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CHAPTER 1

Introduction

In this thesis, we study integrable systems and their applications to numerical algorithms for
computing singular value decomposition (SVD). We first prove that singular values are com-
putable by using certain integrable systems. We design a numerical algorithm, named the dis-
crete Lotka-Volterra (dLV) algorithm, for computing singular values. Next we explain several
features of the dLV algorithm and propose a method for computing the corresponding singular
vectors. Finally by introducing a shift of origin to dLV algorithm to accelerate the convergence
we design a new efficient SVD algorithm with respect to both convergence speed and numerical

accuracy.

1. Numerical algorithms for singular value decomposition in LAPACK

One of the most important decompositions in matrix computation is the SVD. For any rect-
angular matrix 4 € R, there are orthogonal matrices U € R and V € R™" such that UTAV
holds UTAV = (£ O)T or (T 0), where £ = diag(cy,07%, -+ ,0p), 01 202 220, 20,
p = min{¢, m} and O is the zero matrix. Here o, k = 1,2, ..., p are singular values of 4. Here
A=UEO0)V" or UZ O)VT is just the SVD of 4.

The SVD is a powerful technique dealing with certain equations or matrices that are either
singular or numerically very close to singular. It allows us to comprehend problems related to
a given rectangular matrix and provides numerical answer as well. Many times we encounter
the SVD approch in the linear Least Squares (LS) problem to find a real m-vector xo minizing
the euclidean length of 4x — b, where b is a given real £-vector and the rank of 4 is less than
min{¢, m} [20]. The SVD is related to the LS problem and is particularly useful in analyzing the
effect of data errors as they influence solutions to the LS problem. The LS problem is known
by different names by those in scientific disciplines. Namely the SVD has wider application in
many fields, for example, mathematics, numerical analysis, statistics, engineering and so on.

The practical SVD is indirectly utilized in a wide variety of domains, for example, the mul-
tivariate data analysis and the 3 dimensional (3D) reconstruction in the computer vision field.
Now there are several demands for such computation of the SVD as fast computation, appli-
cability to large-size problem, and high relative accuracy. In the multivariate data analysis, the
SVD is used for the latent semantic indexing (LSI) [3]. The LSI takes a large matrix of term-
document association data and constructs a semantic space. The SVD arranges the space to
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reflect the major associative patterns in the data, and ignore the smaller, less important influ-
ences. The amount of the data on the WEB is increasing day by day. It requires fast computation
of the large-size SVD problem. In the computer vision field, the 3D reconstruction technique
recovers the 3D geometry from an 2D image sequence which is given by a matrix [43]. The
SVD enables us to compute both shape and motion at the same instant by factoring the matrix
into two matrices which represent objective shape and camera rotation, respectively. The 3D
reconstruction has been used in robot vision and autonomous vehicles. The 3D geometry data
deeply affects the stability of robots and vehicles with respect to their visual perceptions. It is
essential for the SVD to compute stably with high relative accuracy in these cases.

Rutishauser improved his guotient difference (qd) algorithm to compute, for example, poles
of a class of meromorphic functions. The original qd algorithm [35] takes a simple form and is
free from any square root computation, however, it is not always stable. Therefore a progressive
form of the gqd (pqd) algorithm and its variant called the differential qd (dgd) algorithm were
presented by himself. See the book [38] by Rutishauser and a survey paper [32] by Parlett for
those improved qd algorithms.

It can be applied to a matrix eigenvalue problem for a tridiagonal matrix as the LR algorithm
[37]. The pqd algorithm is backward stable when every qd variables are positive [38]. In this
case the eigenvalues are all real, positive and simple (see [38], p.468). The dqd algorithm does
not need any subtractions (see [7], p.198). Though the QR algorithm was found in 1961 as a
stable variant of the qd algorithm [33], the qd algorithm itself has not occupied a major position
in numerical linear algebra up to ’90s.

In 1965, Golub and Kahan (see [8]) proposed an effective SVD algorithm consisting of
two distinct processes. The first process is a transformation of any given rectangular matrix
A € RP™(£ > m) to an upper bidiagonal matrix B € R™™ without changing singular values. The
Householder transformation is adopted for this process. The second process of the Golub-Kahan
SVD algorithm is performed by applying the OR algorithm to the symmetric positive tridiagonal
matrix BT B. Then each singular value of 4 is given as the positive square root of each eigenvalue
of BTB. An SVD of 4 in the case £ < m is also performed by the same process as the case
¢ > m. Several results based on their idea have been found. Especially, the QR algorithm part
is improved by Golub-Reinsch[9], Demmel-Kahan[6] and so on. Golub-Reinsch introduced
a shift of origin into the QR algorithm. The Golub-Reinsch version computes an SVD of B
much faster than the original QR algorithm. In 1990 Demmel-Kahan proposed a definitive
version of the QR algorithm, and then were awarded the second SIAM prize in numerical linear
algebra. The Demmel-Kahan (DK) algorithm requires many times of square root computation
and computed singular value is in relative error less than O(m*€), where m is the size of matrix
and ¢ is as small as machine epsilon. In recent years, it is known that the cost of square root
computation becomes almost same as that of division. Singular vectors are also computed in
the same accuracy.



In 1994, Fernando and Parlett [7] considered singular value computations in terms of the
pqd and dqd algorithms. The pqd algorithm does not require more computational cost per 1-
step than the dqd algorithm. To accelerate the convergence a shift of origin is most important.
Though the convergence speed is accelerated by introducing a shift of origin, the shifted qd
(qds) algorithm is not always numerically stable. The qds variables may diverge to infinity by
a too large shift. Fernando-Parlett proved in [7] that the shifted differential qd (dqds) algorithm
has a wider domain of numerical stability than that of the qds algorithm. They claimed that their
shifted algorithm can be used in a variety of applications, provided that all the shifts do not cause
an underflow, an overflow or a devision by zero. However, in their paper we can not find how
to determine such shifts. A shift which exceeds the smallest singular value may cause overflow.
Error analysis and stability of the dqds algorithm was also investigated. It is to be noted that the
computed singular values by the dqd algorithm are in relative error by no more than O(m’e).
Since the dqds algorithm has few roundoff error, the dqd algorithm preserves higher relative
accuracy than the DK algorithm based on QR. The dqds algorithm also preserves high relative
stability [7]. It has quadratic convergence or more, but it may overflow and a suitable shift-size
is not known a priori. In 2000, a practical dqds algorithm is discussed by Parlett-Marques [34].
Though the optimum shift stratagy of the dqds algorithm has not yet been discovered, the dqds
algorithm avoids numerical unstablility by programming technique on computer.

Nowadays both the DK and the dqds algorithm are useful in Linear Algebra Package (LA-
PACK) routines [5]. LAPACK is a freely available software package provided on the webpage
[21] and is a library of Fortran 77 routines for solving the most commonly occurring problems
in numerical linear algebra: systems of linear equations, linear least squares problems, eigen-
value problems, and singular value problems. The associated factorizations (LU, Cholesky,
QR, SVD, Schur, generalized Schur) are also provided, as well as such related computations
as reordering of the Schur factorizations and estimating condition numbers. Dense and banded
matrices are handled, but not general sparse matrices. In many fields, a similar performance is
provided for real and complex matrices, in both single and double precisions. The LAPACK li-
brary was developed at the University of Tennessee and is a de facto industry standard. Namely,
LAPACK has been designed to be efficient on wide range of high-performance computers. The
DK algorithm is open to the public as the routine “DBDSQ” in LAPACK. There are some LA-
PACK routines for computing singular values of upper bidiagonal matrices B, however only an
DBDSQR routine has a good performance for computing SVD. The latest version of the dqds
algorithm is also adopted as a LAPACK routine “DLASQ” for computing singular values not
an SVD of B. The DLASQ routine requires only considerably less computational cost than the
DBDSQR routine. In general cases, the convergence speed and numerical accuracy of DLASQ
is superior than that of DBDSQR without computing singular vector. According to the detail
accounts of LAPACK, the DLASQ routine is recommended for computing singular values not
SVD and the DBDSQR routine should be used for SVD.
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2. Integrable systems and numerical algorithms

The notion of integrability is rigidly defined for Hamilton systems. If a Hamilton system
with N degree of freedom has N independent conserved quantities which are in involution, then
the system of ordinary differential equations (ODEs) is said to be integrable in the sense in
which the system can be linearized in terms of successive canonical transformations and be
solved by quadrature. This is the main result in the Liouville-Arnold theory. Generally it is
not easy to obtain explicit solutions and conserved quantities for a given nonlinear equation.
For a class of integrable systems one can find explict determinantal solutions and conserved
quantities with the help of Lax form and Hirota’s bilinear form.

Some numerical algorithms are regarded as discrete-time dynamical systems whose soluions
converge to their equilibrium points as dicrete-time goes to infinity. We can investigate the
asymptotic behaviours of these dynamical systems by analyzing the explicit solutions. Such
dynamical systems would be integrable systems. Moreover the discretizations of integrable
systems, whose solutions converge to worthful quantites, may yeild well-known or new algo-
rithms. Here it is important to introduce the different boundary conditions from in the case of
soliton solutions. It is remarkable that the continuous Toda equation already appeared in [36] as
a continuous limit of the qd recurrence relation. A time discretization of continous Toda equa-
tion is just the recurrence relation which appear in the qd algorithm [14]. It is here emphasized
that the qd algorithm is shown to compute eigenvalues by using special features of the discrete
Toda equation. A solution of the discrete Toda equation is written by a Hankel determinant. By
an asymptotic expansion of Hankel determinant [11], it is shown that the solution of the discrete
Toda equation converges to some limit ¢, as the discrete time goes to infinity. Simultaneously,
we see that the qd variable converges to ¢; as the iteration number goes to infinity. A Lax form
of the discrete Toda equation [14] plays a key role to prove that the limit ¢; is eigenvalue of the
given tridiagonal matrix.

There are also other various relationships between numerical algorithms and integrable sys-
tems. For example, a time-1 evolution of the continuous-time finite nonperiodic Toda equa-
tion which appears in mathematical physics is equivalent to 1-step of the QR algorithm for
computing eigenvalues of a given symmetric tridiagonal matrix [23, 42]. There are various
relationships between numerical algorithms and integrable systems. A BCH-Goppa decoding
algorithm is designed by the Toda equation [27]. In convergence acceleration algorithms, the re-
currence relations of the n-algorithm, e-algorithm, the n-term of the E-algorithm are equivalent
to the discrete KAV equation, full-discrete potential KdV equation and the solution of discrete
hungry Lotka-Volterra equation, respectively (see [26, 31, 45]). The recurrence relation of the
arithmetric-geometric mean algorithm can be also derived from an additional formula of the
theta function.



In recent development in applied integrable systems (see [28]), the continuous-time Toda
equation also has an application to computation of the Laplace transform of a given analytic
function [28]. Along this line of thought some new numerical algorithms are designed in [22,
25] by discretizing certain integrable dynamical systems except the Toda equation. Namely,
a new Padé approximation algorithms is formulated by using the relativistic Toda molecule
equation (see [22]) and the discrete Schur flow (see [25]).

3. A new SVD algorithm in terms of the discrete Lotka-Volterra system

A relationship between a time-1 evolution of the continuous-time finite Lotka-Volterra (LV)
system and 1-step of the QR algorithm which appears in the Golub-Kahan algorithm was also
studied in [1, 4]. Here the LV system originally appears in mathematical biology and is regarded
as a spatial discretization of the KdV equation. Each QR iteration for the matrix exponential
traces the continuous orbit of an integrable dynamical system related to the LV system. The
solutions of the LV system converge to squares of singular values of given band matrices as the
time goes to infinity, respectively. However, it was not clear how to design a new numerical
algorithm by discretizing the integrable system. Such a discretization scheme as the Runge-
Kutta method fails to derive a “proper” recurrence system, since the discrete step-size, e.g. 6,
can not be taken sufficiently large. The Runge-Kutta scheme having high accuracy converges
very slowly.

A time discretization of the LV system is proposed in [13]. A solution of the discrete Lotka-
Volterra (dLV) system is also expressed in a Hankel determinant form. Our starting point for
designing a new SVD algorithm is to show that singular values of B are computed [44] by using
the dLV system with the fixed discrete step-size § = 1. This is proved by using an asymptotic
behaviour of Hankel determinant and a Lax form of the dLV system with 6 = 1. One of our
devices for accelerating the convergence speed is to introduce the dLV system with arbitrary
positive constant step-size 6 > 0. In [15], the dLV system with § > 0 is also shown to be
applicable to singular value computation by a similar method to the dLV system with § = 1. It
is shown that the convergence speed grows as § becomes larger. However, a numerical accuracy
is deteriorated by an inappropriate choice of step-size in some case. Namely, the convergence
speed and the accuracy are conflicting each other in general. A flexible choice of the step-size
6 at each step is desired from viewpoints of convergence speed and numerical accuracy.

In a recent development of discrete integrable systems, a dLV (vdLV) system with variable
step-size is found in [12, 40]. The vdLV system differs from the dLV system with constant step-
size ¢ in that its discrete step-size § can be changed at each discrete time #. It is here emphasized
that an explicit solution of the vdLV system is not written by a Hankel determinant but a Casorati
determinant (see [40]). In [15, 44], an asymptotic expansion of Hankel determinant [11] is
useful to prove that the solution of the dLV system converges to the singular value. However,
to the best of our knowledge, any asymptotic expansion of Casorati determinant has not been
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known. Hence it seems to be difficult to apply the same method for proving convergence used
in the dLV system to the vdLV system. In [16], we have proved by a different analysis from the
dLV system that the solution of the vdLV system converges to some limit. The proof is given
without using the explicit form of determinant solution of the vdLV equation. By using a Lax
form of the vdLV system, the constant is shown to be a singular value of the bidiagonal matrix
B. We then design a numerical algorithm named the dLV algorithm for computing singular
value. As a result, we can perform a better singular value computation with respect to both
convergence speed and numerical accuracy.

In [15], we also describe such several features of the dLV algorithm as a sorting property
of singular values, a positivity of dLV variables and so on. A new SVD algorithm named the
integrable-SVD (I-SVD) algorithm is designed in [17] which can compute not only singular
values but singular value vectors. Moreover we have shown that the dLV algorithm computes
singular value with higher accuracy than the zero-shift LAPACK routines. For more accelera-
tion, a new shifted integrable (sI) algorithm is designed by introducing a shift of origin into the
dLV algorithm. The sl algorithm has a shift stratagy for avoiding such a numerical instability
as the qds alogorithm. In some cases, the sl algorithm is superior to the nonzero-shift LAPACK
routines.

4. Outline of the thesis

The thesis is organized as follows.

In Chapter 2, we prove a determinantal solution of the dLV system with arbitrary positive
discrete step-size 6 asymptotically converges to the square of some singular value of a given
rectangular matrix, where the initial value of the dLV system is uniquely determined by the
entries of the matrix. Here the solution means a solution expressed by determinants. To prove
this fact we use an asymptotic behaviour of the Hankel determinant solution and a Lax form. A
basic property of the solution is proved which is important for designing a new stable numerical
algorithm. We call this algorithm the dLV algorithm for computing all of the singular values.
We discuss positivity of solution, dependence of the correct initial value on §, a sorting property
and an acceleration of convergence speed by enlarging 8, where positivity of solution means
such a property that solution is always positive.

