STUDY ON RESERVOIR SEDIMENTATION
(PART-II)
—ON VARIATION OF RIVER BED UPSTREAM DEBRIS BARRIER—

by Dr. Eng. Katsumasa YANO, Dr. Eng.
Kazuo ASHIDA and Yuichiro TANAKA

Synopsis

The dam which is constructed in the river having much sediments produces many difficult problems due to deposited sediment. For example, these are the rise of river bed upstream of the dam and decrease of effective storage capacity etc.

In this study the authors tried to clear the mechanism of variation of river bed upstream of the debris barrier. In particular, we studied some problems in applying the computer to such problem and then we considered about the mechanism of back sand with the calculated results, using the digital computer.

1. 緒 言

わが国は台風の進路に位置しているため年々多くの降雨があり、洪水などで多種の被害をこうむっている。しかし地形が急峻なため一時的に出水をみるだけで、冬季には水不足に悩む。電力の使用制限をしなければならぬような状態である。最近の工業の発展に伴い水の需要は増加する一方で、水資源の確保は重大な社会問題にまで発展している。こうした水害と水不足という一見反対の問題を解決する手段として、アメリカのTV A計画の成功に刺激され、最近各地において総合開発計画の名のもとに多目的大ダム群が繰々と築造されつつある。

このようにダムの築造が盛んになるにつれて、それに伴う被害が問題となるようになった。すなわち、わが国の河川はもろい地質の上を急流をなして流れる関係上流出土砂が多く、また貯水容量の小さなことなどから Table に見られるように、極めて短期間に貯水容量が減少し、電力の面からは当初の出力を出し得なくなり、また洪水調節能力を減少させるなどの害を生じ、極端な場合には莫大な費用を投じて建設しなかったダムを無能にし、単なる砂防ダムと化してしまう恐れもある。

さらに、これらの堆積土砂はダム上流部の河床を上昇させるとともに洪水位の上昇、洪水時の貯水区域の拡大、堆砂不良地域の拡大など河川流域の住民の福祉に種々の被害を与える。このために社会的争いの原因となっている例もある。このような水資源の確保とそれに伴う沿岸地域の被害を技術的にどのように解決するかは重要かつ緊急な問題である。
<table>
<thead>
<tr>
<th>Name of Dam</th>
<th>Constructed in</th>
<th>Total Capacity of Reservoir A (m³)</th>
<th>Volume of Deposited Sediment B (m³)</th>
<th>B/A (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komaki</td>
<td>1930</td>
<td>37,956,000</td>
<td>5,800,000</td>
<td>15.6</td>
</tr>
<tr>
<td>Ohmaki</td>
<td>1942</td>
<td>1,113,000</td>
<td>890,000</td>
<td>80.2</td>
</tr>
<tr>
<td>Soyama</td>
<td>1930</td>
<td>32,991,000</td>
<td>16,500,000</td>
<td>49.9</td>
</tr>
<tr>
<td>Ohara</td>
<td>1942</td>
<td>11,418,000</td>
<td>7,700,000</td>
<td>67.6</td>
</tr>
<tr>
<td>Narude</td>
<td>1961</td>
<td>9,709,000</td>
<td>1,880,000</td>
<td>19.4</td>
</tr>
<tr>
<td>Tsubakihara</td>
<td>1954</td>
<td>20,888,000</td>
<td>2,000,000</td>
<td>10.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>114,076,000</td>
<td>34,770,000</td>
<td>29.0</td>
</tr>
</tbody>
</table>

Volume of Deposited Sediment/year, km² = 1,200 m³/year km²

こうした壩水池堆砂量に関しては、流域面積と壩水池容量が堆砂量に及ぼす影響を統計的に考察したWitzigらや鈴見らの研究、地形地質との関係からとらえようとした田中（治）らの研究などがあり、さらに堆砂形状や堆砂の進行過程については杉尾ら、吉良・横嶺ら、山岡らなどの実験的研究があり、多くの事実が明らかにされてきた。著者らも壩水池内での堆砂の運動機構に関し、河床の不連続性を考慮し力学的解析法を提案したら。

