 | 40 | 100 | 41.2 11.15 | 37.31 7.29 7 637 7  6.00 9 6.77
13110 10 | 10.8 18.66 | 8.97 19.17 9 1823 8 17.08 5 17.74
14 [ 10 { 100 | 11.2 1848 | 10.32 18.55 9 18.16 6 18.05 4 17.66
15120) 10| 195 1748 [ 16.88 14.76 10 16.69 10 16.74 9 1645
16 [ 20 | 100 | 21.3 18.00 | 19.91 14.67 9 1788 9 16.93 5 17.22
17 (40| 10| 37.7 14.33 | 3146 10.30 10 10.10 10 10.00 10 9.69
18 | 40 | 100 | 40.7 14.45 | 38.28 10.22 10 10.32 10 10.76 10 10.36

+ only 6 instances are executable.

From Table 4.1, we observe that ILS-QAPG obtains acceptable solutions in many cases
while using smaller number of different cutting patterns than SHP and KOMBI. This may
indicate that the primal goal of ILS-QAPG is achieved. Table 4.1 also shows that tloss of
ILS-QAPG is smaller than that of SHP in 17 classes, and is smaller than that of KOMBI in
9 classes. Although ILS-QAPG has weaker constraint than SHP and KOMBI, these results
indicate that the trim loss of ILS-QAPG is sufficiently small for practical purposes.

Table 4.2 shows the CPU time of SHP, KOMBI and ILS-QAPG (with |II| = 3) for random



4.6 Computational Experiment

89

Table 4.2: CPU time in seconds of SHP, KOMBI and ILS-QAPG for random instances

class | m | d SHP | KOMBI | ILS-QAPG
1110| 10{ 0.09 0.14 0.07
2{10|100| 0.11 1.14 0.57
3|20 10| 228 1.74 0.38
420]100| 271 16.00 2.89
5|40 | 10| 180.10 38.03 3.25
6 | 40 | 100 | 256.58 | 379.17 20.85
7110] 10| o0.01 0.07 0.20
810|100 0.02 0.20 0.86
912 | 10| 0.04 1.34 1.54
1020|100 0.06 3.25 9.46
11|40| 10| 022 36.27 25.14
12|40 | 100 | 0.32 76.31 318.45
13(10] 10| o001 0.08 0.15
14 (10| 100 0.02 0.13 0.33
1520 10| 0.03 1.81 0.85
16 | 20 | 100 | 0.04 2.60 2.52
17|40 | 10| 0.16 50.93 4.87
18 | 40 | 100 | 0.24 70.94 40.75




90 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

instances, respectively. For these classes of instances, SHP and KOMBI are faster than ILS-
QAPG except for 2 classes (recall that KOMBI was run on a slower personal computer). In
summary, for random instances, we may conclude that, ILS-QAPG tends to produce solutions
of better quality in the sense of smaller numbers of different cutting patterns and small trim
loss, at the cost of consuming more computational time.

We next conducted computational experiments for real instances provided by a chemical
fiber industry. The data of these are available at our world wide web site!. There are 40
instances with m ranging from 6 to 29, L = 9080, 5180, d; ranging from 2 to 264, and [;
ranging from 500 to 2000. Table 4.3 (resp., Table 4.4) shows the results of SHP, GT and
ILS-QAPG for the instances with L = 9080 (resp., L = 5180).

Table 4.3 (resp., Table 4.4) tells that 20/20 (resp., 19/20) are acceptable for |II| = a,
16/20 (resp., 17/20) are acceptable for |II| = o — 1, and 10/20 (resp., 15/20) are acceptable
for |IT| = a — 2. GT also gives acceptable solutions in 19/20 instances (it fails to obtain a
feasible solution for one instance). SHP is designed so that a solution with f = 0 is output
(i.e., always acceptable). However, SHP and GT achieve this performance at the cost of using
larger number of different cutting patterns in most cases, as observed in Tables 4.3 and 4.4.
If we compare ILS-QAPG with SHP and GT from the view point of the obtained number of
different cutting patterns, SHP outperforms GT in Table 4.3, but the relation is reversed in
Table 4.4. This suggests that SHP performs well for instances in which the ratio of product
lengths I; to the length of stock rolls L is relatively small, but not so if the ratio is relatively
large. If we evaluate the quality of solutions from tloss (trim loss), SHP has smaller tloss
than those of ILS-QAPG and GT. The performance of SHP is remarkable in this respect, but
ILS-QAPG also performs reasonably well (considering that the minimization of the trim loss
is not a primal target of ILS-QAPG). It is worth mentioning that ILS-QAPG achieve almost
the same tloss even if smaller number of different cutting patterns are used; its performance
is robust is the sense of tloss.