In Chapter 3, we apply the dLV system with variable step-size to a numerical algorithm for
computing singular values. A new version of the dLV algorithm is designed, where the step-size
d is replaced to a stepwise parameter 6. Some examples demonstrate that a better choice of
the step-size gives a benefit in both convergence speed and numerical accuracy.

In Chapter 4, we consider basic propeties of the dLV algorithm for computing singular
values of bidiagonal matrices. A relative error bound of singular values computed by the dLV
algorithm is estimated. The bound is rather smaller than that of the DK algorithm and is the
same order as that of the qd algorithm. Both forward and backward stability analyses of the
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dLV algorithm are also proved. A singular value computation at desired precision is carried
out in terms of the Weyl type perturbation theorem. Some numerical examples illustrate a high
relative accuracy of the dLV algorithm.

In Chapter 5, we present a new algorithm, named the shifted integrable (sI) algorithm,
with a shift of origin for computing singular values o-. A shift of origin is introduced into the
recurrence relation defined by the dLV system with variable step-size. A suitable shift strategy
is given so that the singular value computation becomes numerically stable. The convergence
of the sI algorithm is also discussed. We draw a numerical comparison among the well-known
LAPACK routines and our algorithm. Our algorithm is shown to be superior to the LAPACK
routines at least in four examples.

In Chapter 6, we give conclusions of this thesis and discuss further problems.



CHAPTER 2

Discrete Lotka-Volterra algorithm and its basic properties

1. Introduction

The discrete-time Lotka-Volterra (dLV) system [13] has determinantal solutions and a se-
quence of conserved quantities which are discrete analogues of those of the well known continuous-
time integrable LV system. Thus we can regard the dLV system as an integrable discretization
of the original integrable LV system. Interesting features of the dLV system have been studied
and clarified (see [29, 40, 41, 46]), however, to the best of our knowledge, the role of the LV
system in numerical algorithms has not yet been fully understood. In this chapter we show
that a Hankel determinant solution of the finite dLV system with § > 0, where ¢ is the discrete
step-size, converges to the square of some singular value of a given upper bidiagonal matrix
BO®. Here a suitable initial value for the dLV system is determined by the entries of B®. The
proof is given by using an asymptotic behaviour of a Hankel determinant associated with a
single meromorphic function [11]. The convergence of the qd algorithm is shown by using
only an asymptotic expansion of Hankel determinat. Though the qd variable is expressed by a
Hankel determinat, the solution of the dLV system is written by two types. Hence it is difficult
to discuss the convergence of the solution of the dLV system by the same mannar as in the qd
algorithm. It is necessary to introduce the relationship of two types of Hankel determinants.

The first purpose of this chapter is to prove a extended convergence theorem for the solution
of the dLV system by starting from an alternative expression of the determinantal solution.
Hankel determinants of two types appear. To describe the asymptotic behaviour of H,(c"(} and Hl(c"l)
a pair of meromorphic functions is needed which are mutually related by a linear recurrence
relation. By using the asymptotics of the Hankel determinants the determinantal solution is
shown to converge as discrete time n — oo to the square of some singular value of B© for
any positive 8. All of the singular values are computed in this way. The dLV algorithm for
computing singular values is then presented.

The second purpose is to show the following basic properties of solution of the dLV system.

(i) The determinantal solution holds positive if the initial value and § are positive, then
guarantees a numerical stability of the dLV algorithm.
(ii) The correct initial value strongly depends on the discrete step-size 6.
(iii) The dLV algorithm has a sorting property, i.e., the resulting singular values are ordered
according to magnitude.



(iv) The convergence to singular values is accelerated and the convergence speed tends
monotonically to a limit as the discrete step-size ¢ increases.

These basic properties will be very important to design the dLV algorithm practically.

In §2, a determinantal solution of the dLV system with arbitrary positive § which is charac-
terized by two meromorphic functions is discussed. We give a new proof of the convergence of
solution to some limits. In §3, these limits are shown to be the squares of singular values of a
given upper bidiagonal matrix.

The basic properties (i)-(iv) are proved in §4. In particular, a close relationship between
convergence speed and discrete step-size & is described explicitly. Some numerical experiments
are also presented.

2. Convergence of the determinantal solution

Let us begin with the continuous-time finite LV system

d”i;‘t(’) = w1 () = w4 @), k=1,2,...,2m— 1,
Llo(t) =0, u2m(t) =0, r>0. (21)

Chu [1] showed that a solution of (2.1) converges to the square of some singular value of a
given upper bidiagonal matrix or 0 with the help of the asymptotic behaviour of solution of
the finite Toda equation [23]. Here the initial data {t5;-1(0), u2;(0)} corresponds to the entry of
the bidiagonal matrix of B©. Deift-Demmel-Li-Tomei [4] discussed a Hamiltonian structure of
(2.1) and its meaning in the singuar value decomposition. However, it has not been clear how to
discretize (2.1) for the purpose of designing an actual algorithm for singular value computation.
We remark that (2.1) is an integrable system having the determinantal solution

Hi1(O)H—1,0(2) Hi0(OH-11(0)

U1 (f) = ,  uy(t) = , 2.2
2%-1(0) Heo(OHe 1.100) 21(%) Hir (0 Hro(0) (2.2)
aj L N |
a. a. v e a.
Hk,j(t) = j+1 j+2 j+k . k=12 ..m,
Ajvk-1 Ajsk  dj+2k-2
H,;0=0, Hof)=1, Huya (=0, j=0,1, (2.3)
da(t
;t() =ap(t), €=0,1,.... (2.4)

See [2] for the proof of (2.4). Existense of determinantal solutions gives us a useful information
for the discretization problem of integrable systems.
Several types of the dLV systems are known which have determinantal solutions. They
are the infinite [13], semi-infinite [40] and finite dLV systems. In this chapter we consider the
9



following finite dLV system with arbitrary positive constant § > 0

w1+ oul" Dy = A+ 6, k=1,2,...,2m -1, (2.5)
uf)")EO, ugz =0, n=0,1,...,

where u,(c") denotes the value of u; at discrete time # = né. Since the dLV system (2.5) is
expressed as

(n+1) (n) _ (n), (1) (n+1) (n+1)
W "—u = 5(”k Upyy = Uy U )’

it goes to the continuous-time LV system (2.1) as § — 0 providing ¢ = né. Existence of the fol-
lowing determinantal solution is one of the reasons why we say (2.5) an integrable discretization
of the continuous-time integrable LV system (2.1),

n) yy(n+1) ") n+l)
O Hi(c,lec—l,o S = Hl(c+1,0Hl(c—1,1 2.6)
2k-1 n) py(n+1)° 2k T n) ry(n+l) ? )
HH ) HVH,
(n) (n+1) . (n+k-1)
PR % st
n n n
a. a. e a.
H =| 7 7 . k=1,2,...,m, n=0,1,...,
(n+k—1) (n+k) . (n+2k-2)
a; a; a;
n ") — n P
H% =0, H)=1, H? =0, j=01, 2.7)
1
a"V —ad" =6a?, £=0,1,2,.... (2.8)
The proof is given by using Pliicker relation
n) p4n+l) _ n) n+1) n) ry(n+1)
5Hl(c,1Hl(e—1,o - ch—l,lH/(c,o - ch,oH/(c—l,l 29)

and Jacobi’s determinant identity
) n+l) _ n) +1) ) r7(n+1)
5H1(£1,0H§c-1,1 - ch,oHi(c]jl - Hngl(e,o (2.10)

with the help of the linear recurrence relation (2.8). Note that (2.8), the key equation, is a simple
discretization of the linear differential equation (2.4).

Let us start by introducing two functions f(z) and fi(z) which are analytic at z = 0 and
meromorphic in the disk D = {z; |z|] < d} having the power series expansions

h@ =D, fig=) a2 2.11)
n=0 n=0
at z = 0 and have such poles {zxo} and {z;;} in D that 0 < |z;9] < |z29] < -+ < d and

0 <lz1,1l < |zl < -+ < d, respectively. Hankel determinants of two types, H,({"g and H,({"I) appear
in (2.6). Let the Hankel determinants H,(c”]) be associated with the functions f;(z), namely, the
coefficients aﬁ.”) of fj(z) determine HI(C"J), Jj = 0,1, respectively.

10



We here assume that a) the coefficients of fy(z) and f;(z) are related as """ — ai = 6a”,
b) fi(z) are such rational functions of degree m that the associated Hankel determinants satisfy

H

ma1; = 0. The condition a) comes from the key equation (2.8) and implies

fip= L0 e
0z

The condition b) guarantees (2.7). It is known ([11], p.603) that there is a class of rational
functions of degree m satisfying Hf: J)rl’j = 0. The coefficients aﬁ.") of such rational functions
determine the initial value ug)) of the dLV system for £ = 1,2,...,2m — 1 through (2.6) and
2.7).

On the other hand, an analytical property of the Hankel determinant which is associated
with a meromorphic function is known ([11], p.596). For each & there is a nonzero constant

(2.12)

cr; # 0 such that, for any p ; satisfying
1 N 1
— > P>,
|zx. 1 77 gkl

the Hankel determinant Hf{"J) has an asymptotic behaviour

_I—le) {1+0(@efze )}, 7=0.1, (2.13)

Zl,jZZ,j e

) _
H/(cn, = Ck,j(

as n — oo. Substituting (2.13) into the determinantal solution (2.6) of the dLV system and using
€ = maxy, j(ox,|7,1), we have the following asymptotic expansion of the determinantal solution

n
Ci1CEk—1.021.1 """ Zj— Z,
S = CR1CE10Z1 k1,1 ( k,O) (1+0(),

2%-1 7
CroCr-1,121,0 * * * Zk-1,0 \2k,1
n
Cr+1,0Ck-1,121,0 * " Zk0 | 2K,1
) +1, s , S 5
u) = {1+0()}, (2.14)
Cr1Ck0 21,1 * " " Zk-1,1 \Zk+1,0

as n — oo.
Since we assume that f;(z) are rational functions of degree m satisfying (2.12), the poles of
the rational functions fy(z) and f(z) are coincident each other

Zio = Zk,1- (2.15)

From the assumption we see that the poles of f;(z) have distinct modulus and ordered as |z ;| <
|Zt+1,;]. Consequently, it follows from (2.14) that

) Ck,1Ck-1,0

limu,, , = =y,
n—eo 2471 CroCk-1,1
limu) =0, k=1,2,...,m (2.16)

It is to be remarked that the recurrence relation (2.5) with § > 0 guarantees
U’ >0, n=12,... (2.17)

11



of solution for a given positive initial value uio) >0,k=1,2,...,2m — 1. Simultaneously, the
limit Cy, introduced by (2.16) are positive.
It is proved in this section that

Theorem 2.1. Let the meromorphic functions fi(z) in (2.11) be rational functions of degree

m satisfying (2.12). Then the solution of the finite dLV system with any positive discrete step-size

6 asymptotically converges as n — oo to some limits, the variable ”57«)—1 with odd suffix tends to

a positive limit Cy, the variable u(z',? goes to 0. The limit Cy, is independent of 6.

The meaning of the limit C; will be discussed in the next section.
Let us here consider the asymptotic behaviour of {ug',?_l, ug',?} in the case where § = 1. By
Pliicker relation (2.9) and Jacobi’s determinant identity (2.10), the solution of the dLV system

is rewritten as

n) n+1) n) g y(n+1)
) = % -1, = % -1 (2.18)
k0 k-1,1 k1 k0
The asymptotic expansion of {ug',?_[ , u(z'?} in (2.18) is also given by
= T L 0@) -
uf) = 20 (1 oy - 1, 2.19)

21,122,1 " 2,1

as n — oo. This implies that {”31?4’ u(z',?} converges to some limit as » — co. Simultaneously, in
(2.14), it is obvious that |z /z;1] < 1. Suppose that z;_; 9 = z;_y; fori = 1,2,...,k. Then from
(2.19) we derive

1 .
lim ) = ——1, limu®)=220_1 (2.20)

n—oo Zk,O =00 Zk,l
Note here that 1/z;o — 1 is some positive limit. If |z 0/z;1] < 1, we have |lim,,_, ug',? +1l <1,

ie. lim,_ ug,? < 0. Hence we see that |z;/z;;| = 1, and then ug’,? — 0asn — oo in (2.14).

Since lim, o, ug,? = 0 in (2.20), we have

Zk’() = Zk,l- (221)
Inserting (2.21) into (2.20), the solution of the dLV system converges exponentially to some
limits as
1 . (n
limul) = — -1, limu)=0. (2.22)
n—oo Zr0 n—oo

Since 1/z19 > 1/z30 > -+ > 1/zy,, it follows that

Theorem 2.2. The solution {ug]?_l , ug,?} of the dLV system with 6 = 1 converges to some limit
{1/zxo - 1,0} andu(ln) > ugn) > > ug',?_l asn — oo,

12



3. Discrete Lotka-Volterra algorithm for computing singular values

Let us define new variables
eﬁ{") = 6u(2','€)_1ug,?, k=1,2,....m—1,

g = é (1+6u),)(1+0u5),), k=1,2,....m. (2.23)

Then the dLV system (2.5) is transformed to the discrete-time finite Toda equation with the unit
discrete step-size (see [28]), or equivalently, the recurrence relation of the qd algorithm (see
{10, 11, 35, 38])

(m+l) (n+ly _ () (w (n+1) n+l) _ () (n)
G &G T4 G te T =4 te

=0, =0, n=0,1,... (2.24)

and vice versa. This type of transformation from one integrable system to another is sometimes
called the Miura transformation. Let us introduce the matrices

¥ = [(RE) _ % I

n (1)
q (1 ) 0 1 €
(n) ..
L? = 72 , R"= b . (2.25)
SR )
) m—1
1 gm 0 1

Then the Lax representation L+DR®D = RML® of the discrete Toda equation (2.24) gives
rise to

yr+DRM = RY® -y =0,1,.... (2.26)
It follows from (2.16) that
lim g = (1 +38Cp)/s, lim " = 0. (227
Therefore we have
) 1 G
lim Y = o : (2.28)
1 C,

We see that C; are the eigenvalues of the matrix Y@ = LORO® — 5717, since (2.26) implimes
that the eigenvalues of Y are invariant in 7. This corresponds to the known fact [10] that ¢\”
converges to the eigenvalues of LOR®.

13



Write the tridiagonal nonsymmetric Lax matrix Y as

() (), (1)
wy Wy W,

(1) (n) () (n)
1 W, +w; Wi W,

Y(n) = " .. ., ,
() (1) () (n)
1 Wy g+ Wy 3 ‘(‘?m—3wzn(1—)2
n n
1 Wy T Wy y
w? = u"(1 +6u). (2.29)

New variables w}c") are useful to determine a correct initial value of the dLV system in the next

section. Obviously, lim,_,. w? , = C; and lim,_,. v = 0. By using the diagonal matrix
Y; 2%-1 % Y using g

m—1
G" = diag (g1 gl rr 1) G =] [ i), (2:30)

we introduce a new Lax matrix
Y® = (G yWG® (2.31)
which is tridiagonal and symmetric. The Lax representation (2.26) is then
Y§n+1)(G(n+]))—1R(n)G(n) — (G(n+1))—1R(n)G(n) Yg’l) (232)

We note that, as n — oo, Yg’) tends asymptotically to a diagonal matrix with the eigenvalues of
Y§0) on the diagonal, namely,

lim ¥ = diag (C1,Ca, -+, C) s (2.33)

00

where Cj are eigenvalues of Yfgo). Since Yg.”) is symmetric and positive definite, it admits a
Cholesky decomposition

Yén) =( B(n))T B®,

B" = (2.34)

Hence the square roots /Cj are singular values of the bidiagonal matrix B®. It is concluded
that

Theorem 2.3. Let wf{o) = b, where by are nonzero entries of the m X m bidiagonal matrix
BO. Then the solution 45| of the finite dLV system with arbitrary § > 0 converges to the
square of the singular value o, = \C; of BY.

