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CHAPTER 1

Introduction

   In this thesis, we study integrable systems and their applications to numerical algorithms for

computing singular value ciecomposition (CSVD). We first prove that singular values are com--

putable by using certain integrable systems. We design a numerical algorithm, named the dis-

crete Lotka-folterra (1ILrp aigorithm, fbr computing singular values. Next we explain several

features of the dllV algorithm and propose a method fbr computing the corresponding singular

vectors. Finally by introducing a shift of origin to dlJV algorithm to accelerate the convergence

we design a new eflicient SVD algorithm with respect to both convergence speed and numerical

           -accuracy.

        1. Numerical algorithms for singular value decomposition in LAPACK

   One of the most important decompositions in matrix computation is the SVD. For any rect-

angular matrixA E ReXM, there are orthogonal matrices U E ReXe and V E RMXM such that UTA P"

holds UTAV = (£ O)T or (£ O), where 2 = diag(o-i,o'2,･･･ ,o-.), o'i }r o-2 }t -･･ }i o-p }r O,

p = min{e, m} and O is the zero matrix. Here ak, k = 1,2, . . . ,p are singular values ofA. Here

A = U(Z O)T V' or U(Z O) VT is just the SVD ofA.

   The SVD is a powerfu1 technique dealing with certain equations or matrices that are either

singular or numerically very close to singular. It allows us to comprehend problems related to

a given rectangular matrix and provides numerical answer as well. Many times we encounter

the SVD approch in the linear Least SquaTes (Z5) problem to find a real m-vector xo minizing

the euclidean length ofAx - b, where b is a given real e-vector and the rank ofA is less than

min{e, m} [20]. The SVD is related to the LS problem and is particularly usefu1 in analyzing the

effect of data errors as they infuence solutions to the LS problem. The LS problem is known

by ditferent names by those in scientific disciplines. Namely the SVD has wider application in

many fields, for example, mathematics, numerical analysis, statistics, engineering and so on.

   The practical SVD is indirectly utilized in a wide variety of domains, for example, the mul-

tivariate data analysis and the 3 dimensional (3D) reconstruction in the computer vision field.

Now there are several demands for such computation of the SVD as fast computation, appli-

cability to large-size problem, and high relative accuracy. In the multivariate data analysis, the

SVD is used fbr the latent semantic indexing (LSI) [3]. The LSI takes a large matrix of term-

document association data and constructs a semantic space. The SVD arranges the space to
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reflect the major associative patterns in the data, and ignore the smaller, less important influ

ences. The amount ofthe data on the WEB is increasing day by day. It requires fast computation

of the large-size SVD problem. In the computer vision field, the 3D reconstruction technique

recovers the 3D geometry from an 2D image sequence which is given by a matrix [43]. The

SVD enables us to compute both shape and motion at the same instant by factoring the matrix

into two matrices which represent objective shape and camera rotation, respectively. The 3D

reconstruction has been used in robot vision and autonomous vehicles. The 3D geometry data

deeply affects the stability of robots and vehicles with respect to their visual perceptions. It is

essential for the SVD to compute stably with high relative accuracy in these cases.

Rutishauser improved his quotient difference (qd) algorithm to compute, for example, poles

of a class of meromorphic functions. The original qd algorithm [35] takes a simple form and is

free from any square root computation, however, it is not always stable. Therefore a progressive

form of the qd (pqd) algorithm and its variant called the differential qd (dqd) algorithm were

presented by himself. See the book [38] by Rutishauser and a survey paper [32] by Parlett for

those improved qd algorithms.

It can be applied to a matrix eigenvalue problem for a tridiagonal matrix as the LR algorithm

[37]. The pqd algorithm is backward stable when every qd variables are positive [38]. In this

case the eigenvalues are all real, positive and simple (see [38], p.468). The dqd algorithm does

not need any subtractions (see [7], p.198). Though the QR algorithm was found in 1961 as a

stable variant ofthe qd algorithm [33], the qd algorithm itselfhas not occupied a major position

in numerical linear algebra up to '90s.

In 1965, Golub and Kahan (see [8]) proposed an effective SVD algorithm consisting of

two distinct processes. The first process is a transformation of any given rectangular matrix

A E RlXm
(e 2:: m) to an upper bidiagonal matrix B E Rmxm without changing singular values. The

Householder transformation is adopted for this process. The second process ofthe Golub-Kahan

SVD algorithm is performed by applying the QR algorithm to the symmetric positive tridiagonal

matrix BT B. Then each singular value ofA is given as the positive square root ofeach eigenvalue

of BT B. An SVD of A in the case e :s; m is also performed by the same process as the case

e 2:: m. Several results based on their idea have been found. Especially, the QR algorithm part

is improved by Golub-Reinsch[9], Demmel-Kahan[6] and so on. Golub-Reinsch introduced

a shift of origin into the QR algorithm. The Golub-Reinsch version computes an SVD of B

much faster than the original QR algorithm. In 1990 Demmel-Kahan proposed a definitive

version of the QR algorithm, and then were awarded the second SIAM prize in numerical linear

algebra. The Demmel-Kahan (DK) algorithm requires many times of square root computation

and computed singular value is in relative error less than O(m3s), where m is the size of matrix

and s is as small as machine epsilon. In recent years, it is known that the cost of square root

computation becomes almost same as that of division. Singular vectors are also computed in

the same accuracy.
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   In 1994, Fernando and Parlett [7] considered singular value computations in terms of the

pqd and dqd algorithms. The pqd algorithm does not require more computational cost per 1-

step than the dqd algoritlm. 'Ib accelerate the convergence a shift of origin is most important.

Though the convergence speed is accelerated by introducing a shift of origin, the shtfred gd

igdy aigorithm is not always numerically stable. The qds variables may diverge to infinity by

a too large shift. Fernando-Parlett proved in [7] that the shij}ed thlt7lerential qd (tigclsi aigorithm

has a wider domain ofnumerical stability than that ofthe qds algoritlm. They claimed that their

shifted algorithm can be used in a variety of applications, provided that all the shifts do not cause

an underflowl an overflow or a devision by zero. However, in their paper we can not find how

to determine such shifts. A shift which exceeds the smallest singular value may cause overflow.

Error analysis and stability ofthe dqds algoritkm was also investigated. It is to be noted that the

computed singular values by the dqd algorithm are in relative error by no more than O(m2£).

Since the dqds algorithm has few roundoff error, the dqd algoritlm preserves higher relative

accuracy than the DK algoritlm based on pa. The dqds algorithm also preserves high relative

stability [7]1 It has quadratic convergence or more, but it may overflow and a suitable shift-size

is not known a priori. In 2000, a practical dqds algorithm is discussed by Parlett-Marques [34].

Though the optimum shift stratagy ofthe dqds algorithm has not yet been discovered, the dqds

algoritlm avoids numerical unstablility by programming technique on computer.

   Nowadays both the DK and the dqds algoritlm are usefu1 in Linear Aigebra Rsickage (ZA-

R4Cl<) routines [5]. LAPACK is a freely available software package provided on the webpage

[21] and is a library ofFortran 77 routines fbr solving the most commonly occurring problems

in numerical linear algebra: systems of linear equations, linear least squares problems, eigen-

value problems, and singular value problems. The associated factorizations (LU, Cholesky,

QR, SVD, Schur, generalized Schur) are also provided, as well as such related computations

as reordering of the Schur factorizations and estimating condition numbers. Dense and banded

matrices are handled, but not general sparse matrices. In many fields, a similar performance is

provided fbr real and complex matrices, in both single and double precisions. The LAPACK li-

brary was developed at the University of Tennessee and is a de facto industry standard. Namely,

LAPACK has been designed to be etlicient on wide range ofhigh-performance computers. The

DK algorithm is open to the public as the routine "DBDSQ" in LAPACK. There are some LA-

PACK routines fbr computing singular values ofupper bidiagonal matrices B, however only an

DBDSQR routine has a good perfbrmance for computing SVD. The latest version of the dqds

algorithm is also adopted as a LAPACK routine "DLASQ" for computing singular values not

an SVD ofB. The DLASQ routine requires only considerably less computational cost than the

DBDSQR routine. In general cases, the convergence speed and numerical accuracy ofDLASQ

is superior than that of DBDSQR without computing singular vector. According to the detail

accounts ofLAPACK, the DLASQ routine is recommended fbr computing singular values not

SVD and the DBDSQR routine should be used fbr SVD.
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                  2. Integrable systems and numerical algorithms

   The notion of integrability is rigidly defined fbr Hamilton systems. If a Hamilton system

with IV degree of freedom has A[ independent conserved quantities which are in involution, then

the system of ordinary differential equations (ODEs) is said to be integrable in the sense in

which the system can be linearized in terms of successive canonical transformations and be

solved by quadrature. This is the main result in the Liouville-Arnold theory. Generally it is

not easy to obtain explicit solutions and conserved quantities fbr a given nonlinear equation.

For a class of integrable systems one can find explict determinantal solutions and conserved

quantities with the help ofLax form and Hirota's bilinear fbrm.

   Some numerical algorithms are regarded as discrete-time dynamical systems whose soluions

converge to their equilibrium points as dicrete-time goes to infinity. We can investigate the

asymptotic behaviours of these dynamical systems by analyzing the explicit solutions. Such

dynamical systems would be integrable systems. Moreover the discretizations of integrable

systems, whose solutions converge to worthfu1 quantites, may yeild well-known or new algo-

rithms. Here it is important to introduce the different boundary conditions from in the case of

soliton solutions. It is remarkable that the continuous Toda equation already appeared in [36] as

a continuous limit of the qd recurrence relation. A time discretization of continous 'Ibda equa-

tion isjust the recurrence relation which appear in the qd algorithm [14]. It is here emphasized

that the qd algorithm is shown to compute eigenvalues by using special features of the discrete

Toda equation. A solution ofthe discrete Toda equation is written by a Hankel detemiinant. By

an asymptotic expansion ofHankel determinant [11], it is shown that the solution ofthe discrete

Tbda equation converges to some limit ck as the discrete time goes to infinity. Simultaneously,

we see that the qd variable converges to ck as the iteration number goes to infinity. A Lax fbrm

of the discrete Toda equation [14] plays a key role to prove that the limit ck is eigenvalue of the

given tridiagonal matrix.

   There are also other various relationships between numerical algorithns and integrable sys-

tems. For example, a time-1 evolution of the continuous-time finite nonperiodic rlbda equa-

tion which appears in mathematical physics is equivalent to 1-step of the pa algorithm fbr

computing eigenvalues of a given symmetric tridiagonal matrix [23, 42]. There are various

relationships between numerical algorithms and integrable systems. A BCH-Goppa decoding

algorithm is designed by the Toda equation [27]. In convergence acceleration algorithms, the re-

currence relations ofthe ny-algoritlm, E-algorithm, the n-term of the E-algorithm are equivalent

to the discrete KdV equation, fu11-discrete potential KdV equation and the solution of discrete

hungry Lotka-Vblterra equation, respectively (see [26, 31, 45]). The recurrence relation of the

arithmetric-geometric mean algoritlm can be also derived from an additional formula of the

theta function.
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   In recent development in applied integrable systems (see [28]), the continuous-time [[bda

equation also has an application to computation of the Laplace transform of a given analytic

function [28]. Along this line of thought some new numerical algoritlms are designed in [22,

25] by discretizing certain integrable dynamical systems except the Toda equation. Namely,

a new Pade approximation algoritlms is fbrmulated by using the relativistic Toda molecule

equation (see [22]) and the discrete Schur flow (see [25]).

3. A new SVD algorithm in terms of the discrete Lotka-Vblterra system

   A relationship between a time-1 evolution ofthe continuous-timefinite Lotko-Pblterra (llLrp

system and 1-step of the eR algorithm which appears in the Golub-Kahan algorithm was also

studied in [1, 4]. Here the LY system originally appears in mathematical biology and is regarded

as a spatial discretization of the KdV equation. Each eR iteration for the matrix exponential

traces the continuous orbit of an integrable dynamical system related to the LY system. The

solutions ofthe IJV system converge to squares ofsingular values ofgiven band matrices as the

time goes td infinity, respectively. However, it was not clear how to design a new numerical

algorithm by discretizing the integrable system. Such a discretization scheme as the Runge-

Kutta method fails to derive a "proper" recurrence system, since the discrete step-size, e.g. 6,

can not be taken suMciently large. The Runge-Kutta scheme having high accuracy converges

very slowly.

   A time discretization ofthe IJV system is proposed in [13]. A solution ofthe discrete Lotko-

folterra ldLrp system is also expressed in a Hankel detemiinant fbrm. Our starting point for

designing a new SVD algorithm is to show that singular values ofB are computed [44] by using

the dLV system with the fixed discrete step-size 6 = 1. This is proved by using an asymptotic

behaviour ofHankel determinant and a Lax form ofthe dl;V system with 6 = 1. 0ne of our

devices for accelerating the convergence speed is to introduce the d[V system with arbitrary

positive constant step-size 6 > O. In [15], the dl"jV system with 6 > O is also shown to be

applicable to singular value computation by a similar method to the dllV system with 6 = 1. It

is shown that the convergence speed grows as 6 becomes larger. However, a numerical accuracy

is deteriorated by an inappropriate choice of step-size in some case. Namely, the convergence

speed and the accuracy are conflicting each other in general. A flexible choice ofthe step-size

6 at each step is desired from viewpoints ofconvergence speed and numerical accuracy.

   In a recent development ofdiscrete integrable systems, a cllLV tvdLrp system with variable

step-size is fbund in [12, 40]. The vdLV system differs from the dLV system with constant step-

size i in that its discrete step-size 6 can be changpd at each discrete time n. It is here emphasized

that an explicit solution ofthe vdLY system is not written by a Hankel determinant but a Casorati

determinant (see [40]). In [15, 44], an asymptotic expansion of Hankel determinant [11] is

usefu1 to prove that the solution ofthe dlJV system converges to the singular value. However,

to the best of our knowledge, any asymptotic expansion of Casorati determinant has not been
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known. Hence it seems to be diMcult to apply the same method for proving convergence used

in the dl.Y system to the vdl;V system. In [16], we have proved by a different analysis from the

dlJV system that the solution of the vdllV system converges to some limit. The proof is given

without using the explicit fbrm of determinant solution of the vdllV equation. By using a Lax

form ofthe vdlJV system, the constant is shown to be a singular value ofthe bidiagonal mauix

B. We then design a numerical algorithm named the dLVaigorithm for computing singular

value. As a result, we can perform a better singular value computation with respect to both

convergence speed and numerical accuracy.

   In [15], we also describe such several features of the dLY algorithm as a soning property

of singular values, a positivity of dlJV variables and so on. A new SVD algorithm named the

intagrable-Smp (LSmp) aigorithm is designed in [17] which can compute not only singular

values but singular value vectors. Moreover we have shown that the dLV algorithm computes

singular value with higher accuracy than the zero-shift LAPACK routines. For more accelera-

tion, a new shifted integrable (sl) algoritlm is designed by introducing a shift of origin into the

dLV algorithn. The sl algorithm has a shift stratagy for avoiding such a numerical instability

as the qds alogorithm. In some cases, the sl algorithm is superior to the nonzero-shift LAPACK

routmes.

4. 0utline ofthe thesis

   The thesis is organized as fo11ows.

   In Chapter 2, we prove a determinantal solution of the dlJV system with arbitrary positive

discrete step-size 6 asymptotically converges to the square of some singular value of a given

rectangular matrix, where the initial value of the dlJV system is uniquely determined by the

entries ofthe matrix. Here the solution means a solution expressed by determinants. [b prove

this fact we use an asymptotic behaviour ofthe Hankel determinant solution and a Lax form. A

basic property ofthe solution is proved which is important for designing a new stable numerical

algorithm. We call this algoritlm the dlJV algorithm for computing all of the singular values.

We discusspositivity ofsolution, dependence of the correct initial value on 6, a sorting property

and an acceleration of convergence speed by enlarging 6, where positivity of solution means

such a property that solution is always positive.

   In Chapter 3, we apply the dl V system with variable step-size to a numerical algorithm for

computing singular vaiues. A new version ofthe dLY algoritim is designed, where the step-size

6 is replaced to a stepwise parameter 6("). Some examples demonstrate that a better choice of

the step-size gives a benefit in both convergence speed and numerical accuracy.

   In Chapter 4, we consider basic propeties of the dlJV algorithn for computing singular

values ofbidiagonal matrices. A relative error bound of singular values computed by the dl;V

algorithm is estimated. The bound is rather smaller than that of the DK algorithm and is the

same order as that of the qd algorithm. Both fbrward and backward stability analyses of the
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dLY algorithm are also proved. A singular value computation at desired precision is carried

out in terms ofthe Weyl type perturbation theorem. Some numerical examples illustrate a high

relative accuracy of the dllV algoritlm.