そこで、ここでは背砂が上流にどのように波及するかを明らかにすることを目的に、調砂後のダム上流部の河床変動について考察することを目的にした。河床変動に関する要素は多く、その実態は極めて複雑であるが、その根底には流速や流砂量とそれを流下する水路ととの間に力学的な釣合いの関係があり、水路は外的環境の変化に応答する新しい釣合い関係を求めて変化していくと考えられる。こうした釣合いの考え方から、静的平衡の仮定より物質流、各層の流れの変化をも考慮するなどで、最大の変化を求めていく過程をも知る必要がある。また実際河川においては、外的環境の変化に対する応答が完璧であるように、すなわち過渡領域においてすでに新しい外的環境の変化が求められるのが通常であり、こうした意味から平衡河床の存在意義についてもさらに論議を重ねる必要がある。

したがって時間変化をも考慮した河床変動機構の解析を行う必要が生じる。前述のように河床変動に関する要素は多く、それらを全て考慮した解析は非常に困難であるから、ここではまずその最初段階として流量、流速および河床材料の粒径を一定として、縦断形状のみ変化する二次元長方形水路の場合を扱うこととする。このような場合の計算方法はすでに河川の特性曲線法などが提案されており、従来の変化方程式などにより近似化された基礎方程式の解としてはFourier解析を用いた矢野らの解、Riemann積分法を用いた芦田・中島の解などが発表されているが、いずれも計算が複雑であり、実際に計算された例は少ない。

これらの複雑な計算には高速度計算機の使用が適していると考えられる。そこで著者らは背砂の週上といった現象の一般的性質を調べることを目的し、KDC-1を用いて適当な形に無次元化した基礎方程式の数値解析を行なつ。しかし現在までに得られた計算値からは実際の点につき十分な結論を下すまでは至っていない。この種の計算はすでにに行われた例もあるが、計算方法、境界値のとり方、計算区間のとり方についてについて
2. 基礎方程式

流水は不等速流をなしているものとし、平均流速を \(u \)，水深を \(h \)，基準面よりの河床高を \(z \)，摩擦速度を \(u_e \) とし、Fig.1 のように基準面を水平にとると、帯の広い長方形断面水路に関する流水の運動方程式は

\[
\frac{dh}{dx} = -\frac{\partial z}{\partial x} + \frac{d}{dx} \left(u^3 \right) - \frac{u^3}{gh} \tag{1}
\]

であり、また単位巾当たりの流量を \(q \) とすると連続方程式は次のようである。

\[
h \cdot u = q \text{ (const)} \tag{2}
\]

流砂量式としては各種のものが提案されているが、ここでは佐藤＝吉川＝芦田式を用いると

単位巾当たりの流砂量 \(q_n \) は

\[
q_n = \frac{\varphi \cdot u_e^3}{(\sigma / \rho - 1) g} \cdot F \left(\frac{u_e^2}{u_e^2_c} \right) \tag{3}
\]

となる。ここに \(\varphi \) は粗度係数によって決まる定数であり、

\[
\begin{align*}
&(n \geq 0.025 m^{-1.3} \cdot S ; \quad \varphi = 0.62) \\
&(n \leq 0.025 m^{-1.3} \cdot S ; \quad \varphi = 0.62 (4n)^{0.5})
\end{align*} \tag{4}
\]

である。一方流砂に関する連続式は

\[
\frac{\partial z}{\partial t} + \frac{1}{(1 - \lambda)} \frac{\partial (q_n \cdot B)}{\partial x} = 0 \tag{5}
\]

である。また抵抗係数として Manning 型のものを用いると、\(u_e \) および \(u_e \) はそれぞれ

\[
u_e = \frac{g^{1/3} \cdot n \cdot q}{h^{1/3}} \quad u_{e0} = \frac{g^{1/3} \cdot n \cdot q}{h_{e0}^{1/3}} \tag{6}
\]

となる。ここに \(h_{e0} \) は砂の移動限界水深である。いま与えられた流量 \(q_o \)、給砂量 \(q_{no} \)、および河床材料の平均粒径 \(d \) に対応する平衡等流水深 \(h_0 \)、平衡等流こう配 \(i_0 \) を用いて \(h, z, x, t \) をそれぞれ次のように無次元表示する。

\[
h = \frac{h}{h_0} = \zeta \tag{7}
\]

\[
h = \frac{h}{h_{e0}} = \gamma \tag{8}
\]

\[
\frac{z}{h_0} = \eta \tag{9}
\]

\[
\frac{x}{h_0} = \xi \tag{10}
\]

\[
\tau = \frac{i_0 g q_{no}}{(1 - \lambda) h_{e0}^2} \tag{11}
\]