14



Such a class of bidiagonal matrices as

b1 b2

by .
BO = 3 _ , b#0 (2.35)

b2m—2

O b2m—1

appears in the final stage of the well-known Golub-Kahan (GK) algorithm (see [8]) which is
the standard algorithm for computing singular values of given rectangular matrices. Here the
GK algorithm is a combination of the Householder transformation and the QR algorithm for
the tridiagonal symmetric eigenvalue computation. The procedure of the GK algorithm is as
follows. A general m X £ rectangular matrix A, such that m < £, can be converted to a matrix of
the form (B® O) by the Householder transformation as

UTAV = (B<°> 0) ,

where U and V are suitable orthogonal matrices and B© is such an m x m upper bidiagonal
matrix as (2.30), and O is the m X (£ — m) zero matrix (see [8]). The singular values of B® are
congruent with those of 4. Each eigenvalue of the tridiagonal matrix (B®)™B© computed by
the OR algorithm gives the square of some singular value. The condition b; # 0 implies that
the singular values of 4 are positive and distinct. If some of by is zero, we can reduce the size
m of the initial matrix so that every entry is not equal to zero by a deflation procedure. Singular
values of any £ X m rectangular matrix are also given by a similar way.

It is shown here that a combination of the Householder transformation and the dLV system
(2.5) is also useful for computing singular values of 4. Let us call this new algorithm the dLV
algorithm.

4. Basic properties of the dLV algorithm

The dLV system and the dLV algorithm have the following remarkable properties.

First, we show that the determinantal solution (2.6) is always positive. As is pointed out in
(2.17) the variable ug’), in n, holds positive if the initial values satisfy uf{o) >0,k=1,2,...,2m—
1. We can actually derive a positive sequence {u,ﬁo)} from any given nonzero sequence {b;} by

b2

o _ 2k-1 _

u2k_1———W, k—1,2,...,m,
1+ 6uy,_,
b2

©0) 2k _
u,, = R 1,2,....m—1,

* 1+ éug?_l
u’ =0, uf) =0. (2.36)

Eq. (2.36) comes from (2.29) by setting wg)) = b2. Thus it is shown that
15



Proposition 2.4. Singular values of B® are computed by the dLV algorithm in a numerically
stable way, if ug)) >0andé > 0.

This property stands in contrast to the qd algorithm (see [11], p.613), where the recurrence
relation (2.24) becomes unstable when qg’”) ~ 0. Therefore the qd algorithm was supplanted
the QR algorithm in matrix eigenvalue computation [33]. While the dLV system is of great
significance in singular value computation, though it is directly related to the qd algorithm by
the Miura type transformation (2.23).

Secondly, we give comment on a revision of initial value. Eq. (2.36) also shows how to
choose an initial value of the dLV algorithm for computing accurate singular values. If we set
initial value as ) | = b2,  and u) = b2, instead of (2.36), then u?)  does not converge to Cj.
We should take the initial value as in (2.36) for any §. The correct initial value, surprisingly,
depends on the discrete step-size §. In the limit § — 0 the correct initial value “g;c)_1 and ug?
given by (2.36) goes to b3, | and b3, respectively. This fact reminds us of the pathbreaking
work by Chu [1] who showed convergence of the solution uy;_;(¢) of the continuous-time LV
system (2.1) with the initial value uy;(0) = 53, | and u(0) = b3, to the squares of singular
values. The basic idea in [1] is the asymptotics of solution of the finite Toda equation originally
studied by Moser [23]. Here the continuous LV system is related to the Toda equation by a
Miura type transformation.

Next a sorting property of the dLV algorithm is discussed. Moser [23] showed that the
finite Toda particles are asymptotically free. By using a direct connection between the Toda
equation and the LV system [1] it can be proved from Moser’s result [23] that lim,_, o, #5;1(?) >
lim, o t341(f) Where u,() 1s a solution of the continuous-time LV system. This fact implies

that

Proposition 2.5. The singular values o, = \Cy computed by the dLV algorithm are ovdered

according to magnitude
TL>03> >0, > > 0. (2.37)
In other words, the dLV algorithm has the following sorting property
U > U > o> dlD s> u) (2.38)

for sufficiently large N for any initial value given by (2.36). This proof is also given by com-
bining Theorem 2.1 with Theorem 2.2.

Finally, we consider acceleration of convergence by enlarging discrete step-size 6. Since
discrete time nd, for some #, becomes large as discrete step-size & grows, we can accelerate
the convergence speed. Let u,(C"’), w=0,1...,and ug’), n=20,1,..., be solutions of the dLV
system, starting from the same initial value, with discrete step-size ¢’ = &5 and 6, respectively,

for some constant £ > 1. Then we see from the asymptotic expansion (2.14) that u,((",) = u}f")

converges faster than ug’) asn',n — oo,
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More precisely we can make a clear relationship between a convergence speed and the value
of 6. It is known ([11], p.616) that qi”) in the qd algorithm (2.24) converges to 1/z, the inverse
of the k-th pole z; of the meromorphic function fy(z) in (2.11). The convergence (2.27) with
(2.37) says

)

__°% 2.39
1+ 607 2.39)

Zk0

where o2 is the square of the k-th largest singular value of B©®. The pole depends on 6. Note
that u(z’}g > 0 and lim,_,, u(z'? = 0. Let ug) be the largest of {ug,\?}, k=12...,m—-1, for
sufficiently large N. Then we can regard u(z';) as the important variable which converges at the
slowest. When ug) becomes O(10~¥) for some number M > 0, we stop the iteration of the dLV
algorithm at n = N. This brings us a useful stopping criterion for a desired accuracy.

The convergence speed under consideration crucially depends on the ratio z;/z;.1,0 which
appears in the asymptotic expansion of u(z';) as n — oo. See the second formula of (2.14). The
ratio z;; /zj,1, is given by the maximum of the ratios {zx1/Zk+10}, k= 1,2,...,m—1,

Zj1 Zk1

= max .
Zjr1,0  k=leam=l Zppyg

Using (2.15) and (2.39) we have

2
Zit i1 ¥ 1/0

It is shown that

Proposition 2.6. The ratio z;,/z;.1,0 decreases monotonically from 1 to

2
g
max —l (2.40)

as well as, the convergence is accelerated, as the discrete step-size § increases from 0 fo oo.

It is important to manipulate the value of §. In numerical linear algebra this kind of accelera-
tion has not been known. This is an advantage, for improvement, of the generalized convergence
theorem proved in this chapter.

We give some numerical examples below. Let

05 03 0
BO9=| 0 07 0.1
0 0 09

Figure 2.1 describes the behaviour of solution of the dLV system with 6 = 1.0. The solid
lines indicate \/”({l)’ ‘/ug”) and u(s") which converges to singular values. The dotted lines
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correspond to 4/ u(z") and ,/ ug”) which tend to 0. Figure 2.2 shows an accelerated convergence

of the solution, where § = 10. We see in Figures 2.1 and 2.2 that the initial value { u,(co)
depends on § and is different from the given b;.

1.0 -

8=

iy

Ficure 2.1. A graph of iteration number in the dLV algorithm (x-axis) and the
square root of u,(:’) fork=1,2,...,5 (y-axis). The solid and dotted lines describe
the behaviors of square root of ug',?_l, k=1,2,3 and ug,? ,k=1,2fromn =0 to
n = 30, respectively when 6 = 1.0.

0=10 -

S L

0 . 36 I ‘ 60
n
Figure 2.2. A graph of iteration number in the dLV algorithm (x-axis) and the
square root of uf{”) fork=1,2,...,5 (y-axis). The solid and dotted lines describe
the behaviors of square root of ug’,?_l, k=1,2,3and ug}c), k=1,2fromn=0to
n = 30, respectively when § = 10.
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5. Conclusion remarks

In this chapter we have proved that the Hankel determinant solution u(z’,?_l of the dLV system
converges as n — oo to the square of the k-th largest singular value o of a given bidiagonal
matrix (theorems 2.1 and 2.3). And ug’? tends to 0. The notions of determinantal solutions, Lax
representations, Miura transformations and integrable discretizations, which have been devel-
oped in the theory of integrable systems, play a crucial role in the proof of theorems. Especially,
the discretization of the linear evolution equation (2.4) to (2.8) is the key to the convergence the-
orem. This is because (2.8) not only characterizes the determinantal solution (2.6) but allows us
arbitrary positive parameter ¢ and gives rise to the important relation (2.12) which enables us to
obtain (2.16) through (2.14) and (2.15).

Furthermore several properties of the solution of the dLV system are discussed. For a suit-
able positive initial value and any positive 6, a positivity of determinantal solution is proved,
which guarantees a numerical stability of the dLV algorithm (Proposition 2.4). We see in (2.36)
that the correct initial value depends on discrete step-size §. The singular values computed by
the dLV system are ordered according to magnitude. Namely, the dLV algorithm has a sorting
property (Proposition 2.5). As the discrete step-size § increases from 0 to oo, the convergence
speed is accelerated to a constant determined by ratio of singular values (Proposition 2.6). A
stopping criterion is also obtained by using ug',? These basic properties of the dLV system,
especially by a parameter &, will see practical applications to singular value computation.
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CHAPTER 3

An improvement of the discrete Lotka-Volterra algorithm

1. Introduction

Our starting point in this chapter is the observation that singular values of B are computed
by using the dLV (cdLV) system with arbitrary positive constant step-size 6 > 0. Moreover, in
Chapter 4, a new SVD algorithm named integrable SVD (I-SVD) algorithm will be discussed
which can compute not only singular values but singular vectors. One of our devices for acceler-
ating convergence speed is to enlarge . It is shown in Chapter 2 that convergence speed grows
as ¢ becomes larger. However, numerical accuracy is deteriorated by an inappropriate choice
of step-size in some case. Namely, convergence speed and numerical accuracy are conflicting
each other in general. Though a flexible choice of the step-size ¢ is desired from viewpoints of
convergence speed and numerical accuracy, it has not been studied how to adjust the step-size
¢ of the dLV system at each step.

In recent development of discrete integrable systems, a dLV (vdLV) system with variable
step-size was also found in [12, 40]. It is here emphasized that an explicit solution of the vdLV
system is not written by a Hankel determinant but a Casorati determinant (see [40]). In Chapter
2, an asymptotic expansion of Hankel determinant [11] is useful to prove that the solution
of the cdLV system converges to the singular value. However, to the best of our knowledge,
any asymptotic expansion of Casorati determinant has not been known. Hence it seems to be
difficult to apply the same method of proof used in the cdLV system to the vdLV system.

In this chapter we prove by a different analysis from the cdLV system that the solution of
the vdLV system converges to some limit. The proof is given without using the explicit form
of determinant solution of the vdLV equation. Next we show the limit is a singular value of
the bidiagonal matrix B. We then see that the vdLV system is applicable to singular value
computation. A part of the I-SVD algorithm in Chapter 4 is also modified by introducing a
flexible choice of the step-size ¢ at each step. As a result, we can perform a better singular
value computation with respect to both convergence speed and numerical accuracy.

This chapter is organized as follows. In §2, it is shown that the singular values of the bidi-
agonal matrix B are invariant under the time evolution of the vdLV system under a suitable
condition. The proof is given by using the fact that the vdLV system takes the form of a simi-
larity transformation of a matrix. In §3, we prove convergence of solution of the vdLV system.
For this purpose, it is useful to introduce the asymptotic analysis of solution of the cdLV system

20



in Chapter 2. Moreover, by using a relationship of the vdLV variables to the cdLV variables, it
is proved that the solution of the vdLV system converge to some limit as time variable » goes to
infinity. In §4, we describe two behaviours of the cdLV and the vdLV variables as » increases.
Simultaneously, through some numerical examples, we demonstrate the following. A flexible
choice of the step-size at each step is useful for the efficient singular value computation with
respect to both convergence speed and numerical accuracy.

2. Time evolution of the vdLV system
In this section, we consider time evolution from » to n + 1 of the finite vdLV system

D+ 6Dy = P+ 540y, k=1,2,...,2m -1, (3.1)
k k-1 k k+1

() — (n — (n) —
u, =0, wu, =0, 0<6” <M n=0,1,...,

where u,(C") and 6 denote the value of u; and &, respectively, at discrete time 7 = Y'7-) 6 and
M is some positive constant. If u,({o) > 0, then ug') > 0. The vdLV system was found in [12, 40]
as a time discretization of the finite LV system (2.1). Namely, (3.1) goes to the LV system as
every 6™ goes to zero. Let L—:é") denote the cdLV variables to distinguish the vdLV variables.

The usual cdLV system, corresponds to (2.5),

a1+ su™ D) = 101 + sl (3.2)

is derived from (3.1) by fixing the discrete step-size 6" at a positive constant 6.
We slightly generalize the discussion in Chapter 2. It is important to note that the vdLV
variables uf{”) satisfy the following matrix form:

1 1
(D) p(n+1) _ pla) g () R
LE*DRE*D = RO +(5(n+1) 5<n>)1’
n n)
T L
IL® = 1 2

R"™ = , (3.3)

*

1 Jo 0 1

1
= - (n), (1) (n), (1) = s, (m ()
S o (1+6uG) ) (1+6uG) ), Vi=6"ul) uf),

where 7 is the m X m unit matrix. We have the same matrix form as in Chapter 2 when §® = ¢
for all n.
Let us begin our analysis by introducing new nonegative variables w,(C") defined as

wl = u(1 +6Pu) (3.4)
and a tridiagonal matrix Y®
1
n _ gmp _ _—_
YO = LORY - <.
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It is obvious that Y™ is written as

() (). (1)
w, w;"w,

yoo | 1w
‘(U?m—3 wzn(t—)z
n n
1wy, , + Wy,
We derive from (3.3)
Y(n+1) — R(”)y(")(R("))‘l_ (35)

It is not hard to see wf(”) > 0 providing u,(co) >0and 6® > 0 fork = 1,2,---,2m — 1. Thus
R™ is nonsingular for any 7. This similarity transformation (3.5) implies that the eigenvalues of
Y™ are invariant under the evolution from 7 to 7 + 1 of the vdLV system. By using a diagonal
matrix G, symmetrization of Y™ is given as

Yo = (GP) 1 Y™ Go

(n) (n). (n)
wy 1/w1 w,
(), (1) (n) (n) ..
NJulw” ws +w .
_ 1 %2 2 3 (3.6)

() (7)
Wy—3Wom_»

() (n) () ()
w2m—3w2m—2 w2m—2 + w2m—1

m—1 m—1
" = J; (m (1) (ny () (my ()
G" = diag (H \/wzj_]wzj , 1—1 \/ij—lej yr s AW W o, 1].
J=1 Jj=2

Note that G is nonsingular for any # and (Yé")) = [1%, wg’)_ .- From (3.5) and (3.6), we have
J
the following proposition with respect to the time evolution from » to n + 1 of the vdLV system

3.1).