Table 4.5 shows the CPU time of SHP, GT and ILS-QAPG with |II| = « for real instances,
respectively. The CPU time of SHP becomes extremely large for some instances, because SHP
generates a large number of candidate cutting patterns for such instances. Similar tendency
is observed for GT. The CPU time of ILS-QAPG is comparable to other two algorithms, and

appears to be more stable.

'http://www-or.amp.i.kyoto-u.ac. jp/members/umetani/data.html



4.6 Computational Experiment

91

Table 4.3: Computational results of SHP, GT and ILS-QAPG for real instances (L = 9080)

ILS-QAPG

SHP GT d=a | O=a-1]||I=a-2

m | baept | [II] f tloss | |II] f tloss| f tloss| f  tloss f tloss
6| 6.00 5 0 295 3 1 361 1 36713 3.27 | 236 10.62
71 7.00 4 0 5.62 3 9 158(| 1 099 099 15 1.00
8 [ 13.97 4 0 1.02 6 1 043 | 4 471 7 473 | 34 4.73
9( 9.96 5 0 278 6 10 076 2 675 2 6.8 | 21 6.39
10 | 10.82 5 0 173 6 1171 4 218123 215 | 97 219
11 | 11.69 5 0 233 7 175 8 2241 23 300 10 631
13 | 13.00 6 0 252 7 187 2 7.52 6.97 4 6.17
13 | 13.00 4 0 299 6 0 299 2 414 395 30 4.14
14 | 14.00 5 0 533 5 13 3.01{ 5 06317 1.03 [ 105 0.83
15 | 16.07 5 0 129 7 19 212 7 18111 095 40 1.78
16 | 16.84 6 0 287 8 3 702} 2 28| 7 269 19 244
17 (17121 12 0 1.02 8 5 698 0 308)] 6 3.31 3 294
18 | 18.00 6 0 229 10 5 1077 8 273]12 265 | 43 2.14
19 | 21.59 8 0 233110 9 404| 3 252 276 | 17 2.69
20 | 20.00 9 0 4.69 - - -1 2 335 3.44 4 172
23 | 25.92 8 0 258 11 0 6.02(18 31417 3.91 15 3.64
26 | 38.75 9 0 191 13 0 143923 27815 282 16 1.73
28 | 28.00 8 0 342 14 18 631 8 3.52 3.78{ 25 277
28 12946 | 12 0 236 14 5 7.79 2.15 2.04 2.15
2012900 13 0 295 10 9 1139 2 238 3 2.02 4 1.75




92 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

Table 4.4: Computational results of SHP, GT and ILS-QAPG for real instances (L = 5180)

ILS-QAPG

SHP GT HO=a |d=a-1}| |H=a~-2

m | bacpe | |III]  f tloss | |II] f tloss | f tloss f  tloss f tloss
6| 6.00 7 0 493 4 2 501 1 522 3 4651} 103 4.35
7| 700 10 0O 7.55 6 4 369 0 7.55 3 7.16 3 7.17
811397 10 0 3.16 4 1 343 |16 7.72 | 138 3.57 | 179 3.82
9( 9.96 9 0 6.75 6 3 837| 1 878 3 866 6 853
1011082 14 0 4.03 8 1 3.71 3 391 1 7.71 3 7.79
111169 | 12 0 2.89 8 1 410 1  4.61 2 5.57 4 5.12
131300 14 0 2.36 6 10 2.07 9 205 25 3.83 | 106 2.36
13 | 13.00 9 0 283 7 1 329 1 3.20 1 3.20 1 3.20
141400 11 0 3.20 6 1 3.60 1 5.56 6 3.72 37 5.54
151607 | 16 0 2.87 7 2 437 3 483 2 5.04 2 4.37
16 | 1684 | 10 0 2.71 8 1 242 3 192 19 4.15 38 3.05
17 | 17.12 9 0 292 9 9 334 2 327 2 3.36 2 3.27
18 11800 | 11 0 188 | 11 14 251 5 4.07 1 5.61 17 4.06
19 12159 | 25 0 4.75| 12 5  5.05 3 534 1 5.59 2 5.02
20 | 20.00 8 0 3.81 8 2 263 1 3.52 4 2.33 9 5.74
2312592 15 0 139 ]| 11 9 4.72 2 5.09 5 5.15 14 4.86
26 | 38.75 | 29 0 226 | 16 1 3.23 0 477 4 4.62 1 4.40
2812800 11 O 125} 13 10 1.73 5 381 12 3.89 14 3.36
2812946 15 0 137 | 12 5 258 7 4.51 5 4.74 16 4.72
2012900 | 13 0 122} 13 4 820 2 533 2 5.48 2 5.23




