Ground Compliance を考慮した構造物の振動特性

小 堀 鎬 二・南 井 良 一 郎
井 上 豊・鎌 田 題 男

VIBRATIONAL CHARACTERISTICS OF STRUCTURE CONSIDERING THE EFFECT OF GROUND COMPLIANCE

By Takuji Kobori, Ryoichiro Minai, Yutaka Inoue
and Teruo Kamada

Synopsis

Non-dimensional stiffness characteristics for horizontal translation and rotation of a rigid body on an elastic ground are obtained by simulation technique of Ground Compliance. From the eigen value equations for rocking motion of the body, fundamental frequencies and equivalent critical damping ratios of the rigid body-ground system are evaluated. Vibrational characteristics of the one mass system with the foundation-ground system are discussed and remarkable differences are shown between the translational and the rocking motion of the coupled structure-ground system.

1. ま え が き

構造物の地盤応答観測あるいは振動実験さらには常時微動の解釈等によれば、一般に、構造物は単に数学的取扱いの箇所そのに採用されているにすぎない基礎固定の状態にあるわけではなく、特に、軟弱地盤上の構造物の動特性は地盤の影響を大きく受けていることが認められ、合理的な耐震設計において地盤の動特性が構造物の地震時の挙動に及ぼす影響を正しく評価することが重要な問題となっている。地盤の動特性を表現する力学モデルとして、地盤を等価的な質点とパネ系に置換したり、一つの剪断型連続体として表現するといった方法がとられいたが、これらの考え方ににおいては、地盤の質量および剛性等の具体的な評価に困難さを伴っている。

一方、三次元の拡張をもって媒体の波動理論によって、媒体の表面に作用する動的な外力と媒体変位の関係の理論的解明が進み、これは Ground Compliance あるいは Dynamical Ground Compliance として捉えられているが、地盤の動特性を理論的表現する一つの方法として、半無限弾性地盤上の剛体基礎の Ground Compliance の数値解が種々の型の加振力（上下、水平、回転、揺れ）に対して求められている。こうして表現された基礎一地盤系にさらに上部構造を接続した、力学モデルを設定することによって地盤一構造物連成系の地震応答解析を行うことは不可能ではないが、Ground Compliance の評価に当たり、三重フーリエ積分の評価を必要とし、多大の労力を要するので、多くのパラメータについて、任意の地震外力に対する応答解析を行うには現実的でない。

これを解決する一つの方法として、Ground Compliance より、加振振動数に依存する地盤の等価的なパネ特性および減衰特性が求められ、それが振動数に対して大きな変化をしない点を考慮して、対象とする振動数領域の平均的な振動数において与えられるパネとダッシュポットに置換することも可能であるが、回転に対する減衰特性が振動数によって大きく変化することや、あくまで、そのような置換がその振動数における定常振動に対してのみ合致するということを考えると、任意の地震外力に対する広範囲のパラメータ領域における解析には適さない。
筆者等は、地盤—構造物連成系の弾塑性非定常地震応答解析の観点より、Ground Compliance をもとに、地盤のパネ特性を有理関数型近似伝達関数として表現し 3)、上部構造と接続することによって、地盤—構造物連成系の地震応答解析が実現に可能であることを示し 4)、すでに水平動の場合について、3 點点あるいは1 點点剪断型上部構造と基盤—地盤連成系のランダム性非定常地震波に対する応答解析を行い、地盤の動特性が構造物の地震応答に及ぼす影響について多くの研究を行い、なお現在も実行している 5)。

ところで軟弱地盤上の低層間構造物では、構造物の並進と回転、即ち、ロッキング振動の影響が大なる場合もあって半に水平振動のみで構造物の振動特性を論じられないのは当然である。本報告は、水平振動の場合と同様の手法で、回転に対する地盤のパネ特性を Ground Compliance の数値解より近似し、既に得られている水平振動に対するパネ特性と組合せて、基盤の並進および回転を考慮した地盤—構造物連成系の振動特性について考察したものである。地盤および構造物を規定する広範囲の無次元パラメータによって記述される系の運動方程式の固有値方程式を解くことによって、前半において剛体—地盤連成系の、また後半において1 點点剪断型上部構造と地盤連成系の固有振動数と減衰特性について考察を加えている。

