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PREFACE

This book is devoted to the study of nonlinear oscillations in certain types of

physical systems and consists of three chapters. The first two chapters describe

the generation of higher-harmonic oscillations which predominantly occur in some

electrical systems. Chapter 1 is concerned with a series-resonance circuit con­

taining a saturable inductor and a capacitor in series. The differential equation

which describes the system takes the form of Duffing's equation. Chapter 2 treats

higher-harmonic oscillations in an electrical system in which two parallel-resonance

circuits are connected in series. The differential equation of the system is given

by Mathieu's equation with an additional nonlinear term. The final chapter is
devoted to the investigation of almost periodic oscillations which occur in a self­

oscillatory system under periodic excitation. The system governed by van der

Pol's equation with forcing term is treated. In all chapters, the relationship

between the regions of the system parameters and the resulting responses of different

types is investigated by applying the well-known methods of analysis. The stability

of these responses is also discussed by considering variational equations. Further­

more, numerical analyses of the system equations for some representative values

of parameters are carried out by using computer of either the analog or the digital

type.

This monograph is a part of the author's dissertation on nonlinear oscillations

submitted to the Faculty of Engineering in 1965 under the guidance of Dr. C.

Hayashi, Professor of Kyoto University. The author wishes to express sincere
gratitude for his constant and generous guidance and encouragement for many
years during which the work was in progress. The author's thanks are also due

to Dr. Y. Nishikawa and Dr. M. Abe, both Assistant Professors of Kyoto University,

for their valuable advices and good guidances.

In the preparation of the present book the author was greatly aided by Assistant

Professor Dr. T. Ozawa, and by Mr. H. Kawakami, who gave him valuable sugges­
tions and many good advices of all kinds.

The publication of this book was greatly facilitated by the Grant in Aid of

the Ministry of Education of Japan for Publishing "Research Result and by the

generous support of the Nippon Printing and Publishing Company. The KDC-I
Digital Computer Laboratory of Kyoto University has made computer-time available
to the author. The author wishes to acknowledge the kind considerations of the
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staffs of these organizations. Finally, the author wishes to thank the Sakkokai

Foundation for a fund of research-aid in promoting this investigation.

January, 1968 Y OSHISUKE DEDA
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CHAPTER 1

HIGHER.HARMONIC OSCILLATIONS IN A

SERIES.RESONANCE CIRCUIT

1.-1 Introduction

Under the action of a sinusoidal external force, a .nonlinear system may exhibit
basically different phenomena from those found in linear systems. One of· the
salient features of such phenomena is the generation of higher harmonics and
subharmonics. A considerable number of papers have been published concerning
subharmonic oscillations in nonlinear systems [13, 23]; however, very few investi­
gations have been reported on the generation of higher harmonics.

This chapter, deals with higher harmonic oscillations which predominantly
occur in a series-resonance circuit containing a saturable inductor and a capacitor
in series. The differential equation which describes the system takes the form of
Duffing's equation. The solutions of this equation are studied both by using
harmonic balance method and by using mapping procedure.

An experimental result using a series-resonance circuit is to be found in the
work of Prof. C. Hayashi [13]. His result is cited at the end of this chapter.

1.2 Derivation of the Fundamental Equation

The schematic diagram illustrated in Fig. 1.1 shows an electrical circuit in
which the nonlinear oscillation takes place due to the saturable-core inductance L
under the impression of the alternating voltage E sin OJt. As shown in the figure,
the resistor R is paralleled with the capacitor C, so that the circuit is dissipative.
With the notation of the figure, the equations for the circuit are written as

(1.1)

FIG. 1.1 Series-resonance circuit with non..
linear inductance.

R

L(¢) . iR t
--I c
LC
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where n is the number of turns of the inductor coil, and ¢ is the magnetic flux in
the core. Then, neglecting hysteresis, we may assume the saturation curve of the
form

(1.2)

where higher powers of ¢ than the third are neglected. We introduce dimensionless
variables u and v, defined by

i = l·u (1.3)

where I and (/J are appropriate base quantities of the current and the flux, respec­
tively. Then Eq. (1.2) becomes

a (/) a (/)3u = _l_V +_3_V
3 = C v+c Va

I I 1 3
(1.4)

Although the base quantities I and (]) can be chosen quite arbitrarily, it is preferable,
for the brevity of expression, to fix them by the relations

(1.5)

Then, after elimination of iR and ic in Eqs. (1.1) and use of Eqs. (1.3), (1.4), and
(1.5), the result in terms of v is

(1.6)

where 1
k=-

C1JCR
E ~/­B=-vl+Jc2

nw(/)

Equation (1.6) is a well-known equation in the theory of nonlinear oscillations and
is known as Duffing's equation [11].

1.3 Solution of the Fundamental Equation Using Principle of Harmonic Balance

(a) Periodic Solution Consisting of Odd-order Harmonics

As the amplitude B of the external force increases, an oscillation develops in
which higher harmonics may not be ignored in comparison with the fundamental
component. Since the system is symmetrical, we assume, for the time being, that
these higher harmonics are of odd orders; hence a periodic solution for Eq. (1.6)
may be written as

(1.7)

Terms of harmonics higher than the third are certain to be present but are ignored
to this order of approximation.

The coefficients in the right side of Eq. (1.7) may be found by the method of
harmonic balance [9, 13]; that is, substituting Eq. (1.7) into (1.6) and equating the
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(1.8)

coefficients of the terms containing sin " cos -r, sin 3" and cos 3-r separately to
zero yields

-AtXt-kYl-%CS[(Xt2_Yt2)X3+2XtYtYa]=Xt(Xl' Yl' Xa, Ya) = 0

kXI-AtYt+%cs[2XtYIXS-(X12_Y12)yS]=Yt(x1 , Yl' xs ' Ys).= B

-Asxs-3kYs-!4:C3(Xt2_3Y12)Xl=X3(Xl' Yl' x s' Ys) = 0

3kxs-AsYa-:!4cs{3xI2_Y12)Yt= Ys(x1 , Yl' XS ' Ys) = 0

Al = I-Ct-%c3{rI2+2r32) A3 == 9-Cl-%cs(2r12+r32)

r1
2= Xt

2+Y12 r3
2= X3

2+Ys2

where

Elimination of the x and Y components in the above equations gives

(1.9)
[(Al_3~:2AsY+P(1+9~:J}12 = B2

(As2+9k2)rs2 == ~1.6cs2r16

From these relations the components r1 and 's of the periodic solution are deter­
mined. By use of Eqs. (1.8) and (1.9) the coefficients of the periodic solution are
found to be

and

where

x = k{rt
2+9r3

2
)

I B

4r 2
X s == _3fi [-PA3+3kQ]

Carl

P = (X1
2-3Y12)X1

_ -(Alrt2-3Asrs2)
Yl - B

Ys = 4rs
2

6
[-QAs-3kP]

C~ll

Q = (3X1
2-Yt2)Yl

(1.10)

(1.11)

(b) Stability Investigation of the Periodic Solution

The periodic states of equilibrium determined by Eqs. (1.7), (1.10), and (1.11)
are not always realized, but are sustained actually if they are stable. In this section
the stability of the periodic solution will be investigated by considering the behavior
of a small variation ,(T) from the periodic solution vo(T). If this variation
f(,) tends to zero with increasing" the periodic solution is stable (asymptotically
stable in the sense of Lyapunov [27]); if e(,) diverges, the periodic solution is
unstable. Let e{-r) be a small variation defined by

(1.12)

Substituting Eq. (1.12) into (1.6) and neglecting terms of higher degree than the
first in e, we obtain the variational equation

(1.13)

Introducing a new variable 7](T) defined by

e(-r) = e- 8T -1J{-r) Q = k/2 (1.14)
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yields

(1.15)

in which the first-derivative term has been removed. Inserting vo(r) as given by

Eq. (1.7) into (1.15) leads to a Hill's equation of the form

(1.16)

where

fJo == Cl-02+%cg(r12+rg2)

fJ IS == %CS(XIYI-XIY3+YIXg)

fJ2S == %C3(X1Yg+YIXa)

f)gS == %caxaYa

By Floquet's theorem [12], the general solution of Eq. (1.16) takes the form

(1.17)

where A and B are arbitrary constants, ¢(r) and t!J(r) are periodic functions of
1: of period n or 2n, and p, is the characteristic exponent to be determined by the
parameters f)'s and may be considered to be real or imaginary, but not complex.
From the theory of Hill's equation [14, 18, 30] we see that there are regions of
parameters fJ's in which the solution, Eq. (1.17), is either stable (p,: imaginary) or
unstable (p,: real), and that these regions of stability and instability appear alternate­
ly as parameter f)o increases. For convenience, we shall call the regions of instability
as the first, the second, ... , unstable regions as parameter fJo increases from zero.
It is known that the periodic functions ¢(r:) and ep(r) in Eq. (1.17) are composed
of odd-order harmonics in the regions of odd orders and even-order harmonics in the
regions of even orders and that, in the nth unstable region, the nth harmonic com­
ponent predominates over other harmonics.

Since Eq. (1.7) is an approximate solution of Eq. (1.6), a solution of Eq. (1.16)
may reasonably be an approximation of the same order. Therefore we assume that
a particular solution in the first and the third unstable regions is given by

(1.18)

We substitute this into Eq. (1.16) and apply the method of harmonic balance to obtain

(1.19)==0

Oo+p,2-I-01c f)ls-2p, fJ 1c -f)2C -f)IS+ 825

818+2p, 8o+p,2-1 +81C °15+828 81C+82C

81c-82c 0IS+ 025 8o+p,2_9-0ac °a5- 6P,

-015+ 82S 0lC+82C 03S+6P, 8o+p,2_9+0ac

From Eqs. (1.14) and (1.17) we see that the variation, tends to zero with increasing
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7: provided that Ip, I<0. Hence the stability condition for the first and the third
unstable regions is given by

L11(o) > 0

By virtue of Eqs. (1.8) and (1.161), the stability condition (1.20) leads to

8X1 8X1 8X1 BX1

8xl 8Yl BXg 8Ya

8Yl 8Y1 8Y1 BYl

L/l(o) == aXl aYl aXa aYa == a(xl' Yl' x.. Ya) > 0
8Xg8XgBXg8Xg 8(x1 , YI' x S , Ya)
8x1 8Yl 8xg 8yg

8Yg 8Ys BYg 8Yg

8xl 8Yl 8xg 8ys

Differentiating Eqs. (1.8) with respect to B yields

8X1 dx1 + 8X1 dYI+ 8X] dx3 + 8X1 dys == 0
8x1 dB 8y1 dB BxgdB BygdB

8Y1 dx1 + BY1 dY1+ 8Y1 dxg+8Y1 dYg == 1
8x1 dB 8Y1 dB 8xg dB 8yg dB

BXg dX1+ 8XgdYl +8Xg dx3+ 8XgdYg == 0
8x! dB 8Y1 dB 8xa dB 8ys dB

8Ygdxl +8Ys dYl+ 8Ygdx3 + 8Ygdys == 0
8x1 dB 8Y1 dB 8xg dB 8ys dB

Solving these simultaneous equations gives

(1.20)

(1.21)

(1.22)

dX1 == L121

dB L1
dYI == L/22

dB L1
dXg == L123

dB L1
dYa == J 24

dB L1
(1.23)

where J 2i (i == 1 "'-'4) is the cofactor of row 2 and column i of the determinant
J(=L11(0)). Consequently we have

where

drt == _1_(XtL121+YIJ22)
dB rILl

r/ == Xt
2+Y12

dra == _1_ (XaL1
23
+y gJ 24

)

dB rgJ

r g
2 == x g

2+Ya2

(1.24)

Hence the vertical tangency of the characteristic curves (Br! and Brg relations)
occurs at the stability limit L1 == 0 of the first and the third unstable regions.