4.6 Computational Experiment

93

Table 4.5: The CPU time in seconds for real instances (L = 9080, 5180)

L = 9080 L =5180

m | SHP GT | ILS-QAPG | SHP l GT [ILS—QAPG

6 0.02 0.22 0.03] 001 | 011 0.09

7 0.01 0.82 0.28 | 0.09 | 0.27 0.23

8 0.02 1.32 0.10 { 0.07 | 0.22 0.20

9 0.02 0.93 041 | 010 | 1.65 0.43
10 0.08 1.54 0.351] 0.20 | 0.44 0.59
11 0.05 2.42 041 | 0.30 | 0.99 1.00
13 0.17 3.62 068 | 0.20 | 241 0.45
13 0.30 2.85 023 | 0.06 | 088 0.32
14 0.16 1.54 0.32 | 0.07 | 192 0.31
15 0.13 2.47 0.73 | 1.54 | 104 0.46
16 0.17 9.11 0.56 | 0.04 | 6.86 0.98
17 | 46.62 3.57 1.52 | 0.06 | 3.85 1.46
18 0.22 | 26.97 0.48 1 0.05 | 285 1.93
19 2.33 3.24 2.06 | 237 | 5.55 3.27
20 4.09 - 0.68 | 0.03 | 10.87 0.46
23 0.40 | 36.03 264 ( 0.17 | 12.80 2.70
26 1.27 7.80 5.06 | 2.26 | 15.92 14.52
28 4.80 | 596.99 2.62 | 0.27 | 20.87 3.88
28 | 197.74 | 25.70 809 i 049 | 917 5.08
29 | 597.02 | 78.27 237 023 | 6.15 4.42




94 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

4.7 Reduction of Computational Time

To understand the rapid growth of CPU time of ILS-QAPG with m in Table 4.2, we conducted
additional computational experiment. That is, for the instances generated by CUTGEN with
d = 100, (v1,2) = (0.01,0.8) and m = 10, 15,20, 30, 40, we applied the simple local search
algorithm LS-QAPG from initial solutions generated by INIT. LS-QAPG was applied to 10
instances for each m, in which two cases of ¥ = m + 1 and v = 5 were tested (recall that -y
is a program parameter which restricts the number of candidate cutting patterns scanned).
Here, the number of different cutting patterns |II| is set to |IIsyp| — 2. Table 4.6 gives the

results of this experiment, where
7 : the average of different cutting patterns [II| (|II| = |lIsue| — 2).

#f : the average of evaluations of f(II, X) in one execution of LS-QAPG (i.e., the number
of calls to NGS).

#loops : the average of iterations of the loop (Step 2-4) in one execution of NGS.
#moves : the average of moves in one execution of LS-QAPG.

CPU time : the average of CPU time in one execution of LS-QAPG in seconds.

Table 4.6: Performance of LS-QAPG for random instances

5y m n #f #loops | #moves | CPU time | ngcp: | tloss
10 99| 179.5 32.57 2.0 0.0953 8| 16.13

15 | 14.7 | 352.3 38.96 24 0.468 7111.24

m+1 |20 19.7] 974.8 34.65 7.7 1.91 6 | 11.17
30 | 28.7 | 2098.0 49.33 10.4 11.4 6| 5.54

40 | 39.2 | 4014.9 65.54 174 51.4 7 547

10] 9.9 92.6 29.27 2.3 0.0455 8 | 15.82

15 | 14.7 | 175.6 23.95 4.8 0.145 9 11.72
5120197 | 2658 31.12 7.3 0.459 6| 11.12
301 28.7| 397.3 35.04 5.7 1.50 6| 525

40 | 39.2 | 553.8 61.41 114 6.65 6| 5.19




4.8 Conclusion 95

From Table 4.6, we see that i, #f, #loops and #moves are approximately proportional
to m099 m224 m030 and m1%6 respectively. As the time to execute one loop of NGS can
be estimated as O(mn), this tells that the average CPU time of one execution of LS-QAPG
is roughly given by

#f - #loops - O(mn) = O(m* ™), (4.27)

which may be justified by the column of CPU time (i.e., proportional to m#*54).

These observations suggest that, in order to prevent the rapid growth of the CPU time

with m, it is important

(i) to reduce the size of neighborhood without sacrificing the power of the local search algo-

rithm,

(ii) to improve the Gauss-Seidel method (or to use other methods) so that #loops and the

time for one loop can be reduced.