   In Chapter 5, we present a new algorithm, named the shpted integrable dsD aigorithm,

with a shift of origin fbr computing singular values a. A shift of origin is introduced into the

recurrence relation defined by the dLV system with variable step-size. A suitable shift strategy

is given so that the singular value computation becomes numerically stable. The convergence

of the sl algorithm is also discussed. We draw a numerical comparison among the well-known

LAPACK routines and our algoritlm. Our algorithm is shown to be superior to the LAPACK

routines at Ieast in four examples.

   In Chapter 6, we give conclusions ofthis thesis and discuss further problems.
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CHAPTER 2

Discrete Lotka-Vblterra algorithm and its basic properties

1. Introduction

   The discrete-time Lotka-Vblterra (dllV) system [13] has determinantal solutions and a se-

quence ofconserved quantities which are discrete analogues ofthose ofthe well known continuous-

time integrable IJV system. Thus we can regard the dl"Y system as an integrable discretization

ofthe original integrable LY system. Interesting features ofthe dLV system have been studied

and clarified (see [29, 40, 41, 46]), however, to the best of our knowledge, the role of the IJV

system in numerical algorithms has not yet been fu11y understood. In this chapter we show

that a Hankel determinant solution of the finite dllV system with 6 > O, where 6 is the discrete

step-size, converges to the square of some singular value of a given upper bidiagonal matrix

B(O). Here a suitable initial value fbr the dlJV system is determined by the entries ofB(O). The

proof is given by using an asymptotic behaviour of a Hankel determinant associated with a

single meromorphic function [11]. The convergence of the qd algoritlm is shown by using

only an asymptotic expansion ofHankel detemiinat. Though the qd variable is expressed by a

Hankel determinat, the solution of the dlJV system is written by two types. Hence it is diMcult

to discuss the convergence of the solution of the dLY system by the same mannar as in the qd

algorithm. It is necessary to introduce the relationship oftwo types ofHankel determinants.

   The first purpose ofthis chapter is to prove a extended convergence theorem for the solution

of the dlJV system by starting from an alternative expression of the determinantal solution.

Hankel determinants oftwo types appear. To describe the asymptotic behaviour ofH:8 and Hlr?

a pair of meromorphic functions is needed which are mutually related by a linear recurrence

relation. By using the asymptotics of the Hankel determinants the determinantal solution is

shown to converge as discrete time n -> oo to the square of some singular value of B(O) for

any positive 6. All of the singular values are computed in this way. The clLV aigorithm for

computing singular values is then presented.

   The second purpose is to show the fo11owing basic properties ofsolution of the dlJV system.

 (i) The determinantal solution holds positive if the initial value and 6 are positive,

   guarantees a numerical stability ofthe dLY algoritlm.

(ii) The correct initial value strongly depends on the discrete step-size 6.

(iii) The dl.V algorithm has a sorting property, i.e., the resulting singular values are ord

   according to magnitude.

                                 8
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   (iv) The convergence to singular values is accelerated and the convergence speed tends

       monotonically to a limit as the discrete step-size 6 increases.

These basic properties will be very important to design the dllV algorithm practically.

   In g2, a determinantal solution ofthe dlJV system with arbitrary positive 6 which is charac-

terized by two meromorphic functions is discussed. We give a new proofofthe convergence of

solution to some limits. In g3, these limits are shown to be the squares of singular values ofa

given upper bidiagonal matrix.

   The basic properties (i)-(iv) are proved in g4. In particular, a close relationship between

convergence speed and discrete step-size 6 is described explicitly. Some numerical experiments

are also presented.

                  2. Convergence ofthe determinantal solution

   Let us begin with the continuous-time finite LV system

           ･ duk(t)
                     = Uk(t)(Uk.i(t) - uk-i(t)), k = 1,2,...,2m - 1,
                 dt

                uo(t)=O, u2.(t)=O, t}l O. (2.1)
Chu [1] showed that a solution of (2.1) converges to the square of some singular value ofa

given upper bidiagonal matrix or O with the help of the asymptotic behaviour of solution of

the finite Tbda equation [23]. Here the initial data {u2k-i(O), u2k(O)} corresponds to the entry of

the bidiagonal matrix ofB(O). Deift-Demmel-Li-Tbmei [4] discussed a Hamiltonian structure of

(2.1) and its meaning in the singuar value decomposition. However, it has not been clear how to

discretize (2. 1) fbr the purpose of designing an actual algoritlm for singular value computation.

We remark that (2.1) is an integrable system having the determinantal solution

              u2k-i(t)-th.,',gX','.7,k-rl',1:2, u2k(t)-"Hki1il?:ith.,-,,l'll", (2.2)

Hit,,･(t) ii!

              HLi,,･(t)i 1,
              dae(t)
                   = ae+i (t), e= O, 1, ....
               dt

See [2] fbr the proofof(2.4).

fbr the discretization problem of integrable systems.

   Several types of the dLY systems

are the infinite [13],
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  aJ'

 aJ'+1

aJ'+k-1

O, H6

al･+1 '''

aJ'+2 '''

aJ'+k '''

,J'(t) i

 aj+k-1

 aJ'+k

aj'+2k-2

Hin.i,,･(t)

(')'

= o,

k= 1, 2, ...,m,

1' = O, 1, (2.3)

(2.4)

Existense ofdeterminantal solutions gives us a usefu1 infbrmation

               are known which have determinantal solutions. They

semi-infinite [40] and finite dlJV systems. In this chapter we consider the



         "SZ'mi=iZlii)2ni+liil)'"SZ'="H,H££"ii,OHi£illa-l)'i'

                 a(.") a(.n+1) ... a(,n+k-1)

                  JJJ                a(,n+1) a(.n+2) ... a(.n+k)

         H£1).! J. 1. 1. ,
               a(.n+k-1) a(.n+k) ... a(,n+2k-2)

                JJ j         H(-"st i o, H8?,). s 1, Ii.(i2,,. -- O, 1' = O, 1,

         a2"'i) - a2n) = 6aY.),, e = O, 1, 2, ....

The proof is given by using PIUcker relation

                      6H£?3Hlle+, l,) - ]eile),,,H£r,'i)

and Jacobi's determinant identity

                      6iH£Z),,,]H£Z",l? - ]H£r8Hilrri)

with the help ofthe linear recurrence relation (2.8).

discretization of the linear differential equation (2.4).

   Let us start by introducing two functions ./6(z)

meromorphic in the disk D = {z; lz

                             co                      fo (z) = Z a8n)zn, fi (z)

                            n=O
at z = O and have such poles {zk,o} and {zk,i}

fo11owing finite dlY system with arbitrary positive constant 6 > O

              .2n+i)(1 + 6u£n-+, i)) = uln)(1 + 6u2n.), ), k= 1, 2, ..., 2m - 1, (2.5)

              u8n) i o, uS".) E o, n= o, i,...,

where u£n) denotes the value of uk at discrete time t = n6. Since the dlLJV system (2.5) is

expressed as

                     u2n+i) - uln) = 6(u£n)u£n.), - u2n+i)u2nne+,i)) ,

it goes to the continuous-time IJV system (2.1) as 6 -> O providing t = n6. Existence ofthe fo1-

lowing determinantal solution is one ofthe reasons why we say (2.5) an integrable discretization

ofthe continuous-time integrable LIV system (2.1),

                n) n+1) n) n+1)

k= 1,2,...,m, n= O, 1,...,

- H£78H£e', li'

  -H£7iH£?8i)

Note that (2.8), the

(2.6)

(2.7)

(2.8)

(2.9)

              (2.1O)

key equation, is a simple

                                        and fi (z) which are analytic at z = O and

                          l< d} having the power series expansions

                                            oo                                          -Zai")zn (2.11)
                                            n=O

                                     inD that O < lzi,ol < lz2,ol < ･･･ < dand

O < lzi,il < lz2,i1 < ･ ･ ･ < d, respectively. Hankel deterrninants oftwo types, Hilr8 and H£r? appear

in (2.6). Let the Hankel determinants H£Z), be associated with the functions .fi(z), namely, the

coeMcients aS.n) offi(z) determine H£Z)., J' = O, 1, respectively.
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   We here assume that a) the coetlicients of.15(z) and fi (z) are related as a8n'i) - a8n) = 6ain),

b) .L(z) are such rational functions of degree m that the associated Hankel determinants satisfy

H.(iliu = O. The condition a) comes from the key equation (2.8) and implies

                                  (1 - z)fo(z) - a80)

                                                . (2.12)                           fi (z) =
                                        6z

The condition b) guarantees (2.7). It is known ([11], p.603) that there is a class of rational

functions of degree m satisfying H.('2iv = O. The coefficients aSB) of such rational functions

determine the initial value ufaO) of the dllV system for k = 1,2,...,2m - 1 through (2.6) and

(2.7).

   On the other hand, an analytical property of the Hankel determinant which is associated

with a meromorphic function is known ([11], p.596). For each k there is a nonzero constant

ck,j･ t O such that, fbr any pk,i･ satisfying

                               11
           , lzk,,･1 >Pk･J'> lzk.1,,･l'

the Hankel determinant HiltJ). has an asymptotic behaviour

              (fJ) = Ck･J (zl ,Jz2,Jl zk,y )n (1 +0((Pk,J lzk,J l)n)] , 1= O, 1, (2 13)

as n -> oo. Substituting (2.13) into the determinantal solution (2.6) ofthe dlLV system and using

E i maxk,j(pk,J･lzk,J･l), we have the fbllowing asymptotic expansion of the determinantal solution

                  USZ'-i - :ig:ii,iO, ;i･,: l . #',ii (tk,?)" {i + o(.n)} ,

                  us.k) . Ck+1,OCk-1,I ZI,O'''Zk,O ( Zk,1 i" {1+o(En)}, (2.14)

                        Ck,1Ck,oZl,1'''Zk-1,1 XZk+1,O1

as n -> oo.

   Since we assume that ri･(z) are rational functions of degree m satisfying (2.12), the poles of

the rational functions .f6(z) and fi (z) are coincident each other

                                  Zk,o=Zk,1･ (2.15)
From the assumption we see that the poles ofL(z) have distinct modulus and ordered as lzk,J･1 <

lzk+iv･l. Consequently, it fo11ows from (2.14) that

                          lim uSnk)-1 . Ck･ICk-1･o . ck,

                                    CkOCk-11                          n-)oo                                     :r
                          limuS",)=O, k=1,2,...,m. (2.16)
                          n-)oo
   It is to be remarked that the recurrence relation (2.5) with 6 > O guarantees

                             u2n)>o, n=1,2,... (2.17)
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ofsolution for a given positive initial value ulO) > O, k = 1,2, . . . ,2m - 1. Simultaneously, the

limit Ck introduced by (2.16) are positive.

   It is proved in this section that

   Theorem 2.1. Let the meromorphicfanctions .()･(z) in (2.1 1) be rational,functions ojCciegree

m satisy57ing (2. 12). 7-7ien the solution ofthe.finite d7LVsystem with aaypositive discrete step-size

6 asyimptotically converges as n -> oo to some limits; the variable uSnk).i with odoszdix tencls to

apositive limit Ck, the variable uSnk) goes to O. 71he limit Ck is independent of6.

The meaning ofthe limit Ck will be discussed in the next section.

   Let us here consider the asymptotic behaviour of{uSnk)-i,ugnk)} in the case where 6 = 1. By

PIUcker relation (2.9) and Jacobi's determinant identity (2.1O), the solution ofthe dlJV system

ls rewrltten as

                  usz'-,-tt'.,/t.i4£i-Inltt?"-i･u:'-kli,Ziii.l',-i (2is)

The asymptotic expansion of{uS"k)mi, uS"k)} in (2.18) is also given by

                      (n) - Zl,IZ2,1 ' ' ' Zk-1,1
                     U2k-i- {1+O(e)}-1,
                            Zl,OZ2,O'''Zk,O

                     .Snk) . Zi ･OZ2･O '''Zk･O {1 +o(En)}-1, (2.19)
                          Zl,IZ2,1 '''Zk,1

as n -> oo. This implies that {uS"k)-i,uS"k)} converges to some limit as n -> co. Simultaneously, in

(2.14), it is obvious that lzk,olzk,il s 1. Suppose that zimi,o = zi.i,i fori= 1,2,...,k. Then from

(2.19) we derive

                    limuY,)m,=-L-1, limuSn,)=Z-'･O-1. (2.2o)
                              Zk,O                                              Zk,1                    n->co                                      n-oo
Note here that 11zk,o - 1 is some positive limit. If lzk,olzk,il < 1, we have 1lim.-... uS"k) + 11 < 1,

i.e. Iim.-,.. uS"k) < O. Hence we see that lzk,o/zk,il = 1, and then uS"k) -> O as n -> co in (2.14).

Since lim.-,.. uSnk) = O in (2.20), we have

                                Zk,o=Zk,1･ (2.21)
Inserting (2.21) into (2.20), the solution of the dlLV system converges exponentially to some

limits as

                                 1                       lim uS",)-, =-- 1, lim uSn,) =O. (2.22)
                                Zk,O                                        n->co                      n-oo
Since 11zi,o > 11z2,o > ･ ･ ･ > 1lz.,o, it fbllows that

   Theorem 2.2. Zl)e solution {uS"k)-i, uS"k)} ofthe clLVsystem with 6 = 1 converges to some limit

{1lzk,o - 1,o} anduin) > ugn) > ･･･ > uSnk)-1 as n -> oo.
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        3. Discrete Lotka･･Vblterra algorithm for computing singular values

   Let us define new variables

                eln) = 6u Sn,)., uSn,), k= 1, 2, ...,m - 1,

                ql")=g(1+6uSn,)-,)(1+6uS",)-,), k=1,2,...,m. (2.23)

Then the dllV system (2.5) is transformed to the discrete-time finite 'Ibda equation with the unit

discrete step-size (see [28]), or equivalently, the recurrence relation of the qd algorithm (see

[10, 11, 35, 38])

                 g£n+1)e£n+1) = qln.)Ieln), q2n+1) + e2nm+i) = gln) + e£n),

                 e8n)=o, eh")=O, n=O,1,... (2.24)

and vice versa. This type oftransfbrmation from one integrable system to another is sometimes

called the Miura transformation. Let us introduce the matrices

            y(n) =. L(n)R(n) - !I,

                         6
            L(.). 91tn) gsn) O , R(.). 1 e(1/") evai (22s)

                           lqinn) O 1
Then the Lax representation L("'i)R(""i) = R(")L(n) of the discrete Toda equation (2.24) gives

rise to

It fbllows from (2.16) that

Therefore we have

y(n+1)R(n) . R(n) y(n),

lim gln) = (1 + 6C,)16,

n->oo

lim yin) .

n-->co

Cl

1 C2

n= O, 1,....

lim
n-)co

1

e£n) = o.

o

Cm

L(O)R(O) - 6-II,

(2.26)

(2.27)

(2.28)

We see that Ck are the eigenvalues of the matrix ytO) = since (2.26) implimes

that the eigenvalues of ytO) are invariant in n

converges to the eigenvalues ofL(O)R(O).

. This corresponds to the known fact [10] that g£n)
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Write the tridiagonal nonsymmetric Lax matrix y(n) as

y(n) ==

1 w(n) + w(n)
2m-4 2m-3

1

w(n) w(n)
2m-3 2m-2

w(n) + w(n)
2m-2 2m-1

(2.29)

New variables win) are useful to determine a correct initial value of the dLV system in the next
. Ob' 1 l' (n) C d l' (n) 0 B . h d' 1 .sectIOn. VIOUS y, lmn-->oo w2k- 1 = k an lmn-->oo W2k = . y usmg t e lagona matnx

G (n) - d' (n) (n) 1)= Jag gl,l"" ,gm-l,m-l' '

we introduce a new Lax matrix

m-l

g(n) =n
k,k -

j=k

(n) (n)
W2j_lW2j' (2.30)

11n) == (G(n)r l y(n)G(n)

which is tridiagonal and symmetric. The Lax representation (2.26) is then

11n+I\G(n+l)r IR(n)G(n) =(G(n+l)r IR(n)G(n)11n).

(2.31)

(2.32)

We note that, as n ~ 00, 11
n

) tends asymptotically to a diagonal matrix with the eigenvalues of

11°) on the diagonal, namely,

(2.33)

where Ck are eigenvalues of 11°). Since 11
n

) is symmetric and positive definite, it admits a

Cholesky decomposition

o
Hence the square roots

that

CJ;)
-yW2m- 2

CJ;)
-yW2m- 1

-YEk are singular values of the bidiagonal matrix B(O).