A particular solution of Eq. (1.16) in the second unstable region may pref­
erably be written as

(1.25)

Proceeding analogously as above, the characteristic exponent p, is determined by
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4.--------------------------........

k=O.4

25201510
B ----1..~

5

I

.1,1'.....I............. !

------------ :---B1'~-i-'-- ---
Second ","'" ,

,~--unstable / i
region 1'" !

......,,;,,;;,,;,,;...1:... Third i

.;.;-' - unstable---..
,.;.;-' region

'"

3

1

..
~-

FIG. 1.2 Amplitude characteristic of the periodic solution given by Eq. (1.7).

Oo+tt2

L/2(tt) == 281S
281c

8ts

Oo+tt2-4-02C

82s+4,u

°IC
82S -4,u

Oo+,u2-4+82c

=0 (1.26)

and the stability condition for the second unstable region, i.e., l,u I<0, is given by

(1.27)

NUMERICAL EXAMPLE

Putting k == 0.4, C1 = 0, and Cs == 1 in Eq. (1.6) gives

d
2

v+0.4dv+v3 == B cos 7:
d,,2 dT

By use of Eqs. (1.9) the amplitude characteristics of Eq. (1.7) were calculated for
this particular case and plotted against B in Fig. 1.2. The dotted portions of the
characteristic curves represent unstable states, since the stability condition (1.20)
or (1.27) is not satisfied in these intervals.

(c) Periodic Solution Containing Even-order Harmonics Also and Its Stability

It has been point~d out in Sec. 1.3b that even-order harmonics are self-excited
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in the second unstable region (see Fig. 1.2). In this region, the self-excited oscil­
lation would gradually build up with increasing amplitude taking the form

ec,u.-S)T[bo+b2sin (2'-02)] with p,-o > 0

and ultimately g~t to the steady state with a constant amplitude which is limited
by the nonlinearity of the system. This impli~s that, under certain intervals of B,
such even-order harmonics must be considered in th~ periodic solution. Therefore
we assume a periodic solution for Eq. (1.6) of the form

(1.2.8)

where

Terms of harmonics higher than the second, especially the third harmonic, are
certain to be present but are ignored to avoid unwieldy calculations. The unknown
coefficients in the right side of Eq. (1.28) are determined'in much the same manner
as before; that is, substituting Eq. (1.28) into (1.6) and equating the coefficients of
the nonoscillatory term and of the terms containing sin" cos,, sin 2" and cos 2r

separately to zero yields

-AOZ+%C3[2xIYIX2-(X/-Y/)Y2]=Z(z, XI'YI' X2'Y2) == 0

-A1xl-kYI +3C3Z(YIX2-XIY2)==XI(Z, Xl' YI' X2 , Y2) == 0

kxl-AIYI+3CaZ(XIX2+YIY2) == YI(z, Xl' YI' X2, Y2) == B (1.29)

-A2X2-2kY2-1-3CsZXlYl==X2(Z, Xl' YI' X2, Y2) == 0

2kx2-A2Y2-%C3Z(XI2_YI2)= Y2(Z, X~, YI' X2 , Y2) == 0

Ao == -Cl-C3[z2+%(r12+r22)]

Al == l-cl-%c3(4z2+r12+2r22) A2 == 4-CI-%C3(4z2+2r12+r22)

r1,2 == X1
2+Y12 r2

2 == X 2
2
+Y2

2

Elimination of the X and y components in the above equations gives

-AoZ2+1/2A2r22 == 0

(A22+4k2)r22 == 7~c32z2r14

(1.30)

From these relations z, rl , and r2 are determined. By use of Eqs. (1.29) and (1.30)

the coefficients of the periodic solution are found to be

k(r 2+4r 2)Xl == 1 2

B .

and X 2 == - 4r2
2

[A 2x l YI+k(x./-y/)]
3cazrl

4

Proceeding analogously as in Sec. 1.3b, the condition for stability may also be
derived; namely, inserting vo(r) as given by Eq. (1.28) into (1.15) leads to a Hill's
equation of the form
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3 k=O.4

10864

B -----)a~

2

1
.....~,.....-

2
",.....-

",',",.'"
",

C\I
~

Second

~- unstable

N
region

1

FIG. 1.3 Amplitude characteristic of the periodic solution given by Eq. (1.28).

where

(1.33)

A particular solution of Eq. (1.33) in the second unstable region may be
assumed as

nCr) = eP-T¢(z) = eP-'T[bo+b1 sin (r-0 1)+b2sin (2'-02)]

By use of Eqs. (1.29) the stability condition is obtained as*

8(Z, Xl' Y1 , X2 , ~) > 0
8(z, Xl' Yl' X 2 , Y2)

(1.34)

(1.35)

NUMERICAL EXAMPLE

.By use of Eqs. (1.30) the amplitude characteristics of Eq. (1.28) were calculated
and plotted in Fig. 1.3. The system parameters are the same as in Fig. 1.2, i.e.,
k = 0.4, C1 = 0, and Cg = 1. The dotted portions represent unstable state since
condition (1.35) is not satisfied. It is to be noted that the second unstable region of
Fig. 1.3 is narrower than that of Fig. 1.2 because the third harmonic in Eq. (1.28) was

* As the coefficient of 7J in Eq. (1.33) contains even and odd harmonics, there are regions
of parameters fJ's in which the 1/2, 3/2, .'., harmonics are excited. This implies that in the second
unstable region of Fig. 1.3 there may exist intervals of B such that 1/2, 3/2, ... , harmonics develop.
A detailed investigation of such a case is, however, omitted here (cf. Sees. 1.5c and 1.6).
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neglected. It is worth mentioning that the second harmonic is sustained in the
second unstable region even though the system is symmetrical.

(1.36)

1.4 Analog-computer Analysis

The results obtained in the preceding sections will be compared with the solu­
tions obtained by using an analog computer. The block diagram of Fig. 1.4 shows
an analog-computer setup for the solution of Eq. (1.6), in which the system param­
eters k, C1 , and C3 are set equal to the values as given in Sees. 1.3b and c; i.e.,

d 2v dv 3-+O.4-+v == B cos T
d7: 2 d7:

25v

-25v(0)

>----+~0.2

r----------( 0.8 J-----------.....,

0.08

r---------------- --- -.
Multiplier 100

-100---------------- - - -~

0.058
100 cos T

FIG. 1.4 Block diagram of an analog-computer setup for the solution of
Eq. (1.36).
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(1.37)

The symbols in the figure follow the conventional notation.* The solutions of
Eq. (1.36) are sought for various values of B, the amplitude of the external force.
From the solutions obtained in this way, we see that the first unstable region ranges
from B == 0.45 to 0.53. The second unstable region extends from B == 2.7 to 12.6.
In this region the concurrence of the %, %, ... , harmonic components is confirmed
in the intervals of B approximately from 7 to 11. The third unstable region
occurs between B == 12.6 and 14.9.

1.5 Solution of the Fundamental Equation Using Mapping Concepts

This section describes the mapping method based on the transformation theory
of nonlinear differential equations [3, 17] and gives some numerical results of the
solution of Duffing's equation.

(a) Mapping and Fixed Points

In studying periodic solutions of E,q. (1.6) it is helpful to use the phase plane,
with coordinates v and v(==dv/dr:). Equation (1.6) then becomes the system

dv .-==V
dr:

We see that the right sides are analytic in v, v, and T, and are periodic in T with
period 2n-.

It is well known that to a system such as Eqs. (1.37) there corresponds a map­
ping of the vv plane into itself. To se~ this let us consider the solution (v(vo, vo, ,),

v(vo, va' T)) of Eqs. (1.37) which when T= 0 is at the point (vo, vo) of vv plane. Let

(1.38)

for any integer n. Since the right sides of Eqs. (1.37) are of period 2n- in T, it
follows that

(1.39)

Let Pn denote the point (vn , vn), then we define a topological mapping T of the
vv plane into itself by PI == TPo.** By Tn is meant the mapping that takes Po into
Pn. Clearly Eqs. (1.39) are equivalent to Tn+mpo= TnPm= TnTmpo•

Now if (v(vo, vO, T), v(vo, vO, T)) has period 2n-, then Pl=PO' so that the point Po

is a fixed point of the mapping T. In particular a fixed point under ~he mapping

* The integrating amplifiers in the block diagram integrate their inputs with respect to the
machine tin1e (in second), which is, in this particular case, 5 times the independent variable 7:.

** This follows from well-known properties (the existence and uniqueness of solutions and
the dependence of solutions on initial conditions) of solutions of Eqs. (1.37) [8, 27].
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T V(v==2, 3,···) corresponds to a periodic solution for Eqs. (1.37) of least period
2v1r, i.e., a subharmonic of order v.

(b) Stability of Fixed Points

Let us study the mapping T in the neighborhood of a fixed point of the mapping.

This will be facilitated by making a transformation of coordinates which takes the

fixed point into the origin. That is let (voCr), voCr)) be a solution of Eqs. (1.37) of

period 2v1r(v== 1, 2, 3, ...). Then the point (vo(O), vo(O)) is a fixed point under T'V.

Let Po be the point (vo(O)+uo, vo(O)+uo) in the vv plane. Denote T'VPo by P'V with

coordinates (vo(O)+U"II' vo(O)+uv), then the uv and Uv can be expressed by power
series in Uo and uo; that is

(1.40)

with

U"II == auo+buo+···
u\J == cuo+duo+···

a == (av(f, 7), 2V1r)) b == (av(?, 7), 2vn))
af 0 a7) 0

c == (av(f, 7), 2V1r)) d == (av(f, 7), 2V1r))
ae 0 a7) 0

where (av) , ... , (av) denote the values of av , .•. ,av at f == vo(O) and r; == v{)(O),
ae 0 ar; 0 ae ar;

respectively, and the terms not explicitly given in the right sides are of degree two

or higher in Uoand ito. For small values of Uoand uo' the character of the mapping

(1.40) is determined by its linear terms. That is, the mapping can be characterized

by the roots of the equation

(1.41)
I
a-p b 1==0

c d-p

A fixed point is called simple if the absolute values of the corresponding char­
acteristic roots, PI and P2' are both different from unity. U sing terminology in
Levinson's paper [17], we classify simple fixed points of the mapping in the follow­
ing form*

Completely stable if

Completely unstable if

Directly unstable if

Inversely unstable if

IPI I< 1 and IP21 < 1

I PI I > 1 and I P2 1> 1

0< PI < 1< P2

PI < -1 < p 2 <O

If a fixed point is completely stable, there is a'ne~ghborhood of a fixed point such
that all points in this neighborhood tend to the fixed point under repeated appli­
cations of the mapping. In the completely unstable case, we have the situation of
points moving away from the fixed point under the mapping. In the directly or

* We will see later in Eq. (1.44) that the product PIP2 is always positive.
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inversely unstable case, most but not all points will move away from the fixed point.
It is worth mentioning that Eq. (1.41) coincides with the characteristic equation

of the variational system for the periodic solution (Vo(T), vo(r)). Let (~(r), 7J(T)) be
a samll variation from a periodic solution (vo(r), vo(r)) defined by

(1.42)

Then, the variational system is

d~- == 7J
d'C'

d7J == -(c1+3cavo
2(r))e-k7]

d'C'

Since vo(T) is periodic, Eqs. (1.42) are linear differential equations with periodic

coefficients. Let (~i(T), 7Ji(T)) (i== 1,2) be the fundamental set of solutions of Eqs.
(1.42) with the initial conditions

e1(o) == 1

7Jl(O) == 0

e2(o) == 0

7J2(O) == 1

Then the characteristic equation for Eqs. (1.42) corresponding to the period 2V1t is
given by [19]*

1

'1(2V1t)-P

7Jl(2v1t)
(1.43)

(1.44)

The roots of the above equation are sometimes called the characteristic multipliers
of the variational system (1.42). From the theory of linear equations with periodic
coefficients, the product of the roots of Eq. (1.43) is given by

_1'1(2V1t) '2(2v7l:) I

P1P2 - 1Jl21111:) 712(21111:) = exp (-21111:k) > 0

(c) Numeri~al Analysis

We will here give some examples of fixed points and corresponding periodic
solutions of Eqs. (1.37) using the mapping method. The successive images Pn

(v(2n7l:), v(2n7l:)) (n == 1, 2, 3,··) of the initial point Po(v(O), v(O)) under the mapping
T are actually obtained by using computer facilities. The numerical integration,
using the Runge-Kutta-Gill's method, was carried out on the KDC-I Digital
Computer. If an initial point Po is chosen sufficiently near a completely stable
fixed point, the point sequence {Pn } converges to the fixed point as n~ 00. In
order to locate a completely stable fixed point, we first determine the initial point
Po by making use of the results obtained in the preceding sections. Then, the

* The magnitudes e- 1(2vn-), e-2(2vn-), 1h(2vlt), and 7)2(2v12:) are equal to the coefficients Q, b, C,

and d in Eqs. (1.41), respectively.
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FIG. 1.5 Fixed points and trajectories of the stable solutions
for Eq. (1.46).