Although the point (ii) still remains to be a topic of future research, we tried point (i) by
controlling the parameter « in Step 2 of LS-QAPG (recall that v restricts the number of
cutting patterns scanned). For example, in all computational experiments of Section 4.7, we
used v = [(m + 1)/10] instead of v = m + 1. This modification reduced the CPU time to
about 1/10 of that of Table 4.6, almost without sacrificing the power of local search algorithm.
Table 4.6 also contains the results with v = 5 (i.e., constant). In this case, #f decreases to
m!? from m224, the average CPU time of one execution of LS-QAPG decreases to m3-°
from m*%¢. This modification still does not appear to sacrifice the power of local search

algorithm much.

4.8 Conclusion

We considered in this chapter another formulation of 1D-CSP based on a real application of
a chemical fiber industry, called the quadratic deviation minimization problem (1D-QDP), in
which both underproduction and overproduction of products are allowed. For this problem,
we proposed an iterated local search algorithm based on the quadratic version of the adaptive
pattern generation (ILS-QAPG). ILS-QAPG tries to find a set of n cutting patterns yielding
sufficiently small deviation from demands. Solutions in the neighborhood is obtained by

removing one cutting pattern in the current set and adding one new cutting pattern in the



96 Chapter 4 A Variant of 1D-PRP Allowing Underproduction and Overproduction

candidate list. To generate onfy promising solutions in the neighborhood search, we introduce
the quadratic version of the adaptive pattern generation (QAPG) which generates new cutting
patterns based on the residual demands when one cutting pattern is removed. We conducted
computational experiments for random instances generated by CUTGEN and real instances
in a chemical fiber industry, and observed that the performance of ILS-QAPG is comparable
to other existing heuristic algorithm SHP, KOMBI and GT (which solve a slightly different
formulation of 1D-CSP).



Chapter 5

Conclusion

Throughout this thesis, we considered several mathematical models and metaheuristic algo-
rithms for one dimensional cutting stock problems (1D-CSP). The contribution of this thesis

is summarized as follows.

First, we proposed a new formulation by considering the number of different cutting
patterns n as an input parameter given by users. We call this variant of 1D-CSP as the
pattern restricted version of 1D-CSP (1D-PRP), which minimizes the number of stock rolls.
By solving 1D-PRP for different parameter values n, we can obtain trade-off curves between
the different number of cutting patterns and the number of stock rolls. Using this, we can
make more careful analyses of these objective functions, and give more desirable solutions

according to requirements of users.

Second, for this problem 1D-PRP, we proposed a local search algorithm based on an
adaptive pattern generation (LS-APG). It starts from an initial solution obtained by a mod-
ified first fit heuristic (MFF) known for the bin packing problem (BPP). Solutions in the
neighborhood are defined by removing two cutting patterns from the current solution and
adding two néw cutting patterns from the set of candidate cutting patterns. However, the
number of all feasible cutting patterns is too large to evaluate all of them, since it grows
exponentially in the number of products. To facilitate the search in the neighborhood, we
introduced the adaptive pattern generation (APG) to construct a small subset of the neigh-
borhood containing good solutions. The adaptive pattern generation is based on the residual
demands when two cutting patterns are removed from the current solution. From computa-

tional experiments for random instances, we observed that LS-APG attains a wide variety of

97



98 Chapter 5 Conclusion

good solutions comparable to SHP and KOMBI, and LS-APG provides reasonable trade-off
curves between the number of different cutting patterns and the number of stock rolls over a

very wide range.

Next, we proposed another local search algorithm based on linear programming techniques
(LS-LP). It starts from an initial solution obtained by a modified first fit heuristic (MFF)
other than that of LS-APG. Solutions in the neighborhood are restricted to those obtainable
by perturbating one cutting pattern in the current set of cutting patterns. In order to find
promising directions, we utilize a dual optimal solution of LP relaxation problem of the
auxiliary integer programming problem. Although solutions of LP relaxation is not integer
valued, they provide reasonably accurate information as these integrality gaps are rather
small in most instances of 1D-CSP. Since the local search algorithm requires to solve a large
number of LP relaxations which are only slightly different each other, we start the simplex
algorithm from the optimal simplex tableau of the previous solution, instead of starting it
from scratch. We modify the simplex algorithm by applying sensitivity analysis techniques,
and apply a variant of the simplex algorithm called the criss-cross algorithm to compute an
optimal solution. In order to enhance the local search algorithm, we introduce an iterated
local search approach. According to computational experiments for random instances, we
observed that the iterated local search algorithm based on linear programming techniques
(ILS-LP) obtains a wide variety of good solutions, and provides reasonable trade-off curves
between the number of different cutting patterns and the number of stock rolls, similarly to

LS-APG.