(2.34)

It is concluded

Theorem 2.3. Let win) = bf, where bk are nonzero entries ofthe m x m bidiagonal matrix

B(O). Then the solution ui7-l of the finite dLV system with arbitrary 8 > 0 converges to the

square ofthe singular value (J"k == -YEk ofB(O).

14



Such a class o fbidiagonal matrices as

              bl b2

                  b3
        B(O) !

o
'' ･ b2m-2

   b2m-1

,
bk #O (2.35)

appears in the final stage of the well-known Golub-Kahan (GK) algorithn (see [8]) which is

the standard algorithm fbr computing singular values of given rectangular matrices. Here the

GK algorithn is a combination of the Householder transfbrmation and the eR algorithm for

the tridiagonal symmetric eigenvalue computation. The procedure of the GK algoritlm is as

fbllows. A general m × e rectangular matrix A, such that m s e, can be converted to a matrix of

the fbrm (B(O) O) by the Householder transformation as

                              UTAV= (B(O) O) ,

where U and V are suitable orthogonal matrices and B(O) is such an m × m upper bidiagonal

matrix as (2.30), and O is the m × (e - m) zero matrix (see [8]). The singular values ofB(O) are

congruent with those ofA. Each eigenvalue of the tridiagonal matrix (B(O))TB(O) computed by

the 2R algorithm gives the square of some singular value. The condition bk 4 O implies that

the singular values ofA are positive and distinct. If some of bk is zero, we can reduce the size

m of the initial matrix so that every entry is not equal to zero by a defiation procedure. Singular

values of any e × m rectangular matrix are also given by a similar way.

   It is shown here that a combination of the Householder transfbrmation and the dlJV system

(2.5) is also usefu1 fbr computing singular values ofA. Let us call this new algorithm the dlJV

algorithm.

                       (O) - 2k-1
                      U2k-1 - 1 + 6uSOk).2'

                       (o)- b3k
                      U2k - 1+ 6uSOk)-1'

                      u80) = o, uSO.) = o.

Eq. (2.36) comes from (2.29) by setting w£O) =

                    4. Basic properties of the dLV algorithm

   The dLV system and the dlJV algorithm have the fbllowing remarkable properties.

   First, we show that the determinantal solution (2.6) is always positive. As is pointed out in

(2.17) the variable ufan), in n, holds positive ifthe initial values satisfy ulO) > O, k = 1, 2, . . . , 2m-

1. We can actually derive a positive sequence {u£O)} from any given nonzero sequence {bk} by

                              b2
k= 1,2,...,m,

k= 1, 2, ...,

b

15

2

k'

m-1 '

Thus it is shown that

(2.36)



   Proposition 2.4. Singular values ofB(O) are computed by the dLVaigorithm in a numerically

stable way ifulO) > O and6 > O.

   This property stands in contrast to the qd algoritlm (see [11], p.613), where the recurrence

relation (2.24) becomes unstable when gl"'i) fu O. Therefbre the qd algorithm was supplanted

the eR algorithm in matrix eigenvalue computation [33]. While the dlJV system is of great

significance in singular value computation, though it is directly related to the qd algorithm by

the Miura type transformation (2.23).

   Secondly, we give comment on a revision of initial value. Eq. (2.36) also shows how to

choose an initial value of the dl.]V algorithm fbr computing accurate singular values. If we set

initial value as uSOk)-i = b;k-i and uSOk) = bik instead of(2.36), then uS"k)-i does not converge to Ck.

We should take the initial value as in (2.36) fbr any 6. The correct initial value, surprisingly,

depends on the discrete step-size 6. In the limit 6 --> O the correct initial value uSOk)-i and uSOk)

given by (2.36) goes to bgk-i and bgk, respectively. This fact reminds us of the pathbreaking

work by Chu [1] who showed convergence of the solution u2k-i(t) of the continuous-time IJV

system (2.1) with the initial value u2k-i(O) = bZk-i and u2k(O) = bik to the squares ofsingular

values. The basic idea in [1] is the asymptotics ofsolution ofthe finite Tbda equation originally

studied by Moser [23]. Here the continuous I]V system is related to the Toda equation by a

Miura type transformation.

   Next a sorting property of the dllV algoritlm is discussed. Moser [23] showed that the

finite 'Ibda particles are asymptotically free. By using a direct connection between the Tbda

equation and the I.]V system [1] it can be proved from Moser's result [23] that limt-... u2k-i(t) >

limt.. u2k+i(t) where uk(t) is a solution of the continuous-time IJV system. This fact implies

that

   Proposition 2.5. 7;Pzesingular values ak = VliZ computedby the clLVaigorithm are o7z7tired

accoTd7ng to magnitucle

                         01 >02 >''･> ak >･･･> a.. (2.3 7)
   In other words, the dLV algorithm has the fo11owing sorting property

                       .iM > .SM >･･･> .Sce, >･･･> uSce-, (2.3 8)

fbr sufficiently large N fbr any initial value given by (2.36). This proofis also given by com-

bining Theorem 2.1 with Theorem 2.2.

   Finally, we consider acceleration of convergence by enlarging discrete step-size 6. Since

discrete time n6, for some n, becomes large as discrete step-size 6 grows, we can accelerate

the convergence speed. Let u£"'), n' = O, 1,..., and u2"), n = O, 1,..., be solutions ofthe dl.Y

system, starting from the same initial value, with discrete step-size 6' = g6 and 6, respectively,

for some constant g > 1. Then we see from the asymptotic expansion (2.14) that u£n') = u£e")

converges faster than u£n) as n', n -> oo.
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   More precisely we can make a clear relationship between a convergence speed and the value

of6. It is known ([11], p.616) that gl") in the qd algorithm (2.24) converges to 1lzk,o, the inverse

of the k-th pole zk,o of the meromorphic function .t6(z) in (2.11). The convergence (2.27) with

(2.37) says

                                Zk･O=1+66.z, (2.39)

where o'2 is the square of the k-th largest singular value of B(O). The pole depends on 6. Note

that uSn,) > O and lim...uS",) = O. Let uS(Y) be the largest of {uSi¥)}, k = 1,2...,m- 1, for

sulficiently large AI. Then we can regard uS"J.) as the important variable which converges at the

slowest. wnen uSce. becomes O(10-M) for some number M > O, we stop the iteration ofthe dLV

algorithm at n = N. This brings us a usefu1 stopping criterion fbr a desired accuracy.

   The convergence speed under consideration crucially depends on the ratio zJ･,ilz]･+i,o which

appears in the asymptotic expansion of uS"J.) as n -> oo. See the second formula of (2.14). The

ratio zJ･,ilzJ･+i,e is given by the maximum ofthe ratios {zk,ilzk.i,o}, k =

                             Zil Zk,l
                                  = max .
                             2Zi+1,o k=1,--"m-I Zk+1,o

Using (2.15) and (2.39) we have

                           zJ',i a2.i+116
                                = max                           Zi･+1,o k=1--.m-1 o-Z+116

                                < 1.

1, 2,
' m-1 '

It is shown that

   Proposition 2.6. 772e ratio lf,ilzJ･+i,o decreases monotonically.from 1 to

                                       aZ.1
                                k-M,.A.X-i .2･ (2.4o)

as well as, the convergence is acceleratea as the discrete step-size 6 increases.from O to oo.

   It is important to manipulate the value of6. In numerical linear algebra this kind ofaccelera-

tion has not been known. This is an advantage, fbr improvement, ofthe generalized convergence

theorem proved in this chapter.

   We give some numerical examples below. Let

                                  O.5 O.3 O
                            B(0)= O O.7 O.1 .

                                   0 O O.9

Figure 2.1 describes the behaviour of solution of the dLV system with 6 = 1.0. The solid

iines indicate VIIiFJ, ViF and VI ?; which converges to singuiar vaiues. The dotted iines
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correspond to VIilii and VIilil; which tend to o. Figure 2.2 shows an acceierated convergence

of the solution, where 6 = lo. we see in Figures 2.i and 2.2 that the initial value {VIilliJ}

depends on 6 and is different from the given bk.

V[x:)

6=1 .C

     --    tr ------- ti si-"t    x-- ----t-

  -l -i-------t XX-

        T-t-"I::-:--:-t------"----

o 30 6e
R

FiGuRE 2.1. A graph of iteration number in the dlJV algorithm (x-axis) and the

square root ofu£") fbr k = 1,2,...,5 (y-axis). The solid and dotted lines describe

the behaviors ofsquare root of uSnk)-i, k= 1,2,3 and uS"k), k= 1,2 from n = O to

n = 30, respectively when 5 = 1.0.

V[F:)

6 =1o

tl

J: '1-

:.: k,

t-x- lit-

 '--Th:-".'-.t"...-..-

e 30 60
n

FiGuRE 2.2. A graph of iteration number in the dLY algorithm (x-axis) and the

square root ofu£") fbrk = 1,2,...,5 (u-axis). The solid and dotted lines describe

the behaviors ofsquare root ofuSnk).i, k= 1,2,3 and uS"k), k= 1,2 from n = O to

n = 30, respectively when 6 = 10.
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5. Conclusion remarks

In this chapter we have proved that the Hankel detenninant solution u~1-1 ofthe dLV system

converges as n ~ 00 to the square of the k-th largest singular value (Tk of a given bidiagonal

matrix (theorems 2.1 and 2.3). And u~1 tends to O. The notions of detenninantal solutions, Lax

representations, Miura transfonnations and integrable discretizations, which have been devel

oped in the theory of integrable systems, playa crucial role in the proofof theorems. Especially,

the discretization ofthe linear evolution equation (2.4) to (2.8) is the key to the convergence the

orem. This is because (2.8) not only characterizes the detenninantal solution (2.6) but allows us

arbitrary positive parameter 6 and gives rise to the important relation (2.12) which enables us to

obtain (2.16) through (2.14) and (2.15).

Furthennore several properties of the solution of the dLV system are discussed. For a suit

able positive initial value and any positive 6, a positivity of detenninantal solution is proved,

which guarantees a numerical stability of the dLV algorithm (Proposition 2.4). We see in (2.36)

that the correct initial value depends on discrete step-size 6. The singular values computed by

the dLV system are ordered according to magnitude. Namely, the dLV algorithm has a sorting

property (Proposition 2.5). As the discrete step-size 6 increases from 0 to 00, the convergence

speed is accelerated to a constant detennined by ratio of singular values (Proposition 2.6). A

stopping criterion is also obtained by using u~1. These basic properties of the dLV system,

especially by a parameter 6, will see practical applications to singular value computation.
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CHAPTER 3

An improvement of the discrete Lotka-Volterra algorithm

1. Introduction

   Our starting point in this chapter is the observation that singular values of B are computed

by using the clLV foclLrp system with arbitrarypositive constantste:p-size 6 > O. Moreover, in

Chapter 4, a new SVD algorithm named intagrable SVD (7LSVQ) aigorithm will be discussed

which can compute not only singular values but singular vectors. One ofour devices fbr acceler-

ating convergence speed is to enlarge 6. It is shown in Chapter 2 that convergence speed grows

as 6 becomes larger. However, numerical accuracy is deteriorated by an inappropriate choice

of step-size in some case. Namely, convergence speed and numerical accuracy are conflicting

each other in general. Though a flexible choice ofthe step-size 6 is desired from viewpoints of

convergence speed and numerical accuracy, it has not been studied how to adjust the step-size

6 of the dLY system at each step.

   In recent development of discrete integrable systems, a czaV tvclLrp system with variable

ste:p-size was also fbund in [12, 40]. It is here emphasized that an explicit solution ofthe vdl.JV

system is not written by a Hankel determinant but a Casorati determinant (see [40]). In Chapter

2, an asymptotic expansion of Hankel determinant [11] is usefu1 to prove that the solution

of the cdllV system converges to the singular value. However, to the best of our knowledge,

any asymptotic expansion of Casorati determinant has not been known. Hence it seems to be

dithcult to apply the same method ofproofused in the cdlJV system to the vdLY system.

   In this chapter we prove by a different analysis from the cdLY system that the solution of

the vdl V system converges to some limit. The proofis given without using the explicit form

of determinant solution of the vdlJV equation. Next we show the limit is a singular value of

the bidiagonal matrix B. We then see that the vdLY system is applicable to singular value

computation. A part of the I-SVD algorithm in Chapter 4 is also modified by introducing a

flexible choice of the step-size i at each step. As a result, we can perform a better singular

value computation with respect to both convergence speed and numerical accuracy.

   This chapter is organized as fo11ows. In g2, it is shown that the singular values of the bidi-

agonal matrix B are invariant under the time evolution of the vdlJV system under a suitable

condition. The proofis given by using the fact that the vdlJV system takes the fbrm ofa simi-

larity transformation ofa matrix. In g3, we prove convergence ofsolution ofthe vdlJV system.

For this purpose, it is usefu1 to introduce the asymptotic analysis ofsolution ofthe cdl.Y system
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in Chapter 2. Moreover, by using a relationship of the vdlJV variables to the cdLY variables, it

is proved that the solution of the vdllV system converge to some limit as time variable n goes to

infinity. In g4, we describe two behaviours ofthe cdLV and the vdl.V variables as n increases.

Simultaneously, through some numerical examples, we demonstrate the foIlowing. A flexible

choice of the step-size at each step is usefu1 for the eMcient singular value computation with

respect to both convergence speed and numerical accuracy.

                     2. Time evolution ofthe vdLV system

   In this section, we consider time evolution from n to n + 1 ofthe finite vdLV system

            uln+l)(1 + 6(n+1) uln-+1 1)) = u£n)(1 + 6(n) u£n.)1 ), k= 1, 2, ..., 2m - 1, (3.1)

            u8n) =- o, uSn.) =- o, o< 6(n) < M; n= o, i,...,

where u£n) and 6(n) denote the value of uk and 6, respectively, at discrete time t = Zl.-oi 6(i) and

Mis some positive constant. If u20) 2 O, then u£n) 2 O. The vdlJV system was found in [12, 40]

as a time discretization of the finite LV system (2.1). Namely, (3.1) goes to the IIV system as

every 6(") goes to zero. Let ii2') denote the cdlJV variables to distinguish the vdlJV variables.

The usual cdlJV system, corresponds to (2.5),

                       iilli+i)(1 +6iillllGi)) = iiYi)(1 + ,siill?,) (3 .2)

is derived from (3.1) by fixing the discrete step-size 6(n) at a positive constant 6.

   We slightly generalize the discussion in Chapter 2. It is important to note that the vdlJV

variables ul") satisfy the foIIowing matrix form:

           L(n+i)R(n'i) = R(n)L(n) + ( 6(.1.i) 61n) ) i,

L(n) ii

.Iin)

1 .ISn)

         1

  )- 1.711i

   --   - 6(n)

o

     ' R(n)

dv)

) (1 + 6(n)uS",)-,

1 vin)

   1 '･.

0

                    (1+6(n)uSn,)-, ), Vki6(n)uS",)-,

where I is the m × m unit matrix. We have the same matrix fbrm as m

for all n.

   Let us begin our analysis by introducing new nonegative variables

                           w£n) = uln)(1 + 6(n)uln-)1)

and a tridiagonal matrix Y(n)

                            yin) . L(n)R(n) - -LI.

                                         6(n)
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w£") defined as

(3.4)



It is obvious that Y(") is written as

                         tvS") wSn)wSn)

                  y(.). 1 wSn)+wgn) ･.. .
                                ･･. ･･. wSn.)-,wSn.)-,

                                       1 tvSn.)-,+wSn.)ff,

We derive from (3.3)

                            y(n+i).R(n)y(n)(R(n))"i. (3.5)

It is not hard to see wln) > O providing u20) > O and 6(") > O fbr k = 1,2,･･･ ,2m - 1. Thus

R(n) is nonsingular for any n. This similarity transformation (3.5) implies that the eigenvalues of

Y(n) are invariant under the evolution from n to n + 1 ofthe vdlJV system. By using a diagonal

matrix G("), symmetrization of Y(n) is given as

           ry) . (G(n))-1 y(n)G(n)

                    win) win)wSn)

                   tvS")wSn) .Sn)+.gn) ･..

                             ･.. ･･. wSn.)-,wSn.)-,

                                      (vSn.)-,wSn.)-, wSn.)-,+wSn.)-,

           G(n) =- diag(i.il.,i bvSnf)-,wSn?,IZ. I.,' wSn,)-,wSn,･),･･･, wSn.)-,tvS".)-,,i)

Note that G(n) is nonsingular fbr any n and (ry)) = niM.i wS"f)-i. From (3.5) and (3.6), we have

the fo11owing proposition with respect to the time evolution from n to n + 1 of the vdl-]V system

(3.1).