(1.45)

successive images are calculated until the following condition is satisfied*

jPn-Pn+'V! <e

where e is a small positive constant, 11 == 1 for harmonic responses, and v ==2, 3,.··
for subharmonic responses of order 11. Once the fixed point is determined, the
corresponding trajectory and periodic solution are easily obtained. Because of the
nature of this procedure, only the stable solutions are discussed.

Examples of the periodic solutions and their trajectories of Eq. (1.6) are given
below for the system parameters k == 0.4, C1 = 0, and Cg = 1

d 2v dv 3-+0.4-+v == B cos T
dT2 dr

CASE 1. WHEN THE AMPLITUDE B OF THE EXTERNAL FORCE LIES IN THE FIRST

UNSTABLE REGION

We consider the equation

d 2v dv 3-+0.4-+v == 0.5 cos T
dT 2 dr

(1.46)

For this particular value of B, there are two completely stable fixed points, 1 and
2. Figure 1.5 shows the locations of the fixed points and the correlated trajectories.
The periodic solutions, VOler) and V 02( T), correlated with points 1 and 2, respectively,
are given by

* The value of e is taken equal to 10- 5 in the following examples.
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4r--------~,---------___,

1

-3

v •

FI9. 1.6 Fixed points and trajectories of the stable
solutions for Eq. (1.49).

VOle,) == 1.14 sin ,+0.30 cos ,-0.04 sin 3,-0.05 cos 3,

V 02(') == 0.29 sin ,-0.53 cos ,+0.01 sin 3,+0.00 cos 3t

(1.47)

(1.48)

CASE 2. WHEN THE AMPLITUDE B OF THE EXTERNAL FORCE LIES IN THE SECOND

UNSTABLE REGION

We consider the case in which B is given in the second unstable region and
Eq. (1.45) becomes

d
2v+ 04 dv+ 3 4- . - v == cos,

d,2 d,
(1.49)

There are two completely stable fixed points, 1 and 2. These fixed points and the
correlated trajectories are shown in Fig. 1.6. Corresponding to points 1 and 2 we
have

VOle,) == -V02(,-n-)

== -0.31+0.60 sin, +1.59 cos, +0.73 sin 2,+0.20 cos 2,

+0.11 sin 3,+0.15 cos 3,+0.15 sin 4,-0.04 cos 4,

+0.02 sin 5,-0.03 cos 5,+0.02 sin 6,-0.02 cos 6,

-0.00 sin 7,-0.01 cos 7, (1.50)
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FIG. 1.7 Fixed points.and trajectories of the stable solutions
for Eq. (1.51).

Next we consider the case in which B is increased and the equation becomes

d2v dv 3-+O.4-+v == 9 cos,
d,2 dT

(1.51)

In this case there are four completely stable fixed points, 1, 2, 3, and 4. Each of
them is obtained under every second iteration of the mapping T, i.e., under the
mapping T 2

• Their locations and the trajectories are shown in Fig. 1.7. It is to be
.noted that points 1 and 2 (or 3 and 4) lie on the same trajectory and under the
mapping T, point 1 (or 3) moves to point 2 (or 4) and point 2 (or 4) to point 1 (or 3).
In order to distinguish clearly the trajectory from point 1 to 2 (or 3 to 4) from that
from point 2 to 1 (or 4 to 3), the former is shown by full line and the latter by dotted
line. The periodic solutions correlated with these fixed points are given by
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-2 o
v •

2 4

FIG. 1.8 Fixed points and trajectories
of the stable solutions for Eq.
(1.53).

V01(r) = vo2(r-2n) = -v03(r-n) = -vo4(r-3n)

= -0.31-0.06 sin %r +0.01 cos lhr +0.58 sin r +1.84 cos r

-0.00 sin %r +0.01 cos =}'2r +0.26 sin 2r+0.34 cos 2,

+0.10 sin %r -0.07 cos %' +0.04 sin 3r+O.89 cos 3,

+0.01 sin %r +0.02 cos ~'2' +0.11 sin 4, +0.05 cos 4"

+0.03 sin 7'2' -0.03 cos 7'2' +0.06 sin 5r+0.18 cos 5"
+0.00 sin l%r+O.OO cos 11;'2r+O.05 sin 6r+0.02 cos 6r
+0.01 sin l%r-O.Ol cos 1=}'2r+0.02 sin 7,,+0.05 cos 7,

+0.00 sin l%r-O.OO cos 1%,,+0.02 sin 8r+O.OO cos 8r

+... (1.52)

CASE 3. WHEN THE AMPLITUDE B OF THE EXTERNAL FORCE LIES IN THE THIRD

UNSTABLE REGION

Putting B= 13 in Eq. (1.45) gives

d 2v dv 3
-+0.4-+v = 13 cos"
d,2 d"

(1.53)
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In this case there are two completely stable fixed points, 1 and 2. Their locations
and the correlated trajectories are shown in Fig. 1.8. Corresponding periodic solu­
tions vOl(r) and v02(r) are given by

vOI(r) = 0.77 sin r +2.48 cos r
-0.28 sin 5,-0.08 cos 5,

+0.02 sin 9r-O.02 cos 9,

v02(r)= 0.78sinr +1.67cosT

+0.09 sin 5r +0.35 cos 5r

+0.02 sin 9r+0.04 cos 9,

-1.21 sin 3r -0.51 cos 3r

+0.05 sin 7r -0.09 cos 7,

+0.01 sin l1r+0.Ol cos llr

+0.07 sin 3, +1.40 cos 3,

+0.05 sin 7, +0.12 cos 7,

+0.01 sin 11 r +0.01 cos 11,

(1.54)

(1.55)

The details of the completely stable fixed points appearing in the above ex­
amples are summed up and listed in Table 1.1. There are also given the related
characteristic multipliers and the time increments h which are employed for carrying
out the numerical integration.

TABLE 1. 1 Completely Stable Fixed Points and Related Properties
in Figs. 1.5, 1. 6, 1. 7, and 1.8

Fixed Point B /h,2 h

Fig. 1. 5 1 0.5 0.253 1.040 0.154±0.239i 11:/30
2 II -0.529 0.313 0.047 ±0.281i II

Fig. 1.6 1 4 1.522 3.181 0.169±0.229i 11:/30
2 II 1.863 -1.107 II II

Fig. 1. 7 1 9 2.986 3.277 0.257, 0.026 11:/60
2 n 3.146 2.281 II II

3 II 2.819 -0.700 II II

4 n 2.931 0.268 II II

Fig. 1. 8 1 13 1.782 -3.747 0.033 ±0.283i 77:/60
2 II 3.593 2.091 -0.077±O.274i II

1.6 Experimental Result

An exper!ment using a series-resonance circuit as illustrated in Fig. 1.1 has been
performed [13, pp. 132-133]. The result is as follows.

Since B is proportional to the amplitude E of the applied voltage, varying E
will bring about the excitation of higher harmonic oscillations. This is observed in
Fig. 1.9, in which the effective value of the oscillating current is plotted (in thick line)
for a wide range of the applied voltage. By making use of a heterodyne harmonic
analyzer, this current is analyzed into harmonic components. These are shown by
fine lines, the numbers on which indicate the order of the harmonics. The first unsta­
ble region ranges between 24 and 40 volts of the applied voltage; the jump phe­
nomenon in this region has been called the ferro-resonance. The second unstable
region extends from 180 to 580 volts. The third unstable region occurs between
660 and 670 volts, exhibiting another jump in amplitude.
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FIG. 1.9 Experimental result using a series-resonance circuit.



CHAPTER 2

HIGHER.HARMONIC OSCILLATIONS IN A

P ARALLEL-RESONANCE CIRCUIT

2.1 Introduction

In the preceding chapter, we investigated the higher-harmonic oscillations
in a series-resonance circuit. Since the series condenser limits the current which
magnetizes the reactor core, the applied voltage must be exceedingly raised in order
to bring the oscillation into the unstable regions of higher order. On the other hand,
we may expect that a higher harmonic oscillation is likely to occur in a parallel­
resonance circuit because the reactor core is readily saturated under the impression
of a comparatively low voltage; and this will be investigated in the present chapter.
The differential equation which describes the system takes ~he form of Mathieu's
equation with additional damping and nonlinear restoring terms. An experimental
result is also cited at the end of this chapter.

2.2 Derivation of the Fundamental Equation

Figure 2.1 shows the schematic diagram of a parallel-resonance circuit, in which
two oscillation circuits are connected in series, each having equal values of L, R, and
C, respectively. With the notation of the figure, the equations for the circuit are
written as

d¢l R" 1 ~. d11- == IR == - Ic tdt 1 C 1

d¢2 R" 1 r· d
n~ == lR2==C J lC2 t

rv Esinwt

FIG. 2.1 Parallel-resonance circuit with
nonlinear inductance.

(2.1)
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The same saturation curve is assumed for both of the inductors L(¢t) and L(¢2)

(2.2)

If the two oscillation circuits behave identically, we have, from the third member of
Eqs. (2.1)

E
¢t = ¢2 = -- cos u>t

2nUJ

An increase of the flux ¢1 by rP results in the decrease of 1>2 by the same amount

E1>t == -- cos cut+rP
2ncu

E
¢2 == -- cos cut-¢

2nru
(2.3)

Mter elimination of iR l' iR2, i et , and i C2 in Eqs. (2.1) and by using Eqs. (2.3), we
obtain

d
2
¢ +_1 d¢ _l_(i -i ) - 0

dt 2 CR dt + 2nC Lt L2-
(2.4)

Proceeding in the same manner as in Sec. 1.2, we introduce dimensionless variables
defined by

1> == (/)·v (2.5)

and fix the base quantities, I and (/) by the following relations

where

nCJJ2C(/) == I

atfl>
C =-

1 I

C1+Cg == 1
a (/)3

C =_3_
3 I

(2.6)

Then, by use of Eqs. (2.2), (2.3), (2.5), and (2.6), Eq. (2.4) may be written in normal­
ized from as

(2.7)

where , == cut 1k==-
cuCR

E
B=--

2nru(j)

2.3 Solution of the Fundamental Equation Using Principle of Harmonic Balance

We assume for a moment that k=O and v is so small that we may neglect the
nonlinear term in Eq. (2.7). Then Eq. (2.7) reduces to a Mathieu's equation

d2v-+(°0+2°1 cos 2,)v == 0 (2.8)d,2

where
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From the theory of Mathieu's equation [18, 20, 30] we see that there are regions
of parameters, {)o and f)l' in which the solution for Eq. (2.8) is either stable (remains
bounded as T increases) or unstable (diverges unboundedly), and that these regions of
stability and instability appear alternately as parameter {)o increases. We shall call
such regions of instability as the first, the second, ... , unstable regions as parameter
(}o increases from zero. When the parameters {)o and ()l lie in the nth unstable
region, a higher harmonic of the nth order is predominantly excited. Once the
oscillation builds up, the nonlinear term cava in Eq. (2.7) may not be ignored. It is
this term that finally prevents the amplitude of the oscillation from growing up
unboundedly.