Finally, we considered another formulation of 1D-CSP on a real application of a chemical
fiber industry, called the quadratic deviation minimization problem (1D-QDP), in which both
underproduction and overproduction of products are allowed. For this problem, we proposes
an iterated local search algorithm based on the quadratic version of the adaptive pattern
generation (ILS-QAPG). It tries to find a set of n cutting patterns yielding sufficiently small
deviation from demands. Solutions in the neighborhood is obtained by removing one cutting
pattern in the current set and adding one new cutting pattern in the candidate list. To
generate only promising solutions in the neighborhood search, we introduce the quadratic
version of the adaptive pattern generation (QAPG) which generates new cutting patterns
based on the residual demands when one cutting pattern is removed. We conducted com-

putational experiments for random instances and real instances in a chemical fiber industry,



99

and observed that the performance of ILS-QAPG is comparable to other existing heuristic
algorithm SHP, KOMBI and GT (which solve a slightly different formulation of 1D-CSP).
In recent years, as most of systems in real applications have become more sophisticated,
problems have become more complicated than those simple local search and metaheuristic
algorithms can handle. In order to cope with these phenomena, many hybrid algorithms
have been studied, i.e., various heuristic algorithms and exact algorithms are introduced
to local search algorithms and metaheuristic algorithms, or basic principle of metaheuristic
algorithms are combined together to make more powerful tools solving these intractable
problems. However, we must take into account the fact that these hybridization of algorithms
may often spoil the flexibility and simplicity of local search and metaheuristic algorithms. The
author hopes that this thesis will provide some assistance to the community of metaheuristic

algorithms.



Bibliography

(1] E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization,
John Wiley and Sons (1997).

[2] E.H.L. Aarts, P.J.M. Laarhoven, C.L. Liu and P. Pan, “VLSI layout synthesis,” in:
Local Search in Combinatorial Optimization, E.-H.L. Aarts and J.K. Lenstra (eds.),
John Wiley and Sons (1997) 415-440.

[3] R.K. Ahuja, J.B. Orlin and D. Sharma, “Very large-scale neighborhood search,”
International Transactions in Operational Research 7 (2000) 301-317.

[4] E.J. Anderson, C.A. Glass and C.N. Potts, “Machine scheduling,” in: Local Search
in Combinatorial Optimization, E.-H.L. Aarts and J.K. Lenstra (eds.), John Wiley and
Sons (1997) 361-397.

[5] J.E. Beasley, “An algorithm for solving large capacitated warehouse location problems,”

European Journal of Operational Research 33 (1988) 314-325.

[6] J.E. Beasley, “Lagrangian heuristics for location problems,” FEuropean Journal of

Operational Research 65 (1993) 383-399.
[7] D.P. Bertsekas, Nonlinear Programming, Athena Scientific (1995).
[8] P. Brucker, Scheduling Algorithms, Springer-Verlag (1995).

[9) B. Cao and F. Glover, “Tabu search and ejection chains — application to a node
weighted version of the cardinality-constrained TSP,” Management Science 43 {1997)
908-921.

[10] A. Caprara, M. Fischetti and P. Toth, “A heuristic method for the set covering
problem,” Operations Research 47 (1999) 730-743.

101



102 BIBLIOGRAPHY

[11] S. Ceria, P. Nobili and A. Sassano, “A Lagrangian-based heuristic for large-scale set

covering problems,” Mathematical Programming 81 (1998) 215-228.

[12] M. Chams, A. Hertz and D. de Werra, “Some experiments with simulated annealing

for coloring graphs,” European Journal of Operational Research 32 (1987) 260-266.

[13] I Charon and O. Hudry, “The noising method: a new method for combinatorial
optimization,” Operations Research Letters 14 (1993) 133-137.

[14] C.H. Cheng, B.R. Feiring and T.C.E. Cheng, “The cutting stock problem — a survey,”
International Journal of Production Economics 36 (1994) 291-305.

[15] K.L. Clarkson, “A Las Vegas algorithm for linear and integer programming when the
dimension is small,” Journal of the ACM 42(2) 488-499.

[16] B. Codenotti, G. Manzini, L. Margara and G. Resta, “Perturbation: an efficient
technique for the solution of very large instances of the Euclidean TSP,” INFORMS
Journal of Computing 8 (1996) 125-133.

[17] G.B. Dantzig, Linear Programming and Eztensions, Princeton University Press (1963).

[18] Z. Degraeve and L. Schrage, “Optimal integer solutions to industrial cutting stock
problems,” INFORMS Journal of Computing 11(4) (1999) 406-419.

[19] M. Dorigo and L.M. Gambardella, “Ant colony system: a cooperative learning approach
to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation

1 (1997) 53-66.

[20] A. Drexl and A. Kimms, “Lot sizing and scheduling — survey and extensions,” Euro-

pean Journal of Operational Research 99 (1997) 221-235.