2. Ground Compliance とその Simulation

半無限弾性地盤に対し、Fig. 1 に示すような 2b×2c の平面を有する剛体長方形基礎を通じて harmonic な水平および回転加振力 作用させるとき、地盤の代表点の変位は、加振力の振幅および振動数、地盤の弾性常数および基礎の形状の関数として表現され、水平加振力に対する基礎内のせん断変位を で除して表わした基礎の回転角を とすれば、それぞれ次の様に表される。

\[
K_R(\Omega) = \frac{1}{\mu_0} \left. \frac{P_H}{F_{1R}(\Omega) + jF_{2R}(\Omega)} \right|_{\phi = 0}
\]

\[
K_I(\Omega) = \frac{1}{\phi} \left. \frac{P_H}{F_{1I}(\Omega) + jF_{2I}(\Omega)} \right|_{\phi = 0}
\]

ここで、 で および は地盤の水平および回転に対するパネ特性を示し、 および は、同様に、Ground Compliance 特性を示すものであるが、実数部は剛性にまた虚数部は減衰特性に関連するものである。

基礎半巾 および地盤密度 および剪断剛性 あるいは地盤の S 波速度 を基準にとって表わした無次元振動数 に対して表わされた無次元パネ特性 および無次元 ground compliance 特性 および はそれぞれ次式で結ばれる。
等質等方な半無限弾性地盤を考えるとき、無次元 Ground Compliance 特性は基礎の形状指数 c/b と地盤のポアソン比および、加振振動数 ω' の関数であって、$c/b=2$、地盤のポアソン比を $1/4$ とする場合の実験および回転加振に対する無次元 Ground Compliance 特性の理論値はそれぞれ Figs. 2, 3 の○印で示されている。これをもとに、地盤のパネ特性を有理関数型の近似伝達関数として表現する手法については既に詳述した所であり、Fig. 2 の振動数について従来より次の関数型を用いている。

$$
\varepsilon_H(\omega') = \frac{K_H(\omega')}{b\mu} = \frac{b}{c} \frac{1}{f_{Hs}(\omega') + jf_{2H}(\omega')}
$$

等質等方な半無限弾性地盤を考えるとき、無次元 Ground Compliance 特性は基礎の形状指数 c/b と地盤のポアソン比および、加振振動数 ω' の関数であって、$c/b=2$、地盤のポアソン比を $1/4$ とする場合の実験および回転加振に対する無次元 Ground Compliance 特性の理論値はそれぞれ Figs. 2, 3 の○印で示されている。これをもとに、地盤のパネ特性を有理関数型の近似伝達関数として表現する手法については既に詳述した所であり、Fig. 2 の振動数について従来より次の関数型を用いている。

Fig. 2 Dynamical Ground Compliance for horizontal translation.

$$
\varepsilon_H(\omega') = \varepsilon_H(-j\omega') = \frac{c}{b} \frac{s^2 + c_{1H}s^2 + c_{2H}}{d_{1H}s^2 + d_{2H}}
$$

$\omega' = \frac{1}{c}$ とおいて得られる伝達関数 $(d_{1H}s^2 + d_{2H})(s^2 + c_{1H}s^2 + c_{2H})$ の実数部および虚数部は Fig. 2 の曲線に示される通りで、大略 $\omega' = 0$ ～ 2 の振動数領域において理論値と良好な合致を示している。

一方、回転加振に対しては、その理論値が Fig. 3 の○印で示されるよう、$\omega' = 0.8$ の近傍で f_{2H} が極値を持ち、又 f_{3H} は $\omega' = 0$ で ω' 軸に接する等。水平加振の場合よりも幾分複雑な性状を示すので、さらには次数を上げ次の形で近似した。

$$
\varepsilon_H(\omega') = \varepsilon_H(-j\omega') = \frac{s^2 + c_{2H}s^2 + c_{3H}}{3(d_{2H}s^2 + d_{3H}s^2 + d_{1H})}
$$

Fig. 3 の曲線は (4) 式で表わされた近似の結果を示している。虚数部 $f_{2H}(\omega')$ に対して絶対値においてやや大きく評価しているが、全体的にみて $\omega' = 0$ ～ 2 の領域で良好に近似していると言える。

このように地盤の動特性を有理関数型の近似伝達関数として表現することによって、弾性地盤を含む構造物連成系の解析的表現が可能であり、固有値方程式の解より、連成系の固有振動数および減衰率の評価が可能である。
3. 弹性地盤上の剛体の振動特性