(a) Periodic Solutions

After these preliminary remarks, we now proceed to investigate the periodic
solution of Eq. (2.7) and assume the following form of the solution.

Harmonic:

Second-harnl0nic:

Third-harmonic:

VO{T) == Xl sin '+Yl cos T

vo{r') == z+x2 sin 2T+Y2 cos 2,

Vo{T) == Xl sin '+Yl cos T+Xa sin 3T+Ya cos 3,

(2.9)

(2.10)

(2.11)

(2.12)

where

(i) Harmonic Oscillation

In order to determine the coefficients in the right side of Eq. (2.9), we use the
method of harmonic balance; namely, substituting Eq. (2.9) into (2.7) and equating
the coefficients of the terms containing sin T and cos 7: separately to zero yields

-(A1+%caB
2)x1 -kYI == X 1{Xl , Yl) == 0

kx1-{AI-%caB
2)YI == Y1{Xl , Yl) == 0

Al == l-cl-%ca{2B2+rI2) r1
2 == X1

2
+Y1

2

Elimination of the x and y components in the above equations gives

[AI2+k2_{%caB2)2] r1
2 == 0

from which the amplitude r 1 is found to be

(2.13)

(2.14)

(2.15)or

r 1
2 == 0

Y1
2= (~-2B2)±~B 4_(4k)2

3 3ca

(ii) Second-harmonic Oscillation

Substituting Eq. (2.10) into (2.7) and equating the coefficients of the non­
oscillatory term and of the terms containing sin 2r- and cos 2T separately to zero,
we obtain

-Aoz+%caB
2Y2 == Z{Z,X2'Y2) == 0

-A2x2-2kY2 == X 2{z, X 2 , Y2) == 0

2kx2-A 2Y2+%c3B
2z == Y2{Z, X2, Y2) = 0

(2.16)
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where Ao = -C1 -Cg[Z2+%(B2+r/)]

A 2 == 4-c1-%cg (2B2+4z2+r2
2

)

r2
2

== X2
2+Y22

Elimination of the x and Y components in the above equations gives

-Aoz2+¥2-A2r22 == 0
_(A2

2+4k2)r/ == (%cgB2
)2Z2

from wp.ich the unknown quantities z and r2 are determined.

(2.17)

(2.18)

where

(iii) Third-harmonic Oscillation

Substituting Eq. (2.11) into (2.7) and equating the terms containing sin r:, cos T,

sin 3r:, and cos 3, separately to zero, we obtain

-(AI+%caB
2

) xl-kYI- %cg [(XI
2

- Y/-B 2
) xg+2XIYIYg]

:::::: X I (Xl' Yl' X g, Ya) == 0

kxl -(A1-%cgB2)YI+%ca [2XIYIXg-(XI2-Y12
- B2)Ys]

:::::: Yl{X1, Yl' X g, Ys) == 0

-Aaxa-3kYa+%ca[3B2_{X12_3YI2)]Xl :::::: X 3(X1, Yl~ Xa, Ya) === 0

3kxa-AaY3+%Ca[3B2_{3xI2_YI2)]Yl :::::: Ya(Xl' Yl' X g, Ya) === 0

Al == l-Cl-%Cg{2B2+r12+2rg2)

As == 9-Cl-%Ca(2B2+2rI2+rg2)

r1
2 == X1

2+Y12 r3
2 === ~32+Y32

from which the unknown quantities Xl' Yl' Xg, and yg, and consequently the ampli­
tudes, r I and rs' are determined.

(2.19)

(b) Stability Investigation of the Periodic Solutions

The periodic solutions given above are sustained actually only when they are
stable. In this section the stability of the periodic solutions will be investigat~d in
the same manner as we have done in Sec. 1.3b. We consider a small variation
e(r:) from the periodic solution vo{r:). Then the behavior of e-(r:) is described by the
following variational equation

d
2
e- +kde +(Cl+~C3B2+.i.-C3B2 cos 2r:+3c3vo

2)e == 0
dr:2 dr: 2 2

Furthermore we introduce a new variable iJ(r:) defined by

o == kJ2 (2.20)

to remove the first-derivative term. Then we obtain

(2.21)
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(2.22)

(i) Stability Condition for the Harmonic Oscillation

Inserting vo(') as given by Eq. (2.9) into (2.21) leads to

d2

~+(OO+2018 sin 2,+201e cos 2,) 7J = 0d,2

where ()o = Ct-02+%c3(B2+r12)

018 = %CSX1Yl ()te = %Ca[B2_(X12_Y12)]

We assume that a particular solution of Eq. (2.22) in the first unstable region is
given by

7J(') = efJ-'f"¢(,) = efJ-'f" sin (,-at)

Proceeding analogously as in Sec. 1.3b, stability condition Ip, 1< 0 leads to

(2.23)

(}18- 2o I== 8(Xu Y1) > 0
00+02-1 +()le 8(xH Yl)

(2.24)

(2.26)

(2.25)

(ii) Stability Conditions for the Higher-harmonic Oscillations

The conditions for stability of the solutions given by Eqs. (2.10) and (2.11) may
also be derived by the same procedure as above. The results are as follows.

Stability condition for solution (2.10):

J
2
(0) == 8(Z, X 2 , Y2) > 0

8(z, X2 , Y2)

Stability condition for solution (2.11):

J
3
(0) == 8(X1 , Yl' Kg, Yg) > 0

8(x!, Yl' X 3 , Ya)

The vertical tangency of the characteristic c.urves (Bz, Br l' Br2' and Br3 relations)
also occurs at the stability limit Lln(o) = 0 (n = 1, 2, 3).

NUMERICAL EXAMPLE

Putting C1 = 0, and C3 = 1 in Eq. (2.7) gives

d
2

v+kdv +~B2(I+cos 2,)v+v3 = 0
d,2 d, 2

By use of Eqs. (2.15), (2.17), and (2.18) the amplitude characteristics of Eqs. (2.9),
(2.10), and (2.11) were calculated for k=O and 0.4. The result is plotted against
B in Fig. 2.2. The dotted portions of the characteristic curves represent unstable
states. It is to be mentioned that the portions of the B axis interposed between the
end points of the characteristic curves are unstable. We see in the figure that
increasing B will bring about the excitation of higher-harmonic oscillations and that
once the oscillation is started, it may be stopped by decreasing B to a value which is
lower than before, thus exhibiting the phenomenon of hysteresis,
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FIG. 2.2 Amplitude characteristics of the periodic solutions given by Eqs. (2.9),
(2.10), and (2.11).

2.4 Solution of the Fundamental Equation Using Mapping Concepts

In this section we will give some examples of fixed points and correlated peri­
odic solutions of Eq. (2.7) for the system parameters k == 0.4, C1 == 0, and Cs == 1

d
2

v +0.4 dv +~B2(1+cos2,)v+v3 == 0 (2.27)
d,2 dr 2

The same method of analysis as in Sec. 1.5 is followed, and therefore only the stable
solutions are discussed.

(a) Numerical Analysis

CASE 1. WHEN THE AMPLITUDE B OF THE EXTERNAL FORCE LIES IN THE FIRST

UNSTABLE REGION

We consider the equation

(2.28)
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FIG.2.3 Fixed points and trajectory of the stable solutions
for Eq. (2.28).

(2.29)

For this particular value of B, there are two completely stable fixed points, 1 and
2. Each of them is obtained under every second iteration of the mapping.* Figure
2.3 shows the fixed points and the correlated trajectory. The periodic solutions,
vOl(r) and V 02(T), corresponding to points 1 and 2, respectively, are given by

V 01(-r) = -V02(T)

= -0.55 sin ,+0.29 cos, -0.04 sin 3,+0.00 cos 3T

(2.30)

CASE 2. WHEN THE AMPLITUDE B OF THE EXTERNAL FORCE LIES IN THE SECOND

UNSTABLE REGION

As an example of such a case, we consider the equation

d
2

v +0.4 dv +l.- (1.8)2(1 +cos 2,) v+v3 = 0
d,2 d, 2

There are two completely stable fixed points, 1 and 2. These fixed points and

* Equation (2.27) is written in the simultaneous form

~~ = v ~~ = -OAv- ; B2(l +cos 2r)v-v3

where the right sides are periodic in T with period 'IT:. Therefore the mapping T from r =n'IT: to
(n+ l)n (n: integer) is considered,
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FIG.2.4 Fixed points and trajectories of the
stable solutions for Eq. (2.30).
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the correlated trajectories are shown in Fig. 2.4. Corresponding to points 1 and
2 we have

vOl(r) == -v02(r)

= -0.25+0.26 sin 2r+0.55 cos 2r+0.03 sin 4r+O.13 cos 4,

+0.00 sin 6r+O.01 cos 6, (2.31)

(2.32)

CASE 3. WHEN THE AMPLITUDE B OF THE EXTERNAL FORCE LIES IN THE THIRD

UNSTABLE REGION

Putting B == 2.8 in Eq. (2.27) gives

d
2

v +0.4 dv +l.-(2.8)2(1+cos 2,)v+v3 == 0
d,2 d, 2

In this case there are two completely stable fixed points, 1 and 2, which are obtained
under every second iteration of the mapping. Figure 2.5 shows the fixed points
and the correlated trajectory. The corresponding periodic solutions are given by

vOl(r) == -v02(r)

0,38 sin 'r -0,06 cos r -0,34 sin 3r+O,16 cos 3r
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FIG.2.5 Fixed points and trajectory of the
stable solutions for Eq. (2.32).

v ~

-0.17 sin 5,+0.05 cos 5T-O.03 sin 7,+0.01 cos 7, (2.33)

The details of the completely stable fixed points appearing in the above examples
are summed up and listed in Table 2.1 with the related characteristic multipliers
and the time increments h.

TABLE 2. 1 Completely Stable Fixed Points and Related Properties
in Figs. 2. 3, 2. 4, and 2. 5

Fixed Point I B 'h

Fig. 2.3 1 0.8 0.292 -0.662 0.183 ±0.218i 17:/30
2 II -0.292 0.662 II II

Fig. 2.4 1 1.8 0.443 0.673 0.430±0.316i 17:/30
2 II -0.443 -0.673 II II

Fig. 2.5 1 2.8 0.150 -1.704 0.231 ±0.166i 17:/60
2 II -0.150 1.704 II II
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FIG.2.6 Experimental result using parallel-resonance circuit.

2.5 Experimental Result

An experiment on the circuit of Fig. 2.1 has been performed [13, pp. 138­
141]. The result is as follows.

The self-excitation of the fundamental and higher-harmonic oscillations was
observed under varying E. As a result of the excitation of such a harmonic, the
potential of the junction point of the two resonance circuits oscillates with respect
to the neutral point of the applied voltage with the frequency of that harmonic. In
Fig. 2.6, the anomalous neutral voltage VN (which is related to the flux ¢) is shown
against the applied voltage.*

* The self-excited oscillation in the first unstable region (marked by I) has the same frequency
as that of the applied voltage. See the waveform (a) in the figure. This phenomenon is known as
the neutral inversion in electric transmission lines.