[21] G. Dueck and T.Scheuer, “Threshold accepting: a general purpose optimization algo-
rithm appearing superior to simulated annealing,” Journal of Computational Physics

90 (1990) 161-175.

[22] G. Dueck, “New optimization heuristics: the great deluge algorithm and record-to-

record travel,” Journal of Computational Physics 104 (1993) 86-92.



BIBLIOGRAPHY 103

[23] H. Dychoff, “A typology of cutting and packing problems,” European Journal of
Operational Research 44 (1990) 145-159.

[24] H. Dyckhoff, G. Scheithauer and J. Terno, “Cutting and packing,” in: M. Dell’ Amico,
F. Maffioli and S. Martello (eds.), Annotated Bibliographies in Combinatorial Optimiza-
tion, John Wiley and Sons (1997) 393-413.

[25] T. Fahle, U. Junker, S.E. Karisch, N. Kohl, M. Sellmann and B. Vaaben, “Constraints
programming based column generation for crew assignment,” Journal of Heuristics 8

(2002) 59-81.

[26] A.A.Farley and K.V. Richardson, “Fixed charge problems with identical fixed charges,”
European Journal of Operational Research 18 (1984) 245-249.

[27] T.A. Feo, M.G.C. Resende and S.H. Smith, “A greedy randomized adaptive search
procedure for maximum independent set,” Operations Research 42 (1994) 635-643.

[28] M.L. Fisher, “The Lagrangian relaxation method for solving integer programming

problems,” Management Science 43 (1997) 1520-1536.

[29] H. Foerster and G. Wascher, “Pattern reduction in one-dimensional cutting stock

problems,” International Journal of Production Research 38 (2000) 1657-1676.

[30] L.M. Gambardella, E.D. Taillard and M. Dorigo, “Ant colonies for the quadratic
assignment problem,” Journal of Operations Research Society 50 (1999) 167-176.

[31] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-completeness, W.H.Freeman and Company (1979).

[32] T. Gau and G. Wascher, “CUTGEN1: a problem generator for the standard one-

dimensional cutting stock problem,” FEuropean Journal of Operational Research 84

572-579.

[33] M. Gendreau, G. Laporte and J.Y. Potvin, “Vehicle routing: modern heuristics,”
in: Local Search in Combinatorial Optimization, E.H.L. Aarts and J.K. Lenstra (eds.),
John Wiley and Sons (1997) 311-336.

[34] P.C. Gilmore and R.E. Gomory, “A linear programming approach to the cutting-stock
problem,” Operations Research 9 (1961) 849~859.



104

BIBLIOGRAPHY

[35] P.C. Gilmore and R.E. Gomory, “A linear programming approach to the cutting-stock

problem — part II,” Operations Research 11 (1963) 863-888.

[36] F. Glover, “Tabu search — Part I,” ORSA Journal on Computing 1 (1989) 190-206;

“Part II”, ditto 2 (1990) 4-32.

[37] F. Glover, “Genetic algorithms and scatter search: unsuspected potentials,” Statistics

and Computing 4 (1994) 131-140.

[38] F. Glover, “Scatter search and star-paths: beyond the genetic metaphor,” OR Spektrum

(39]

[40]

[41]

[42]

[43]

[44]

j45)

[46]

17 (1995) 125-137.

F. Glover, “Ejection chains reference structures and alternating path methods for

traveling salesman problems,” Discrete Applied Mathematics 65 (1996) 223-253.

F. Glover and G.A. Kochenberger, “Critical events tabu search for multidimensional
knapsack problems,” in: ILH. Osaman and J.P. Kelly (eds.), Meta-Heuristics: The
Theory and Applications, Kluwer Academic Publisher (1996) 407-427.

F. Glover and M. Laguna, Tabu Search, Kluwer Academic Publishers (1997).

D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley (1989).

C. Goulimis, “Optimal solutions for the cutting stock problem,” European Journal of
Operational Research 44 (1990) 197-208.

M. Gradisar, M. Kljajié, G. Resinovic and J. Jesenko, “A sequential heuristic procedure
for one-dimensional cutting,” FEuropean Journal of Operational Research 114 (1999)

557-568.

J. Gu and X. Huang, “Efficient local search with search space smoothing: a case study
of the traveling salesman problem (TSP),” IEEFE Transactions on Systems, Man, and
Cybernetics 24 (1994) 728-735.

R.W. Haessler, “A heuristic programming solution to a nonlinear cutting stock prob-

lem,” Management Science 17(12) (1971) 793-802.



BIBLIOGRAPHY 105

[47] R.W. Haessler, “Controlling cutting pattern changes in one-dimensional trim prob-

[48]

[49]

[50]

[51]

[52]

[53]

[54]

(53]

[56]

lems,” Operations Research 23(3) (1975) 483-493.