(3) 式は \(q_{no} \) および(6), (7), (8) 式を用いて次のように書き直される。

\[
q_n = q_{no} \left(\frac{u_e}{u_{e0}} \right)^3 \frac{F \left(\frac{u_e^2}{u_e^2_c} \right)}{F \left(\frac{u_{e0}^2}{u_{e0}^2_c} \right)} = q_{no} \frac{F \left(\frac{u_e^2}{u_e^2_c} \right)}{F \left(\frac{u_{e0}^2}{u_{e0}^2_c} \right)} \tag{12}
\]
矢野・芦田・田中：ダムの背砂に関する研究（Ⅱ）

また(15)式に(1), (2), (3)の諸式を代入すると
\[\frac{\partial q}{\partial t} - \frac{F_c}{\gamma \gamma B} \left(\frac{\gamma}{\gamma C} \right)^{1/3} \frac{F_c}{(\gamma C)^{1/3}} \left(\frac{\gamma}{\gamma C} \right)^{1/3} \frac{\partial q}{\partial x} = 0 \] となる。同様に(16)式に(17), (18), (19)の諸式を代入し、これを無次元量の式に書き直すと
\[\left(1 - \frac{F_c}{\gamma C} \right) \frac{\partial q}{\partial x} + \frac{1}{\tau \alpha \gamma B} = 0 \] となる。ここで \(x \)-軸を上流向きにとり、(17)および(18)式を整理すると次のような無次元化された河床変動に関する基礎方程式が得られる。
\[A \frac{\partial q}{\partial x} + \frac{\partial q}{\partial t} = 0 \] ここで、
\[A = \frac{\gamma B}{\gamma C} \left(\frac{1}{\gamma C} \right)^{1/3} \cdot \left(\frac{\gamma C}{\gamma B} \right)^{1/3} \] と定義し、
\[B = 1 - \frac{F_c}{\gamma C} \] と定義することができる。
\[F_c = \frac{u^2}{\gamma C} \] 以上の基礎式を与えられた初期条件および境界条件のもとで解けばよい。初期条件は計算を始める前の河床の断面形状より,
\[\tau = 0 ; \eta = f(x) \] の形で与えられる。しかし境界条件についてはその設定地点および設定方法について従来から各々の取扱いがなされており、こうした河床変動の時間的解析を行なうに当り、これらの取扱いのどれをとるかを検討する必要がある。

3. 境 界 条 件

境界条件を明らかにするための理論的取扱いは、ダムを越流する流れにダム上流部の局所的な河床形状がどのように影響するかを詳細に検討することを必要とするが、これは非常に困難であるため従来から実用上の見地に立って、
i) ダムの位置において河床高は一定、
ii) ダムの位置での水深は各流量について一定、

Fig. 2 Experimental flume
iii）ダムの位置でのエネルギー水頭は各流量について一定、といった取扱いがなされてきた。そこで、著者らはこれらの取扱いのうちいずれが最も妥当であるかを実験的に検討してみた。

実験に用いた水路はFig. 2に示すような、断面20×20cm、長さ20mの両側ガラス張りのもので、水路中央部に高さ10cmの刃形堰を設け、水路を20cmのこう配に設置し、堰上流面を網野の平均粒径0.4mmの砂にて2cmのこう配に均一に敷き均した後、上流から一定の流量および給砂量を与え、河床高および水位の時間的変化を1m間隔にてポイントゲージで測定した。なお堰の近傍は側面より5分間隔で写真撮影を行ない詳細に読み取った。行なった実験の種類を示すとTable 2のようである。

<table>
<thead>
<tr>
<th>NO of Exp</th>
<th>Q (l/s)</th>
<th>Qₙ (gr/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUN 1</td>
<td>4.88</td>
<td>22.5</td>
</tr>
<tr>
<td>RUN 2</td>
<td>4.88</td>
<td>13.0</td>
</tr>
<tr>
<td>RUN 3</td>
<td>4.88</td>
<td>0.0</td>
</tr>
<tr>
<td>RUN 4</td>
<td>4.88</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Photo. 1はRUN 2の場合の一例であるが、堰近傍の局所的な流れにより、網の発達の強弱にしたがって局所的な洗掘、埋没を異期的に繰り返している。またFig. 3はRUN 3の場合のx=0ならびにx=10cmでの河床変、水位およびエネルギー水頭の時間的変化を示したものである。これは上流からの給砂を絶った場合であり、河床は時間とともに低下していく。これらの写真や図からも明らかのように、時間的変化を考慮する場合の境界条件として、先に挙げた①は妥当でない。