Lemma 3.1. The vdLV system takes the form of similarity transformation
Y§n+1) =" Ygl)(Q("))_l, Q(n) = (GU*Dy! RMOG® (3.7)

of the positive definite matrix Yg'), which implies that the eigenvalues of Yé(f') are invariant under
the time evolution from n to n + 1, for all n.

It is significant to emphasize from (3.7) that choice of 6 at each n may be made indepen-
dently of the eigenvalues of Yé”). This is because the eigenvalues of Yé") are identically equal to
those of Y, i.e., the eigenvalues of ¥ do not depend on §©, 5", -+ ,6®. Note here that the
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Cholesky decomposition of Yfg") is given as

Y = (B™)TB", (3.8)
N

’ w(ln) , wgn)
m -,
B" = w3 '

.. / (m)
’ W2

@)
0 w2m—1
Therefore the singular values of B® are equal to the positive square roots of the eigenvalues

of qu"). Then the following proposition for the singular values of B™ is derived by relating the
Cholesky decomposition (3.8) to Lemma 3.1.

(3.9)

Proposition 3.2. The singular values of the upper bidiagonal matrix B®™ are invariant under
the time evolution from n to n + 1 of the vdLV system.

The above discussion in this section is also equivalent to that in Chapter 2, when 6® = § for
all n. In what follows we assume that B has distinct singular values such that

o1(BY) > 05(BO) > - .. > 0, (BD).

3. Convergence to singular values

In this section, we consider two cases where time evolution from 0 to some N is performed
by the vdLV system (3.1) and by the cdLV system (3.2), respectively. Especially, in this section,
we denote Yé") and B® with I7§") and B®™, respectively, when 6 = & for all .

It is shown in Chapter 2 that the determinantal solution E;{") of the cdLV system (3.2) con-
verges to some limits ¢y, ¢z -+ , ¢, 0 as n — oo as follows,

lim #) | = ¢, limiul) =0, (3.10)

n—oo [o¢]

where ¢; > ¢, > -+ > ¢, > 0. Simultaneously, it is proved that ¢, are eigenvalues of )7§") and
¢z are singular values of B®. The proof of (3.10) is given by an asymptotic expansion of the
determinantal solution ﬁf{”) as n — oco. However, it seems difficult to apply the same analysis
to the vdLV system. In this section, we investigate the asymptotic behaviour as n — oo of the
vdLV variables u,E”) by using the property (3.10) of the cdLV system instead of the asymptotic
expansion of the solution.

Let us begin our analysis by considering trace(Yé")). As shown in §2, the eigenvalues of Yé")

are independent from the choice of 6@, 60, - -+ ,6®. Namely,
AV =AY, 3.11)
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where /l(Y(”)) and A(Y(”)) denote the eigenvalues of Y( ") and Y( , respectively. Note that A( Y(”) )=
cr. Then we see from (3.11) that /l(Yé")) = ¢;. In general, the sum of all diagonal entries
coincides with that of all eigenvalues. Moreover it is obvious from (3.6) that trace(Yé”)) =
S w}c”). Hence we have

2m—1 m
Z wl = (3.12)
k=1
Namely, 37 (") are invariant in n. This fact is useful to prove the following lemma for

analyzing the behav1our of the vdLV variables u ) as n — co.

Lemma 3.3. Suppose the initial data u,(co) is such that

u® >0, k=1,2,...,.2m—1, (3.13)
Then uf{"), n=0,1,..., satisfy
0<u” <My, k=12,....2m—-1. (3.14)

Jor some positive constant M.

Proof. 1t is obvious from (3.1) that u(”) > 0, for all n, under initial data (3.13). From (3.4)
and (3.12), we see that w(") >0and 0 < w(") + w(zn) -+ wé”) < M, for some constant M,.

Hence 0 < w(”) < M, for all n. By using (3.4), we have (3.14). O

With the help of Lemma 3.3, the behaviour of «(” as n — co with initial data (3.13) is
described by the following Proposition.

Proposition 3.4. If ) satisfy initial data (3.13), then

lim uy) | = ¢, lim uf) = 0. (3.15)

n—oo

Proof Let k = 1 in the vdLV system (3 1) then we have """ = 4 TTV (1 + 6™ul?)
for some N which implies that u(o) < u(l) (1") < ---. From Lemma 3.3, it is obvious that
0< u(l") < M, for all n. Since u(”) n=0,1,...,18 monotonically increasing, u; )

some positive limit ¢; as n — oo, Slmultaneously, M1+ 6(”)u§")) converges to some positive

converges to

limit p,.

Suppose that [T, (1 + 6™ul?_) converges to some positive limit p;_;. Let

b = 401 +5949)

and v,((o) > 0. Then, by using (3.1) and 0 < 6 < M, we see that (o)) /ps1) TT,(1 + 6™u’?)
converges to ug,f_l) as N — oo. Hence it follows from (3.14) that 0 < []",(1 + 6(”)ug’}2) < M
for some constant M;. It is also obvious that [T (1 + 6(”)u§’2), N =1,2,..., is monotonically

24



increasing. Therefore it follows that [ -,(1 + §Mu™y = p,. Simultaneously, we see that
g n=1 2% p Y;

. 0
lim,, e u(z’,?_l = vgk)_l P/ Pr-1 > 0, namely,

limu) | = c (3.16)

h—00

where ¢ is some positive limit.

Note here that ), 6(”)u(") converges to some limit s; > 0 if and only if [T, (1 + 6"u
py for 5(”)u(2'}3 >0,n=0,1,.... Moreover lim,_,, 6(”)ug2 = ( for any positive bounded sequence
8, if 312 6™ul) = 5. Therefore it follows that

(")) _

: () _
31_1)1; Uy, = 0.

The vdLV system (3.1) also leads to

H_ ©
lim ultt) = o) l_[(l — 5"y

—0

where 6™+, < 1 and r(”) = (u(z’;? 3= (2',’3 /A + 6(”)u§’2 o) If ey = gr e lim, e rl(c”)1 =0,
then lim, o ug::lz) # 0. Since lim,—c ug;:lz) = 0, we see that ¢,y # ¢. If 41 < ¢, then

lim, e 7% < 0 and lim, o uly") = co. Otherwise lim,eor”) > 0 and limy e 1y = 0.

Hence we have ¢; > ¢, > -+ > ¢, This sorting property is the same as that of the cdLV system
(3.2) as n — oo. It is to be remarked that limy_« [TY_,(1 - 6®r) = 0
Note here that lim,,_, Yf{') = diag(cy, ¢, ** ,Cp). This implies that ¢ is the eigenvalue of
Yé"). By using (3.11), it turns out that ¢ coincides with one of the eigenvalues ¢y, ¢3, -+ , ¢y Of
Yé”). Since ¢y > ¢y > -+ >cpand ¢y > ¢y > -+ - > Cp, it follows that
Ck = Ce (3.17)
Consequently we have (3.15). m|

Combining Proposition 3.4 with Proposition 3.2, we derive the following theorem for the
singular value of B, or equivalently, B©.

Theorem 3.5. The k-th singular value o (B©) of BY with nonzero diagonal and subdiag-
onal entries is equal to +/c, namely,

ol(BY) = Ve,
fork=1,2,...,m, where c, is the limit ofqu L ash — oo,

Proof. 1Tt is proved in Proposition 3.2 that the singular values of B" are invariant in n.
From the asymptotic analysis in Proposition 3.4, we have B” — diag(Vc1, Vcz, -+, Vem) as
n — oo. Hence it follows from ¢ = ¢; that +/cx is the k-th singular value of B©. O
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The Cholesky decomposition (3.8) guarantees that the initial data wk is always nonnegative
in smgular value computation. We also see from (3.4) that u(o) > 0. Let us consider the case
where 4 = 0 for some k. If ”(2(12,—1 = 0 for 0 < ky < m, we compute the eigenvalue of (B®)T B®
defined by (B©)TB® = (B®)TBO + 2] where o is some positive constant. Then all entries of

B© are nonzero positive. Note that 2,((B®)TB®) is given by A(B®)TB®) — g2, If ug}z) =0,

then
BO = [ BY 0 ]
0 BY

where B(O) e R"% and B(O) € R FXm=ko) are ypper bidiagonal matrices. Hence the singular
value computation of B(O) can be performed by computing singular values of B(O) and B(O)
Therefore it is enough to discuss the initial data (3.13) in Theorem 3.5.

As is shown in Theorem 3.5, the vdLV system (3.1) is applicable to singular value compu-
tation. In the next section, we explain an advantage which the I-SVD algorithm with variable

step-size has.

4. Numerical examples

First, we show some numerical results computed by using a part of the I-SVD algorithm
with variable step-size. To investigate the effect of variable step-size let us take up the following
simple example,

B =

[

1
1
0

_ = O

Let us compare Case 1 with Case 2 shown in Table 3.1. Each asymptotic behaviour of k)

TasLE 3.1. Choice of the step-size 6

step-size 6™

Case 1| 6@ =1,60 =100,6% = 1,6% =100, - - -
Case2 | 6™ =1forn=0,1,---

Case3 | 6" =100 forn=0,1,-

Case4 | 6© =1,...,600 =1, 6(“) = 100, -

Case 5 | 6@ =100, ---,699 = 100,600 =1, .-

and 1/ ) is shown in Figure 3.1 and Figure 3.2 respectively. Figures 3.1 and 3.2 demonstrate
that the variables - /u(" and . /w " converge to some limits independently of the choice of 6®.
Though the values of " vibrate, those of (") do not. From the discussions in §2, we

can regard /w( as the singular value of B (= BY), when +/w()_, is approximately equal to
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the square root of u,

20 30

iteration number
Ficure 3.1. A graph of iteration number in a part of I-SVD algorithm (x-axis)
and the square root of u,((") fork=1,2,...,5 (y-axis). The solid and dotted lines
describe the behaviors of square root of u,(c") from »n = 0 to n = 30 in Case 1 and

Case 2, respectively.

2 T

the square root of w,

30
iteration number

Ficure 3.2. A graph of iteration number in a part of I-SVD algorithm (x-axis)
and the square root of w}c") fork=1,2,...,5 (y-axis). The solid and dotted lines
describe the behaviors of square root of wg') from n = 0 to » = 30 in Case 1 and

Case 2, respectively.
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0. Thus w(z','?_ , ~ 0, for some #, gives rise to a stopping criterion. In practical computation, we

adopt 4 /wg',?_2 < ¢ as the stopping criterion where ¢ is a small number. When /wg,?_z < g, we
can reduce the matrix-size m to m — 1. This is a deflation process.

Next, we examine Cases 2-5 in Table 3.1. Figure 3.3 describes the behaviour of u(Z”),
especially in Cases 2-5. Figure 3.3 suggests some benefit derived from the flexible choice of
step-size 6. Compared Case 4 with Cases 2, 3, it turns out that convergence speed is accelated
as 6™ becomes larger on the way of iterations. It is shown in Chapter 2 that the convergence
speed tends to a constant determined by a ratio of singular values by enlarging 5. We also see
from Case 5 of Figure 3.3 that convergence speed is reduced by decreasing the value of 6.

However, Case 5 has an advantage with respect to computational cost since we can replace
g, *u,({") with u,(:’) from n = 10. Let us compare Case 5 with Cases 2,3 and 4 through the singular

value computation of

84 76 O
B,={ 0 4 0.02],
0 0 0.01

where € = 1.0 X 107!, Table 3.2 shows timing of deflation in Cases 2-5. For example, in

TaBLE 3.2. Timing of deflation in Cases 2-5

First deflation Second deflation
(matrix-size m : 3 — 2) (computation is completed)
Case 2 n=730 n =730
Case 3 n=10 n=29
Case 4 n=18 n=29
Case 5 n=10 n=29

Case 3, it turns out from Table 3.2 we compute the singular values of 3 x 3 matrix for n < 10
and 2 x 2 for 11 < n < 29. In consideration that §™u” = 4 when 6" = 1, the operation
number in Cases 2-5 is shown as Table 3.3. It is significant to note here that division needs more

TasiE 3.3. Operation number in Cases 2-5

Additions Multiplications Divisions
Case 2 240 125 120
Case 3 156 239 78
Case 4 188 207 94
Case 5 156 163 78

computational cost than multiplication. Hence, from viewpoint of computational cost, Case 5 is
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better than other four cases. Simultaneouly, the roundoff error in Case 5 is also small since the
operation number is the small. Consequently, the flexible choice of 6™ at each step is shown
to be useful for an efficient computation with respect to both convergence speed and numerical
accuracy.

0.08

O Case 4
B Case5

0.04}

the square root of u,

0 10 20 30
iteration number

Ficure 3.3. A graph of iteration number in a part of [-SVD algorithm (x-axis)
and the square root of ug’) (y-axis). The solid lines describe the behaviors of
square root of ug’) from n = 0 to n = 30 in Case 2 and Case 3. The white circle
and black square marks correspond to the square root of ug") fromn =0ton =30

in Case 4 and Case 5, respectively.

Although a suitable stratagy of 6" has not been found generally, we explain how to deter-
mine 6" by relating it to the singular values o(B), k = 1,2,...,m. A proper choice of the
variable step-size §* may depend on the distribution of singular values. It is shown in Chapter
2 that the convergence speed crucially depends on the ratio of nearest singular values, i.e., the
value of maxy(o,,(B)/c3(B)). Note that

(N+1) ) )
w uy,, . +1/6 .
| = ey Am ik = oiB)
Wak Uy + 1/600 o
since wil ™Y = o) TIN (1 + 6™u )/(1 + 6®u® ). Then we see that the convergence speed

of the series {w(z’}c)},,zogl,... grows as 6 becomes larger. If maxk(o-lzc +1(B)/o-,2€(B)) isnotcloseto 1,
a good acceleration is performed by enlarging 6. However any control of positive 6 hardly
gives rise to acceleration when the distribution is dense. Hence 6™ = 1 will be a better choice
in this case with respect to the operation number and the roundoff error.

29



Let us consider the case where o{(B) = 02(B) ~ -+ & 0,-1(B) and the smallest singular
value 0,(B) is not close to o,—1(B). Then ngy),_z primarily converges to zero after performing
some repeat loops. A larger step-size 6 accelerates this convergence. It follows from Proposi-
tion 3.2 that w%{z ~ 0 and w(zlr\nf)_1 ~ o2 (B) for some N. Therefore we can introduce a deflation
from B € R™" to B € R™ V™D _ Since B has dense singular values, we switch the 6® to 1.
This control of 6 corresponds to that in Case 5. Similarly, we may adjust such §® as in Case

4, when o(B), k=1,2,...,m - 2 are sufficiently separated each other and o,,_1(B) =~ o,(B).
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CHAPTER 4

On the discrete Lotka-Volterra algorithm:

error analysis, stability and singular vectors

1. Introduction

A new algorithm for computing singular values named the dLV algorithm is presented in
previous chapter. The dLV algorithm can be visualized by Figure 4.1 named the dLV Table.
The dLV Table describes a rhombus-like rule and seems to be very similar to the qd Table

2 2 2 2 2
bl Tt bzk—z b2k—1 b2k e b2m—1
©) (V)] ) ©) 0 0) 0)
Uy Uy o Uppp Unp g Uyt Upy y Upy
(1) 1 M ) e)) 1) 1
g™ Up" o Upp oy Upp g Uy o Uy g Uy
) (2) (2) 2 2 2) 2)
Uy Uy e Uy Uy Uy vt Upyy Uy,
2 2 2
0 oy -~ 0 c, 0 - o, 0

Ficure 4.1. dLV Table

[11]. As is pointed out in Chapter 2, there is an intimate relationship between the dLV system
(2.5) and the pqd recurrence relation (2.17). Namely, the qd variables and the LV variables are
directly connected by Miura transformation (2.23). Both the pqd algorithm [7, 32] and the dLV
algorithm, shown in the previous chapter can compute, singular values of bidiagonal matrices
B without square root computation. Table 4.1 gives a comparison of the complexity of pqd, dqd
and dLV iterations. See [7] for the complexity of DK and orthogonal qd (ogd) algorithms.