R.W. Haessler, “A note on computational modifications to the Gilmore-Gomory cutting

stock algorithm,” Operations Research 28(4) (1980) 1001-1005.

R.W. Haessler and P.E. Sweeney, “Cutting stock problems and solution procedures,”
European Journal of Operational Research 54 (1991) 141-150.

S. Hanafi and A. Freville, “An efficient tabu search approach for the 0-1 multidi-
mensional knapsack problem,” European Journal of Operational Research 106 (1998)
659-675.

P. Hansen and N. Mladenovié¢, “An introduction to variable neighborhood search,” in:
S. Vo8, S. Martello, I.LH. Osman and C. Roucairol (eds.), Meta-Heuristics: Advances
and Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers
(1999) 433-458.

Al Hinxman, “The trim-loss and assortment problems: a survey,” European Journal

of Operational Research 5 (1980) 8-18.

K.L. Hoffman and M. Padberg, “Solving airline crew scheduling problems by branch-
and-cut,” Management Science 39(6) (1993) 657-682.

J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence, The University of
Michigan Press (1975), and MIT Press (1992).

D.S. Johnson, C.R. Aragon, L.A. McGreoch and C. Schevon, “Optimization by sim-
ulated annealing: an experimental evaluation; part I, graph partitioning,” Operations
Research 37 (1989) 865-892; “part II, graph coloring and number partitioning,” ditto
39 (1991) 378-406.

D.S. Johnson, “Local optimization and the traveling salesman problem,” in: M.S. Pa-
terson (eds.), Automata, Languages and Programming, Lecture Notes in Computer

Science 443 (1990) 446-461.



106 BIBLIOGRAPHY

[57] D.S. Johnson and L.A. McGeoch, “The traveling salesman problem: a case study,”
in: E.H.L. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization,
John Wiley and Sons (1997).

[58] R.E. Johnston, “Rounding algorithm for cutting stock problems,” Journal of Asian-
Pacific Operations Research Societies 3 (1986) 82-92.

[59] L.V. Kantorovich, “Mathematical methods of organising and planning production,”

Management Science 6 (1960) 366-422.

[60] B.W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”
Bell System Technical Journal 49 (1970) 291-307.

[61] G.A.P. Kindervater, “Vehicle routing: handling edge exchanges,” in: Local Search in
Combinatorial Optimization, EH.L. Aarts and J.K. Lenstra (eds.), John Wiley and
Sons (1997) 337-360.

[62] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi, “Optimization by simulated anneal-
ing,” Science 220 (1983) 671-680.

[63] M. Laguna, T.A. Feo and H.C. Elrod, “A greedy randomized adaptive search procedure
for the two-partition problem,” Operations Research 42 (1994) 677-687.

[64] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.), The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, John Wiley and
Sons (1985).

[65] S.Lin and B.W. Kernighan, “An efficient heuristic algorithm for the traveling salesman
problem,” Operations Research 21 (1973) 498-516.

[66] R.A. Murphey, P.M. Pardalos and M.G.C. Resende, “Frequency assignment problems,”
in: Handbook of Combinatorial Optimization, Kluwer Academic Publishers (1999).

[67] C. McDiarmid, “Pattern minimisation in cutting stock problems,” Discrete Applied

Mathematics 98 (1999) 121-130.

[68] O. Marcotte, “The cutting stock problem and integer rounding,” Mathematical Pro-
gramming 33 (1985) 82-92.



BIBLIOGRAPHY 107

[69] O.C. Martin, S.W. Otto and E.W. Felten, “Large-step markov chains for the TSP
incorporating local search heuristic,” Operations Research Letters 11 (1992) 219-224.

[70] N. Megiddo, “Linear programming in linear time when the dimension is fixed,” Journal

of the ACM 31 114-127.

[71] N. Mladenovi¢ and P. Hansen, “Variable neighborhdod search,” Computers and
Operations Research 24 (1997) 1097-1100.

[72] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, John
Wiley and Sons (1988).

[73] LH. Osman and J.P. Kelly (eds.), Meta-Heuristics: Theory and Applications, Kluwer
Academic Publishers (1996).

[74] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
complezity, Printice-Hall (1982).

[75] E. Pesch and F. Glover, “TSP ejection chains,” Discrete Applied Mathematics 76
(1997) 165-181.

[76] J.F. Pierce, “On the solution of integer cutting stock problems by combinatorial
programming, Part 1, IBM Technical Report 36.Y02, Cambridge Scientific Center,
Cambridge, MA (1966).

[77] C.R. Reeves, Modern Heuristics Techniques for Combinatorial Problems, Black-well
Scientific Publications (1993); re-issued by McGraw-Hill (1995).