Fig. 3（a）によれば、ii）の条件が成立するように見受けられる。これはダム上流部の河床が低下した場合でも、河床付近はほとんど水は流れない。水は粗流をなした流線に形成して流れ、流速度面積は河床の変化に関係なくほぼ一定となることを示しており、これはまたこの付近のエネルギー水頭が変化しないことを示すものである。しかし、この付近の摩擦の形が明らかにされない限り、ダムの位置で水位を与えても、上流の水面形を求めることができない。また仮に一部減って流速の形を初期河床形状の変形としても、この位置での水深は限界水深にほど近く、水面形方程式は9で近いため計算区間を小さくしないと計算不安定を起しして水面追跡ができなくなる恐れもある。

一方、Fig. 3（a）では堰の位置でのエネルギー水頭は時間的に多少変化しているようであるが、これは流速断面全体が一様に流れるとして求めたためで、上述のような理由を考慮して流速分布を補正すれば、この点でのエネルギー水頭はほぼ一定になると思われる。こうした局所洗掘とか、越流による曲線流れなどの局所的な流れの影響をさけるため、堰の少し上流の点について調べてみると、Fig. 3（b）に見られるようにエネルギー水頭はほぼ一定である。したがって、時間的変化を考慮した河床変動の解釈を行なう場合の実用的な境界条件としては、局所的な影響をさけるため堰からx=xₜの地点でHₑ=Hₑₜ（const）とするのが最も妥当であると思われる。ここに添字ₜは境界値の意味を表わす。

さて、Hₑₜを求める方法であるが、Fig. 4に示すような刃形堰の自由越流の場合を考えることにしよう。この場合堰上でのエネルギー水頭Hₑは堰の流量公式より,
Fig. 3 Variation of elevation of bed, water level and energy head with time

\[H_s = \left(\frac{Q}{LC_s} \right)^{2/3} + H_0 + D = \left(\frac{Q}{LC} \right)^{2/3} + D \]

と表わされる。堰後背部の河床が局所的な流により変化してもエネルギー水頭がほぼ一定に保持されるということは、Fig. 4においてP→水となりC→水、D→水となり、(Q/LC)^{2/3}の増分とDの減分が互に相殺し合うことを意味するものと思われる。図示より流量係数C_sを適当に選ぶことにより、与えられた流量に対するエネルギー水頭が計算される。堰から少し離れた点x_bから堰までの流下に伴うエネルギーダメージは小さいとしてこの計算値H_sをもってH_xをとする。以上のような考え方のもとに米国開拓局の資料をもとに参考にC_s=2として計算する。
Fig. 5 Variation of elevation of bed, water level and energy hand with distance

4. 特性曲線による解法

以上により境界条件の設定法が明らかになった。したがって以後はこうした条件の下で過および過の基礎方程式をいかにして解くかという微分方程式の解法の問題に帰着されるわけである。

過および過式はこのままで解を得るのは困難なため、微小変動法などにより近似化した式から解かれたものもあるが、ここではそうした近似化を行わず、できるだけ実験の基礎方程式を解くべく、高速度計算機による数値解法を試みる。

このような方程式の数値解法の方法は各種のが考えられるが、ここでは現象の特性を調べる上から特性曲線法を使用することにする。

いま、独立変数を \(x, y \)、従属変数を \(u, v \) とすると、Quasi-linear の方程式は次式で与えられる。

\[
\begin{align*}
& A_1U_x + B_1U_y + C_1V_x + D_1V_y + E_1 = 0 \\
& A_2U_x + B_2U_y + C_2V_x + D_2V_y + E_2 = 0
\end{align*}
\]