   Lemma 3.1. 71he vcllLVsystem takes theform oj('similarity tranE!formation

               }(gi+1) . 2(n) rg)(e(n))-1, 2(n) i (G(n+1))HIR(n)G(n) (3.7)

ofthepositive deLfinite matrix }(;li), which implies that the eigenvalues ojC}(gi) are invariant uncler

the time evolution.7ivm n to n + 1, for all n.

   It is significant to emphasize from (3.7) that choice of 6(n) at each n may be made indepen-

dently of the eigenvalues of ty). This is because the eigenvalues of rg) are identically equal to

those of ytO), i.e., the eigenvalues of ry) do not depend on 6(O), 6(i), ･ ･ ･ , 6("). Note here that the
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Cholesky decomposition of }C;l'

                 }(y)

) is given as

. (B(n))TB(n),

B(n) !i

0

･,IiJli;

Vthgs ...

wSn.)-2

wS".)-i

(3.8)

(3.9)

Therefbre the singular values of B(") are equal to the positive square roots of the eigenvalues

of ry). Then the fbllowing proposition for the singular values ofB(n) is derived by relating the

Cholesky decomposition (3.8) to Lemma 3.1.

   Proposition 3.2. 71he singular values ofthe upper bidiagonal matrix B(") are invariant under

the time evolution.hem n to n + 1 ojCthe vclLVsystem.

   The above discussion in this section is also equivalent to that in Chapter 2, when i(") = 6 fbr

all n. In what fbllows we assume that B(O) has distinct singular values such that

                      o-i(B(O)) > o-2(B(O)) > ･ ･ ･ > o-.(B(O)).

                      3. Convergence to singular values

   In this section, we consider two cases where time evolution from O to some N is performed

by the vdlJV system (3.1) andby the cdl"jV system (3.2), respectively. Especially, in this section,

we denote ty) and B(") with fy) and BM(n), respectively, when 6(") = 6 fbr all n.

   It is shown in Chapter 2 that the determinantal solution iile) of the cdllV system (3.2) con-

verges to some limits c-i,c-2 ･･･,cff.,O as n -> oo as fo11ows,

                         limilg2-,=c-k, limiiS2=o, (3.lo)
                                      n-co                         n->oo

where ii > e-2 > ･･･ > i. > O. Simultaneously, it is proved that c- k are eigenvalues of fy) and

V5Z are singular values ofB(O). The proofof (3.10) is given by an asymptotic expansion ofthe

determinantal solution ii2i) as n --> oo. However, it seems diMcult to apply the same analysis

to the vdllV system. In this section, we investigate the asymptotic behaviour as n - co ofthe

vdLY variables u£") by using the property (3.1O) of the cdllV system instead of the asymptotic

expansion of the solution.

   Let us begin our analysis by considering trace(}Cg')). As shown in g2, the eigenvalues of ry)

are independent from the choice of 6(O), 6(i), ･ ･ ･ , 6(n). Namely,

                              2(}ll))-n(il!ft)), (3.11)
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where 1(rg)) and 1(i{!li)) denote the eigenvalues of }(ge) and 917i), respectively. Note that 1(iJIY)) =

c-k. Then we see from (3.11) that n(}(;li)) = c-k. In general, the sum of all diagonal entries

coincides with that of all eigenvalues. Moreover it is obvious from (3.6) that trace(ty)) =

Z2ve.ii wln). Hence we have

                              2m-1 m
                              Zw2") -Z c',. (3.12)
                              k=1 k=1
Namely, £2e.ii wl") are invariant in n. This fact is usefu1 to prove the fbllowing lemma fbr

analyzing the behaviour ofthe vdLY variables u£") as n -> oo.

   Lemma 3.3. Suppose the initial dnta u20) is such that

                         ulO) > o, k= 1, 2, ...

T72en uln), n = O, 1,..., satiop

                      o< ul") < Ml, k= 1, 2,

for some positive constant Mi .

   Proof It is obvious from (3.1) that u£") > O,

and (3.12), we see that tv2n) > O and O < wl") + bvS") +

,2m - 1.

... 2m-1.
  '

(3.13)

(3.14)

                                     fbr all n, under initial data (3.13). From (3.4)

                                         ･･･ + wS".)-i < Mii for some constant Mii.

HenceO< w£n) < Mi for all n. By using (3.4), we have (3.14). ]

   With the help of Lemma 3.3, the behaviour of u£") as n . oo with initial data (3.13) is

described by the fo11owing Proposition.

   Proposition 3.4. 4u20) satisy52 initial dnta (3.13), then

                          Jlm. uSn,)-, - cMk, 11m. uS",) - O. (3.ls)

   Proof Let k = 1 in the vdlJV system (3.1), then we have ugN'i) = uSO) Hi.o(1 + 6(")uSn))

fbr some N which implies that uSO) s uii) s ･ ･ ･ ui") g ･ ･ ･ . From Lemma 3.3, it is obvious that

O < ui") < Mi fbr all n. Since uin), n = O, 1, . . . , is monotonically increasing, ui") converges to

some positive limit ci as n --> oo. Simultaneously, H.OO.o(1 + 6(n)uS")) converges to some positive

limit pl .

   Suppose that H.oo.i(1 + 6(")uS"k)-2) converges to some positive limit pk-i. Let

                            v20) = ulO)(1 + 6(O).£O.),)

and v£O) > O. Then, by using (3.1) and O < 6(") < Ml we see that (vSOk)-ilpk-i)Hi.i(1 + 6(n)uS"k))

converges to uff-'i) as N - oo. Hence it fbllows from (3.14) that O < H.co.o(1 + 6(n)uS"k)) < Mb

for some constant Mi. It is also obvious that lli.i(1 + 6(n)uSnk)), N = 1,2, . . . , is monotonically
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increasing. Therefore it fbllows that ".OO-mi(1 + 6(")uS"k)) = pk. Simultaneously, we see that

lim.-,. uS",)., = vSO,)-,pklpk-i > O, namely,

                                J2m. uS"k)ri=ck (3.16)

where ck is some positive limit.

   Note here that Z.oo--o 6(")uYk) converges to some limit sk > O if and only if n.oo.i(1 + 6(")uS"k)) =

pk for 6(")uSnk) > O, n = O, 1, . . . . Moreover lim.-,.. 6(n)uS"k) = O for any positive bounded sequence

6("), ifZ.co-neo 6(")uYk) = sk. Therefore it fo11ows that

                                 J.im.uS7'-o.

   The vdllV system (3.1) also leads to

                                       oo
                         ilm. uSnk'-5' = vSO,'-, n(i - 6(")r£n))

                                       n=1

where 6(n)r£n-), "< 1 and r£n-), i (uSn,)-, - uSn,)-,)1(1 + 6(")uS",)-,). If ck-i = ck i.e. Iim.-,.. r£n-), = O,

then lim.... uS"k'-i2) t O. Since lim.-r,.uS"k'-i2) = O, we see that ck-i t ck. Ifck.i < ck, then

lim...rln-), < O and lim.-.uSn,'nei,) = co. Otherwise lim.-,.r£n-), > O and lim.-,.uS",'-i,) = O.

Hence we have ci > c2 > ･ ･ ･ > c.. This sorting property is the same as that ofthe cdlJV system

(3.2) as n -> co. It is to be remarked that limN-,. Hi.i(1 - 6(")r£n)) = O.

   Note here that lim.-,.. rg) = diag(ci,c2,･･･,c.). This implies that ck is the eigenvalue of

}(;e). By using (3.11), it turns out that ck coincides with one ofthe eigenvalues c-i, c-2, ･ ･ ･ , c'. of

ty). Since ci > c2 > ･･･ > c. and c-i > c-2 > ･･･ > c-., it fbllows that

                                 ck=c-k. (3.17)
Consequently we have (3.15). m

   Combining Proposition 3.4 with Proposition 3.2, we derive the fo11owing theorem for the

singular value ofB(O), or equivalently, B(O).

   Theorem 3.5. 71he k-th singular value ak(B(O)) ofB(O) with nonzero diagonal andsubdiag-

onal entries is equal to VZ7, name("

                                o-k(B(O)) = VEIii,

fork= 1,2,...,m, wheTe ck is the limit ofuSnk)-i as n . co･

   ]Proof It is proved in Proposition 3.2 that the singular values of B(n) are invariant in n.

From the asymptotic analysis in Proposition 3.4, we have B(n) - diag( VZIT, V55, ･ ･ ･ , Vl5 ;) as

n -> oo. Hence it fbllows from ek = c' k that VE7 is the k-th singular value ofB(O). B
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   The Cholesky decomposition (3.8) guarantees that the initial data wlO) is always nonnegative

in singular value computation. We also see from (3.4) that ulO) ) O. Let us consider the case

where u20) = O fbr some k. IfuSOk),-i = O fbr O < kb s m, we compute the eigenvalue of(A(O))TA(O)

defined by (A(O))'A(O) = (B(O))TB(O) + o'2I where o- is some positive constant. Then all entries of

A(O) are nonzero positive. Note that lk((B(O))'B(O)) is given by 2k((A(O))TA(O)) - o'2. IfuSOk), = O,

then
                           B(o) .( B80) B9/,) )

where BgO) E RkoXko and BSO) E R(M-kO)×(M-kO) are upper bidiagonal matrices. Hence the singular

value computation of B(O) can be performed by computing singular values of BiO) and BSO).

Therefbre it is enough to discuss the initial data (3.13) in Theorem 3.5.

  As is shown in Theorem 3.5, the vdllV system (3.1) is applicable to singular value compu-

tation. In the next section, we explain an advantage which the I-SVD algorithm with variable

step-size has.

                          4. Numerical examples

   First, we show some numerical results computed by using a part of the I-SVD algorithm

with variable step-size. 'Ib investigate the effect ofvariable step-size let us take up the fbllowing

simple example,

                            B,-(gii?･)

Let us compare case 1 with case 2 shown in Table 3.1. Each asymptotic behaviour of ViliiJ

                     Z[IABLE 3.1. Choice ofthe step-size 6(")

step-sizei(n)

Case1 6(O)=1,6(i)=100,6(2)=1,6(3)=100,･･･

Case2 6(")=1forn=O,1,･･･

Case3 6(")=1OOforn=O,1,･･･

Case4 6(O)=1,･･･,6(10)=1,6(11)=100,･･･

Case5 6(O)=100,-･-,6(10)=loo,6(11)=1,---

and VIIFI is shown in Figure 3.i and Figure 3.2 respectively. Figures 3.i and 3.2 demonstrate

that the variabies VIililJ and VIEIii; converge to some iimits independentiy ofthe choice of6(n).

Though the vaiues of Vili; vibrate, those of VIE2; do not. From the discussions in g2, we

can regard wSnk)-i as the singular value ofB (= B(O)), when wSnk)-2 is approximately equal to
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FiGuRE 3.1. A graph of iteration number in a part ofI-SVD algorithm (x-axis)

and the square root ofu£") fbr k = 1,2,...,5 (y-axis). The solid and dotted lines

describe the behaviors ofsquare root ofu£n) from n = O to n = 30 in Case 1 and

Case 2, respectively.
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FiGuRE 3.2. A graph of iteration number in a part ofI-SVD algorithm (x-axis)

and the square root ofwl") fbr k = 1,2,...,5 (y-axis). The solid and dotted lines

describe the behaviors of square root of wln) from n = O to n = 30 in Case 1 and

Case 2, respectively.
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O. Thus wSnk)-2 fu O, for some n', gives rise to a stopping criterion. In practical computation, we

adopt wS"k)-2 < s as the stopping criterion where sis a small number. When wSnk)"2 < s, we

can reduce the matrix-size m to m - 1. This is a defiation process.

   Next, we examine Cases 2-5 in 'fable 3.1. Figure 3.3 describes the behaviour of ViliiJ,

especially in Cases 2-5. Figure 3.3 suggests some benefit derived from the flexible choice of

step-size 6("). Compared Case 4 with Cases 2, 3, it turns out that convergence speed is accelated

as 6(") becomes larger on the way of iterations. It is shown in Chapter 2 that the convergence

speed tends to a constant determined by a ratio of singular values by enlarging 6. We also see

from Case 5 ofFigure 3.3 that convergence speed is reduced by decreasing the value of 6(").

   However, Case 5 has an advantage with respect to computational cost since we can replace

6(n) *u£") with u£n) from n = 1O. Let us compare Case 5 with Cases 2,3 and4 through the singular

value computation of

                                8.4 7.6 O

                          B2= O 4 O.02 ,
                                 O O O.Ol

where s E 1.0 × 10-i6. 'Ilible 3.2 shows timing of deflation in Cases 2-5. For example, in

                   TABLE 3.2. Timing of defiation in Cases 2-5

FirstdeflationSeconddeflation
(matrix-sizem:3-->2)(computationiscompleted)

Case2

Case3

Case4

Case5

Case 3, it tums out from Table 3.2 we compute the singular values of3 × 3 matrix for n S 10

and 2 ×2 fbr 11 S n S 29. In consideration that 6(")u£") = u£n) when 6(") = 1, the operation

number in Cases 2-5 is shown as Table 3.3. It is significant to note here that division needs more

                    TABLE 3.3. 0peration number in Cases 2-5

AdditionsMultiplicationsDivisions

Case2

Case3

Case4

Case5

computational cost than multiplication. Hence, from viewpoint ofcomputational cost, Case 5 is
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better than other four cases. Simultaneouly, the roundoff error in Case 5 is also small since the

operation number is the small. Consequently, the flexible choice of 6(") at each step is shown

to be usefu1 fbr an efficient computation with respect to both convergence speed and numerical

accuracy.
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FiGuRE 3.3. A graph of iteration number in a part of I-SVD algorithm (x-axis)

and the square root of uSn) (y-axis). The solid lines describe the behaviors of

square root of uS") from n = O to n = 30 in Case 2 and Case 3. The white circle

and black square marks correspond to the square root ofuSn) from n = O to n = 3O

in Case 4 and Case 5, respectively.

   Although a suitable stratagy of 6(") has not been fbund generally, we explain how to deter-

mine 6(") by relating it to the singular values ak(B), k = 1,2, . . . ,m. A proper choice of the

variable step-size 6(") may depend on the distribution of singular values. It is shown in Chapter

2 that the convergence speed crucially depends on the ratio of nearest singular values, i.e., the

value ofmaxk(aZ.,(B)laZ(B)). Note that

                   w$`' .:l$t:ill2[Illl･ ki-..uSz'-i=aZ(B)･

since wff'i) = vSOk) "i.i((1 + 6(n)uSnk).i)1(1 + 6(")uSnk)-i)). Then we see that the convergence speed

ofthe series {wSnk)}..o,i,... grows as 6(") becomes larger. Ifmaxk(a2.i(B)lo2(B)) is not close to 1,

a good acceleration is performed by enlarging i(n). However any control ofpositive 6(n) hardly

gives rise to acceleration when the disuibution is dense. Hence 6(") = 1 will be a better choice

in this case with respect to the operation number and the roundoff error.
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   Let us consider the case where o'i(B) s a2(B) s･･･ fu a'."i(B) and the smallest singular

value o'.(B) is not close to o'.-i(B). Then wSn.)-2 primarily converges to zero after perfbrming

some repeat loops. A larger step--size 6(n) accelerates this convergence. It fo11ows from Proposi-

tion 3.2 that wSce"2 fu O and wSce-i fu oZ(B) fbr some N. Therefbre we can introduce a deflation

from B E RMXM to B E R(MHi)×(M-i). Since B has dense singular values, we switch the 6(") to 1.

This control of6(n) corresponds to that in Case 5. Similarly, we may adjust such 6(") as in Case

4, when o'k(B), k = 1,2, . . . ,m - 2 are suMciently separated each other and o-.-i(B) fs o".(B).
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.CHAPTER 4

On the discrete Lotka-Vblterra algorithm:

error analysis, stability and singular vectors

1. Introduction

   A new algorithn fbr computing singular values named the dlJV algorithm is presented in

previous chapter. The dlJV algorithm can be visualized by Figure 4.1 named the diLV 7lrble.

The dlJV Tai)le describes a rhombus-like rule and seems to be very similar to the qd Table

bZ
.･･

 b;k-2 b3,-, b;k ''' b;m-i

.so) .io) ･･･ usO,)-, uSO,)., uSO,) ･･･ uSO.)-, uSO.)

     (1) (1)

    Ul ''' Uuo
(1)

2k-2
 (1)
u 2k-1

uSl' ･･･ uSi.'., uSi.'

u82) ui2) ･･･ u (2)

2k-2
uS2,'-, uS2,' ･･･ uS2.'-, uS2.'