[78] S. Sahni, “Approximates for the 0/1 knapsack problem,” Journal of the Association
for Computing Machinery 22 (1) (1975) 115-124.

[79] G. Scheithauer and J. Terno, “The modified integer round-up property of the one-
dimensional cutting stock problem,” European Journal of Operational Research 84

(1995) 562-571.

[80] G. Scheithauer and J. Terno, “A branch-and-bound algorithm for solving one-

dimensional cutting stock problems exactly,” Applied Mathematics 23 (1995) 151-167.



108 BIBLIOGRAPHY

[81] G. Scheithauer and J. Terno, “Theoretical investigations on the modified integer
round-up property for the one-dimensional cutting stock problem,” Operations Research

Letters 20 (1997) 93-100.

[82] D.H. Smith, S. Hurley and S.U. Thiel, “Improving heuristics for the frequency assign-
ment problem,” European Journal of Operational Research 107 (1998) 76-86.

[83] H. Stadtler, “A one-dimensional cutting stock problem in the aluminum industry and
its solution,” European Journal of Operational Research 44 (1990) 209-223.

[84] E. Sweeney and R. W. Haessler, “One-dimensional cutting stock decisions for rolls with

multiple quality grades,” European Journal of Operational Research 44 (1990) 224-231.

[85] T. Terlaky, “A convergent Criss-cross method,” Mathematische Operationsforscheung

und Statistics ser. Optimization 16 (1985) 683-690.

[86] E. Tsang and C. Voudouris, “Fast local search and guided local search and their
application to British Telecom’s workforce scheduling problem,” Operations Research

Letters 20 (1997) 119-127.

[87] S. Umetani, M. Yagiura and T. Ibaraki, “One dimensional cutting stock problem to
minimize the number of different cutting patterns,” European Journal of Operational

- Research 146(2) (2003) 388-402.

[88] S. Umetani, M. Yagiura and T. Ibaraki, “A local search approach to the pattern

restricted one dimensional cutting stock problem,” submitted for publication.

[89] S. Umetani, M. Yagiura and T. Ibaraki, “An LP-based local search to the one dimen-
sional cutting stock problem using a given number of cutting patterns,” to appear The

IEICE Transactions on Fundamentals.

[90] S. Umetani, M. Yagiura and T. Ibaraki, “A local search approach for one dimensional
cutting stock problem,” Proceedings of 4th Metaheuristics International Conference

(MIC2001) (2001) 69-73.

[91] S. Umetani, M. Yagiura and T. Ibaraki, “An LP-based local search to the one dimen-
sional cutting stock problem using a given number of cutting patterns,” Proceedings of

the 1st International Workshop on Heuristics (IWH2002) (2002) 28-38.



BIBLIOGRAPHY 109

[92] R. Vahrenkamp, “Random search in the one-dimensional cutting stock problem,”
European Journal of Operational Research 95 (1996) 191-200.

[93] P.H. Vance, “Branch-and-price algorithms for the one-dimensional cutting stock prob-

lem,” Computational Optimization and Applications 9 (1998) 211-228.

[94] F. Vanderbeck, “Computational study of a column generation algorithm for bin packing

and cutting stock problems,” Mathematical Programming 86 (1999) 565-594.

[95] F. Vanderbeck, “Exact algorithm for minimising the number of setups in the one-

dimensional cutting stock problem,” Operations Research 48 (2000) 915-926.

[96] C. Voudouris and E. Tsang, “Guided local search and its application to the traveling
salesman problem,” European Journal of Operational Research 113 (1999) 469-499.

[97] W.E. Walker, “A heuristic adjacent extreme point algorithm for the fixed charge
problem,” Management Science 22(5) (1976) 587-696.

[98] G. Wascher and T. Gau, “Heuristics for the integer one-dimensional cutting stock

problem: a computational study,” OR Spektrum 18 (1996) 131-144.
(99] L.A. Wolsey, Integer Programming, John Wiley and Sons (1998).

[100] M. Yagiura, T. Ibaraki and F. Glover, “An ejection chain approach for the generalized
assignment problem,” Technical Report #99013, Department of Applied Mathematics
and Physics, Graduate School of Informatics, Kyoto University (1999).

[101] M. Yagiura and T. Ibaraki, “On metaheuristic algorithms for combinatorial optimiza-

tion Problems,” Systems and Computers in Japan 32(3) (2001) 33-55.

[102] M. Yagiura and T. Ibaraki, “Local search,” in: P.M. Pardalos and M.G.C. Resende
(eds.), Handbook of Applied Optimization, Oxford University Press (2002) 104-123.

[103] S. Zionts, “The criss-cross method for solving linear programming problems,” Man-

agement Science 15 (1969) 426-445.