ここで \(A_1, A_2, \cdots, E_2 \) は \(x, y, u, v \) の既知関数であり、\(u_x = \partial u / \partial x, v_y = \partial v / \partial y \) である。

\[
a = A_1C_2 - A_2C_1, \quad b = A_1D_2 - A_2D_1, \quad c = B_1D_2 - B_2D_1
\]

とおくと、経の式が双曲線型であるための条件は、

\[
aa^2 - 2bc + c = 0
\]

が相異なる実解を有することである。その二実解をそれぞれ \(\alpha_+, \alpha_- \) とし、

\[
F = A_1B_2 - A_2B_1, \quad G = B_1C_2 - B_2C_1, \quad K = A_1E_2 - A_2E_1, \quad H = B_1E_2 - B_2E_1
\]

とすると、特性曲線は次式で表わされる。

\[
C_+ \text{ 曲線に沿って } \left\{ \begin{array}{l}
\frac{dy}{y} - \alpha_+ dx = 0 \\
Fdu + (a + G)dv + (K_+ - H)dx = 0
\end{array} \right.
\]

\[
C_- \text{ 曲線に沿って } \left\{ \begin{array}{l}
\frac{dy}{y} - \alpha_- dx = 0 \\
Fdu + (a - G)dv + (K_+ - H)dx = 0
\end{array} \right.
\]

差分表示の方法は種々のものがあるが、ここでは最も簡単な

\[
\int_{x_0}^{x_1} f(x) dx = f(x_0) \cdot (x_1 - x_0)
\]

の形式によるものを用いる。いま Fig. 6 に示すように、\(x-y \) 平面において \(A \) および \(B \) 点を通る特性曲
線をそれぞれ C_+, C_- とし、その交点を P, また各点における変数の値を添字でつけて示すと、(31)式は次のように差分表示される。

\[Y_P - Y_A - (\alpha_+ \beta)(X_P - X_A) = 0 \] (31)

\[F_0(U_P - U_A) + (\alpha_+ \beta)(V_P - V_A) + (\alpha_+ \beta)(X_P - X_A) = 0 \] (32)

\[Y_P - Y_B - (\alpha_- \beta)(X_P - X_B) = 0 \] (33)

\[F_0(U_P - U_B) + (\alpha_- \beta)(V_P - V_B) + (\alpha_- \beta)(X_P - X_B) = 0 \] (34)

このとき、(30)式の基礎式は双曲型の偏微分方程式であり、上記の手法によれば特性曲線は、

\[\begin{align*}
 C_+ : & \quad \frac{d\tau}{d\xi} = 0 \\
 & \quad \frac{dV}{d\xi} + \frac{d\eta}{d\xi} - \xi \cdot \tau = 0
\end{align*} \] (35)

\[\begin{align*}
 C_- : & \quad \frac{d\tau}{d\xi} + \frac{B}{A} = 0 \\
 & \quad \frac{d\eta}{d\xi} - \xi \cdot \tau = 0
\end{align*} \] (36)

となり、これを差分表示したものは、Fig. 7 のように記号をとると、

\[\tau_{i+1,j} - \tau_{i,j} = \Delta \tau (\text{const}) \] (39)

\[\zeta_{i+1,j} = \zeta_{i,j} + \frac{1}{B_{i,j}} \left(\frac{1}{\xi_{i,j}} (\xi_{i+1,j} - \xi_{i,j}) - (\eta_{i+1,j} - \eta_{i,j}) \right) \] (40)

\[\xi_{i+1,j} = \xi_{i,j} - \left(\frac{A}{B} \right)_{i,j} \Delta \tau \zeta_{i,j} \] (41)

\[\eta_{i+1,j} = \eta_{i,j} - \frac{1}{B_{i,j}} \Delta \tau \] (42)

となる。

計算法例

以上の計算方法を適用して溝でなれた砂防ダム上流部の河床変動の様子を調べてみよう。

設定した条件は Fig. 8 に示すように、こう配が α_0 の河床に高さ $W/h_0 = 2$ のダムを築造したことにより、溝築時の形状は二次放物線で旧河床に滑らかに接するようにする。したがって初期条件は次のようになる。

\[\tau_{i,0} = 0; \quad \eta_{i,0} = \frac{1}{\delta} \xi_{i,0}^2 \] (43)

\[\xi_{i,0} \leq \xi_0; \quad \eta_{i,0} = \xi_0 - 2 \xi_0 \] (44)