O a? ･･･ o aZ o ･- aZ o

FIGuRE 4.1 . dl-Y Table

[11]. As is pointed out in Chapter 2, there is an intimate relationship between the dl;V system

(2.5) and the pqd recurrence relation (2.17). Namely, the qd variables and the IIV variables are

directly connected by Miura transformation (2.23). Both the pqd algorithm [7, 32] and the dLY

algorithm, shown in the previous chapter can compute, singular values ofbidiagonal matrices

B without square root computation. Table 4.1 gives a comparison ofthe complexity ofpqd, dqd

and dlJV iterations. See [7] for the complexity ofDK and orthogonal gd (bgcD algoritims.

   It is possible to apply the dLV algorithm to a wide class of rectangular matrices A by us-

ing the Householder transformation from A to (B O) or (B' O)'. The dllV algorithm has the

fo11owing advantages. The singular value computation is perfbrmed only by additions, multi-

plications and divisions, whereas it does not need any subtraction in each iteration as well as
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TABLE 4.1. Complexity ofpqd, dqd and dLY algorithms

pqd dqd dLV
Squareroots o o o

Divisions 1 1 1

Multiplications 1 2 1

Additions 1 1 2

Subtractions 1 o o

Assignments 2 3 1

square root computation. It is well known that numerical errors may be extremely large in al-

gorithm which uses subtractions with multiplications or divisions. The dlJV algorittm avoids

this situation. Since the initial value given by entries of the upper bidiagonal matrix B is non-

negative, every quantity is also positive at any time (see Chapter 2). The dlJV variables, keep

posMve, guarantee

                                1<1+6u2n-+,i), (4.1)

where 1 + 6u£".'ii) is the denominator of the dLV recurrence relation (2.5). We can choose such

a parameter 6 that 1 + 6u£n-'ii) < M for a certain positive number M Hence high numerical

stability ofthe dllV algorithm may fo11ow.

   A dlJV algorithm having variable step-size 6(n) is given in Chapter 3. It has better conver-

gence speed than the dlJV algorithm with 6 = 1. The sl algorithm is also presented in Chapter

5. The speed is drastically increased. In many numerical experiments the sl algorithm is rather

faster than DBDSQR (without singular vectors computation) in LAPACK. Here the shifted DK

and the dqds algoritlm are implemented in DBDSQR and DLASQ, respectively. Moreover,

accuracy of the sl algorithm is better than these today's standard packages. Hence reliable

approaches, such as error analysis and stability analysis, to basic features of the drv and sl

algorithms are worthwhile. In this chapter some basic properties of the dlJV algorithm having

constant step-size 6 are discussed.

   The first purpose ofthis chapter is concerning with error analysis. It is necessary to verify a

high relative accuracy which results from the nonnegativity ofthe dlJV variables. We consider

errors ofthe dllV algorithm through the fo11owing two approaches.

   The first is an estimation of relative error bound of 1-iteration of the dLV algorithn. Using

a method by Demmel [5] and Fernando-Parlett [7] it is shown that singular values are computed

by the dl-Y algorithn with a high relative accuracy. Namely computed singular value by the

dllV algorithm is in relative error by no more than O(m2s) which is as same order as that by the

dqd algoritlm, where s is as small as machine epsilon. The dllV algorithm is more accurate than

the DK algorithn. The other approach to errors is a singular value computation fbr a desired
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accuracy by the dllV algorithm. For this end, it is usefu1 to introduce Weyl type perturbation

theorem in [30] suited fbr numerical inclusion ofmatrix singular values. This theorem says that

errors ofthe singular values are estimated by the computational errors ofmatrices. The errors

of matrices are evaluated by changing a roundoff mode. In this process, we use two types of

roundoff mode defined as

(a) Down : Round c E R to the largest floating point number f E F satisfying f s c,

(b) Cip : Round c E R to the smallest floating point number f E F satisfying f 2 c,

where R and Fdenote the sets ofreal numbers and fioating point numebers, respectively. There-

fbre, we have rigorous error bounds fbr the computed singular values. It is shown that the dlJV

algorithm computes singular values at a high precision.

   The second purpose of this chapter is concerning with stability analysis of the dlJV algo-

rithm. The method in [5, 7] is also applicable to prove fbrward and backward stability analyses

ofthe dllV algorithm. Both forward and backward errors of 1-step are shown to be O(ms).

   This chapter is organized as fbllows. In g2, we estimation ofrelative error bound of 1-step

of the dl;V algorithm and ensure a high relative accuracy of the algorithm. In g3, forward and

backward stability analyses of the dl.V algorithm are proved. In g4, we prepare a procedure

fbr computing singular vectors in terms of the dllV algorithn. It is possible to estimate an

error bound of singular values computed by the dlY algorithm. Some numerical examples fbr

comparison ofthe dLY, the DK and the pqd algorithms fbr singular values are given in g5.

2. Error analysis for the dLV algorithm

   It is shown in [6] that the error bound on singular values after 1-step of the DK algorithm

without shift is 69m2s. The error bound of the dqd algorithm is 4ms [7] which is rather smaller

than that of the DK algorithm.

   An error analysis fbr the dLV algorithm can be done along a similar line to [7]. Let B be

such a given upper bidiagonal matrix that bk t O fbr k = 1, 2, . . . , 2m - 1 and 6 be some positive

constant. Set wlO) = b2 and 7 = 116. Then the dliV algoritlm fbr computing singular values of

B is fbrmulated. We write 1-step of the dlJV algorithm by using a modification ofthe variable

w£n) i uln)(1 + 6uln-)1) such that u)2n) i u2n)(y + ulnm)1) as fo11ows,

uk= Wk , k
    7 + Uk-1

iZik-1 = Uk-1(7 + Uk),

UO = O, U2m = O,

1, 2, ...,2m - 1,

k= 2, ...,2m,

(4.2)

where wk = w£n) and iZlk = wfa"'i). The convergence theorem proved in Chapter 2 says lim... wS"k)-i

= 7aZ and lim.-,. wSnk) = O for any positive 7.
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                           wk = wk(1 + si)1(1 + e2)

of M to M. Then exact computation by the dlJV algorithm gives va quantities from M as

                         rn, wk 1+s'1
                         Uk = 7+ u'k-1 1+ S'2'

                       thk-i = U'k-i(7 + ilk)

                           = tik.1 (7 +7 +Wu.kk-1 ll f;21 ).

Let us set

                           thk = tok(1 + gi)(1 + g2).
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   Introduce the set of2m - 1 quantities

                           W= {Wl, W2,･･- ,W2.-1}. (4.3)
Given M 1-step of the dllV algorithm in finite precision arithmetic generates output AM =
{ilii,ib2,...,ib2m-i}. Let Mbe a set with small relative perturbation of if. Let Mbe the out-

put of the dllV algorithm acting on Vi> in exact arithmetic computation. We require that -n'Z i's a

set with a small relative perturbation of M. These sets are mutually related as Figure 4.2.

                               dLYIcomputed A
                           m. mz
              perturbation of mt lpertmbation ofm

                           m-m
                                dlLVIexact

                    FiGuRE 4.2. Effects ofroundoffrw diagram

   We estimate a relative error bound ofthe singular value computed by the dLIV algorithm. Let

the floating point computation ofa basic arithmetic operation o satisfy fl(xoy) = (xoy)(1 +n) =

(x o y)1(1 + 6), where lnl < e and 161 < e fbr a given s. This is the arithmetic model in [7].

A relationship between M quantities and M quantities computed by the dlJV algoritlm is as

fo11ows.

                         wk 1+ sl
                                   , (4.4)                  Uk =                      7+ uk-1 1 + gk-1

                 iiik-1 = Uk-1(7 + Uk)(1 + sk)(1 + s.)

                     = Uk-i (7+ o, +W£k-i 11++sffi)(1 + Ek)(1+ s.), (4.s)

where lsll < s and so on. All the s's depend on k. We note the k-dependence of relative error

arising from addition.

   Let us introduce a small relative perturbation

                           o - -- (4.6)

(4.7)

(4.8)

(4.9)



Then we have from (4.8)

                  iiJk-i = tik-i (y +7 +W£.,-, ll g.;)(1 + s,)(1 + g,). (4.lo)

Ifwe choose s'i = s/, g'2 = sk-i, Si = e., b2 = 6k, then

                             U'k =7 +W#k-i 11is3i･ (4 11)

This implies from (4.4) that tik = uk. Therefbre we see thkJi = IDk-i from (4.5) and (4.10).

   Theorem 4.1. 71he M diagram commutes and rdk dilffl7rs ,tlom wk by 26 at mos4 ibk thlffl?xs

.f7om thk by 2s at most. 772e cZLVaigorithm with 6 > O guarantees that each computedsingular

value ofm × m bidiagonal matrices is in error by no more than (4m - 2)e.

   Corollary 4.2. lfthere is no roundofferror in addition ofuniipt each computedsingular

value is in error by no more than (2m - 1)sfor the ctLVaigorithm with 6 = 1.

                      3. Backward and forward stabilities

   There are two types ofroundoff error analysis. One is forward error analysis and the other

is backward. For a given set of data z =- {zk} let us write some exact computation on this data by

C(z) i C(zi,z2,･･･ ,z.). For z- -= {z-k} we write C(z- ) i C(zl,z-2,･･･ ,z-.) similarly. Let fl(C(z))

denote output generated by 1-step of the algorithn considered in finite precision arithmetic.

The termforwant error analysis is to determine a fbrward error as

                               llC(z)-fl(C(z))II. (4.12)
Ifthe fbrward error ofcomputation offl(C(z)) from z is small, such a computation is said to be

fbrward stable. Backwaut error analysis requires to find exact value z = {zk} which satisfies

                      fl(C(zi,z2,･･･,z.)) = C(z-i,z-2,･･･,z-.). (4.13)

The difference between z and z- indicates the backward error ofthe computation offl(C(z)) from

z. Ifthe backward error is small, such a computation is said to be backward stable. See Figure

4.3.

                                  exact
                         z C(z)

computed

exact
z- fl(C(z)) = C(z)

FiGuRE 4.3. Forward and backward errors
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   Figure 4.4 shows multiple sweeps ofthe dllV algorithm. The mappings PV) -> if?+i, va) ->

il>?, Ji>) ---> va)+i, Jip)+i - P7]+i in Figure 4.4 are corresponding to PV -> iP, M --> M, M ---> M,

M -> M in Figure 4.2, respectively. The actual computation proceeds as

                          rv) -> n7).i -> PL.2 -÷ a.3. (4.14)
Let us consider the computation

                          nt -> M+i -"> nt+2 -> nt+3･ (4.15)

Then we obtain M).i as an exact computing result of PV). And if)+i is a floating point computing

result of PL. Moreover it is shown that the difference between Jip1+i and PL+i is 4(2m - 1)6 and

is small. Hence the computation of Pl>)+i from PL is forward stable.

   Similarly, we consider the computation which proceeds as

                          M-> M+i.M+2 -> a.3･ (4.16)
We obtain Jip)+2 from tiL+i as a floating point computing result. And JT)+2 is also an exact

computing result of n7).i. It can be shown that the error between Pil?+i and W]+i is 4(2m - 1)s.

Hence the computation of Jip').2 from Ji'}.i is backward stable.

PI7]

nt
exact

M)+1

PZ+1

   exact

com ted

M+i

va}+2
computed

fi>)+2
exact

rv)+3

M+3

FIGuRE 4.4. Effects of roundo ff fbr multiple sweep ofdlJV algorithm

   Let B be such an upper bidiagonal matrix as (2.35). Then no overfLow and no underflow

occur. Therefbre it is concluded that

   Theorem 4.3. 71P2e clLVaigorithm isforwaid and backwaidstable.
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               4. Singular value computation for a desired accuracy

   If the m × m bidiagonal matrix B is approximately decomposed, by some numerical algo-

ritlm, into

B = as VT, 2 = diag(ai, a2,･ ･ ･ , am), (4.17)

where o'k are singular values and the column vectors of U and V are singular vectors ofB, we

can estimate an error bound of the computed singular values in terms of the singular vectors.

For this purpose the extended Weyl type perturbation theorem by Oishi [30] is most usefu1.

   Theorem 4.4. Let B be an m × m real matrix. PPle assume that as a result pfaay numerical

computation aigorithm we have an m × m real diagonal matrix Z and m × m orthogonal matrices

U and V such that

                  UE)VT=B+E, UTU=I+E VTV=I+G, (4.18)

where E, F andG are matrices expressing computational errons. Pfe assume that 11FI12 < 1 and

l[Gl12 < 1 so that U and V may be invertible. where IIFII2 and llGll2 denote 2-norms ofF and G,

respectively. Let 3k ando'k be singular values ofB andZ, respective(JL where ii 2 a2 2 ･ ･ ･ )

EF. ando'i }t o'2 ) ･ ･ ･ }t o-.. 71P2en thefollowing estimation holds:

lak - -a"kl s IUkl max{llFl12, 11Gl12} + 11El12･ (4.19)

   This theorem enables us to estimate error bounds of singular values from the computational

errors of singular vectors computed by a numerical SVD procedure. The quantities [IEI12, 11FII2

and 1IGIl2 in (4.19) are evaluated by changing a roundoff mode.

   In this section we fbrmulate an SVD procedure fbr the bidiagonal matrix B to discuss a

precision of singular values computed by the dlJV algorithm. To this end a close relationship

between the dlJV recurrence relation (3.5) and the qd recurrence relation (2.24) is fundamental.

   Let us give a briefreview ofthe pqd algoritlm for computing eigenvalues [37, 38]. The qd

recurrence relation (2.24) has such an asymptotic behaviour [11] that gln) -> ck, eln) -> O as

n - co under a suitable assumption, where ek are some nonzero limits satisfying lci1 > lc21 >

･ ･ ･ > lc.1 > O. Let us begin with the LR matrix expression of the qd recurrence relation

L(n+1)R(n+1) . R(n)L(n),

        37
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where L(n) and R(") are given by (2.25)

T(n) i

qin,

1

Introduce a sequence ofm × m tridiagonal matrices

 gin'egn)

ei")+gSn) gSn)eSn)

   1 . '-.
'. qh"l,ehili

1 escl,+qh")

                     =L(n)R(n), n=O,1,.... (4.21)

Then the LR expression (4.20) takes the form of similarity transformation

                             T(n).R(n)-iT(n+i)R(n). (4.22)

This is a discrete selfsimilar flow. Note that the eigenvalues of T(") are invariant under the time

evolution from n to n + 1. Let us write the eigenvalues of T(n) as lk(T(")). The iteration (4.22)

yields such a decomposition of T(O) that

                   T(O) . (.R(i).R(2) ...R(n-i))-i T(n)R(i)R(2) ...R(n-i). (4.23)

When q£n) -> ck and eln) - O as n -> co, T(") also converges to a lower bidiagonal matrix as

n -> co      ,

                                  Ci O
                                  1 c2
                          T(co)= . (4.24)
                                          1 cm

Since ck are the eigenvalues of T(OO), it fbllows ficom Ak(T(OO)) = nk(T(O)) that ck are the eigenval-

ues ofT(O). Simultaneously, R(i)R(2) ･ ･ ･ R(nmi) converges to an upper triangular matrix. Therefbre

the qd algorithm computes real nonzero eigenvalues ck ofthe tridiagonal matrix T(O).

   An eigendecomposition of T(oo) is also given in terms of the qd algoritlm.

   Lemma 4.5. An eigendecomposition oj"the hicfiagonal matrix T(co) is given by

           T(oe) = pAp-i
                       '

PE

Ai

  Pl,1

  P2,1 P2,2

 Pm-1,1 Pm-1,2 ''

   1 1-
diag(ci, c2,･･･ , c.).

0

' Pm-1,m-1
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'

      mPi,J' -== " (CJ'

     k=i+1

- Ck) ,

(4.25)



   The decomposition (4.23) and the eigendecomposition (4.25) lead to the fo11owing lemma

for the eigendecomposition of T(O) in terms of the qd algorithn.

   Lemma 4.6. An eigendecomposition ofthe tridiagonal matrix T(O) is given by

                 T(O)=RSb'ipAp-iRSM, RSb =-R(i)R(2)･･･R(n--i), (4.26)

where n- is such a stoLptping time that T(n-) = RSi)T(O)RSn-)-i is allzproximately lower bidiagonal.

   Next we extend the eigendecomposition of T(O) to that of a class of symmetric tridiagonal

matrices. Let us consider the case where the initial data of the qd algorithn is given by

                       glO) = bZ,, > o, elO) = b2,,., > o.