It is possible to apply the dLV algorithm to a wide class of rectangular matrices 4 by us-
ing the Householder transformation from A4 to (B O) or (B" O)". The dLV algorithm has the
following advantages. The singular value computation is performed only by additions, multi-
plications and divisions, whereas it does not need any subtraction in each iteration as well as
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TasLe 4.1. Complexity of pqd, dqd and dLV algorithms

pqd | dgd | ALV
Square roots 0 0 0
Divisions 1 1 1
Multiplications 1 2 1
Additions 1 1 2
Subtractions 1 0 0
Assignments 2 3 1

square root computation. It is well known that numerical errors may be extremely large in al-
gorithm which uses subtractions with multiplications or divisions. The dLV algorithm avoids
this situation. Since the initial value given by entries of the upper bidiagonal matrix B is non-
negative, every quantity is also positive at any time (see Chapter 2). The dLV variables, keep
positive, guarantee

1<1+6u"h, (4.1)

where 1 + 6u,(:il) is the denominator of the dLV recurrence relation (2.5). We can choose such
a parameter ¢ that 1 + 6u,(("_+11) < M for a certain positive number M. Hence high numerical
stability of the dLV algorithm may follow. .

A dLV algorithm having variable step-size 6” is given in Chapter 3. It has better conver-
gence speed than the dLV algorithm with § = 1. The sl algorithm is also presented in Chapter
5. The speed is drastically increased. In many numerical experiments the sI algorithm is rather
faster than DBDSQR (without singular vectors computation) in LAPACK. Here the shifted DK
and the dqds algorithm are implemented in DBDSQR and DLASQ, respectively. Moreover,
accuracy of the sl algorithm is better than these today’s standard packages. Hence reliable
approaches, such as error analysis and stability analysis, to basic features of the dLV and sl
algorithms are worthwhile. In this chapter some basic properties of the dLV algorithm having
constant step-size ¢ are discussed.

The first purpose of this chapter is concerning with error analysis. It is necessary to verify a
high relative accuracy which results from the nonnegativity of the dLV variables. We consider
errors of the dLV algorithm through the following two approaches.

The first is an estimation of relative error bound of 1-iteration of the dLV algorithm. Using
a method by Demmel [5] and Fernando-Parlett [7] it is shown that singular values are computed
by the dLV algorithm with a high relative accuracy. Namely computed singular value by the
dLV algorithm is in relative error by no more than O(m?e) which is as same order as that by the
dqd algorithm, where ¢ is as small as machine epsilon. The dLV algorithm is more accurate than
the DK algorithm. The other approach to errors is a singular value computation for a desired
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accuracy by the dLV algorithm. For this end, it is useful to introduce Weyl type perturbation
theorem in [30] suited for numerical inclusion of matrix singular values. This theorem says that
errors of the singular values are estimated by the computational errors of matrices. The errors
of matrices are evaluated by changing a roundoff mode. In this process, we use two types of
roundoff mode defined as

(a) Down : Round ¢ € R to the largest floating point number f € F satisfying f < c,

(b) Up : Round ¢ € R to the smallest floating point number f € F satisfying f > c,

where R and F denote the sets of real numbers and floating point numebers, respectively. There-
fore, we have rigorous error bounds for the computed singular values. It is shown that the dLV
algorithm computes singular values at a high precision.

The second purpose of this chapter is concerning with stability analysis of the dLV algo-
rithm. The method in [5, 7] is also applicable to prove forward and backward stability analyses
of the dLV algorithm. Both forward and backward errors of 1-step are shown to be O(me).

This chapter is organized as follows. In §2, we estimation of relative error bound of 1-step
of the dLV algorithm and ensure a high relative accuracy of the algorithm. In §3, forward and
backward stability analyses of the dLV algorithm are proved. In §4, we prepare a procedure
for computing singular vectors in terms of the dLV algorithm. It is possible to estimate an
error bound of singular values computed by the dLV algorithm. Some numerical examples for
comparison of the dLV, the DK and the pqd algorithms for singular values are given in §5.

2. Error analysis for the dLV algorithm

It is shown in [6] that the error bound on singular values after 1-step of the DK algorithm
without shift is 69m?e. The error bound of the dqd algorithm is 4me [7] which is rather smaller
than that of the DK algorithm.

An error analysis for the dLV algorithm can be done along a similar line to [7]. Let B be
such a given upper bidiagonal matrix that b; # 0 for k = 1,2, ...,2m — 1 and 6 be some positive
constant. Set wf{o) = b2 and y = 1/6. Then the dLV algorithm for computing singular values of
B is formulated. We write 1-step of the dLV algorithm by using a modification of the variable
w,(c") = uf{”)(l + 6u§€"_)1) such that wg’) = uf{")(y + u,(:’_)l) as follows,

wo= —t k=1,2,....2m—1,
Y+ U
Ek_lzuk_l(y+uk), k=2,...,2m,
Uy = 0, Uy = 09 (4.2)

where w;, = w,(:’) and wy = w,(c"“). The convergence theorem proved in Chapter 2 says lim, e w(z’}()_l

= yo? and lim,_,., w{) = 0 for any positive y.

33



Introduce the set of 2m — 1 quantities
W =A{wy,w,- -, wom1}. (4.3)

Given W 1-step of the dLV algorithm in finite precision arithmetic generates output W =
{wi,ws,...,Wi1}. Let W be a set with small relative perturbation of . Let W be the out-
put of the dLV algorithm acting on ¥ in exact arithmetic computation. We require that Wisa
set with a small relative perturbation of 7. These sets are mutually related as Figure 4.2.
dLV/computed

VW —

)

perturbation of w

w

perturbation of #

S

dLV/exact
FiGure 4.2. Effects of roundoff/W diagram

We estimate a relative error bound of the singular value computed by the dLV algorithm. Let
the floating point computation of a basic arithmetic operation o satisfy fl(xoy) = (xoy)(1+n) =
(x oy)/(1 + 8), where || < € and |§| < & for a given . This is the arithmetic model in [7].
A relationship between W quantities and 74 quantities computed by the dLV algorithm is as

follows.
Wy 1 + 8/
= , 4.4
“ Y+u 1 +e “4
We-1 = w1 (¥ + up)(1 + &)(1 + &)
1+
= u, (’y P & )(1 +e)(1 +&), (4.5)
Y+ U 1+ Ei—1

where |¢/] < &£ and so on. All the &’s depend on k. We note the k-dependence of relative error
arising from addition.
Let us introduce a small relative perturbation

W = wi(1 + 8)/(1 + &) (4.6)
of W to W. Then exact computation by the dLV algorithm gives  quantities from W as
- Wy 1+ 51
— — 4.7
i Y+ L—l)k_l 1+ 52 ( )
Wy—1 = 1 (y + y)
iR Wy 1+ g]
= |y + . 4.8
ukl(')’ 7+L7k_11+52) ( )
Let us set
wy = (1 + &1 + &). (4.9)
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Then we have from (4.8)
wy 1+ g]
Y+ ﬁk—l 1+ 52

Wit = it (y + )(1 +&)(1 + &). (4.10)

If we choose & = g/, & = &1, &1 = &, & = &, then

S5 Wy 1+8/

Uy

k . @.11)
Y+t 1+ e

This implies from (4.4) that #, = u. Therefore we see wy—; = Wy from (4.5) and (4.10).

Theorem 4.1. The W diagram commutes and oy, differs from wy by 2& at most, Wy, differs
from Wy by 2& at most. The dLV algorithm with § > 0 guarantees that each computed singular
value of m X m bidiagonal matrices is in ervor by no more than (4m — 2)e.

Corollary 4.2. If there is no roundoff error in addition of unity, each computed singular
value is in error by no more than (2m — 1)e for the dLV algorithm with § = 1.

3. Backward and forward stabilities

There are two types of roundoff error analysis. One is forward error analysis and the other
is backward. For a given set of data z = {z;} let us write some exact computation on this data by
C(2) = C(z1,22,"** »2m). For z = {z} we write C(z) = C(z1,22, " ,2m) similarly. Let f1(C(2))
denote output generated by 1-step of the algorithm considered in finite precision arithmetic.
The term forward error analysis is to determine a forward error as

IC@) = FACE)II- (4.12)

If the forward error of computation of f/(C(z)) from z is small, such a computation is said to be
forward stable. Backward error analysis requires to find exact value z = {z;} which satisfies

fUCG1, 225+ 1 2m)) = C21522,"+ Zm)- (4.13)

The difference between z and z indicates the backward error of the computation of f1(C(z)) from
z. If the backward error is small, such a computation is said to be backward stable. See Figure
4.3.

exact
z C(z)

computed

exact

JUC@) =C@)

N

Ficure 4.3. Forward and backward errors
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Figure 4.4 shows multiple sweeps of the dLV algorithm. The mappings W; —» W1, W; —
Wl, Wl — Wiy, Wiy = Wiy in Figure 4.4 are corresponding to W — W, W — W, W — W,
W — Win Figure 4.2, respectively. The actual computation proceeds as

Wi— Wi = Wia — Wys. (4.14)
Let us consider the computation

Wi — Wiy = Wiy = Wis. (4.15)

Then we obtain #,,; as an exact computing result of W, And W, isa floating point computing
result of W; Moreover it is shown that the difference between W, and WM is 42m — 1)e and
is small. Hence the computation of Wm from W; is forward stable.

Similarly, we consider the computation which proceeds as

I;‘Vl - I7Vl+1 - I7Vl+2 - VVVI+3- (4.16)

We obtain W,,, from W, as a floating point computing result. And W, is also an exact
computing result of WM. It can be shown that the error between W,,; and Wm s 42m — 1e.
Hence the computation of W,., from W), is backward stable.

exact .
V?H 1 Wi
computed computed computed
I/Vl VV}+ 1 I/Vl+2 VVI+3
exact 5 exact J
Vv[ I/Vl+ 1 VT/]+2 I/Vl+3

Ficure 4.4. Effects of roundoff for multiple sweep of dLV algorithm

Let B be such an upper bidiagonal matrix as (2.35). Then no overflow and no underflow
occur. Therefore it is concluded that

Theorem 4.3. The dLV algorithm is forward and backward stable.
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4. Singular value computation for a desired accuracy

If the m X m bidiagonal matrix B is approximately decomposed, by some numerical algo-
rithm, into

B=USV", 3 =diag(c1,02 - 0m) (4.17)

where o7 are singular values and the column vectors of U and V are singular vectors of B, we
can estimate an error bound of the computed singular values in terms of the singular vectors.
For this purpose the extended Weyl type perturbation theorem by Oishi [30] is most useful.

Theorem 4.4. Let B be an m X m real matrix. We assume that as a result of any numerical
computation algorithm we have an mxm real diagonal matrix ¥ and mXm orthogonal matrices
U and V such that

ULV'=B+E, UU=I+F V' V=I+G, (4.18)

where E, F and G are matrices expressing computational errors. We assume that ||Fll, < 1 and
IGll, < 1 so that U and V may be invertible. where ||F||, and ||Gll, denote 2-norms of F and G,
respectively. Let 0y and oy be singular values of B and %, respectively, where oy 2 03 2 -++ 2
O and oy > 0y > -+ > 0, Then the following estimation holds:

ok — ol < o max{[|Fl2, [|Gll2} + | E]l2. (4.19)

This theorem enables us to estimate error bounds of singular values from the computational
errors of singular vectors computed by a numerical SVD procedure. The quantities ||E||, [1F]>
and ||Gl); in (4.19) are evaluated by changing a roundoff mode.

In this section we formulate an SVD procedure for the bidiagonal matrix B to discuss a
precision of singular values computed by the dLV algorithm. To this end a close relationship
between the dLV recurrence relation (3.5) and the qd recurrence relation (2.24) is fundamental.

Let us give a brief review of the pqd algorithm for computing cigenvalues [37, 38]. The qd
recurrence relation (2.24) has such an asymptotic behaviour [11] that qi”) - ¢, ef{”) — 0 as
n — oo under a suitable assumption, where ¢; are some nonzero limits satisfying |c;| > |c2| >

«++ > |c,l > 0. Let us begin with the LR matrix expression of the qd recurrence relation

LoD Ry — R(")L(n), (4.20)
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where L™ and R™ are given by (2.25). Introduce a sequence of m X m tridiagonal matrices

() () ,(m)

4 q;°¢
1 e(ln) + qgn) qgn)egn)
T(n) = 1
m )

qm—lewrtl—l

Lo gl
e

=L"WR"  p=0,1,.... (4.21)

Then the LR expression (4.20) takes the form of similarity transformation
70 = R~ ) gy (4.22)

This is a discrete self-similar flow. Note that the eigenvalues of 7% are invariant under the time
evolution from # to n + 1. Let us write the eigenvalues of T as 1,(T™). The iteration (4.22)
yields such a decomposition of 7© that

7O _ (R(I)R@) .. _R(n—l))_l TORMORD ... gir-1) (4.23)
When qfc”) — ¢ and eg’) — 0 as n — oo, T™ also converges to a lower bidiagonal matrix as
n - OO,
1
1 C 0
T = o . (4.24)
1 ¢,

Since ¢ are the eigenvalues of T, it follows from A,(7©) = 3(T©) that c; are the eigenval-
ues of 7@, Simultaneously, RVR® . .. R#~D converges to an upper triangular matrix. Therefore
the qd algorithm computes real nonzero eigenvalues c;, of the tridiagonal matrix 7O,

An eigendecomposition of 7 is also given in terms of the qd algorithm.

Lemma 4.5. An eigendecomposition of the bidiagonal matrix T is given by

T = PAP™,

P11 O

P2 D22 m
P= : : : , Pi,jEl_[(Cj—Ck),

k=i+1
Pm-11 Pm-12 *° Pm-lm-1
1 1 1 1

A = diag(ci, ca,- - ). (4.25)
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The decomposition (4.23) and the eigendecomposition (4.25) lead to the following lemma
for the eigendecomposition of T® in terms of the qd algorithm.

Lemma 4.6. An eigendecomposition of the tridiagonal matrix T is given by
© - g1 -lpm @ = RORE@) ... gD
TO = R~ pAP-IR®, RO = RVRP ... R, (4.26)
where 1 is such a stopping time that T® = Rg) T (O)Rg)_l is approximately lower bidiagonal.