CHAPTER 3

ALMOST PERIODIC OSCILLATIONS IN A SELF.OSCILLATORY

SYSTEM WITH EXTERNAL FORCE

3.1 Introduction

When a periodic force is applied to a nonlinear system, the resulting oscillation
is usually, but not necessarily, periodic. When it is periodic, the fundamental
period of the oscillation is the same as, or equal to an integral multiple of, the
period of the external force. The terms harmonic and subharmonic oscillations are
applied to these responses, respectively. There are also different cases in which the
response of a nonlinear system is not periodic even when some transient has died
out. Such a response will be referred to as an almost periodic oscillation. It is a
salient feature of an almost periodic oscillation that the amplitude and the phase of
the oscillation vary slowly, but periodically, even in the steady state. However,
since the ratio between the period of the amplitude variation and that of the external
force is in general incommensurable, there is no periodicity in this kind of oscillation.*

This chapter is concerned with the almost periodic oscillations which occur in
a self-oscillatory system under periodic excitation. It is known that, when a peri­
odic force is applied to a self-oscillatory system, the frequency of the self-excited
oscillation, that is, the' natural frequency of the system, falls in synchronism with
the driving frequency, provided these two frequencies are not far different [2, 6, 9,
21, 29]. This phenomenon of frequency entrainment may also occur when the
ratio of the two frequencies is in the neighborhood of an integer (different from
unity) or a fraction [13, 22]. Thus, if the amplitude and the frequency of the external
force are appropriately chosen, the natural frequency of the system is entrained by a
frequency which is an integral multiple or a submultiple of the driving frequency.
If the ratio of these two frequencies is not in the neighborhood of an integer or a
fraction, we may expect the occurrence of an almost periodic oscillation [13, 28].

In this chapter, first, the regions of entrainment (such as, if the amplitude and
the frequency of the external force are given in these regions, the entrainment occurs
at the harmonic, higher-harmonic, or subharmonic frequency of the external force)
will be studied by using the averaging method. Secondly, a limit cycle correlated
with an almost periodic oscillation will be investigated. Finally, an almost periodic
oscillation will be analyzed by applying the mapping procedure.

3.2 Van der Pol's Equation with Forcing Term

In the preceding chapters we treated the cases in which the restoring force of

* A detailed presentation of the theory of almost periodic functions can be found in Ref. 5.
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the system was nonlinear. In this chapter we consider a system in which the
nonlinearity appears in th,e damping. The system considered is governed by

(3.1)

where e is a small positive constant and the right side represents an external force
containing a nonoscillatory component. The left side of this equation takes the
form of van der Pol's equation [25, 26]. Introduction of a new variable defined
by v=u-Bo yields an alternative form of Eq. (3.1)

d2v dv--tt(l-fiv-rv2)-+v = B cos vt (3.2)
dt 2 dt

where 1
r = I-B 2

o

(a) Forms of Entrained Oscillations

Since J.l is small, we see that when B = 0 the natural frequency of the system
(3.2) is nearly equal to unity. Hence, when the driving frequency v is in the neigh­
borhood of unity, we may expect an entrained oscillation at the driving ~requency

v, that is, an occurrence of harmonic entrainment. The entrained harmonic
oscillation vo(t) may be expressed approximately by

(3.3)

On the other hand, when the driving frequency v is far different from unity, we
may expect an occurrence of higher-harmonic or subharmonic entrainment. In
this case, the entrained oscillation has a frequency which is an integral multiple or a
submultiple of the driving frequency v. An approximate solution for Eq. (3.2) may
be expressed by

(3.4)

where n = 2 or 3:

n = % or%:

for higher-harmonic oscillations

for subharmonic oscillations

The first term in the right side represents the forced oscillation at the driving fre­
quency v. The second and the third terms represent the entrained oscillation at
the frequency nll, which is close to unity.

(b) Analog-computer Analysis

In order to illustrate the phenomenon of frequency entrainment, we show some
representative waveforms of various types of oscillations by making use of an analog
computer. The system parameters under consideration are

e == 0.2 and Bo = 0.5
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(3.5)

FIG. 3.1 Block diagram of an analog-computer setup for the solution of
Eq. (3.5).

in Eq. (3.1). Consequently, the parameters in Eq. (3.2) are

J1, = 0.15 ji = % and r = %
then, Eq. (3.2) becomes

d
2

v -0.15(1--±-v--'!v2
) dv +v = Bcos vi

dt 2 3 3 dt

Figure 3.1 shows the block diagram of an analog-computer setup for the solution
of Eq. (3.5).* Some representative waveforms of vet) are shown in Fig. 3.2. The

* The integrating amplifiers in the block diagram integrate their inputs with respect to the
machine time (in second), which is, in this particular case, 2 times the independent variable t.
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(b) Second-harmonic oscillation
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(e) 1/3-harmonic oscillation
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(c) Third-harmonic oscillation

-2

0.5
Ot----'l~--F-~--+---~-~

FIG.3.2 Waveforms of the oscillations in the system described by Eq. (3.5)
(obtained by analog-computer analysis).

TABLE 3. 1 Amplitude and Frequency of the External Force in Fig. 3. 2

Fig. 3.2 B 11

a 0.1 1.00
b 0.5 0.50
c 0.5 0.33
d 2.0 1.99
e 2.0 2.97
f 0.55 0.70
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points on the curves appear at the beginning of each cycle of the external force.
The values of the amplitude B and the frequency v of the external forces corre­
sponding to Fig. 3.2 a to f are listed in Table 3.1.

3.3 Solution of van der Pol's Equation with Forcing Term Using Averaging
Principle

(a) Derivation of Autonomous Systems [1, 4, 16]

We now write the differential equation (3.2) in a simultaneous form

dv .
-=v
dt

dv === ,tt(I-pv-rv2)v-v+B cos vt
dt

(3.6)

(3.7)

The behavior of the system is described by the movement of a representative point
(v(t), vet)) along the solution curves of Eqs. (3.6) in the vv plane. These solution
curves are called trajectories of the representative point. Let us first consider the
case in which the driving frequency v of the external force is in the neighborhood
of unity.* According to the form of the solution (3.3) considered in Sec. 3.2a, we
introduce a new coordinate system (bl(t), b2(t)) defined by

vet) == bl(t) sin vt+ b2(t) cos vt

vet) == vb1(t) cos vt-vb2(t) sin vt

which rotates together with the representative point with angular frequency v.

It may therefore be conjectured that the coordinates (bl(t), b2(t)) of the representa­
tive point vary rather slowly in comparison with (v(t), vet)). To see this let us

transform Eqs. (3.6) by using Eqs. (3.7). Hence

dX1 === ~ {[(I-rI2)Xl-aIYl+~]-%(iaO(X/-Y12) sin vt-(iaox1Yl cos vt
dt 2 ,ttv~

+[-alxl-(1+2x~2_2Y/)YI]sin 2vt+[(1-4YI2)Xl-alYl+~] cos 2vt
,ttvao

-1h (iaO(x1
2-y/) sin 3vt-(iaox1Yl cos 3vt

-(3X/-Y12)Yl sin 411t+(x/-3Y12)Xl cos 411t}

(3.8)

dYl = £.. {[alxl+(1-r12)Yll-(iaoXlYl sin vt+¥2(iaO(x1
2-y/) cos vt

dt 2

+[-(1-2X1
2+2Y12

) Xl+alYl-~]sin 2vt+[-a1x 1-(1-4x1
2)Yl] cos 2vt

,ttvao

* It is here assumed that j) -1 = O(IJ.) and B= O(p,).
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(3.9)

where

+paoXIYI sin 3vt-1hfiao(x/-y/) cos 3vt

_(X1
2 -3Y12)X1sin 4vt-(3x/-Y/)Yl cos 4vt}

b h
Xl = _1 Yl =_2

ao ao

~
4 I-v2 .

ao = - a l = --: detunlng
r jJ.V

From the form of the right sides of Eqs. (3.8), it is seen that both dx1/dt and dYl/dt

are proportional to the small parameter JJ., so that Xl and YI will be slowly varying

functions of t as we have expected. Moreover dxl/dt and dYl/dt are periodic func­

tions of t with period 271:/v. It may therefore be considered that x 1(t) and YI(t)

remain approximately constant during one period 271:/v. Hence averaging the right

sides of Eqs. (3.8) over the period 271:/v, we obtain the relations to determine

dxt/dt and dYI/dt to a first approximation

dXI = !!-[(I-r12)Xl-aIYl+L] == X t (Xl' Yl)
~ 2 p,v~

dYl = !!.-[a1X 1+(I-r1
2)Yl]

dt 2

(3.10)

Equations (3.9) play an important role in the present investigation, since the singu­

lar points of this system correspond to the harmonic oscillations and the limit

cycles, if exist, to the almost periodic oscillations. It is to be noted that Xl and

Yl in Eqs. (3.9) denote the normalized amplitudes of the entrained oscillation since

the constant ao represents the amplitude of the self-excited oscillation to a first

approximation.
By the same procedure as above, we proceed next to derive the autonomous

systems for the cases in which the frequency v of the external force is in the neighbor­

hood of an integer (different from unity) or a fraction.* In this case we make use

of the transformation defined by

vet) = ~ cos vt+ hl(t) sin nvt+ h2(t) cos nvt
I-v2

vet) = -vB sin vt+nvb1(t) cos nvt-nvb2(t) sin nv!
I-v 2

n=2:

Then the derived autonomous systems are as follows.

dX2 = !!:- [(D-r22)x2-a2Y2] == X 2(X2, Y2)
dt 2

1'2 = ~ [G2X2+(D-r2
2
)Y2- : A2] == Y2(X2• Y2)

t. ~

(3.11)

* It is also assumed that v-l{n=O(j.l) and B=O(j.l).
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n= 3: ~s = ~ [(D-rs2)Xs-l7sYs] == Xixs, Ys)

dys = !!: [0'3X3+(D-rs2)ys-~ AS] == Y S(x3, Ys)
dt 2 1200

(3.12)

n = :Ih: d~t = ~ [(D-r:12+ ~ pA)XU2-al12Yu2] == X l12(Xl12, Yl12)

d~t = ~ [l71/2X l/2+(D-;'~/2- ~ pA)Yl/2] == Y 1/2(X1/2' Yl/2)

(3.13)

n = :ljg: d~t = ~ [(D-r:/s)Xl/s-l71/sYl/s+2~ Xl/sYlla] == X11a(Xl/s' Yl/s)

d~~s = ~ [l71/3Xl/s+(D-r~Ia)Y1/S+ ~o (X:/s-Y:/s)] == Y11ix1/s, Y1/s)

(3.14)

where Xn = hi Yn = h2

ao ao

ao =·l
r
4 A===~

'V I-v 2

1-(nv)2
0'n = :....-_-: detuning

ttnv

It is sometimes convenient to write Eqs. (3.13) and (3.14) using polar coordi­
nates. By the transformation of coordinates xn==rn cos On, Yn==rn sin ()n with
n==¥2 or %, Eqs. (3.13) and (3.14) are transferred as

and dr l l3 - IJ, [CD 2) +A 2 . 3(j ]-- - - -rl l3 rl / 3 -r1/ S SIn lis
dt 2 0 0 •

d ()113 J1. [ +A 3() ]-- === - O'lls -r l l3 cos 1/3
dt 2 ao

It is to be noted that Eqs. (3.131) are unchanged if ()1/2 is-replaced by 81/2+ir, while
Eqs. (3.141) are unchanged if OIls is replaced by (jl/s+2ir/3. This implies that the
singular points and the integral curves of (3.131) are it' symmetric with respect to the
origin and those of (3.141) are 2ir/3 symmetric.

(b) Singular Points Correlated with Periodic Oscillations

Let X10 and YlO be the coordinates of the singular point of Eqs. (3.9). They are
obt'lined by putting dxl/dt===O and d)JJ/dt===O
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(3.15)

and represent the particular solution corresponding to the equilibrium state of this
system. The variational equations for this solution are of the form

(3.16)

with a1 == (ax1
) a2 == (ax l

) b == (ay1
) and b2 == (

aY
l)

aXI 0' aYl 0' 1 aXI 0' aYI 0

where ( ax!) ,.", (a Y1) denote the values of axl ,... ,aY1at Xl=X10 and Yl ==YIO'
aXl 0 8YI 0 aXl aYI

respectively, and are constants.
Let us assume that the characteristic equation of this system has no root the

real part of which is equal to zero. It is known that in this case the system (3.8)

has for sufficiently small J.1, one and only one periodic solution which reduces to
the solution Xl=XlO and Yl ==YlO for J.1, == O. Moreover the stability of this solution
is decided by the sign of the real parts of the corresponding characteristic roots.
That is, if the real parts of the roots of the characteristic equation of the system
(3.16) are negative, the corresponding periodic solution is stable; if at least one
root has a positive real part, the periodic solution is unstable [4].