We can symmetrize T(O) as

   Lemma 4.7. Symmetrization ofT(O) by a similarity tranEIformation is given by

           - 7ig =GT(O)G-,

                                               m-1                                                    1

W

G !i diag(gi,i,.･･,gm-i,m-i, 1),

here the symmetric matrix T, is written hy

     b?

     blb2

Ts=

blb2

b2, + bi b, b4

------------------
       b2m-sb2m-4

gk,k E H

     J'=k
b2jrlb2f

(4.27)

(4.28)

                                                                    (4.29)

                                      bZ.-4 + bZ.-3 b2m-3b2m-2

                                      b2m-3b2m-2 b;m-2 + bZm-i

   Proof Let us set G = diag(gi,i,g2,2,･･･ ,g.,.). Then the (k,k)-entries of GT,G-i are

bgk.2 + b3k-i. It is obvious that (k,k+ 1)-entry and (k + 1,k)-entry are bgk-ib3kgk,klgk+i,k+i

and gk+i,k+ilgk,k, respectively. Ifgk,k = nJM--'ki 1lb2J-ib2J･ and g.,. = 1, both (k,k+ 1)-entry and

(k+1, k)-entry become b2k-ib2k. D
   Note that T, is positive definite, namely, ck > O. By applying Lemma 4.7 to Lemma 4.6, we

have an eigendecomposition ofpositive definite symmetric matrices:

   Lemma 4.8. An eigendecomposition ofT, is given asfollows

                       T,=vAv-i, v;-GRSn-)-iR (4.3o)

   Let us set V ! (vi, v2, . . . , v.), where vj -= (vih v2J･, . . . , v.J-)T and each vi, J･ represents the

(i,D-entry of V. The vector vj･ i'sjust an eigenvector for the eigenvalue aJ･(T,) computed by

the qd algoritlm. Note that vJ. v,･ = O in the case where li(T,) : 21,i(T,) fbr i : 1' since T, is
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symmetric and VT VA = AV' V. Thus we can transform V to an orthogonal matrix V = (a･,j) by

the normalization v, - v-i = (bli,i, bl,,2, . . . , bli,.)' such as bZi + bZ2 + ･ ･ ･ + iJZ. = 1. The result is

                   a･,,･= Vi'J' , 1'=1,2,...,m. (4.31)
                          v2･,, + vZ･,, + ･ ･ ･ + v?,.

Here each vi corresponds to a unit eigenvector of Ai(T,). Consequently, we have an eigende-

composition of T, by the orthogonal matrix V.

   Lemma 4.9. An eigenclecomposition ofT, is given by

                                 Ts= VA V', (4･32)

where V is an orthogonal matrix given by normalizing the columns of V.

   Now we consider an SVD of such a bidiagonal matrix B as (2.35). Any positive definite

symmetric matrix T, in (4.29) admits the Cholesky decomposition ofthe fbrm

                                  Ts=B'B･ (4･33)
Since the limits ck are simple eigenvalues of the positive definite matrix 71,, Lemma 4.9 says

that the qd algorithm computes the singular values ofB through

                                o-k(B)= VZi, (4.34)

such that ai > a2 > ･ ･ ･ > a. > O. Moreover, fbr some orthogonal matrix U, the decomposi-

tions (4.32) and (4.33) generate

               BTB . (tiAS fiT)' 0Al l7T, AS = diag(o'i, cr2,･･･ , a.). (4.35)

   We have

   Lemma 4.1O. AnSVD ofB ispresentedas B = U£V', where Z = Ai12. Here the orthogonal
matrices fi and i7 are given by normalizing column vectons of v = GRS"-)-ip and d7 = Bi72-i,

respectively.

   The diagonal matrix Z ofsingular values and the orthogonal matrix V ofsingular vectors are

shown to be computed by the qd algorithm with the initial data (4.27). Since the convergence of

the qd algorithm without shift is very slow, it needs many times of matrix product to compute

RSn). Thus this SVD procedure is impractical. However it is usefu1 to discuss a singular value

computation, for a desired accuracy, by the d[V algorithn.

   Let B be such a bidiagonal matrix as (2.35). An SVD in terms of the dl-Y algoritlm is

described as fo11ows.

    (i) Set a suitable discrete step-size 6 > O and the initial data by (2.36).
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(ii)

(iii)

(iv)

(V)

By using the dlJV algorithm the singular values ak ofB are computed as

        a2=uSn-,)-,, forsuchn-that j.m,.,g.x-,uS?.s1.0×10-cr (4.36)

for some positive integer a, where the second condition is a stopping criterion.

Compute the product of upper bidiagonal matrices RSM = R(O)R(i) ･ ･ ･R(ffuni) and its in-

verse, where each RO) is given by replacing ekij) with 6uYk).iuYk) in (4.20).

Prepare the diagonal matrix G and a lower triangular matrix P with ck = a2 > O.

Through the nonsingular matrix V = GRSn-)-iP, the orthogonal matrices fi and i7 =

BV>l-i such that

                          B= UZVT, (4.37)
       are obtained.

We call this the integrable SVZ]) (7LSVD) aigorithm.

   It become$ possible to estimate error bounds ofsingular values ak computed in Steps (i)-(ii)

through the SVD procedure (iii)-(v). An example of the singular value computation at desired

precision is given in the next section.

                            5. Numerical examples

   In this section we first give some numerical examples fbr comparison of the dLV algorithm

with the DK and the pqd algorithms without shift. For the DK algorithm we take up DBD-

SQR of LAPACK code, where both the shift and the singular vector computation routmes are

excluded. For the pqd and the dlJV algorithms, the Demmel-Kahan eR routine of DBDSQR is

replaced by the pqd without shift and the dl:V routines, respectively. The same stopping crite-

rion is adopted as that ofDBDSQR. We fix the parameter as 6 = 1 fbr the dLiV algorithm, fbr

simplicity.

   Here we consider 100 × 100 and 500 × 500 matrices of fbur types in Table 4.2, where

0k are the verified correct values. We show the singular values ak of the 100 × 100 matrices

                 TABLE 4.2. Four cases ofupper bidiagonal matrices

Diagonalb2k-i Subdiagonalb2k DistributionofOk Minimal0m

Case1:Bi

Case2:B2

Case3:B3

Case4:B4

2.001
1O.OOI2

2102(k=1)1(otherwise)O.OOI suMcientlyseparated

somewhatseparated

dense(exceptfor(3'.)

dense(exceptforain)

nonzero

almostzero

nonzero

almostzero

Bi, i= 1, 2, 3,4 in Table 4.3.
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TABLE 4.3. Singular values in fbur cases of 100 × 100 matrices

Distributionof100singularvalues

Case1
0i=4.000511306･･･,02=3.999045346･･･,

...
,0gg=O.094010676･･･,aioo=O.031906725･･･

Case2
di=10.99955222･･･,d2=10.99820922･･･,

...
,0gg=9.000549469･･･,0,,,=O.OOOOOOOOO･･･

Case3
0i=2.001999014･･･,a2=2.001996057･･･,

...
,0gg=1.998000987･･･,0ioo=O.999999833･･･

Case4
fri=2.000999506･･･,02=2.000998027･･･,

...,agg=1.gggooo4g3･･･,oioo=o.ooooooooo･･･

   Zlable 4.4 gives computational time of the DK, the pqd and the dLV algorithms with 6 =

1 fbr these matrices. The numerical experimentation was carried out on our computer with

CPU: Pentium III 933MHz, RAM: 512MB and every quantities were computed in the double

precision. When singular values are dense, convergence becomes very slow in these algorithms.

Since the computation ofthe minimal singular value aioo or asoo is completed at the early stage

of iterations, there is no definite influence ofthe existence of almost zero-singular value. 'Iletble

4.4 also suggests a scalabiiity of the dllV algoritlm.

TABLE 4.4. Computational time ofthe DK , the pqd and the dLY algorithms (sec.)

100×100 500×500

DKpqddLV DKpqddLV
Case1

Case2

Case3

Case4

O.20O.05O.07
O.93O.20O.30
79.40l6.3330.11

149.0731.5258.20

6.921.372.35
33.446.449.86

2523.43525.30979.82
4915.281013.601902.86

   Next we discuss accuracy of singular values computed by the DK, the pqd and the dl"Y

algorithms for Bi, i = 1, 2, 3, 4, where every Bi js 100 × 100.

   Figure 4.5 describes relative errors lo'k - (i'kllak of the computed singular values o'k ofBi.

To see a difference in accuracy among the algorithms, we rearrange these relative errors from

small to large. Then the resulting Figure 4.6 shows that the relative errors computed by the dllV

algorithm are slightly smaller than those by the others.

   Relative errors for the matrix B2 with m = 100 are given in Figure 4.7. Since B2 has an

almost zero-singular value frioo, the relative error for aioo is replaced with the absolute error

laioo - 0iool in Figure 4.7. The relative errors of the dlJV algorithm are more or less smaller

than the others.
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FiGuRE 4.5. A graph of the suffix k fbr ordering singular values o'k according to

magnitude (x-axis) and relative errors in computed singular values ofBi by the
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are given by the DK, the pqd and the dlJV algorithms, respectively.
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magnitude (x-axis) and relative errors in computed singular values ofB3 by the

DK, the pqd and the dlJV algorithms (y-axis). The dashed, dotted and solid lines

are given by the DK, the pqd and the dlJV algorithms, respectively.
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   Relative errors fbr the matrices B3 and B4 with m = 1OO are described in Figure 4.8 and 4.9,

respectively. The absolute error lo-ioo - (3'iool is plotted in place of the relative error fbr o'ioo in

Figure 4.9. The quantity ug"g)g i'n Case 4 converges fast to o'?oo fu O in the dLV algorithm. The

dLV algoritlm is the most accurate ofall.
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FiGuill] 4.9. A graph of the suMx k for ordering singular values ak according to

magnitude (x-axis) and relative errors in computed singular values ofB4 by the

DK, the pqd and the dlJV algoritims (y-axis). The dashed, dotted and solid lines

are given by the DK, the pqd and the dl;V algorithms, respectively.

   Finally in this section we give an example of application of the Weyl type perturbation

theorem (Theorem 4.4) to an estimation of error bounds of singular values computed the dl"Y

algorithm. We restrict ourselves to the fo11owing very small example, for simplicity

                                   1 1 0

                             B= O11.
                                  0 0 1

   We first compute an SVD ofB by the dllV algoritlm. Let us set 6 = 1. Then we have, fbr

h = 100, Z = diag(1.80193774E-OO, 1.24697961E-OO, 4.45041868E-Ol) and

               5.91009049E-Ol -7.36976230E-Ol 3.27985278E-Ol
          0= 7.36976230E-Ol 3.27985278E-Ol -5.91009049E-Ol ,

               3.27985278E-Ol 5.91009049E-Ol 7.36976230E-Ol

               3.27985278E-Ol -5.91009049E-Ol 7.36976230E-Ol
          i)"= 7.36976230E-Ol -3.27985278E-Ol -5.91009049E-Ol ,

               5.91009049E-Ol 7.36976230E-Ol 3.27985278E-Ol
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where the numerical test was carried out in double precision. It is to be noted that the diagonal

entries ak of2 are ordered according to magnitude ai > a2 > a3. By using Theorem 4.4 we

obtain

lo-i - O-il S 5.0409378E-15,

lo'2 - O-21 S 3.9805926E-15,

lo-3 - O-31 S 2.4483495E-15

at the time h = 100. Figure 4.10 shows a relationship between the iteration number and the

estimated errors lo"k - O-kl ofsingular values. The figure shows that the dllV algorithm computes

singular values at a higher precision as the iteration number n increases. The estimated error

bounds are not accumulated by a large iteration number. Actual errors decrease more rapidly.
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iteration number
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FiGuRE 4.10. A graph of iteration number in the dlJV algorithm (x-axis) and

estimated error bounds of singular values lo'k - O-kl (y-axis). The solid, dotted

and dashed lines correspond to the cases where k = 1, 2 and 3, respectively.

                            6. Concluding remarks

   In this chapter some important features ofthe dlJV algorithm fbr computing singular values

of given bidiagonal matrices are revealed. By an error analysis the error bound on singular

values after 1-step ofthe dl-Y algorithm is estimated. The bound is smaller than that ofthe DK

algoritlm and is as same order as that of the dqd algoritlm. Forward and backward stability

analyses of the dLV algoritlm are also proved. Relative error bounds of singular values com-

puted by the dLV algorithm are estimated with a help of the Weyl type pertu"rbation theorem. A
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high relative accuracy ofthe algorithm is then ensured. The dl-Y algorithn has a positivity and

then the property

                              1 < 1 + 6uln-+,i) <M

actually supports a high accuracy.

   Numerical examples in g5 show that relative errors of singular values computed by the dllV

algorithm with 6 = 1 are somewhat smaller than those by the DK and the pqd algorithm. The

error bound and stability attributed to the dlJV algorithn also hold fbr the sl algorithm shown

in next chapter. Indeed, by introducing shifts such ill-posed bidiagonal matrices as in Cases 3

and 4 can be transfbrmed to such well-posed matrices as in Cases 1 and 2. ConsequentlM the sl

algorithn with variable step-size 6(") = 1 is faster and more accurate than DBDSQR (without

singular vector computation) in LAPACK where the shifted DK algorithm is implemented.

The sl algorithm with 6(n) = 1 is a little bit slower but slightly more accurate than DLASQ

in LAPACK where the dqds algorithm is implemented. We hope to design a new variant of

the sl algorithm which is faster and more accurate than DLASQ by choosing such appropriate

           }parameters as the discrete step-size and the shift.
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CHAPTER 5

Accurate singular values and the shifted integrable schemes

                               1. Introduction

   It is shown in Chapter 2 that the singular values of upper bidiagonal matrix B are com-

puted by using the integrable dl V system (2.5) with arbitrary positive constant step-size 6 > O.

Though the convergence speed grows as 6 becomes larger, numerical accuracy is deteriorated

by an inappropriate choice of step-size in some cases. Moreover, in Chapter 3, a numerical

algoritlm for computing singular values is designed in terms of the vdlLY system (3.1). In this

chapter we call this algorithm the dlJV algorithm, fbr short. The step-size 6(") ofthe dlJV algo-

rithm can be changed at each step n. A better choice ofthe flexible parameter i(") gives a benefit

from viewpoint ofconvergence speed and numerical accuracy. However it has not been known

how to accelerate the dlJV algorithm by introducing a shift of origin.

   In this chapter we design a new shifted algorithm named the shpted intagrable tsD aigorithm

and compare it with LAPACK routines fbr computing singular values ofB. From viewpoint of

both convergence speed and numerical accuracy, the sl algorithm is at least four times superior

to DBDSQR routine derived from the DK algorithm. The sl algorithn also runs at higher

accuracy than DLASQ from the dod (dtlcis) aigorithm with shij7 (see g6).

   The first goal in this chapter is to introduce a shift of origin into the dLV algorithm fbr

accelerating the convergence. The second is to give a shift strategy for avoiding such a numer-

ical instability as the shij7ed gd (Z7cis) aigorithm has. The third is to prove that the sl variable

converges to some limit as n . oo. In our shifted algorithm, it is possible to find how to deter-

mine such a suitable shift that the sl varible stably converges to the shifted singular value. The

property, ofkeeping the sl variable positve, takes an active part in the numerical stability of our

shifted algorithm.

   This chapter is organized as fbllows. In g2, we introduce new schemes and present two

theorems for singular value computation ofB. In 93, we show how to estimate the amount of

shift so that the resulting scheme is numerically stable. In g4, we discuss the convergence of

new algorithm and two particular cases where B has zero entries are described in g5. In the final

section, we show test results for some examples.
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                      2. The shifted integrable schemes

   The main purpose of this section is to introduce a shift of origin into a certam recurrence

relation derived from the vdlJV system (3.1). Moreover we investigate an influence of the shift

on singular values of upper bidiagonal matrix B.