また、粗度係数、平均粒径、等流水深、等流こう配をそれぞれ次のように与えると Fig. 8, γ の値は次のようになる。
\(n = 0.03, d_m = 25 \text{mm}, h_0 = 5 \text{m}, \theta = \frac{1}{2} \theta_0, F_0^2 = 0.7756, \gamma = 2.655 \)

以上の要素条件より 3.に述べた方法で境界条件式を求めることが可能である。ただし、この条件の設定場所は局所的な流れの影響をさけ \(L = 0.2 \)とした。

\[
\begin{align*}
\xi_J = 0.2 ; & \quad \eta_J + \lambda J + \frac{F_0^2}{2} \xi_J^3 = 1.53 \\
\xi_J \geq 3.068 & \quad ; \quad A = 0 \\
3.068 \geq \xi_J \geq 1.428 & \quad ; \quad A = 46.68 / \xi_J - 15.21 \\
\xi_J < 1.428 & \quad ; \quad A = 3.5 \xi_J^{-3/2}
\end{align*}
\]

なお、\(\xi_J \)式で与えられる係数 \(A \)は形が複雑なので、次のように近似化して用いることにした。

以上の諸条件の下で \(\xi \sim \eta \) 式を独立に解くことになる。この計算の手順を示す Flow Chart は Fig. 9 のようである。以下この手順について説明を加える。

① 計算機を initial に set する。
② 初期値 \(\xi_J = \xi_0 \) を読み込む。
③ 初期条件式 (40)，(40) 式のつづれを用いるかを判断し、\(\eta_J \) を計算する。
④ \(i \) の値によって境界条件式 (38) および (38) 式のつづれを用いるかを判断して \(\xi_J \) を計算する。
⑤ 計算された無次元量 \(\xi_J, \eta_J, \xi, \xi_J \) および (7.19) 式より換算した絶対量 \(x_J, \xi_J, \xi, h_J \) を Print 出す。
⑥ 係数 \(B_{JJ} \) および \(\xi_J^{-3/2} \) を計算する。
⑦ 係数 \(A \) を \(\xi_J \) の値により別の諸式から計算する。
⑧ 以上の値を用いて \(- (A/B) \xi_J \cdot dx \) の値を計算する。
⑨ 以上の諸数値より (40)，(40) 式から \(\xi_{J+1}, \eta_{J+1}, \xi_{J+1} \) の値を計算する。
⑩ 距離方向に計算の step を 1 つずつする。
⑪ \(J = 1 \) で行った計算の数 \(N_J \) と今 \(J \) で計算してきた数 \(i \) を比較し、\(i \leq N_J \) ならば③へ戻って計算を繰返し、\(i \geq N_J \) ならば次へ進む。
⑫ 等流状態になったかどうかを判定して \(\xi_{J+1} = 1 \) ならば④へ、そうでなければ③へ進む。
⑬ 距離方向に \(x \) すすむ data を追加して③へ戻る。
時間の step を 1 つずつする。
計算を行うべく想定していた時間に達したかどうかを判定し、$j = J$ ならば計算を止め、$j < J$ ならば次へする。
$i - 1$ の step で計算した i の数を記憶させる。
i を initial に戻す。
特性曲線が境界条件を与える位置を越えて下流へ行くかどうかを判定し、もし越せばその分だけ捨てる。
境界条件を与える位置の一つ上流と一つ下流の値から境界上における河床高を次の内挿式より求める。

$$
\eta_{i,j} = \eta_{i-1,j} + (\eta_{i+1,j} - \eta_{i-1,j}) \cdot \frac{c_{x,j} - c_{x,i-1}}{c_{x,i+1} - c_{x,i-1}}
$$

以上の手順に従い、$i = 30$ までは大型リレー計算機 FACOM-12B によって計算した。計算に先立って計算 interval の取方について二、三検討してみた。$\Delta t = 0.1$ と 0.2 について初期河床に対する水面変動を行ったところ、前者は非常にスムーズな解を与えるのに対し、後者は計算の不安定を惹き、解が運動するようになつた。また参考のため上下流断面の平均値を用いる計算も行ったが、この場合も $\Delta t = 0.2$ に対し多少計算不安定を起しているようであり、片押の計算よりは改善されたとはいえ、interval を $\frac{1}{2}$ にすることは及ばないことが判った。したかつて $\Delta t = 0.1, \Delta r = 0.005$ として計算をすすめることにした。これは想定した水理条件の下では $\Delta x = 125 \text{m}, \Delta t = 2\text{hr} 30\text{min}$ に相当する。