The coordinates of the singular point are given by

_ J.1, vao(1 2) 2X10 - --- -riO r lOB

where r~o is determined by the equation

(3.17)

(3.18)

Equation (3.18) yields what we call the amplitude characteristics (response curves)
for the harmonic oscillation and is obtained by eliminating X 10 and YlO from Eqs.
(3.15). Figure 3.3 is obtained by plotting Eq. (3.18) in the r~Oal plane for various
values of the magnitude (B/Jl-vao)2. Evidently the curves are symmetrical with
respect to the r~o axis. Each point on these curves yields the amplitude rIO' which
is correlated with the frequency v of a possible harmonic oscillation for a given value
of the amplitude B.

Proceeding in the same manner as above the coordinates of the singular points
for the derived autonomous systems (3.11), (3.12), (3.13), and (3.14) and the relations
representing the amplitude characteristic of the entrained oscillations are easily
known. They are enumerated as follows. *

* In order to avoid the troublesome notation we hereafter omit the subscript 0 which designates
the state of equilibrhun,
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FIG. 3.3 Normalized response curves for the harmonic oscillation.

For the system (3.11):

4a0 0 2 2
X =--r

2 fiA 2 2
(3.19)

(3.20)

For the system (3.12):

(3.21)

(3.22)

For the system (3.13):

where

X1/2 = r1/2 cos f)1/2 r1/2 cos (f)1/2+1C )

Y1/2 = r1/2 sin f)1/2 r1/2 sin (f)1/2+it' )

-2(D-r2
/) 20 /cos 28 = 1 2 sin 20 = _1_2

1/2 fiA 1/2 fiA

[(D-r~I2Y+a~l2- ~ ,82A2]r~12 = 0

(3.23)

(3.24)

For the system (3.14):
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Xl/s = 7 l/s cos (}lls 7 lis COS (8lls+ 2;) 7 lis COS (8l/S+ ~ )

Yl/s = 7 lis sin 8l/s 7 lis sin (8l/S+ 2;) 7 lis sin ((}l/S+ 4; )
30 -aO(Jl!acos 113 = -~;.:..;:;

Art!s

(3.25)

(3.26)

We will notice from Eqs. (3.24) and (3.26) that the origin of the XnYn plane (n=

1/2 or 1/3) is always a singular point.

(c) Conditions for Stability of Singular Points

The periodic states of equilibrium of the initial system (3.2) are not always

realized, but are actually able to exist only so long as they are stable. We have

already seen that the stability of the harmonic solution of Eq. (3.2) is to be decided
in accordance with the characteristic roots of the corresponding singular point (3.17).

In this section we will therefore consider the stability condition for the singular point.

Let e and 7J be small variations from the singular point defined by

Yl = YI0+7J (3.27)

and determine whether these variations approach zero or not with the increase of time

t. We again write the variational equations (3.16) which are obtained by sub­

stituting Eqs. (3.27) into (3.9) and neglecting terms of higher degree than the first

in eand 7J

where at = !!:..(1-r~o-2~o)
2

hI = ~ «(J1-2xloY10)
2

(3.28)

The characteristic equation of the system (3.28) is given by

or

where

I
at-A a2 1=0

hI h2 -J..

J..2+pA+q = 0

p = -(a1+b2) = ,ll(2r~o-l)

__q_~ alb2=-~!bl--:-_~l9 ~~roKl~37~)+a12J_._

(3.29)
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The variations e and 7J approach zero with the time t, provided that the real
part of A is negative. This stability condition is given by the Routh-Hurwitz
criterion [15], that is

p > 0 and q> 0 (3.30)

On Fig. 3.3 the stability limits p = 0 and q = 0 are also drawn; the curve
p=O is a horizontal line r~o= 1/2, and the curve q = 0 is an ellipse which is the locus
of the vertical tangents of the response curves. The unstable portions of the response
curves are shown dotted in the figure. We can obtain the region of harmonic
entrainment on the Bv plane by reproducing the stability limit (drawn by thick line
in the figure) of Fig. 3.3. The portions of the ellipse q = 0 applies in the case where
the amplitude B and consequently the detuning at are comparatively small, while

if Band al are large the stability limit p = 0 applies. For the intermediate values of

Band a l some complicated phenomena Inay occur, but we will not enter this prob­

lem here. A detailed investigation about such cases is reported by Cartwright [6]
and Stoker [29].

We discuss, for the time being, a classification of singular points of Eqs. (3.9).
Poincare [24] classified the types of singular points according to the character of
the integral curves near the singular points, that is, according to the nature of the

characteristic roots A. They are as follows.

1. The singularity is a nodal point (or simply a node) if the characteristic

roots are both real and of the same sign, so that

(3.31)

2. The singularity is a saddle point if the two roots are real but of opposite
sign, so that

q<O (3.32)

3. The singularity is a focal point (or a focus) if the two roots are complex

conjugates, so that

(3.33)

If, in particular, both the roots are purely imaginary so that p = 0, the singularity is

either a center or a focus. *
Proceeding in the same manner as above, we obtain the stability conditions for

* Following the above classification, the type of singularity will be definite when the charac­
teristic roots Al and A2 are neither zero nor purely in1aginary. Such a singularity is called simple
or of the first kind. However there still remain special cases in which the characteristic equation
has a zero root or a purely imaginary root. In this case, the corresponding singular points are
said to be of the higher order or of the second kind. Such singularity appears corresponding
to a point on the stability limits p=O and q=O of Fig. 3.3 except the portion of p=O within the
ellipse q=O. In such a situation, the existence of a periodic solution of the initial system (3.2) is
not in genera] guaranteed or the stability of the periodic solution is not decided by the above cri­
terion even if the existence is certified. The details of such bifurcation problem are reported by
Yorinaga [31].
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the singular points of the autonomous systems (3.11) to (3.14). They are as follows.

For the system (3.11):

P2 === /l(2r 2
2 -D) > 0

For the system (3.12):

(3.34)

(3.35)Pa === tt(2r 3
2

- D) > 0

For the system (3.13):

Pll2 = -ttD>O qll2 = ~2(D2_ ~ ,B2A2+a~l2) > 0 (for '112 = 0) (3.361)

P1!2 === tt(2r~l2- D) > 0 ql!2 === tt2r~l2(r~/2- D) > 0

For the system (3.14):

(for r1/3 === 0)Pll3 === - ttD > 0

Pll3 === f.l(2ril3 - D) > 0

q1/3 = ~2 (D2+a~/3) > 0

3 22(D' r A2 2) 0qll3 === -2f.l '1/3 T S -rll3 > (for r1/3*0)

(3.372)

N"UMERICAL EXAMPLE (REGIONS OF FREQUENCY ENTRAINMENT)

Thus far, the "singular points of the derived autonomous systelTIS (3.9), (3.11),

(3.12), (3.13), and (3.14) and the relations representing the amplitude characteristic

of the entrained oscillations have been investigated. The stability for these singular

points has also been investigated by making use of the Routh-Hurwitz criterion.

From these results we can obtain the regions of frequency entrainment on the Bv

plane; namely, if the amplitude B and the frequency v of the external force are

given in these regions, the corresponding autonomous system possesses at least one

stable singularity. Consequently, entrainment occurs at the corresponding harmon­

ic, higher-harmonic, or subharmonic frequency of the external force. Figure 3.4

shows an example of the regions of frequency entrainment for the same paranleters

as in Sec. 3.2b, that is

so that

c === 0.2 and Bo === 0.5

/l === 0.15 fi === % and r === %
We see that the higher-harmonic or subharmonic entrainment occurs within a
narrow range of the driving frequency v. On the other hand, the harmonic en­
trainment occurs at any driving frequency v provided the amplitude B of the ex­
ternal force is sufficiently large.

In Fig. 3.4a the boundary curves of the higher-harmonic entrainment tend
aSyTIlptotically to the curve D === 0 as the detuning an (n === 2, 3) increases. In the
figure the curve D === 0 is plotted by dashed line. We see that the inequality
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(b) Harmonic and subharmonic entrainments.

FIG. 3.4 Regions of frequency entrainlnent.

D == 1_
2A2 < 0
a 2

o
(3.38)

is equivalent to the first condition of (3.30) which give~ the boundary of harmonic
entrainment for large detuning 0 1.* The stability conditions (3.34) and (3.35)

* Since J.1. is small, the condition a12~ (l-rro)2 is satisfied when 11 is not in the neighborhood of
unity. Under this condition, we obtain from Eq. (3.18) the following approximation

ao2rro~(~)2 = A2
I-J,/2

With the above result the first condition of (3.30) is replaced by the inequality (3.38). However
it is to be noted that the assu111ptions l1lade in the derivation of Eqs. (3.9) becomes inappropriate as
the detuning al increases.
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show that, if D<O the higher-harmonic oscillations are stable. Furthermore
since there are no abrupt changes in the amplitudes of the higher-harmonic com­
ponents of an oscillation at the curve D == 0, the boundary curve D == 0 of the har­
monic entrainment has practically no significance.

In Fig. 3.4b, the boundary of harmonic entrainment in the neighborhood of
v==l (0'1== 0) is given by the second condition of (3.30) for small detuning 0'1

and by the first condition for large detuning 0'1"* For larger values of the detuning
0'1 this boundary curves are approximated by the curve D == 0 as we have seen
before and this boundary continues to the curve given by the first conditions of (3.361)

and (3.371) which are the stability conditions for the harmonic component only,
since rn== 0 (n == ¥2' %) mean.s no subharmonic component.

It is also mentioned that the regions of harmonic and ih-harmonic entrain­
ments have an overlapping area. In this area common to the two regions, both the
harmonic and the %-harmonic oscillations are sustained. On the other hand,
such a situation does not occur for the lh-barmonic entrainment.

The results of Fig. 3.4 are also compared with the regions obtained by using an
analog com.puter. The block diagram of Fig. 3.1 is used. It is confirmed that
the regions thus obtained agree well with that of Fig. 3.4.

(d) Limit Cycles Correlated lvith Almost Periodic Oscillations

The oscillations governed by van def Pol's equation with forcing term are
characterized by the behavior of the representative point of the derived autonomous
systems within the accuracy of the approximation made in the averaging principle.
Now suppose that we fix a point (xn(O), Yn(O)) in the XnYn plane as an initial condition.
Then the representative point moves, with the increase of time t, along the integral
curve which emanates from the initial point and leads ultimately into a stable
singular point. Thus the transient solutions are correlated with the integral curves,
and the stationary periodic solutions, with the singular points in the XnYn plane.
However the representative point may not always lead to a singular point, but may
tend to a closed trajectory along which it moves permanently. An isolated trajectory
such that no trajectory sufficiently near it is also closed is called a limit cycle.** In
such a case we see that xn(t) and Yn(t) tend to periodic functions having the same
period in t and hence the solution of the original differential equation (3.2) will
be one in which the amplitude and the phase after the lapse of sufficient time vary
slowly but periodically. In the same way that a singular point represents a periodic
solution of the initial system, a limit cycle represents a stationary oscillation which
is affected by amplitude and phase modulation.

* As we noticed that, for the intermediate values of Or, the boundary becomes complicated,
but we overlooked these situations in Fig. 3.4b, since such ranges of the external force are extremely
limited.

** Occurrences of such a special solution were first studied by Poincare [24]. See also Refs. 8,
and 21.
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The closed trajectory C is said to be orbitally stable if, given e> 0, there is
1]>0 such that, if R is a representative point of another trajectory which is within a
distance iJ from C at time to, then R remains within a distance e from C for t>to.
If no such 1] exists, C is orbitally unstable. Moreover if C is orbitally stable and,
in addition, if the distance between Rand C tends to zero as t increases, C is said
to be asymptotically orbitally stable.