   Let us begin our analysis by introducing three mappings ay), J' = 1, 2, 3 defined by

      vin) :M(n) . {ib2i);k. 1,2,...,2m - 1} - U(n) = {uln);k= 1,2,･･･ ,2m - 1},

          such that u2n) = ib2i)1(1 + i(n)uln-)1), u8n) E o,

      utSn) :u(n) -> v(n) = {vfan);k= 1,2, ...,2m - 1},

          suchthat v2n) =uln)(1+6(n)uln.)i), uSn.) ;i o,

      vgn) : V(n) = {v£n); k = 1, 2, . . . , 2m - 1} . vaT(n+1) = {w£n+1); k = i, 2,

          such that wl"+i) = blY)

and two bljeciions ipS.n), 1' = 1, 2 defined by

                  ipin) : pv(n) = {w£n); k = 1, 2, . . . , 2m - 1} - pv(n),

                  ipS") : v(n) -> v(n),

for some n. The variable u2n) appeared in

and is equivalent to that in the dlJV system (2.5)i

wln) as the variable defined by (3.4). Namely, the time evolution fr

system, is perfbrmed by using three mappings utS.n) and two bijections ipS").

condition u8n) i o and uSn.) i o, qS.n),1' -- 1,

expression as fo11ows:

     sb･g") (iiJsn),i.lllll,ll.libs.,, ,(ibgiveii .16("'lllla-2I. .I6("'iiiJY'l

          H (.in), .sn), ･ ･ ･ , uS".)-,),

     ebfSn) : (uin)(1 + 6(n)uSn)), - ･ ･ , uS".)-,(1 + 6(n)uSn.)-,), uS".)-,)

          . (,gn), ･ ･ ･ , vSn.) rr,, vSn.)-,) ･

Hence we see that utSn), J' = 1, 2 are bijections. It is also obvious that utg") is

   Let us consider that utS."),J' -- 1,2,3 and ipSn),J' --

n. Moreover, in this section, we assume that w£") > O, uln) > O, vl") >

k = 1,2, . . .,2m - 1 fbr every n. A composite mappmg

                      utS'IZ]Y), i gfrg") o ipS") o utSn) . ,uin) . ipgn)
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,2m - 1},

(5.1)

(5.2)

(5.1) corresponds to that in the vdLV system (3.1),

     f6(n) is positive constant in n. We also regard

                  om n to n + 1, bythe vdlJV

                        Under the boundary

  2 are also written by using a continued fraction

+

6(n) aJin)

t 1

I))

                 a bijection.

1,2 are defined as (5.1) and (5.2) for every

              o and illY) > O, ny) > O,

(5.3)



M(n)

ipSn,

u(n) N v(n)
       qsn,

qin, ipSn,

M(n+1)

utgn)

ti7<n) fi(n)

FiGuRE 5.1. Evolution m(n) -> pv(n+i)

produces a maping M(n) -> PV("'i) shown as in Figure s.1. Similarly, utS"'i) o ¢in'i) o utS") o ¢Sn) o

tfrSn) : u(") - U(n'i). Let us introduce here ¢S."),j = 1,2 such that dii") : w£n) H ili2i) fbrk =

1,2,...,2m - 1 and ¢Sn) : v£") H VIIi) as an example ofthe bljections ¢S.n),1' -- 1,2, respectively.

Then the vdLV system can also be regarded as a dynamical system which generates an evolution

from n to n + 1 of u2") by the composite mapping uti"'i) o ¢in+i) o utgn) o diSn) o utSn) : u2n) Fm> uln+i).

   Let us replace ipi") and ipSn) in the mapping gbfS"d'Liv), (5.3) with ¢Sn) and ¢Sn), rspectively. Then

the maping qS"d"Liv), : PV(n) -) PV(""i) in Figure 5.1 is reduced to

efrSnd+Liv),:m(n).Mr(n)-fn) u(n)4g") v(.).p(.)-g"' pv(..1).

In Chapter 2, it is shown that the singular values of

B(n) .

Vii5 Viig5

      Vigs ...

0

.

.

 (n)
w 2m-2
 (n)
w 2m-I

(5.4)

are invariant in n. Here the sequence B(n) starts from B(O) = B and utS"d'Liv) i utY) o ag") o utSn) o

qin) o ¢in) generates an evolution B(n) H B("'i) where utS[IL)v i lim.-,. utSnd)Lv. It is also proved

in Chapter3 that utSn,,),.o･･･outSII)L,: (wSO,).,,wSO,)) H (o'2(B),O) as n o oo, where o-k(B)

indicates such a singular value that o'i(B) > ･･･ > o-.(B). Simultaneously, it is obvious that

qS",t)Lv o ' ' ' o utSliz) v : (wSOk)-i, wSOk)) H (lk(BTB), O) as n e oo where 2k(B'B) is the k-th eigenvalue

of B'B. It is significant to note that nk((B("))'B(n)) is invariant in n as long as the evolution

B(n) H B(n+') is produced by utS",ll',Y)･
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   It is well known in matrix eigenvalue problems [47] of that a shift of origin

                   (B-(n))TBM(n).(B(n))TB(n).e(n)2L (5.5)

                          ViR5 Viig5

                                VIip ...
                   B-(n)..
                                     ･･･ Vi9J

                           o ViigA:

is usefu1 to accelate the convergence speed where e(n) denotes the shift at discrete time Z2･.ffoi 6(i).

We here assume that e(") is a suitable shift fbr keeping ifi2i) > O, k = 1,2, ...,2m - 1. Let us

introduce a parameteric bijection ipSn,} which is defined by

          ipSn,3 : (wSn,)-, + wSn,)-, - e(n)2, wSn,)-,wSn,)) H (ib!l12", + ibg12-,, ibY,)-,ibg12) (s.6)

with the boun"dary condition w8n) i O and ilJg') i O. Uniquely we can compute ilJ2i), k =

1,2,...,2m -1 from w2") by

       ibS12., = tvSn,)-, + ivSn,)-, - e(n) + KSn,)-,, ibg12, = KSn,)-,,

        (.) m tvS",'-,wSn,'-, i- wSn,)-,wS",)-, 1-...- wSn)win) l

       "2k-2 : wSn,)-,+tvSn,)-,-e(n)2 wSn,)-,+wSn,)-,-e(n)2 u)in)-e(n)2'

Let us replace ipi") and ipSn) in (5.3) with dii",3 and ¢S"), rspectively. Then utS"ll2Y), : pv(n) --> pv("'i)

is also defined by the composite mapping utSnd"Liv),i i q(3n) o diS") o utSn) o vin) o ipS",b as fbllows:

        cb,Sndl+Liv),i:pv(n)-f"･} iii}(n)Lfn) u(n)4f") v(n).i}(.)-F"' pv(..1)

Let qSn,t'Liv)(X), utSn,t'Liv/,i(X) and utSnd'Liv),2(4¥), for some matrices XL denote the mappings ofthe en-

ties ofXby lbfS"d'Liv), gfrS"liZV),i and gfrSntiE}),2, respectively, in this chapter. since (B(n'i))TB(n+i) =

ipfS",u)Lv((B("))'B(n))), we see that lk((B("'i))'B("'i)) = nk((B(n))TB(n)). By relating it to (5.5), it

fo11ows that

                  lk((B(n+1))TB(n+1)) = lk((B(n))TB(n))- e(n)2. (s.7)

Therefbre we have the fo11owing theorem fbr a composite mapping VS",t'Liv/,i.

  Theorem s.1. B(n'i) = vSnd'Liv),i o ･ ･ ･ o utSll)L v,i(B(O)) satishes

                                            n                 Ak((B(O))TB(O)) = lk((B(n+i))TB(n+i)) +Z e(AJ)2. (s.s)

                                            N=O

                                 51



Proof From (5.7), we have (5.8). D

   In this chapter we call the procedure from B(n) to B(n'i) by the mapping utS",t'Liv),i the shij}ed

integrable scheme 1.

   We here consider the case where ipin) is replaced by &i") in (5.3). A composite mapping

utgn) o ¢Sn) o wSn) o utin) o diln) produces pv(n) - if(n+i) that

            pv<.).pt.)LF") u(.)-gn) v(.)-gn) iJ(.)Lgn) pv(..1).

Simultaneouly, qSn) o ipS") o utS") o vS") o dii") : B(n) H B(n"i). Let us define a new mapping

(l!ll}: v(n) --> lf(n+i) as

           tii73 : (vSn,)-, + vS",)., - e(n)2, vS",)-,vS",)) H (wSn,'-5) + wSn,+-1), wSn,+-1)wSn,+i)), (s.g)

with v8n) i O, w8") i O and the shift e(") which keeps w£n'i) > O, k= 1,2, .. .,2m-1. We also see

that {hE?.Z is a bljection since ipi") in (s.6) coincides with (lgib in (s.g) by replacing w2n), iiJ2') with

v£"), w£"'i), respectively. Let us call the procedure from B(") to B("'i) by a composite mapping

ut:"d'Liz),2 =- (igl3 o utSn) o uti") o ai") the shij7ed integrable scheme 2. Then we have a theorem for the

shifted integrable scheme 2.

   Theorem 5.2. B(n"i) = utS"d'LY),2 o ･ ･ ･ o utSla/ v,2(B(O)) satisies (5.8).

   Proof The mapping qg") is rewritten as

             utgn):(b:2-, + bg2-,, bS2-,bg2) H (wSn,+-S) + wSn,+.1), wSn,+-k)wY,+-5)). (s.lo)

Let us introduce a mapping ipS?,b : v(") --> fi(") given by

             ipY,b:(vSn,)-, + vSn,)-, - e(n)2, vSn,)-,vSn,)) }-> (bg2-, + bgZ)-,, bg?-,bg?). (s.ll)

Then we can regard ag} in (5.9) as a composite mapping VS") o ipY.b. Note here that utSnd"Liv),2igt.).o

 = ttS"d',i,), since ipY.blpt.,.o = ¢S"). Hence we see that Ak((Bge',l)o)'Bge',l),) = Ak((B("))'B(")) where

B&".',l)o -= B(n'i)lgt.)=o. Moreover a mapping {Z tr} in (5.9) implies that nk((Bk".')l)o)TBge.;l)o) : lk(

(B(n+i))TB(n+i)) + e(n)2. conseqently, nk((B(n))TB(n)) = lk((B(n+i))TB(n+i)) + e(n)2. This leads to

                              3. Shift strategy

   The mapping ipSn)lgt.).o in (5.6) holds iblli) > O if w£n) > O fbr k = 1,2, . . . ,2m - 1. However

iiilli) is not always nonzero positive if e(n) is large. The value of iP2i) is not only negative but also

numerically uncomputable in the worst case. For some ko, if ibgZ),-i = O by an inappropriate

shift, then ilgZ} diverges to infinity, i.e. we can not compute ibgZ), numerically. Moreover we

do not desire the case where ifiS") > O, ･･･ , iPl 1i > O, ibl ) < O, ･･･ by a too large shift. This is

because 1 + i(n)ul") with ul") < O may be zero, i.e. u£"'i) may be numerically uncomputable by
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the mapping utin) : PV(") --> U("). Hence with a rather large shift the shifted integrable scheme

1 may be numerically unstable. Therefore we introduce the following proposition for keeping

ip2i) > o.

   Theorem 5.3. SuLlzpose that wl") > Ofork = 1,2, . . . ,2m-1. 71P)en (B(n))'B(") ispositive deLfi-

nite symmetric. ft holcls that ilJ2') > Ofork = 1, 2, . . . , 2m- 1 lifandonly ijCe(")2 < 1.((B("))'B(n)),

vvhere n. is the minimal eigenvalue of(B(n))'B(n) i.e.

                            e(n)2<o-h(B(n)). (5.12)

  Proof Let w2") > O, k= 1,2,...,2m-1. Then it is obvious from (5.4) that o-k(B(n)) > O, k=

1,2, .. . ,m. Simultaneously, lk((B("))'B(")) > O, k = 1,2, . . . ,m. Hence we see that (B(n))TB(")

is positive definite and symmetric.

  Let us here consider the case where e(n)2 < 1.((B("))TB(n)). Since it is shown in g2 that

lk((B-(n))TBM(n)) = lk((B(n))TB(n)) - e(n)2,k = 1,2,...,m, we see that ak((B-(n))TB-(n)) > O,k =

1,2,...,m, i."e. (B(n))TB(") is a positive definite symmetric matrix. Let Rlli),k = 1,2,...,m

denote k × k matrices defined by

Bln) .

.ViiJin) VIiig;

      ft

o

･･
･ ViijJ

   ,Iiiill:

'

(5.13)

where Rlij) = B-(n). Then the positive definite symmetric matrix (B-("))'B-(n) satisfies det((ty))'Rll')

) > O,k = 1,2, . . . ,m. Note here that det((]Riti))TRIIi)) = det((Bll'))')det(]g2')). Hence we derive

H,k･.i ibgiLi > O,k= 1,2,...,m, i.e. ibgZ)-i > O,k = 1,2,...,m. Moreover it is obvious that

ifigZ)-,ibsc) = wS",)-,wS",),k= 1,2, ...,m- 1. From the assumption w£") > o,k= 1,2, ...,2m - 1, it

fb llows that ilJgZ) > O, k = 1, 2, . . . ,m - 1.

  Next we suppose ilJ2i) > O,k= 1,2,...,2m - l. Then "yk･.i ilJS)Li > O,k= 1,2,...,m, i.e.

det((,i?it'))TRII')) > O,k = 1,2, . . . ,m. Since (B(n))'B(") is positive definite and symmetric, we

see that Ak((B(n))TB(n)) > O,k = 1,2,...,m. Note here that lk((B(n))TB(n)) = nk((B(n))TB(n)) -

e(n)2 , k = 1, 2, . . . , m. Hence it fbllows that e(n)2 < n.((B("))'B(n)). Therefbre it is concluded that

iJ2i) > O,k = 1,2, ...,2m - 1 if and only ife(n)2 < n.((B(n))TB(n)), i.e. e(n)2 < (Th(B(n)). ]

  The Gershgorin-type lower bound proposed by C. R. Johnson [19] helps us to estimate

o"
.(B(")) in (5.12) as fbllows:

o-

. (B(n)) ) max (o, eSn)) , eSn) =- m,in( VwSn,)-, - g( wSn,)-, + wS",) ))
(5.14)
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Combining it with Theorem 5.3, we have a shift strategy for avoiding numerical instability in

the shifted integrable scheme 1.

   Theorem 5.4. Sumpose that the initial clata is as wlO) > Ofork = 1,2,...,2m - 1 andg is

some smallpositive constant. 7-72en

                           e(n)2.max{o,ein)2-s} ' (s.ls)

is a scde choicefor numerical stability in the shllfred integrable scheme 1.

   Moreover we consider a different shift stratagy from Theorem 5.4. Let us introduce a new

variable

                      eSn)2 =Sm,in (wS",).,-(wSn,).,+wSn,))). (s.16)

Then we obtain the fbllowing theorem.

   Theorem 5.5. ife(")2 is computed by

                           e(n)2 = max{o, eS")2 - s},                                                                    (5.17)

instead of(5.15), then the shiped intagrable scheme 1 is also always numerically stable.

   Proof Let us consider two cases ei") s o and ei") > o.

   For x,y }t O

Then we have

, it is well known that (x + y)12 2 VXi7. Note that w£") > O, k =

  wSn,)m,ein)= wSn,)-,tjn{ wSn,)-,-g( wSn,)-,+ wSn,)))

1, 2,

which imp
fiSn) s o.

lies that eS")

    =m,in(wSn,)-,- wSn,)-,･2( wsn,)-,+ .sn,))2)

    )tjn(SwSz'-,-k( wSz)-,+ ws7))2)

    -gtjn(wspt,-2(wsz)-,+wsz))-g wSz)-,wSz))

    2 g m"'n(wsz)-, - S (wsz)-, + wSz)))

    > fiSn)2

2 < o if fii") s o. Hence max{o,fiin)2 - s} = max{o,eSn)2
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Suppose that ei") > O, then it fo11ows that

    ein)2=m,m wsn,)r,-g( wSn,)-,+ wSn,)

= mln
  k

((

(wSn,)-,

(w

 (w

'i(

))2

wsn,)-,+ wsn,))2- wsn,).,

          )2)

( tvS",)-,+ wsn,))2

          2Stjn SZ'-i-S( wS7'-2+ wSZ'

          )SmE･n Sz)-,-g(wsz)-,+tvsz))-VII]lllJl)

          2 g m,in (wS",'-, - (wSn,'-, + wS",)))

          = fiSn)2.

Therefbre it is concluded that aft(B(n)) > max{O,e? - s} 2 max{O, fi3 - g}, i.e. e(") in (5.17)

satisfies the condition e(n)2<o'h(B). m
  One of the fortunate characteristics in (5.17) is that any square root computation does not

appear at every n. In the case where we compute e(n)2 by (5.15), it is necessary to compute the

square root of wln), k = 1, 2, . . . , 2m - 1.

  The shifted integrable scheme 2 with a rather large shift also has the similar instability to the

shifted integrable scheme 1. Let us recall that 2k((B(n'i))TB("'i)) = Ak((Bk".'):)o)'Bge',l)o) - e(")2.