Next we extend the eigendecomposition of 7© to that of a class of symmetric tridiagonal
matrices. Let us consider the case where the initial data of the qd algorithm is given by

0 _ 12 0 _ 12
O =0, >0, &) =b;,, >0 (4.27)
We can symmetrize T as

Lemma 4.7. Symmetrization of TO) by a similarity transformation is given by

T, = GTVG™,
m=1 1
G = dia yeovs Gm—tm—1s1)s k= , 4.28
g(gits - s Gm-1m-15 1)y ik g b by (4.28)
where the symmetric matrix T is written by
B2 biby
b]bz b% + bg b3b4
To =1 . (4.29)

2 2
bszsbzm—zl bzm_4 + bzm_3 b2m—3b2m—2
2 2
bym-3brm— N o

Proof. Let us set G = diag(g1.1,922," " »9mm)- Then the (k, k)-entries of GT G~ are
b%,_, + b%_,. It is obvious that (k,k + 1)-entry and (k + 1,k)-entry are b2, b5, Gkl ket
and gy14+1/grr respectively. If grz = H;f’:"kl 1/byj-1b2; and gy = 1, both (k, k + 1)-entry and
(k + 1, k)-entry become by_ ba. O

Note that T is positive definite, namely, ¢; > 0. By applying Lemma 4.7 to Lemma 4.6, we
have an eigendecomposition of positive definite symmetric matrices:

Lemma 4.8. An eigendecomposition of Ty is given as follows

T,=VAV"', V=GRQ"'P. (4.30)
Let us set V = (01,02, ...,0,), where v; = (V1),02j,...,Un;)" and each v;; represents the

(i, /)-entry of V. The vector v; is just an eigenvector for the eigenvalue 4;(75) computed by
the qd algorithm. Note that vJv; = 0 in the case where 4(7s) # A;(T;) for i # j since T is
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symmetric and " VA = AVTV. Thus we can transform ¥ to an orthogonal matrix V= () by
the normalization v; — v; = (Vi1, Ui2, ..., V;m)" such as b?l + 17,.2 +oeeet ﬁfm = 1. The result is
U, J

2 2 2
\/vi,l +vi,2+ +v

im

. j=12....m 4.31)

U,',j =

Here each v; corresponds to a unit eigenvector of 1;(T). Consequently, we have an eigende-
composition of 7 by the orthogonal matrix V.

Lemma 4.9. An eigendecomposition of Ty is given by
Ty = VAVT, (4.32)
where V is an orthogonal matrix given by normalizing the columns of V.

Now we consider an SVD of such a bidiagonal matrix B as (2.35). Any positive definite
symmetric matrix 7 in (4.29) admits the Cholesky decomposition of the form

T, = B"B. (4.33)

Since the limits ¢; are simple eigenvalues of the positive definite matrix T, Lemma 4.9 says
that the qd algorithm computes the singular values of B through

oi(B) = Ve, (434)

such that oy > o, > --- > 0, > 0. Moreover, for some orthogonal matrix U , the decomposi-
tions (4.32) and (4.33) generate

BB = (l—]_A% I7T)T UA% 177, A% = diag(g’l, O3, "+, O-m) (435)
We have

Lemma 4.10. An SVD of B is presented as B = ULV, where = = A2, Here the orthogonal
matrices V and U are given by normalizing column vectors of V = GRE,”)_IP and U = BVZ™,

respectively.

The diagonal matrix T of singular values and the orthogonal matrix V of singular vectors are
shown to be computed by the qd algorithm with the initial data (4.27). Since the convergence of
the qd algorithm without shift is very slow, it needs many times of matrix product to compute
Rg) . Thus this SVD procedure is impractical. However it is useful to discuss a singular value
computation, for a desired accuracy, by the dLV algorithm.

Let B be such a bidiagonal matrix as (2.35). An SVD in terms of the dLV algorithm is
described as follows.

(i) Set a suitable discrete step-size § > 0 and the initial data by (2.36).
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(ii) By using the dLV algorithm the singular values o7 of B are computed as

or = u(z’? ,» for such n that max lu(zﬁ) <1.0x107“ (4.36)

Jj=
for some positive integer @, where the second condition is a stopping criterion.

(iii) Compute the product of upper bidiagonal matrices R@ = RORM ... R#-1) and its in-
verse, where each RY is given by replacing ¢V with 6u§’2 47 in (4.20).

(iv) Prepare the diagonal matrix G and a lower triangular matrix P with ¢; = o; > 0.

(v) Through the nonsingular matrix V' = GR;Z)_IP, the orthogonal matrices Vand U =
BVE! such that

B=UzV", (4.37)

are obtained.

We call this the integrable SVD (I-SVD) algorithm.

It becomes possible to estimate error bounds of singular values o computed in Steps (i)-(i1)
through the SVD procedure (iii)-(v). An example of the singular value computation at desired
precision is given in the next section.

5. Numerical examples

In this section we first give some numerical examples for comparison of the dLV algorithm
with the DK and the pqd algorithms without shift. For the DK algorithm we take up DBD-
SQR of LAPACK code, where both the shift and the singular vector computation routines are
excluded. For the pqd and the dLV algorithms, the Demmel-Kahan QR routine of DBDSQR is
replaced by the pqd without shift and the dLV routines, respectively. The same stopping crite-
rion is adopted as that of DBDSQR. We fix the parameter as § = 1 for the dLV algorithm, for
simplicity.

Here we consider 100 x 100 and 500 x 500 matrices of four types in Table 4.2, where
& are the verified correct values. We show the singular values & of the 100 x 100 matrices

TaBLE 4.2. Four cases of upper bidiagonal matrices

Diagonal by,_;  Subdiagonal by Distribution of 5y  Minimal &,
Case 1: B; 2.001 2 sufficiently separated nonzero
Case2: B, 1 10 somewhat separated  almost zero
Case 3 : B3 0.001 2 =1 . dense (except for 6,,) nonzero
1 (otherwise)
Case 4 : By 2 0.001 dense (except for 5,) almost zero

B;, i=1,2,3,41in Table 4.3.
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Tasie 4.3. Singular values in four cases of 100 x 100 matrices

Distribution of 100 singular values

Case 1 01 =4.000511306--- ,6, = 3.999045346 - - -,
ves 099 = 0.094010676 - - - , G199 = 0.031906725 - - -

Case 2 01 = 10.99955222--- ,6, = 10.99820922 - - -,
.., 099 = 9.000549469 - - - , G190 = 0.000000000 - - -

Case 3 01 =2.001999014--. ,6, = 2.001996057 - - - ,
..., 099 = 1.998000987 - - - , 190 = 0.999999833 - - -

Case 4 01 = 2.000999506 - - - , 6> = 2.000998027 - - -,
.., 099 = 1.999000493 - - - , G199 = 0.000000000 - - -

Table 4.4 gives computational time of the DK, the pqd and the dLV algorithms with § =
1 for these matrices. The numerical experimentation was carried out on our computer with
CPU: Pentium IIT 933MHz, RAM: 512MB and every quantities were computed in the double
precision. When singular values are dense, convergence becomes very slow in these algorithms.
Since the computation of the minimal singular value 019 or 07509 is completed at the early stage
of iterations, there is no definite influence of the existence of almost zero-singular value. Table
4.4 also suggests a scalability of the dLV algorithm.

TasLE 4.4. Computational time of the DK, the pqd and the dLV algorithms (sec.)

100 x 100 500 x 500
DK pgqd dLV DK pqd dLV
Case 1 020 0.05 0.07 6.92 1.37 2.35
Case2| 093 020 030 33.44 6.44 9.86
Case3| 79.40 1633 30.11|252343 52530 979.82
Case 4 | 149.07 31.52 58.20]4915.28 1013.60 1902.86

Next we discuss accuracy of singular values computed by the DK, the pqd and the dLV
algorithms for B;, i = 1,2, 3,4, where every B; is 100 x 100.

Figure 4.5 describes relative errors |y, — d|/0, of the computed singular values o, of B.
To see a difference in accuracy among the algorithms, we rearrange these relative errors from
small to large. Then the resulting Figure 4.6 shows that the relative errors computed by the dLV
algorithm are slightly smaller than those by the others.

Relative errors for the matrix B, with m = 100 are given in Figure 4.7. Since B, has an
almost zero-singular value &g, the relative error for o1qp is replaced with the absolute error
|o7100 — G 100] in Figure 4.7. The relative errors of the dLV algorithm are more or less smaller
than the others.
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0 I50I 100

Ficure 4.5. A graph of the suffix k for ordering singular values o according to
magnitude (x-axis) and relative errors in computed singular values of By by the
DK, the pqd and the dLV algorithms (y-axis). The dashed, dotted and solid lines
are given by the DK, the pqd and the dLV algorithms, respectively.

10-13 :

0 50 100

FIGURE 4.6. A graph of rearranged relative errors in computed singular values
o of B, by the DK, the pqd and the dLV algorithms from small to large. The
dashed, dotted and solid lines are given by the DK, the pqd and the dLV algo-
rithms, respectively.
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Ficure 4.7. A graph of the suffix k for ordering singular values o according to
magnitude (x-axis) and relative errors in computed singular values of B, by the
DK, the pqd and the dLV algorithms (y-axis). The dashed, dotted and solid lines
are given by the DK, the pqd and the dLV algorithms, respectively.

e

0 50 100

Ficure 4.8. A graph of the suffix & for ordering singular values o according to
magnitude (x-axis) and relative errors in computed singular values of B; by the
DK, the pqd and the dLV algorithms (y-axis). The dashed, dotted and solid lines
are given by the DK, the pqd and the dL'V algorithms, respectively.
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Relative errors for the matrices Bs and B, with m = 100 are described in Figure 4.8 and 4.9,
respectively. The absolute error |19 — G100| is plotted in place of the relative error for o700 in
Figure 4.9. The quantity ug';)g in Case 4 converges fast to o2, ~ 0 in the dLV algorithm. The

dLV algorithm is the most accurate of all.

107

107"6F
0 50 100

Ficure 4.9. A graph of the suffix k for ordering singular values o according to
magnitude (x-axis) and relative errors in computed singular values of B4 by the
DK, the pqd and the dLV algorithms (y-axis). The dashed, dotted and solid lines
are given by the DK, the pqd and the dLV algorithms, respectively.

Finally in this section we give an example of application of the Weyl type perturbation
theorem (Theorem 4.4) to an estimation of error bounds of singular values computed the dLV
algorithm. We restrict ourselves to the following very small example, for simplicity.

110
011
0 01

We first compute an SVD of B by the dLV algorithm. Let us set § = 1. Then we have, for
7 =100, £ = diag(1.80193774E-00, 1.24697961E-00, 4.45041868E—-01) and

B=

5.91009049E-01 -7.36976230E-01  3.27985278E-01
U=| 7.36976230E-01  3.27985278E-01 —5.91009049E-01
3.27985278E-01  5.91009049E-01  7.36976230E-01
3.27985278E-01 -5.91009049E-01  7.36976230E-01
V =| 7.36976230E-01 -3.27985278E—01 -5.91009049E—01
5.91009049E-01  7.36976230E-01  3.27985278E-01
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where the numerical test was carried out in double precision. It is to be noted that the diagonal
entries o of X are ordered according to magnitude oy > o> > o3. By using Theorem 4.4 we
obtain

lo1 — 6] < 5.0409378E-15,

lo, — 65| < 3.9805926E-15,

los — 63| < 2.4483495E-15
at the time 72 = 100. Figure 4.10 shows a relationship between the iteration number and the
estimated etrors |0 — 6| of singular values. The figure shows that the dLV algorithm computes

singular values at a higher precision as the iteration number » increases. The estimated error
bounds are not accumulated by a large iteration number. Actual errors decrease more rapidly.

estimated errors

-_—

o
L
(=)

o 50 100
iteration number

Ficure 4.10. A graph of iteration number in the dLV algorithm (x-axis) and
estimated error bounds of singular values |0 — &] (y-axis). The solid, dotted
and dashed lines correspond to the cases where £ = 1,2 and 3, respectively.

6. Concluding remarks

In this chapter some important features of the dLV algorithm for computing singular values
of given bidiagonal matrices are revealed. By an error analysis the error bound on singular
values after 1-step of the dLV algorithm is estimated. The bound is smaller than that of the DK
algorithm and is as same order as that of the dqd algorithm. Forward and backward stability
analyses of the dLV algorithm are also proved. Relative error bounds of singular values com-
puted by the dLV algorithm are estimated with a help of the Weyl type perturbation theorem. A
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high relative accuracy of the algorithm is then ensured. The dLV algorithm has a positivity and
then the property

1<1+6u"D <M
actually supports a high accuracy.

Numerical examples in §5 show that relative errors of singular values computed by the dLV
algorithm with § = 1 are somewhat smaller than those by the DK and the pqd algorithm. The
error bound and stability attributed to the dLV algorithm also hold for the sl algorithm shown
in next chapter. Indeed, by introducing shifts such ill-posed bidiagonal matrices as in Cases 3
and 4 can be transformed to such well-posed matrices as in Cases 1 and 2. Consequently, the sI
algorithm with variable step-size §® = 1 is faster and more accurate than DBDSQR (without
singular vector computation) in LAPACK where the shifted DK algorithm is implemented.
The s algorithm with 6® = 1 is a little bit slower but slightly more accurate than DLASQ
in LAPACK where the dqds algorithm is implemented. We hope to design a new variant of
the s algorithm which is faster and more accurate than DLASQ by choosing such appropriate
parameters as the discrete step-size and the shift.
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CHAPTER 5

Accurate singular values and the shifted integrable schemes

1. Introduction

It is shown in Chapter 2 that the singular values of upper bidiagonal matrix B are com-
puted by using the integrable dLV system (2.5) with arbitrary positive constant step-size § > 0.
Though the convergence speed grows as & becomes larger, numerical accuracy is deteriorated
by an inappropriate choice of step-size in some cases. Moreover, in Chapter 3, a numerical
algorithm for computing singular values is designed in terms of the vdLV system (3.1). In this
chapter we call this algorithm the dLV algorithm, for short. The step-size 6 of the dLV algo-
rithm can be changed at each step #. A better choice of the flexible parameter 6 gives a benefit
from viewpoint of convergence speed and numerical accuracy. However it has not been known
how to accelerate the dLV algorithm by introducing a shift of origin.

In this chapter we design a new shifted algorithm named the shifted integrable (sl) algorithm
and compare it with LAPACK routines for computing singular values of B. From viewpoint of
both convergence speed and numerical accuracy, the sl algorithm is at least four times superior
to DBDSQR routine derived from the DK algorithm. The sl algorithm also runs at higher
accuracy than DLASQ from the dqd (dgqds) algorithm with shift (see §6).

The first goal in this chapter is to introduce a shift of origin into the dLV algorithm for
accelerating the convergence. The second is to give a shift strategy for avoiding such a numer-
ical instability as the shifted qd (qds) algorithm has. The third is to prove that the sI variable
converges to some limit as » — co. In our shifted algorithm, it is possible to find how to deter-
mine such a suitable shift that the sI varible stably converges to the shifted singular value. The
property, of keeping the sl variable positve, takes an active part in the numerical stability of our
shifted algorithm.