The stability (orbital) of a limit cycle can be tested by making use of the
Poincare's criterion for orbital stability. This stability criterion is the following in­
equality [29]

(3.39)

We proceed to establish the existence of a limit cycle when the external force
is given outside the regions of frequency entrainment. In such a case it follows
from a careful consideration that there is only one singular point in the XnYn plane.
Furthermore, this singular point is identified as an unstable focus. This means that
any representative point starting near this singularity moves away from it with
increasing t; in fact there is an ellipse containing the focus in its interior with the
property that all representative points cross it on moving from its interior to its
exterior as t increases. On the other hand, all integral curves of the autonomous
systems remain, as t increases, within a circle of sufficiently large radius. This

1.0 r--------~---------...........,

-1.0

I01----+----1-----+-------""-----1

-1.0 o 1.0

FIG. 3.5 Integral curves and limit cycle of Eqs. (3.9) in the
case when B=O.2 and LJ = 1.1.
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X2 ..

FIG. 3.6a Integral curves and limit cycle of Eqs. (3.11)
in the case when B=O.8 and 1/=0.47.

follows at once from the form of the autonomous systems, since we have approxi­

mately for large Xn andYn: dXn ==-!!..-rn
2xn and dYn==-!!:..-rn

2Yn, so that dYn=~.
dt 2 dt 2 dXn Xn

This means that the integral curves are approximately the rays through the origin
and that a representative point on one of them moves toward the origin as t increases.
Thus there is a ring-shaped domain bounded on the outside by this circle and on the
inside by a small ellipse which is free from singular points and has the property that
any solution curve which starts inside it remains there as t increases. The theorem
of Poincare and Bendixson [8, 21] can therefore be applied to establish the existence
of at least one limit cycle.

Thus far, the existence of a limit cycle for the derived autonomous systems is
proved. However, it is in general not easy to obtain any further information
(number, location, shape, or size) about the limit cycle. In order to determine the
limit cycle precisely, we are compelled to resort to numerical or graphical means.

NUMERICAL EXAMPLE (LIMIT CYCLES)

We will give some examples of the limit cycle when the amplitude B and the
frequency v of the external force are prescribed closed to the regions of entrain­
ment.* The system parameters considered are the same as those in Sees. 3.2b and

* When Band 1/ of the external force are given just between but not near the regions of
entrainment, the assumptions made in the derivation of the autonomous systems become in..
appropriate. Consequently, the almost periodic oscillation in such case may well be approximated
by a sum of two simple harmonic components, one with the natural frequency of the system and
the other with the driving frequency [29].
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0.5 r----------------r--------,

Stable litnit cycle

01-----+--#--------1r----

-0.51....---_-
0
""'--.5--------0....1....-----

X3 •

FIG. 3.6b Integral curves and limit cycle of Eqs. (3.12)
in the case when B=1.0 and v=0.345.

3.3c, that is

so that

c = 0.2 and B o = 0.5

J-l. = 0.15 (i = % and r = %

CASE 1. WHEN THE EXTERNAL FORCE Is PRESCRIBED JUST OUTSIDE THE REGION OF

HARMONIC ENTRAINMENT, i.e.,

B = 0.2 AND v = 1.1

In this case the autonomous system (3.9) is used. The limit cycle is pursued both
from the outside and from the inside by carrying out the nUlnerical integration of
Eqs. (3.9) and is shown in Fig. 3.5.* Thus it is identified that the limit cycle is

asymptotically orbitally stable. The period required for the representative point

(x1(t), Yl(t)) to complete one revolution along the limit cycle is 13.07 .. ·times the

period 27C/v of the external force.**

CASE 2. WHEN THE EXTERNAL FORCES ARE PRESCRIBED JUST OUTSIDE THE REGIONS

OF HIGHER-HARMONIC ENTRAINMENT, i.e.,

(a) B = 0.8 AND

(b) B = 1.0 AND

v = 0.47

J) = 0.345

* The numerical integration using the Runge-Kutta-Gill's process was carried out on the
KDC-I Digital Computer.

** Refer to Appendix for further details of the linlit cycle of Fig. 3. 5.
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-0.5

I

Stable litnit cycle
0.5

oI-------,~-___#_+__-u---,c-----:l~----""""'!

Unstable focus

-0.5 o 0.5

Xl/2 •

FIG. 3.7a Integral curves and limit cycle of Eqs. (3.13)
in the case when B=4.0 and v=2.15.

In Figs. 3.6a and b are plotted the limit cycles of Eqs. (3.11) and (3.12) for the above
parameters, respectively. They are determined in much the same way as above.
The periods required for the representative points to complete one revolution along
the limit cycles of Figs. 3.6a and bare 7.81-·· and 10.29··· times the period of
the external force, respectively.

CASE 3. WHEN THE EXTERNAL FORCES ARE PRESCRIBED JUST OUTSIDE THE REGIONS

OF SUBHARMONIC ENTRAINMENT, i.e.,

(a) B == 4.0 AND

(b) B == 6.7 AND

v == 2.15

1) == 2.85

By making use of Eqs. (3.13) and (3.14) the limit cycles of such cases are deter­
mined and are shown in Figs. 3.7a and b. The periods required for the representa­
tive points to complete one revolution along the limit cycles of Figs. 3.7a and bare
45.93··· and 68.32··· times the period of the external force, respectively.

TABLE 3.2 Unstable Foci and Related Properties in Figs. 3.5, 3. 6, and 3. 7

Singular
Point B Yn

Fig. 3.5 0.2 1.1 -0.245 -0.400 0.042±0.094i
Fig.3.6a 0.8 0.47 0.226 0.066 0.014±0.062i
Fig.3.6b 1.0 0.345 -0.195 0.043 0.OO5±O.034i
Fig. 3.7a 4.0 2.15 0 0 0.014±O.047i
Fig. 3.7b 6.7 2.85 0 0 0.031 ±0.051i
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1.0 Stable limit cycle

or---------t----lJ-----+---'~--_1

Unstable focus

-1.0

-1.0 o 1.0

Xl/3 ...
FIG. 3.7b Integral curves and limit cycle of Eqs. (3.14)

in the case when B=6.7 and v=2.85.

The details of the unstable foci appearing in the above examples are summed
up and listed in Table 3.2. There are also given the characteristic roots of the
corresponding variational equations.

3.4 Analysis of Almost Periodic Oscillations Using Mapping Concepts

We again write Eq. (3.2) in the simultaneous form

dv .
-=v
dt

dv = tt(1-ftv-rv2)v-v+Bcos vt
dt

(3.40)

We see that the right sides are analytic in v, v, and t, and are periodic in t with

period 2n-Jv.
In much the same way as described in Sec. 1.5, Eqs. (3.40) define the topological

mapping T of the vv plane into itself. In this section, for almost periodic oscil­
lations, the behavior of the image points under the mapping T ,will be investigated.

(a) Invariant Closed Curves under the Mapping

We have seen in the preceding sections that when the amplitude B and the
frequency v of the external force are given outside the regions of entrainment,
the corresponding autonomous system possesses at least one stable limit cycle. In
such a situation it has been tacitly assumed that to the periodic solution of the
autonomous system represented by the limit cycle there actually corresponds an
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almost periodic solution of the initial system. Such assertion will, however, in
general requires examination. But when the limit cycle is strongly stable, it is
known that there exists a unique correspondence between the limit cycle of the
autonomous system (3.9) and the simple closed curve which is invariant under the
mapping defined by Eqs. (3.8) and differs little from the limit cycle provided J.1.

is sufficiently small.* The closed curve invariant under the mapping is called an
invariant closed curve.

The invariant closed curve C is said to be a completely stable invariant closed
curve under T if (a) it divides the plane into two open simply connected invariant
continua, Sa and Se where to Se is adjoined the point at infinity; (b) every point of C
is a limit point of Si or of Se or of both; and (c) for any small c there exists an
open continuum, 0(£) containing C, with a distance from C less than c and such that

lim Tn(O(c)) = C
n~oo

A curve is said to be a completely unstable invariant closed curve if it is a com­
pletely stable invariant closed curve under the inverse mapping, i.e., T- I

• This
definition is due to Levinson [17].

Let us denote an invariant closed curve under the mapping T by C and con­
sider the solutions of Eqs. (3.40) with initial values on C when t=O, or the mapping
of C into itself. For 0~t~2n/v, these solutions form a surface in vvt space which
is bounded by C when t=O and t=2njv. Thus we see that this surface is a
homeomorph of a closed torus. The problem of the solutions of Eqs. (3.40) which
emanate from C is reduced to the problem of the solution of a differential equation
on a torus. This type of differential equations has been investigated in detail and we
will give an outline of the character of this type of equations in what follows.

(b) Differential Equations on a Torus and Rotation Numbers [8, 10]

In general a differential equation on a torus can be written in the form

dx
dt = pet, x) (3.41)

where it is assumed that
(i) pet, x) and 8pet, x)j8x are real continuous functions defined for all real t, and

x, and
(ii) p(t+l, x)=p(t, x+l)=p(t, x)

Because of (i) and (ii), pet, x) is bounded and hence every solution .of Eq. (3.41)
exists for all t. The periodicity assumption (ii) implies that pet, x) may be con­
sidered as a function on the surface of a torus R, the points of which can be described
by Cartesian coordinates (t, x), where two points Plett, Xl) and P2(t2 , x2) are regarded
as identical if t1-t2 and X 1-X2 are integers. ~imilarly let x=cp(t) be a solution of

* For the definition of strong stability and the justification of this statement, see Cartwright
[7]. See also Bogoliubnff and Mitropolsky [4].
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Invariant closed curve

2.0
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Of----T--~-__o:......-----+~----I-----_I__-__I_-~
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-2.0 -1.0 o
v ..

1.0

FIG. 3.8 Loci of image points and invariant closed curve for Eq. (3.48).

Eq. (3.41), the solution curve (t, <;oCt)) may be represented on R.
Let x=<;o(t, 7J) be the solution of Eq. (3.41) such that <p(0, 7J)=r;. From the

assumption (ii) and the relation <p(0, 7J)+ 1= 7J +1, we obtain

<pet, 7]+ 1) = <;oCt, 7J)+ 1

Consider the function 1fr(7J) defined by

'tfr(7J) = <;0(1, 7J)

(3.42)

(3.43)

From the assumption (i) it follows that 'tfr(7J) is a continuous function of 7J. From
Eqs. (3.42) and (3.43), we obtain

1Jr(7J+ 1) = 1Jr(7J)+l (3.44)

It follows from the uniqueness of solutions that no two solution curves may cross
each other on R, and hence 1fr(7J) must be a continuous monotone increasing
function for all real 7J. Let C be the circle on R defined at t=O, then the function
'tfr(7J) induces a topological mapping M of C into C and we denote this by

(3.45)
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2.0,..---.--------------------,

Invariant closed curve

1.0

1
.>

aJ----+---------3~-------=--_\______j'-l----____l
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o 1.0 2.0

v----
FIG.3.9a Loci of image points and invariant closed curve

for Eq. (3.49).

where Po=='(O, 7)), Pl==(l, <;0(1, 7))) == (0, 1fr(7))). Thus the investigation of the
nature of the solution curves of Eq. (3.41) on R can now be carried out by studying
the topological mapping M and its representing real function 1fr(7)).

Let 1fr2 be the function defined by 1fr2(71) == 1fr(1fr(7))), and, in general, 1frn(71)
== 1fr(1frn-l(7))) for any integer n, where it is understood that ,y0(71)== 71. Then we
define a number p by the limit

(3.46)

This number p is called the .rotation number of M for Eq. (3.41). It is known
that this limit exists and is independent of the solution used to define it, or the choice
of 7). This number p measures the average advance of a solution qJ of Eq. (3.41)
starting at (0, 71) as t changes by a unit.