According to Theorem 5.3 we see that w2"'i) > O, k = 1,2,...,2m - 1 if and only if e(")2 <

o'
Z(Bg".',l)o). Since it is obvious that a.(Bk".')l)o) = o-.(B(n)), the shifted integrable scheme 2 is

also numerically stable if e(") is computed by (5.l5) or (5.17). Moreover we may estimate a

lower bound of the minimal singular value o-.(Bge')l)o) by

     o-.(Bge+,l),))max{o,fign)}, fi(,n)=m,m( vsn,)-,-g(Vigli+ ,sn,).,)) (sls)

This is because wl"'i) = v2") if e(n) = O in (5.9). Similarly it fo11ows that o-Z(Bge')l)o) >

max{o, fig")2 - 6} 2 max{o, fi2")2 - £} where

                     e2n)2=g(vS",)r,-(vS",)-,+vSn,))). (s.lg)

The fbllowing theorem suggests how to determine e(") fbr avoiding numerical instability in the

shifted integrable scheme 2.

  Theorem 5.6. Altzmerical stability is always kept in the shpted integrable scheme 2 with the

shiji e(n)2 = max{o, fiS.")2 - s}forsome 1' = 1,2, 3,4･
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                   4. Convergence to shifted singular value

   In this section we consider the asymptotic behaviour of w£") as n -> cx). Moreover we
explain a relationship between the limit ofwS"k)-i as n -> co and the singular values ofB(O) owing

to the sequence of shifts in Theorem 5.6. Let us introduce two lemma fbr wln) given by both

ibSn,z'Liv),i o ･･･o ut:lth/ v,i(w£O)) and geSn,t'Liv),2 o ･･･o utSll/L v,2(w£O)).

   Lemma 5.7. Let Mi be somepositive constant. 71hen O < w£"'i) < Mi andO < u£") < Mi,

for all n, tfO < w£O) < Mi.

   Proof It is proved in the previous section that O < w£n"i). In Theorems 5.1 and 5.2, we see

that trace((B(O))TB(O)) = trace((B("'i))TB(n'i)) + m(e(O)2 + ･ ･ ･ + e(")2). Theorem 5.3 implies that

o s e(O)2 + ･ ･ ･ + e(n)2 < o-?(B(O)). Hence o < trace((B(n+i))TB(n+i)) < ME2, i.e. o < wi"'i) + wSn'i) +

･ ･ ･+wSn."1i) < Mli, where Mii is some positive constant. Therefore it fo11ows that o < wl"'i) < Mi .

Since it is obvious that u2n) s wln), we also have o < u£n) < Mi .

   Lemma 5.8･ Let 7SIP.i 2 1 andO < 7S P g 1for all N. 77ien wln"i) is given by

                    win+i)=."n.,(yl.) il2111112//L;)wio),

where u£N) satiop o < uliV) < Mi.

   Proq7T (i) Let w£n'i) = tbSnd'Liv).i o ･･･ o {bfSll/Lv,i(w£O)). Then tv£") = 7£")

7£n),k = 1,2,...,2m - 1, since it is obvious that wSnk)-i 2 ibSZ)-i and wSnk) g ib:) i'n

in the mapping qS"d'Liv),i, we derive a time evolution from n to n + 1 of w2n)

            l i 6,:l:kili',t wl") - 7･fg') k gili:/$',i ip;ei)

                       F!Z)fll3") ),£n)(1 + (s(n)u£n.)i)u£n) xxgn) v£n) F!tlFl[") ,},£n)bvln+i).

(ii) Let tvln'i) = ebrS",.',i,),, o ･･- o tfrSlha) ,,,(w20)). Then vS",)-, ) bg2-, and vS",) s bgZ? in

see that

         l i gi".IUul/l+-)): w£n) F!!Ifl3") (i + 6(n)u£n.)i)u2n) F!Sg[3n) v£n) . y£n)iiEy) Zfll3") 7£n)w£n+i)

  From Case (i) and (ii) it fo11ows that

                       w£n+i) = s?i/ ;;.) l l g:."i2:+-)): w£n)

Consequently, we have (5.20).

m

(5.20)

ii52') fbr some constants

       (5.6). Hence,

 as fo11ows:

(5.11) and we

o
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  It is significant to emphasize that the time evolution from n to n + 1 of w2") given by VSnd"Liv),i

has the same properties shown in Lemmas 5.7 and 5.8 as those of the time evolution given by

utSnd'Liv),2. Moreover Lemmas 5.7 and 5.8 lead to the fbllowing proposition on the asymptotic

behaviour ofw£") as n -> oo.

   Proposition 5.9. As n ---> oo, wSnk)-i . ck, wS"k) -> O, i/vhene ck denote somepositive limit and

Cl > C2 >'''> Cm-

  Proof Let p'k, pk, sk and M] be some positive constants. When k = 2m - 1 in (5.20), we have

wSn.'1,) = wSO.)-,1 Hk.o 7Sce-,(1 + 6(")uSce-,) which implies that wSO.)-, 2 wS'./-, 2 ･`･ wS".)-, 2 ･･･.

It is proved in Lemma 5.7 thatO< wSn.'1i) < Mi fbr all n. Since wS".).i,n = O,1,..., is

monotonically decreasing, we see that wSn.)-i -> c. as n - co. Simultaneously, HNco.o 7St9-i(1 +

6(iV)uSce-,) = p-.-i. It is obvious that 1 < ".co.,(1 + 6(")uSS9-,) s 7SO.)-, H.OO.o(1 + 6(")uScr?-,) S

･ ･ ･ s "X.o 7Sce-, Hre.o(1 + 6(iV)uSce",). Hence we derive nre.o(1 + 6(")uSce-2) = p.-i.

   suppose that H:=o(1 + 6(N)uSce) = pk. Then we see from (5.20) that wSOk)r,pkl fik.o yS?-i(1 +

6(N)uSiP-2) conVerges to uS"k"-1) asn -> oo. Note here thatO < wSnk'-1) < Mi Hence it fbllows

that O < flNco.o 7Sce-,(1 + 6(MuSce,) < M]. Since I [k., 7Scem,(1 + 6(N)uSce-,), n = 1,2,..., are

monotonically increasing, we derive H:=o(1 + 6(N)uSce-2) = p-kmi. Therefore it is concluded that

wS"k)-i . wSOk)-,pklp'k.i > O as n -) oo, i.e.

                            Iim wS",)-,=ck. (s.21)
                            n-oo
By using the fact that 1 < H:.o(1 + 6(")uSce-,) S 7SOk)-i Hrv.o(1 + 6(")uSce-2) S ' ' ' g "Nco-o YScei

H.Oe.o(1 + 6(")uSce-2), we also have "X.o(1 + 6(N)uSce,) = pk-i･

  Note here that Zre.,6(MuSce = sk if and only if nrs.,(1 + 6(MuS l)) = pk fbr 6(n)uSnk) > O,

N = O, 1,.... Moreover 6(")uS"k) -> O as n -) oo for any positive bounded sequence 6("), if

ZNoo--o 6(N)uSl¥) = sk. Hence it fbllows that

                             11m..uS",'=O. (5.22)
From (s.21),(5.22) and ul") = wl")1(1 + 6(n)ufan-)i), we derive uS"k)-i -> ck and wSnk) -> O as n -> oo

successively. Let ak E lim... wSnk"i)lwS"k), then by using Lemma 5.8 we have

                               1 + 6(co)ck.1
                                         . (5.23)                          ak =                              7gT)(1 + 6(co)c,)

It is obvious that ak > O. Note that wSnk) diverges to infinity as n -> oo if evk 2 1. Let us recall

here that wSnk) --> O as n - co. Then we see that ak < 1. Hence it fo11ows that

                               Ck+1<Ck (5.24)
since 1 + 6(OO)ck.i < 7ST)(1 + 6(oo)ck) s 1 + 6(co)ck. ConsequentlM it is concluded that ci > c2 >

･･･
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   A relationship between the limit of w2n), as n . oo and o'Z(B(O)) is derived by using Theorem

5.1, 5.2 and Proposition 5.9. Note that o-Z(B(O)) = lk((B(O))'B(O)). Then we have the fbllowing

theorem immediately.

   Theorem 5.10. As n -> oo, wSn,)-, -> o'Z(B(O)) - ZX'.-,') e(")2 and wS",) -> O ifO < w£O) < Mi.

                              5. Normalization

   In the previous sections we assume that wlO) > O,k = 1,2,...,2m-1. Note that wSnk) tends to

O as n grows. For some ko, wgnk),-i = O ifB(n) in (5.4) has zero-singular value. Moreover the value

of w£") is regarded as O in computer if w£") is less than the machine precision. In this section we

consider two cases where wSnfo) = O and wS"k),-i = O, respectively, for some ko.

   First, let us set wSnk), = O, then B(n) is decomposed as

                             B(n) =( B8n) B2.)) (s 2s)

by using two upper bidiagonal matrices Bg") E RkoXko and BSn) E R(Mrmko)×(M-ko). Both Bi") and BS")

have nonzero positive diagonal and upper subdiagonal entries. Hence singular values ofBgn) and

BS") are computed as shown in the previous sections. Therefore the singular value computation

of B(") can be performed by computing the singular values ofBi") and BSn).

   Next we explain how to compute the singular values in the case where wSnla),-i = O. Suppose

that the mapping n7<n) -> M(") is defined by ipi") with e(n) = O in (5.6). Then it is obvious that

lk((B(n))'B(n)) = Ak((B("))'B(")). This implies that we may compute the singular values ofB(")

instead ofthose ofB("). Since ilg2,-iibsc), = wS"k),-iwS"k),, we see that iblrz],-iibgZ), = O. Hence we

may set the value of iZg2, arbitrarily. Let ifigl% = O. Then B-(n) is decomposed as the same fbrm as

in (5.25), i.e.,

                            B-(n) .( Boin) slll,) ), (s 26)

where B(n) is given by the mapping ipin)igt.).o with wS"k), = O. Consequently, we can compute the

singular value ofB(") by performing the singular value computation of Bin) and B-2(n).

                               6. Testresults

   Tests were canied out on the same computational environment as numerical experiment in

Chapter 4. As numerical examples, we consider 100 × 100 and 1000 × 1000 matrices of fbur

types in Table 4.2. In the dlJV and a new shij}ed integrable tsD routines, we adopt the same

stopping criterion as in DLASQ routine in LAPACK. We also set the variable step-size 6(") = 1

forn= O, 1,....

   First, in the singular value computation fbr 1OO × 1OO matrices, we compare the sl algorithm

with the dLjV algorithm with respect to both computational time and numerical accuracy. Table
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5.1 gives the computational time of the sl and the dLV routine. We see that the sl routine

is rather faster than the dl;V routine. Moreover the sl routine computes the singu1ar values at

almost same time independently ofmatrix type. Figure 5.2 describes relative errors Iak -d 0kl/0k

          TABLE 5.1. Computational time ofthe sl and the dlJV routines (sec.)

sldLV
Case1:Bi

Case2:B2

Case3:B3

Case4:B4

O.02O.27

O.02O.13

O.02O.88

O.02174

/

of the singular values ak of the 100 × 100 matrix of Case 4 computed by the dLY and the sl

routines, where O'k are the verified correct values. Figure 5.2 suggests that the relative errors by

the sl routines are much smaller than those by the dLV routines. This seems to be because the

1o-t2

lo'i3

to'i4

1 o'i5

N

xvM'vx4

v"

A!'VNf"v

         lo'i6
                  10 20 30 40 50 60 70 80 90 100

     FiGuRE 5.2. A graph of the suMx k fbr ordering singular values o-k according to

     magnitude (x-axis) and relative errors in computed singular values ofB4 by the

      sl and dl;V routines (y-axis). The red soild and green dashed lines are given by

      the sl and dl;V routines, respectively

roundoff errors in the sl routine are less than those in the dLV routine. In other types, we also

obtain the graphs similar to Figure 5.2.

   Next, from viewpoint of computational time, we compare the sl routine with the DBDSQR

(witout computing singular vectors) and DLASQ routines in LAPACK. Rible 5.2 gives compu-

tational time of the sl, the DBDSQR and DLASQ routines in the singular value computation of
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1

:

/

:

Bk, k = 1,2, 3,4, where Bk are 1OO× 1OO and 1OOO × 1OOO matrices. There is a slight difference

of three routines in computational time when every Bk is 100 × 100. Though, in the singular

value computation of 1000 × 1000 matrices, the sl routine computes the singular values faster

than the DBDSQR routine, it does not computes them faster than the DLASQ routine.

   TABLE 5.2. Computational time ofthe sl, the DBDSQR and the DLASQ routines (sec.)

100×100 1000×1000

slDBDSQRDLASQ slDBDSQRDLASQ
Case1

Case2

Case3

Case4

O.02O.02O.Ol
O.02O.03O.Ol
O.02O.03O.Ol
O.02O.02O.Ol

1.372.20O.43
1.342.27O.42
1.322.43O.42
1.322.00O.42

   Finally we discuss numerical accuracy of singular values computed by the sl, the DBDSQR

and the DLASQ routines fbr Bk, k = 1,2,3,4 where every Bk is 100 × 100. Relative errors

arised in the singular computation of B4 are given by Figure 5.3. We see from Figure 5.3 that
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FiGuRE 5.3. A graph of the suMx k for ordering singular values ak according to

magnitude (x-axis) and relative errors in computed singular values of B4 by the

sl, DBDSQR and DLASQ routines (y-axis). The red soild, green dashed and

blue dotted lines are given by the sl, DBDSQR and DLASQ routines, respec-

tively.

the sl routine computes the singular value of B4
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Hence the sI routine is superior to the DBDSQR routine with respect to both computational time

and numerical accuracy. On the other hand, it is difficult to confirm a difference between the

relative errors by the sI routine and those by the DLASQ routine. Let R == L:L~~(((Tk - (rk)/{rk)

be the sum of relative errors. Then we have R =4.6 x 1015 by the sI routine and R =8.5 x 1015

by the DLASQ routine. Similar observations are given in other types. Therefore the sI routine

computes the singular values at highest accuracy among three routines.

In [39], most of computational cost for SVD process is shown to be used for computing

singular vectors. The singular value computation is a part of SVD. The SVD routine with the

sI routine requires the alomost same cost as that with the DLASQ routine. Especially, in higher

accurate SVD, we may use the sI routine not the LAPACK routines.
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CHAPTER 6

Concluding Remarks

   In this thesis, we have studied a numerical application of integrable systems to SVD algo-

rithms. Especially, in terms ofthe dLV systems (with arbitrary positive discrete step-size 6 > O

and varibale step-size M > 6(") > O), we have designed a new SVD algorithm.

   In Chapter 2, we have shown that the dlJV system with 6 > O is applicable to singular value

computation. By using asymptotic expansions ofHankel determinants we have proved that the

solutions expressed in Hankel determinant fomi of the dl:V system with 6 > O converge to

some limits. The vdlY system does not have a Hankel determinat solution. The convergence

of the solution of the vdl-Y system has been shown by using a basic theory of monotonically

increasing series in Chapter 3. From Lax fbrms of the dLY systems we have seen that those

limits are the square ofsingular values ofupper bidiagonal matrix B in Chapter 2 and 3. A new

algorithm, for computing singular value, derived from Chapter 2 and 3 has been named the dlLV

algoritlm.

   In Chapter 2, we have described several basic properties ofthe dlY algorithm. We have seen

that convergence speed is accelerated as 6 increases. The dLV algorithm has been shown to have

such sorting property that the resulting singular values are ordered according to magnitude. In

Chapter 3, we have confirmed several benefits by a flexible choice of 6 with respect to both

convergence speed and numerical accuracy. However, we have not yet fbund how to determine

the best i at each step sequentially. In Chapter 4, we have demonstrated that the dLY algorithm

computes at higher accuracy than zero-shift LAPACK routines for computing singular value.

Simultaniouly, fbward and backward stability analyses ofthe dl:V algoritlm have been shown.

A new SVD algoritlm named I-SVD algorithm has been also designed in Chapter 4.

   In Chapter 5, for more acceleration, we have introduced the dLV algorithm into a shift of

origin and have designed a new shifted algorithm named the sl algorithm for computing singular

value. A shift stratagy for avoiding numerical instability has been presented. Though it is better

than the dqds algorithm, we have not found the best staratagy of shift. We also have proved a

convergence of the sl algoritlm. The sl algoritlm has shown to be at least in four examples

superior to the LAPACK routines.

   Several numerical algorithms were reconfirmed from viewpoint of integrable systems from

the '90s. New algorithms have been also designed in terms of integrable systems, however, to
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the best of our knowledge, they had not yet reached the practical use level in modern technolo-

gies. Our algoritkm has enough perfbrmance fbr exceeding such established SVD algoritms as

the routines in LAPACK and we hope that it will contribute fbr many fields.

   In the near future, we should find a more effective stratagy of both step-size and shift.

Introducing it into the SVD algorithm proposed in [39], we will design the best SVD algorithm.

We will also consider several applications to problems appearing in mathematics, statistics,

numerical analysis and engineering and so on.
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