This chapter is organized as follows. In §2, we introduce new schemes and present two
theorems for singular value computation of B. In §3, we show how to estimate the amount of
shift so that the resulting scheme is numerically stable. In §4, we discuss the convergence of
new algorithm and two particular cases where B has zero entries are described in §5. In the final
section, we show test results for some examples.
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2. The shifted integrable schemes

The main purpose of this section is to introduce a shift of origin into a certain recurrence
relation derived from the vdLV system (3.1). Moreover we investigate an influence of the shift

on singular values of upper bidiagonal matrix B.
Let us begin our analysis by introducing three mappings 1;/5."), j =1,2,3 defined by
y O = @k =1,2,....2m - 1} > U = @k =1,2,--- ,2m - 1},
suchthat u( = wl” /(1 +6®u), ul’ =0,
g UP - v =k =1,2,....2m~ 1},
such that o = u(1 + 5P, ul) =0,
pO 7 = @k =1,2,...,2m - 1} » WO = @Yk =1,2,...,2m - 1},
such that w{™™" =3\ (5.1)
and two bij ections ¢5.”), j = 1,2 defined by
¢ WO = (W k=1,2,...,2m~ 1} > W,
¢ Y — O, (5.2)
for some n. The variable ug’) appeared in (5.1) corresponds to that in the vdLV system (3.1),
and is equivalent to that in the dLV system (2.5) if §® is positive constant in n. We also regard
wﬁ{") as the variable defined by (3.4). Namely, the time evolution from # to n + 1, by the vdLV

system, is performed by using three mappings wg.") and two bijections ¢5."). Under the boundary
condition #{” = 0 and u(z’z =0, w&"), j = 1,2 are also written by using a continued fraction

0
expression as follows:
y® |, e + bt +
1+ 600 1 |1 |1
= (u(ln)v ug’l)’ T u(anZI—l )
O (U1 S, ) (1 8D )1l )
() () ()
= (Ul »t ’U2m~2’l’2m—1)'

Hence we see that wg."), j = 1,2 are bijections. It is also obvious that wg”) is a bijection.
Let us consider that wﬁ.”), j=1,2,3and ¢§."), Jj = 1,2 are defined as (5.1) and (5.2) for every

n. Moreover, in this section, we assume that w® > 0,4 > 0,0 > 0and 2™ > 0, > 0,
& k k k k

k=1,2,...,2m -1 for every n. A composite mapping

1
p D =y o ¢l oy oy 0 g1 (5.3)
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w u® W+

vy
¢§”) w(l’") (ﬂ) w(n)

7o

Ficure 5.1. Evolution W® — W+

produces a maping W — W+ shown as in Figure 5.1. Similarly, y{"*" 0 """V 0 ¢ o ¢% o
g 1 U™ — U, Let us introduce here ¢(”) j = 1,2 such that " : w" > w{” for k =
1,2,...,2m—1and ¢(2") ; 2”) _fc”) as an example of the bijections ¢§."), J = 1,2, respectively.

Then the vdLV system can also be regarded as a dynamical system which generates an evolution
from 7 to 7+ 1 of u” by the composite mapping y"*" o D oyl 0 G0 oyl 1 u™",
Let us replace ¢§”) and ¢;") in the mapping wg’;;},)s (5.3) with ¢\ and &g”), rspectively. Then

the maping y+)) : W® — W in Figure 5.1 is reduced to

™ @ o0
S L g ) 4 U™ ¥ yo = o B ey

vdL Vs

In Chapter 2, it is shown that the singular values of

(54

B = A
.. ()
VW

are invariant in . Here the sequence B® starts from B® = Band y") = ¢ 0 ¢ 0y o

¥ o 3 generates an evolution B® > B+ where ) = lim, ., y . Ttis also proved
in Chapter 3 that y%) o - o yl) o @9 ,w?) — (0X(B),0) as n — oo, where o(B)
indicates such a singular value that o(B) > --- > 0,(B). Simultaneously, it is obvious that
zﬁl()';)LV wi v (wg? P (0)) — (4(B7B),0) as n — oo where A4,(B" B) is the k-th eigenvalue
of B"B. It is significant to note that 2,((B"™)"B™) is invariant in 7 as long as the evolution
B®™ > B+ is produced by y1 ).

50



It is well known in matrix eigenvalue problems [47] of that a shift of origin

(E(n))TE(n) = (B")"B® — 9(")2[’ (5.5)
—(n —(n)
V¥ ) VW2
—n)
B = s
.. —n)
. Wom-2
[ —(n)
O w2m—1

is useful to accelate the convergence speed where 6% denotes the shift at discrete time 7= 6.
We here assume that 6® is a suitable shift for keeping w” > 0, k = 1,2,...,2m — 1. Let us
introduce a parameteric bijection qﬁg’g which is defined by

) . m gm0 (1) ) —n) —(n)

Brg - Wy + Wy y — 07wy qwye) = Wy + Wy Wy W) (5.6)
with the boundary condition wg") = 0 and lﬂf)") = 0. Uniquely we can compute zl)(k"), k =
1,2,...,2m— 1 from w" by

o () N ()] () () () . _ )
Wy = Wypy + Wy y = 07 + 155, Wy p = Ky ps
(my (1) (m () (m), (1)
o _ Wor—2Wak-3 | Wir-2Wae-3 | W, W, I
e I N N P TP
Wok—3 T Wap g Wog3 + Wy — wy -

Let us replace ¢ and ¢3” in (5.3) with ¢'") and ", rspectively. Then gD e — D)
is also defined by the composite mapping ¢%r) =y 0 ¢ o Yl o Yt 0 ¢ as follows:

o e e _ e
b o 20 e B e B g o e B e
Ui s
Let wf}’;;},)(X), zﬁi’;zysl(X) and z//l()';,zi,)sz()(), for some matrices X, denote the mappings of the en-
ties of X by ¢y and yU1) | respectively, in this chapter. Since (B"*D)T B+ =

y® ((B™)TB™)), we see that L,((B™D)TBD) = 4((B™)TB™). By relating it to (5.5), it
follows that
A((BOOYTBED) = 4 (B™)TB?) - 6, (5.7)

Therefore we have the following theorem for a composite mapping a,bg;le)sl.

Theorem 5.1. B"*) = y"*) o...0 z,//l()gLVsl(B(O)) satisfies
4((BO)TBO) = (BB + ) o, (5.8)
N=0
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Proof. From (5.7), we have (5.8). |

In this chapter we call the procedure from B® to B by the mapping y"+))  the shifted
integrable scheme 1.
We here consider thNe case where ¢§”) is replaced by <73(1”) in (5.3). A composite mapping
0 ¢ 0y oy 0 ™ produces W™ — Wr+D that
¢gn) l/,g'n)

w(ln) Wgn)

W(n) — W(n) R U(n) N V(n) I7(n) W(n+1).
Simultaneouly, Y% o ¢ o Y o ™ o ¢ : B® s B Let us define a new mapping
YU o V) — oD g

T, () () 2. m (n+1) (n+1)  (n+1)_ (n+1)
3,9 - Wy g TV — 0", Uy Vo) B () +wy Y wy T wn ), (5.9)

with vg’) =0, wf)") = 0 and the shift 8 which keeps wfc”“) >0, k=1,2,...,2m—1. We also sce
that (Zg"; is a bijection since ¢§") in (5.6) coincides with g;g”z in (5.9) by replacing w,({") , u~)§c”) with
o, w™Y respectively. Let us call the procedure from B™ to B#*D by a composite mapping
%Zrzlrf)sz = ;;g”; o a,bg”) oyl 0 @ the shifted integrable scheme 2. Then we have a theorem for the
shifted integrable scheme 2.

Theorem 5.2. BV = y") o...oyl)  (BO) satisfies (5.8).

Proof. The mapping w,bg”) is rewritten as

() . HAm ~n)  An) —An) (n+1) (n+1) . (n+1)  (n+1)
30 Oy 0y U V) P (W) wy L wy wy ). (5.10)

Let us introduce a mapping ¢y : ¥® — V@ given by

(R )] () 2 (1 () —n) ) An) —n)
Gt oy + 0y — 0705 050) o Uy, + Uy g, Uy U5). (5.11)

Then we can regard z;g’g in (5.9) as a composite mapping gbg”) ) ¢g27. Note here that zﬁf;,zll,)sz o

=y since ¢ g = ¢, Hence we see that 4,((B% )T B®Dy = 4,((B™)T B™) where

vV > 26 o=0) Lo
ngg) = B*V| ,_,- Moreover a mapping Y in (5.9) implies that ﬂk((Bg(’;g))TBg)’(’;z) =

(B®*D)T B+DY 4 6®?  Consegently, 4x((B™)TB™) = A((B™V)TB™DY + §%* This leads to
(5.8). O

3. Shift strategy

The mapping ¢"|,,_, in (5.6) holds & > 0 if w(” > 0 for k = 1,2,...,2m — 1. However
E,({") is not always nonzero positive if 8 is large. The value of u_)i”) is not only negative but also
numerically uncomputable in the worst case. For some ky, if u_)g',g_l = 0 by an inappropriate
shift, then @gl?o diverges to infinity, i.e. we can not compute u_)g,’c)o numerically. Moreover we
do not desire the case where W™ > 0,--- , 0™, > 0,0 < 0,--- by a too large shift. This is

1 ko—1 ko Yy g
because 1 + 6(”)u§€") with u,(:') < 0 may be zero, i.e. u,({"”) may be numerically uncomputable by
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the mapping " : W™ — U®, Hence with a rather large shift the shifted integrable scheme
1 may be numerically unstable. Therefore we introduce the following proposition for keeping
—n)

w,” > 0.

Theorem 5.3. Suppose thatw\” > 0 fork = 1,2,...,2m—1. Then (B®™)T B® is positive defi-
nite symmetric. It holds that 0™ > 0 fork = 1,2,...,2m—1 if and only if 6 < A,(B))T B®),
where A, is the minimal eigenvalue of (B")™ B" i.e.

6" < o2 (B"). (5.12)

Proof. Letw™ > 0, k= 1,2,...,2m-1. Then it is obvious from (5.4) that o(B®) > 0, k =
1,2,...,m. Simultaneously, L((B™)"B®) > 0, k = 1,2,...,m. Hence we see that (B™)"B"
is positive definite and symmetric.

Let us here consider the case where 877 < 1,,((B®)TB™). Since it is shown in §2 that
L(B™YT B = A (B®)TB™) — 607 k = 1,2,...,m, we sce that 4((B”)"B™) > 0,k =
1,2,....m, i’e. (B®)TB® is a positive definite symmetric matrix. Let E;{”),k =1,2,...,m

denote k x k matrices defined by

—n) —(n)
\/ Wy Wy
—(n)
_ w
B = 3 (5.13)
—n)
Wo-2
—(n)
0 Wok-1

where B™ = B™_ Then the positive definite symmetric matrix (B™)T B® satisfies det((EE{"))TE,(C")
)> 0,k =1,2,...,m. Note here that det((B")"B") = det((BY”)")det(B™). Hence we derive

le u_)(z';)_1 >0,k =1,2,...,m, ie. u_)(z’,?_l > 0,k = 1,2,...,m. Moreover it is obvious that
u_)(z’,?_lu_)g,? = w(z';()_lwgg,k =1,2,...,m— 1. From the assumption w,({”) >0,k=1,2,...,2m—1,1it
follows that w(? > 0,k = 1,2,...,m— L.

Next we suppose u_)g’) >0,k=1,2,...,2m - 1. Then H’]‘.zl u_)(z';)_1 >0,k=1,2,...,m,ie.
det((E,(c"))TE,(c")) > 0,k = 1,2,...,m. Since (B®)TB® is positive definite and symmetric, we
see that 4, ((B™)TB™) > 0,k = 1,2,...,m. Note here that ,(B™)"B®) = 4,((B®)TB") -
602 k=1,2,...,m. Hence it follows that 8®° < 2,,((B™)TB®). Therefore it is concluded that

o >0,k=1,2,...,2m— 1 if and only if §° < 2,,((B™)TB®), i.e. §7° < o2 (B). O

The Gershgorin-type lower bound proposed by C. R. Johnson [19] helps us to estimate
o m(B™) in (5.12) as follows:

|
on(B™) > max {O, 19(1")} , ﬁg”) = mkm{ \/wg,?_l ~3 ( \/wg',?_z + \/w(z'}f))} . (5.14)
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Combining it with Theorem 5.3, we have a shift strategy for avoiding numerical instability in
the shifted integrable scheme 1.

Theorem 5.4. Suppose that the initial data is as wg’) >0fork=1,2,....2m—1land e is

some small positive constant. Then
6" = max{0, 9" - &) (5.15)
is a safe choice for numerical stability in the shifted integrable scheme 1.

Moreover we consider a different shift stratagy from Theorem 5.4. Let us introduce a new

variable
57 = %mkin (Wl |~ (s, +uwd)}. (5.16)
Then we obtain the following theorem.
Theorem 5.5. If 6™ is computed by
6™ = max{0, 93" - &), (5.17)
instead of (5.15), then the shifted integrable scheme 1 is also always numerically stable.

Proof. Let us consider two cases 19(1”) < 0and ﬁ(l") > 0.
For x,y > 0, it is well known that (x +y)/2 > +/xy. Note that wg’) >0, k=1,2,...,2m-1.

Then we have
1
(n) q(m) __ (n) : () (1) ()
Wy B = Wy min { VW17 5 ( VW T YWy )}
) 2
— () (n) (n) (n)
= MWy = \[Wo-1 4 (V Wya t ka)
2
1 1
: () () (17)
2 min {szk—l -3 ( VWit \/wzk) }
1 1 1
_ . (n) (n) () m
= 5 min {ka—l 7 (w2k—2 + w2k) ~3 w2k—2w2k}

1 1
. () (n) (m)
> 5 mkln {ka_l - —2- (ka_z + Wy, )}

which implies that 19(2")2 < 0if 19(1”) < 0. Hence max{0, 19(1”)2 — &} = max{0, ﬂg")z —g =0if
9 < 0.
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Suppose that 19(1") > 0, then it follows that

2
W2 _ [or _ L[ [m [
3 = min {( W1~ 5( Wyp + w2k)) }
: 2 2
1
— (n) () () (n) (n) (n)
= mkm{wzkl + 7 (\/wzk—z + \/ka) - \/ka—l (szk—z Ty ka) }
2
1
: () (n) (n)
min {w2k—1 3 ( VWaa + szk) }

1
2
1 1
. (n) (n) (n) ) )
= 5 min {ka_l - E (w2k_2 + wzk) - w2k—2w2k}
1

k
> —min{uf) | - (w5, +wi))
= 90",

Therefore it is concluded that o2 (B®) > max{0,¥? — &} > max{0,9; — &}, i.e. 6" in (5.17)
satisfies the condition 8™° < o2 (B). 0

One of the fortunate characteristics in (5.17) is that any square root computation does not
appear at every n. In the case where we compute g’ by (5.15), it is necessary to compute the
square root ofw™, k=1,2,...,2m— 1.

The shifted integrable scheme 2 with a rather large shift also has the similar instability to the
shifted integrable scheme 1. Let us recall that 4,((B"*")TB"D) = L(BY; ) BGD) — g’
According to Theorem 5.3 we see that w,(c"“) >0, k=1,2,...,2m — 1 if and only if gn* <
O'i(Bg(';iz)). Since it is obvious that O'm(BSZ;)'B)) = 0,,(B™), the shifted integrable scheme 2 is
also numerically stable if 6 is computed by (5.15) or (5.17). Moreover we may estimate a

lower bound of the minimal singular value o, (B(Q'z;;i)o) by

1
Tn(BE) > max{0, 8y}, 99 = mkin{,/vg;g_l -3 ( o + \/ug;g_z)}. (5.18)
This is because w("™" = o if 6® = 0 in (5.9). Similarly it follows that o2 (BGD) >
max{0, 19(3")2 — &} > max{0, 192")2 — g} where
w2 _ 1w G
97" = 5 {DZk—l - (vzk—z + Uy )} (5.19)
The following theorem suggests how to determine 6% for avoiding numerical instability in the

shifted integrable scheme 2.