The nature of the solution curves of Eq. (3.41) on R or of the mapping M is
characterized by this number.

If p is rational and of the form plq where p and q have no common factors,
then Eq. (3.41) has periodic solutions on R of period q in t. Any non-periodic
solution must tend toward such a periodic solution as t increases indefinitely. In
this situation Eq. (3.41) has among its solutions subharmonics of order q.

If p is irrational there are two possibilities. One of these possibilities is
termed the singular case. In case the right side of Eq. (3.41) satisfies some hypothe­
sis, for instance, besides the assumptions (i) and (ii), 8 2p/8x2 exists and is con-
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FIG. 3.9b Loci of image points and invariant closed curve

for Eq. (3.50).

a 1.0 2.0

tinuous, the singular case cannot occur. Under this circumstance (termed the
ergodic case) the solutions of Eq. (3.41) can be written in the form

cp(t) = pt+c+w(t, pt+c) (3.47)

where p is the rotation number, c is an arbitrary constant, and (li(u, v) is a function
continuous and periodic in U and v of period 1. Equation (3.41) has almost periodic
solutions on R of t in this case.

(c) Numerical Analysis

We will here show some numerical exanlples of invariant closed curves of
Eqs. (3.40) and calculate the rotation numbers correlated with them. The suc­
cessive images Pn(v(2nn/v), v(2nrcjv)) (n= 1, 2, 3, ... ) of the initial point Po(v(O), v(D))
under the mapping T are obtained by using the KDC-I Digital Computer. In
performing the numerical integration, we used the Runge-Kutta-Gill's method.
The same system parameters are used as those in the preceding examples. The
values of Band 11 of the external force are also same as those in Sec. 3.3d.

CASE 1. WHEN THE EXTERNAL FORCE Is PRESCRIBED JUST OUTSIDE THE REGION OF

HARMONIC ENTRAINMENT

We consider the case corresponding to Fig. 3.5 in which B=O.2 and V= 1.1 and
the equation becomes
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1.0..-------------~--------,

Invariant closed curve
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FIG.3.l0a Loci of image points and invariant closed curve
for Eq. (3.51).

(3.48)d
2
v -0.I5( 1-~v-i.-v2)~+v=,0.2 cos I.1t

dt 2 3 3 dt

The unstable fixed point and the invariant closed curve of Eq. (3.48) are shown in
Fig. 3.8. The small circles on the curves represent examples of the image points
under the mapping T, and they are transferred successively to the points that
follow in the direction of the arrows. In the figure some invariant curves which
tend toward invariant closed curve on both sides are also shown. Thus we see
that this invariant closed curve is completely stable.

CASE 2. WHEN THE EXTERNAL FORCES ARE PRESCRIBED JUST OUTSIDE THE REGIONS

OF HIGHER-HARMONIC ENTRAINMENT

Corresponding to Figs. 3.6a and b, we consider the following two equations.

(a) d
2
v (4 4 2) dv--0.15 I--v--v -+v == 0.8 cos 0.47t

dt 2 3 3 dt
(3.49)

(3.50)(b) d2v_0.15(1_i.-v_i.-v2) dv +v == 1.0cosO.345t
dt 2 3 3 dt

The unstable fixed points and the invariant closed curves of Eqs. (3.49) and (3.50)
are shown in Figs. 3.9a and b, respectively. We see in the figures that these in­
variant closed curves are also completely stable.
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-2.0 -1.0 o
v ..

FlG. 3.10b Loci of inlage points and invariant closed curve
for Eq. (3.52).

CASE 3. WHEN THE EXTERNAL FORCES ARE PRESCRIBED JUST OUTSIDE THE REGIONS

OF SUBHARMONIC ENTRAINMENT

We consider the cases corresponding to Figs. 3.7a and b, and the equations
become

(a)

(b)

d
2

v -O.lS( 1--±-v--±-v2
) ~+v = 4.0 cos 2.1St

dt 2 3 3 dt

d
2

v -O.lS( 1-~ v--±-v2
) dv +v = 6.7 cos 2.8St

dt 2 3 3 dt

(3.51)

(3.52)

In the systems described by the above equations, we have situations considerably
different from those of the other examples. The unstable fixed points and the
completely stable invariant closed curves are shown in Figs. 3.10a and b, respective­
ly. The num.bers in the figures designate the order of appearance of the image
points. In Fig. 3.1Oa the neighboring image points on the curves are transferred
in the direction of the arrows under every second iteration of the mapping, while in
Fig. 3.10b under every third iteration of the mapping. On account of this property,
it is natural that the invariant curves and the rotation numbers should be considered
under T 2 or T 3 in stead of under T, when the external forces are given near the
regions of subharmonic entrainment.

The rotation numbers correlated with the invariant closed curves of Figs. 3.8,
3.9, and 3.10 are listed in Table 3.3. There are also given the coordinates of the



54 ALMOST PERIODIC OSCILLATIONS

unstable fixed points (obtained by making use of the inverse mapping in much the
same way as in Sec. 1.5e) and the time increments h which are employed for
carrying out the nunlerical integration.

TABLE 3.3 Rotation Numbers Correlated with Invariant Closed Curves
and Unstable Fixed Points in Figs. 3. 8, 3. 9, and 3. 10

p h

Fig. 3.8 0.0879··· -0.673 -0.478 11:/121)
Fig.3.9a 0.100··· 1.322 0.246 11:/241)
Fig.3.9b 0.121··· 1.271 -0.292 11:/241)
Fig.3.10a 0.0502···* -1.099 -0.167 71:/121)

Fig.3.10b 0.0417···* -0.938 -0.145 11:1121)

* Rotation Numbers under T2 and T3 are listed.



APJ;JENDIX

STABILITY OF PE1tIODIC SOLUTIONS OF

AUTONOMOUS SYSTEMS

In this appendix we will study the problem of stability ·of periodic solutions
of autonomous systems. We consider the second order autonomous system gov­
erned by

dx- = X(x, y)
dt

t = Y(x, y) ( 1 )

where the right sides are nonlinear functions of x and y, and we here assume that
they are analytic with respect to those variables. Let x = ~(t), Y == 1fr(t) be its
periodic solution with period 1: and let e(t), 7J(t) be small variations defined by

x(t) == ~(t)+e(t)

Then the variational system has the form

yet) = 1fr(t)+7J(t) (2)

where

(3)

Equations (3) are linear differential equations with periodic coefficients. Since the
system (1) is autonomous and its periodic solution (~(t), ,yet)) is not a state of
equilibrium, it is known that the variational system (3) ,necessarily has one charac­
teristic multiplier equal to unity. We denote the other by p, then

Thus if

p = exp [~:(Pll(t)+p22(t))dt] (4)

then the periodic solution (~(t), ,yet)) is Lyapunov stable.* The periodic solution
(~(t), ,yet)) is called a rough limit cycle when P =1= 1. It is stable for p < 1 and
unstable for p > 1.

NUMERICAL EXAMPLE

Let us consider the autonomous system (3.9), that is,

* For the definition of Lyapunov stability and the details of this statement, see Pontryagin [27].
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(5)

(6)

A periodic solution represented by the limit cycle of Fig. 3.5 (in which J1. = 0.15,
P= r= 4/3, B = 0.2, and v = 1.1) is given by

x1(t) = epl(t) = 0.09+0.19 sin f) -0.81 cos f)

-0.19 sin 2()+0.06 cos 20

+0.04 sin 3()+0.04 cos 30+ .. ·

Yl(t) = Vl(t) = -0.42+0.74 sin () +0.17 cos fJ

-0.06 sin 2fJ-0.17 cos 20

-0.03 sin 3fJ +0.04 cos 30+···

fJ == 0.0841··· X (t-h)

where h is an arbitrary constant. The period r of this solution is approximately
74.68( == 2TC/V X 13.07···). The variational equations corresponding to the solution
(6) are

df- = Pll(t)f+P12(t) 7]
dt

where Pll(t) == ~(1-3CP12(t)-V12(t))
2

P21(t) == ~((J1-2epl(t)1frl(t))
2

d7]- == P21(t)f+P22(t) 7]
dt

P12(t) == !!:...(-(J1-2cpl(t)Vl(t))
2

P22(t) == ~(1-cp12(t)-3V/(t))
2

(7)

where

One of the characteristic multiplier p is given by

p = exp [tt 1: (l-2CPI2(t) -2YI2(t)) dt ]

= exp [tt ..(1-2;:12
) ] = exp (-8.20) = 0.000275

r/ = 1- fT (cp/(t)+VI2(t))dt == 0.866
T Jo

(8 )

The magnitude 71 IS sometimes called a normalized f.m.S. (root mean square)
amplitude of an almost periodic oscillation.
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Analog-computer analysis, of higher­

harmonic oscillation, 9-10
of entrained oscillation, 30-33

Asymptotic orbital stability, 43
Averaging method, 33-35

Boundary of entrainment, 40-42

Center, 39
Characteristic equation, 12, 38
Characteristic exponent, 4
Characteristic multiplier, 12
Characteristic root, 11, 39
Classification, of singular point, 39

of fixed point, 11
Closed trajectory, 42

(See also Limit cycle)

Differential equation on a torus, 48-51
Duffing's equation, 2

solution of, harmonic balance, 2-9
mapping procedure, 10-17

Entrainment of frequency (see Frequency
entrainment)

Ergodic case, 51
Equilibrium state, 36
Experimental result, of higher-harmonic

oscillation, in parallel-resonance
circuit, 28

in series-resonance circuit, 17-18

Fixed point(s), classification of, 11
completely stable, 11
completely unstable, 11
directly unstable, 11
example of, 17, 27
inversely unstable, 11
simple, 11
stability of, 11

Floquet's theory, 4

Focal point, 39
Frequency entrainment, harmonic, 29

higher-harmonic, 29
region of, 40-42
subharmonic, 29

Frequency response of harmonic
oscillation, 36

General solution of Hill's equation, 4

Harmonic, even, 7
odd, 2

Harmonic balance method, 2-9, 20-24
Harmonic oscillation, in self-oscillatory

system, 30
Higher-harmonic oscillation<t in parallel­

resonance circuit, 19-28
in series-resonance circuit, 1-18

Hill's equation, 4
characteristic exponent, 4
general solution, 4
unstable solution, 4

Image under the mapping, 12
Invariant closed curve, 48

completely stable, 48
completely unstable, 48

Jump phenomenon, 17

Limit cycle, 42-47
stability of, 43, 55..56
rough, 55

Magnetic flux, 2
Mapping, topological, 10

Natural frequency of self-oscillatory
system, 29

Nodal point, 39
Nonlinear damping, 30
nth unstable region, 4, 21

Orbital stability, 43
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Order of subharmonics, 11

Parallel-resonance circuit, 19-28
Periodic coefficients, linear differential

equation with, 12
Periodic solution, harmonic, 21, 30

higher-harmonic, 2, 7, 21, 30
subharmonic, 30

Region(s), of frequency entrainment, 40-42
of stability and instability, 4, 21

Representative point, 33
Rotation number, 50
Rotating coordinates, 33
Routh-Hurwitz criterion, 39

Saddle point, 39
Saturable-core inductance, 1
Saturation curve, 2, 20
Self-oscillatory system, forced, 29-54
Series-resonance circuit, 1-18
Singular case, 50
Singular point(s), classification of, 39

of higher order, 39
simple, 39
stability of, 38-40
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Stability investigation, of singular

point, 38..40
of periodic solution, 3-9, 22-23

Subharnlonic oscillation, in
self-oscillatory system, 30

Trajectory, 33
Transformation, linear, 33

Unstable solution of Hill's equation, 4

Van der Pol's equation with forcing
term, 29-30

Variational equation, 3, 12, 38
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curve, 5,23
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