このような計算不安定を避けるためには、それぞれ必要に応じて計算 interval を小さくすることが原則と思われる。しかし interval を小さくすると計算所要時間が延びることになり、こうした問題は差分式の implicit 化など近似方法の問題と Procrning の巧妙さとともにさらに検討する必要がある。

計算結果の一例として、三の地点の河床高の時間的変化を示したもののが Fig. 10 である。ダムの近くの $\xi = 0.4$ の点では河床が低下していく傾向にあり、$\xi = 1.0$ の付近は変化なく、それより上流は堆積していくようである。これは Fig. 11 に示す特性曲線と対比してみると興味あるところである。この図か

Fig. 10 Variation of river bed with time (calculated)

Fig. 11 Calculated characteristic curve
6. む す び

以上述べた河川上流部の洪水現象を対象として、こうした河床変動の時間的変動過程を踏襲する必要性を強調した。このような関係する要素の多い複雑な現象の解析には、高速度計算機を活用することが適していると思われる。そこで適当な形に無次元化した基礎方程式を数値解析することにより、こうした現象の一般的性質を実証することを試み、このような取り扱いを行う上での二、三の問題点について考察を加えた。しかし計算が十分進行しておりず、実際現象との関連においては明確な結論を得るまでは至っていない。これについてはさらに考察を通じるとともに新設の長大水路を用いて実験的検証を行い、また混合程度による河床材料の粒度変化をも考慮してこうした問題に対する統一的な取り扱い法の確立に努めたいと考えている。

最後にこの研究を行うに当り、Proberacingに有益な御助言を頂いた吉田幸三氏、実験に御協力下さった定巻茨美氏および図面の整理などに労を惜しまれなかった辻本行雄の諸氏に心から感謝の意を表する次第である。

参 考 文 献

1) 山本三郎：河川工学，朝倉書店，昭33，pp. 73.
2) 長野県土木部：長野県土木部，昭36.
3) 長野県土木部：長野県土木部，昭36.
5) 鶴見一之：貯水池堆砂量の一算法，土木学会誌，第39巻第3号，昭54，pp. 143–145.
6) 田中治雄，石下宏：貯水池の堆砂量と集水区域の地形，地質との関係について，土木学会誌，第36巻第4号，昭51，pp. 173–177.
7) 杉尾順三郎：堰による堆砂現象に関する研究，学位論文，昭35.
8) 吉良八郎，横沢広司：貯水池のタイ砂構造に関する実験，農業土木研究別冊，第1号，昭35，pp. 55–74.
9) 山岡鶴：堰における堆砂の進行過程とその形状について，北海道開発局土木試験所月報，第104号，昭62.
10) 矢野勝正，芦田和男，定巻成美：貯水池における堆砂の運動機構に関する研究，土木学会関西支部年次学術講演会概要，昭37，pp. 103–104.
11) 物部長雄：水理学，岩波書店，昭26，pp. 260.
12) 安芸英一：河相論，岩波書店，昭26，pp. 66.
13) 増田重臣，河村三郎：河川の静的平衡勾配について，土木学会論文集，第70号，昭35，pp. 8–16.
14) 矢野勝正，大津淳之：砂防ダムの堆砂勾配について，新砂防，31，昭33，pp. 1–6.
15) 土屋義人，河川の安定段断形状に関する研究，京大防災研究所年報，第5号A，昭37，pp. 192–211.
17) 矢野勝正，河川変動の研究―特に河口付近の波浪が河床に及ぼす影響について一，京大防災研究所年報，第5号A，昭37，pp. 184–191.
18) 芦田和男，田中祐一郎：河川変動に関する二，三の考察，第17回土木学会年次学術講演会概要，昭37，pp. 63–64.
19) 日本建設コンサルタント，長野県土木上流堆砂の変動に関する解析計算報告書，昭36.
(20) 石原篤次郎：応用水理学中 1，丸善，昭33，p. 138.
(21) 石原英雄：高速度計算機の水工学への応用，土木学会関西支部編講習テキスト，昭36，pp. 105—121.