Theorem 5.6. Numerical stability is always kept in the shifted integrable scheme 2 with the
shift 6™* = max{0, ﬂ&"ﬂ — &} for some j=1,2,3,4.
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4. Convergence to shifted singular value

In this section we consider the asymptotic behaviour of wg’) as n — oo. Moreover we
explain a relationship between the limit of w{?  as# — oo and the singular values of B® owing

to the sequence of shifts in Theorem 5.6. Let us introduce two lemma for w,(:’) given by both

(r+1) o) ©) ) ) ©)
Yoarys1 © O Warya Wy ) and g0 0o o (wy).

Lemma 5.7. Let My be some positive constant. Then 0 < w("+1) < M; and 0 < u(”) < M,
foralln, if 0 < w(o) < M,.

Proof. 1t is proved in the previous section that 0 < wg’”). In Theorems 5.1 and 5.2, we see
that trace((B(O))TB(O)) = trace((B™*V)T B®D) 1 m(6©” + ... + §™%). Theorem 5.3 implies that
0< 89 4. 490 < o1(BY). Hence 0 < trace((B(”“))TB(””)) < My, ie. 0 <w™D 4yl 4

. (n+1)
+w2m 1

Since it is obvious that u,

< M,, where M, is some positive constant. Therefore it follows that 0 < w}c"“) < M.
) < ( " we also have 0 < u(") < M,. m]

Lemma 5.8. LetySY > 1and0 < ¥y < 1 for all N. Then w™Y is given by

(1 1+6M™My
(n+1) __ k+1 0
w ﬂ [y(N) Ty ]w (5.20)

where u satlsﬁ/ 0<u® < M.

Proof. (i) Let w("+1) g oo @), Then w?” = yPuw! for some constants
Y "k =1,2,...,2m - 1, since it is obvious that wg}c) [ = _g,? , and wg;{) < ‘3}3 in (5.6). Hence,

in the mapping zpl()’;z,)sl, we derive a time evolution from n to n + 1 of w,(:’) as follows:

(n) (n)
1+ 6(”)uk+1 (n) 1 + 6(")uk+l _( )

1+ 60y, ¥ 1+ 60" ¥
) us?
A 1+ 5(")u,(c”)1)u(") N RCRONCD)
+
1 1 1 0
(i) Let ™) = gD o...0 qpi (]])u,sz(w,(c ). Then of) >0 and o < l—)g,? in (5.11) and we
see that
1+ 6(n)u(") (n)
ket 0 D () gy % )u(") o) = g 2 7’(")“’;(:”)-

1+ 5@y
From Case (i) and (ii) it follows that
n), "
11467, )

ey _ L
Y1+ 60U,

k

Consequently, we have (5.20). O
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(n) (n+1)

given by ¥,
has the same properties shown in Lemmas 5.7 and 5.8 as those of the time evolution given by

It is significant to emphasize that the time evolution from 7 to n + 1 of wy

lﬁl(;’[z},)sz. Moreover Lemmas 5.7 and 5.8 lead to the following proposition on the asymptotic

behaviour of w,(C") as n — oo,

Proposition 5.9. 4s n — oo, w® . — ¢, w™ — 0, where c; denote some positive limit and
P 2k-1 2%k p

C1>Cr > "> Cy

Proof. Let py, pi. sy and M; be some positive constants. When k£ = 2m—1 in (5.20), we have
wdY = w)_/ TTho Yy (1 + My )y which implies that wd > wld) > T PR
It is proved in Lemma 5.7 that 0 < w("”f < M, for all n. Since w(z’z_l, n=201,.
monotonically decreasing, we see that w(z’;)l | — Cn as n — oco. Simultaneously, [Ty, 7’2m 1(l +
5(N)u(2]:2 ) = pm .. Tt is obvious that 1 < TT5_o(1 + 6™l ) < ¥ TTwe(l + MUy <

< TTneo ¥ TToese(1 + ™M) . Hence we derive [15-o(1 + 6(N)u2m ,) = Dt

Suppose that [T5_o(1+6™Mu) = pr. Then we see from (5.20) that w o/ TTheo vor) (14

My converges to u;",:ll) as n — oo. Note here that O < wY < M, Hence it follows

that 0 < [T ¥V, (1 + 6™l ) < Ms. Since [Thoo ¥op (1 + 6™ ), n = , are
monotomcally increasing, we derive [T5_o(1 + 5(N)u2k ,) = Pi-1. Therefore it is concluded that

(n)
Wy 1 — wzk 1pk/pk—1 >0asn— oo, ie.

lim wi? | = ¢ (5.21)

By using the fact that 1 < T3_o(1 +6™Mu{),) < yg‘,? (1 +6™uD )y < - < Tlvo Yo

[Tx_o(1 + 6™ qu 2) we also have []5_o(1 + 6@ uzk 2) Pi-1-
Note here that 5_, 6(N)u2k = s if and only if [Ty (1 + 5(N)“(2];\?) = p for 5(")“(2'1? > 0,

N = 0,1,.... Moreover §”u%? — 0 asn — oo for any positive bounded sequence 6, if
oo 0™l = 5. Hence it follows that
lim u%) = 0. (5.22)

H—0

From (5.21),(5.22) and " = w{” /(1 + 6™u",), we derive u? | — ¢y and wl) — 0asn — oo
()

successively. Let a; = lim,,_,o w("“) wy;, then by using Lemma 5.8 we have
1 +6¢ppy

_—tO Gk 5.23)
'yg;:)(l + 6()¢y) (

ay =

It is obvious that a; > 0. Note that w(") diverges to infinity as n — oo if @z > 1. Let us recall
here that wg]’g — 0 as n — oo. Then we see that a; < 1. Hence it follows that

Cir1 < Ck (524)
since 1 + ¢y, < yg;:)(l + 6®)¢) < 1+ 8¢y, Consequently, it is concluded that ¢; > ¢; >

* > Cpye a
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A relationship between the limit of w™, as n — oo and o3(BY) is derived by using Theorem
5.1, 5.2 and Proposition 5.9. Note that o72(B®) = ,((B®)"B®). Then we have the following
theorem immediately.

Theorem 5.10. As n — oo, w) | — 03(BO) -~ 29D 6™ and w) — 0 if0 < w® < M,
5. Normalization

In the previous sections we assume that wf(o) >0,k=1,2,...,2m—1. Note that wg’,? tends to
0 as n grows. For some ky, wg'lg_l = 0 if B® in (5.4) has zero-singular value. Moreover the value
of w,(:') is regarded as 0 in computer if wg’) is less than the machine precision. In this section we
consider two cases where wg}% =0and w(z',g _; = 0, respectively, for some ko.

First, let us set wg’z) = 0, then B" is decomposed as

()
B” 0 )

0 B (5.25)

B™ — (
by using two upper bidiagonal matrices B € R*** and By € Rimhoi<(m=ko) Both B\ and Bg”)
have nonzero positive diagonal and upper subdiagonal entries. Hence singular values of Bg”) and
B(2") are computed as shown in the previous sections. Therefore the singular value computation

; ; (=) (n)
of B™ can be performed by computing the singular values of B}” and B;".

Next we explain how to compute the singular values in the case where wg}c)o_l = 0. Suppose
that the mapping W™ — W® is defined by ¢\ with 6 = 0 in (5.6). Then it is obvious that
A((B™)TB™) = 3,((B™)T B™). This implies that we may compute the singular values of B®
instead of those of B". Since u_)g;)o —1"_’5’12, = w(z’,g_lwg,’;) , We see that u_)(z'lg)_lu_)g}% = 0. Hence we
may set the value of u_)(z',’c)o arbitrarily. Let 1532) = 0. Then B™ is decomposed as the same form as

in (5.25), i.e.,
— B” 0
B(")=( o ) (5.26)

where B® is given by the mapping ¢§n)lg(n)=() with wg',’c)o = (. Consequently, we can compute the
singular value of B™ by performing the singular value computation of B(I") and Bg").

6. Test results

Tests were carried out on the same computational environment as numerical experiment in
Chapter 4. As numerical examples, we consider 100 X 100 and 1000 x 1000 matrices of four
types in Table 4.2. In the dLV and a new shifted integrable (sI) routines, we adopt the same
stopping criterion as in DLASQ routine in LAPACK. We also set the variable step-size 6 = 1
forn=0,1,....

First, in the singular value computation for 100 x 100 matrices, we compare the sl algorithm
with the dLV algorithm with respect to both computational time and numerical accuracy. Table
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5.1 gives the computational time of the sI and the dLV routine. We sce that the sl routine
is rather faster than the dLV routine. Moreover the sI routine computes the singular values at
almost same time independently of matrix type. Figure 5.2 describes relative errors ok =Tl /T

TasLe 5.1. Computational time of the sI and the dLV routines (sec.)

sl

dLV

Case 1

. By
Case 2 :
Case 3 :
Case 4 :

B
Bs
B,

0.02
0.02
0.02
0.02

0.27
0.13
0.88
174

of the singular values o7 of the 100 x 100 matrix of Case 4 computed by the dLV and the sl
routines, where & are the verified correct values. Figure 5.2 suggests that the relative errors by
the sI routines are much smaller than those by the dLV routines. This seems to be because the

-12 — - ; ; : . . : .
10 \ /’
“\.\ /',I
oY ,,'
\ /
1010 W gl
‘\f‘ A 2 .'/j‘"'\/’ -
V‘.‘,\ ;4, N Y
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.14 \f i i “f'l i‘."
10 7 i it." 5‘; 1
TR AY
.. ]
10" | :
el
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FiGure 5.2. A graph of the suffix k for ordering singular values o7 according to
magnitude (x-axis) and relative errors in computed singular values of B, by the
sI and dLV routines (y-axis). The red soild and green dashed lines are given by
the sl and dLV routines, respectively

roundoff errors in the sl routine are less than those in the dLV routine. In other types, we also
obtain the graphs similar to Figure 5.2.

Next, from viewpoint of computational time, we compare the sI routine with the DBDSQR
(witout computing singular vectors) and DLASQ routines in LAPACK. Table 5.2 gives compu-
tational time of the sI, the DBDSQR and DLASQ routines in the singular value computation of

59




By, k=1,2,3,4, where By are 100 x 100 and 1000 x 1000 matrices. There is a slight difference
of three routines in computational time when every By is 100 x 100. Though, in the singular
value computation of 1000 X 1000 matrices, the sl routine computes the singular values faster
than the DBDSQR routine, it does not computes them faster than the DLASQ routine.

TasLe 5.2. Computational time of the sI, the DBDSQR and the DLASQ routines (sec.)

100 x 100 1000 x 1000

sl DBDSQR DLASQ| sI DBDSQR DLASQ
Case1]0.02  0.02 001 [137 220 0.43
Case2|0.02  0.03 001 (134 227 0.42
Case3[0.02  0.03 001 [132 243 0.42
Case4 [0.02  0.02 001 [1.32  2.00 0.42

Finally we discuss numerical accuracy of singular values computed by the sI, the DBDSQR
and the DLASQ routines for By, k = 1,2,3,4 where every By is 100 x 100. Relative errors
arised in the singular computation of By are given by Figure 5.3. We see from Figure 5.3 that

107° : M | R | O

Ery e
LRV ——

2zzmmeee
TR
vassseav
zaaee
oy
-

Lo

e

E--.-.- -
PR e L
——rr

ea
—amne
o
ey
R —————
e LS A A——
-
L
A
-
SRae

10 20 30 40 50 60 70 80 90 100

FIGURE 5.3. A graph of the suffix k for ordering singular values o according to
magnitude (x-axis) and relative errors in computed singular values of B, by the
sI, DBDSQR and DLASQ routines (y-axis). The red soild, green dashed and
blue dotted lines are given by the sI, DBDSQR and DLASQ routines, respec-
tively.

the sI routine computes the singular value of B, at higher accuracy than the DBDSQR routine.
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Hence the sl routine is superior to the DBDSQR routine with respect to both computational time
and numerical accuracy. On the other hand, it is difficult to confirm a difference between the
relative errors by the sI routine and those by the DLASQ routine. Let R = Y120 (0% — 67%)/6%)
be the sum of relative errors. Then we have R = 4.6 x 10'° by the sI routine and R = 8.5 x 10"
by the DLASQ routine. Similar observations are given in other types. Therefore the sI routine
computes the singular values at highest accuracy among three routines.

In [39], most of computational cost for SVD process is shown to be used for computing
singular vectors. The singular value computation is a part of SVD. The SVD routine with the
sI routine requires the alomost same cost as that with the DLASQ routine. Especially, in higher

accurate SVD, we may use the sl routine not the LAPACK routines.
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CHAPTER 6

Concluding Remarks

In this thesis, we have studied a numerical application of integrable systems to SVD algo-
rithms. Especially, in terms of the dLV systems (with arbitrary positive discrete step-size § > 0
and varibale step-size M > 6® > 0), we have designed a new SVD algorithm.

In Chapter 2, we have shown that the dLV system with § > 0 is applicable to singular value
computation. By using asymptotic expansions of Hankel determinants we have proved that the
solutions expressed in Hankel determinant form of the dLV system with § > 0 converge to
some limits. The vdLV system does not have a Hankel determinat solution. The convergence
of the solution of the vdLV system has been shown by using a basic theory of monotonically
increasing series in Chapter 3. From Lax forms of the dLV systems we have seen that those
limits are the square of singular values of upper bidiagonal matrix B in Chapter 2 and 3. A new
algorithm, for computing singular value, derived from Chapter 2 and 3 has been named the dLV
algorithm.

In Chapter 2, we have described several basic properties of the dLV algorithm. We have seen
that convergence speed is accelerated as 6 increases. The dLV algorithm has been shown to have
such sorting property that the resulting singular values are ordered according to magnitude. In
Chapter 3, we have confirmed several benefits by a flexible choice of § with respect to both
convergence speed and numerical accuracy. However, we have not yet found how to determine
the best ¢ at each step sequentially. In Chapter 4, we have demonstrated that the dLV algorithm
computes at higher accuracy than zero-shift LAPACK routines for computing singular value.
Simultaniouly, foward and backward stability analyses of the dLV algorithm have been shown.
A new SVD algorithm named I-SVD algorithm has been also designed in Chapter 4.

In Chapter 5, for more acceleration, we have introduced the dLV algorithm into a shift of
origin and have designed a new shifted algorithm named the sI algorithm for computing singular
value. A shift stratagy for avoiding numerical instability has been presented. Though it is better
than the dqds algorithm, we have not found the best staratagy of shift. We also have proved a
convergence of the sI algorithm. The sI algorithm has shown to be at least in four examples
superior to the LAPACK routines.

Several numerical algorithms were reconfirmed from viewpoint of integrable systems from
the *90s. New algorithms have been also designed in terms of integrable systems, however, to
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the best of our knowledge, they had not yet reached the practical use level in modern technolo-
gies. Our algorithm has enough performance for exceeding such established SVD algoritms as
the routines in LAPACK and we hope that it will contribute for many fields.

In the near future, we should find a more effective stratagy of both step-size and shift.
Introducing it into the SVD algorithm proposed in [39], we will design the best SVD algorithm.
We will also consider several applications to problems appearing in mathematics, statistics,

numerical analysis and engineering and so on.
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