前節で設定したような特性を持つ地盤上の剛体の並進および回転を考慮したいわゆるロッキング振動について考える。即ちFig.4に示されるような剛体—地盤系が水平地動変位入力Y_Hによって加振されることを考慮する。この系のラプラス変換経無次元基礎方程式は次のように表わされる。

\[
\begin{align*}
& m_R s^2 U_R + c_R(s') U_R - l_0 U_R - U_H = 0 \\
& m_R s^2 U_R + c_R(s') U_R - l_0 U_R - U_H - m_R l_0 T U_R = 0 \\
& \frac{U_R}{\eta_H} = \frac{Y_H}{\beta}, \quad U_R \subset \eta_R = \frac{b Y_H}{\beta}, \quad U_H \subset \eta_H = \frac{Y_H}{\beta} \\
& s' \subset \tau' = \sqrt{\frac{\mu}{\rho b}} \cdot \frac{T}{b} = \frac{V_1}{b} T \\
& m_H = \frac{M_H}{\rho b^2}, \quad m_R = \frac{M_R}{\rho b^2}, \quad l_0 = \frac{L_0}{b}, \quad \tau = \frac{\rho b g}{\mu b^2 V_1^2}
\end{align*}
\]

Fig. 4 Model of rigid body-ground system.
ここに，m_H, m_R；剛体の質量および回転慣性，L_d；剛体重心の底面からの高さ，Y_H, Y_R；剛体重心の水平変位および重心回りの回転角，Y_H；水平地動変位，d；変位の基準値，g；重力の加速度を示す。

r は重力の影響を示すもので簡単のため以下解説において考えないこととした $r=0$ とする。さらに剛体として密度一様な直方体を考えると m_H と m_R の関係は

$$m_R = m_H (1 + l_d^2) / 3$$ \hspace{1cm} （6）

の関係がある。

$m_H=1.6, 8.0, l_d=1, 2$ の場合について水平地動変位入力に対する重心の並進成分および回転成分の変位増午率をそれぞれ Fig. 5 および 6 に示す。記号は Ground Compliance の理論値によって求めたものであり，曲線は（3）および（4）式のパネ特性を用いたものである。回転成分については幾分の相異がみられるが並進成分とは非常に良く一致していることが判る。このグラフより大略的傾向として，m_H, l_d 即ち m_H, m_R の増加に伴い，固有振動数及び減衰性の減少が読みとれるがこれについて以下に詳しく調べる。

Fig. 5 Amplitude characteristics of translational component of rigid body-ground system.

Fig. 6 Amplitude characteristics of rotational component of rigid body-ground system.
系の運動方程式（5）に対して固有値方程式は
\[
\begin{vmatrix}
 m_H s^2 + \varepsilon R(s') & -l_0 \varepsilon R(s') \\
 -l_0 \varepsilon R(s') & m_R s^2 + \varepsilon R(s') + \lambda^2 \varepsilon R(s')
\end{vmatrix} = 0 \tag{7}
\]
で表わされる（\(\gamma = 0 \)） \(\varepsilon R(s') \) として（3）および（4）式の表現を用いれば、（7）式より \(s' \) に関する7次代数方程式が得られる。2自由度系であるので負の実数部を有する2組の共役複素根と3実根を

を得る。これ本来3実根はすべて負根でなければならぬが、ここで採用した \(\varepsilon R(\omega') \) の係数 \(d_{2n} \) が負であることによって1個の正の実根が得られた。これら負の減衰であって系の発散性を示すものであるが、固有値の評価あるいは振動特性的評価に関する限り大きな影響を与えるものではない。実根であるので、\(d_{2n} \) は他の係数に比して非常に大きな値である。たとえこれを無視したとしてもパネ特性として大きな変化も来たさず、また、Ground Compliance の理論値との相違もそれ程大とはならないので、任意の外乱に対する応答解析において用いるパネ特性としては \(d_{2n} = 0 \) としてもよくよいといえよりよい。

7個の固有値のうち、2組の共役複素根が系の振動性を示す。それぞれの絶対値を比較し、絶対値の小なる方を1次振動とし、絶対値の大なる方を2次振動とすれば、それぞれの実数部は系の1次および2次固有振動数 \(\omega e' \) および \(\omega e' \) に与える。また実数部と絶対値の比より各次振動に対する系の等価粘性減衰比 \(\zeta \) を評価できる。

\[
\omega e' = \text{Im}(s'_1) \quad \omega e' = \text{Im}(s'_2) \\
\zeta = \frac{-\text{Re}(s'_1)}{|s'_1|} \quad \zeta = \frac{-\text{Re}(s'_2)}{|s'_2|} \tag{8}
\]

ここに、\(s'_1, s'_2 \) は（7）式の複素固有値を示す。

Fig. 7 には \(m_H \) をパラメータとして \(l_0 \) を変化させたときの \(\omega e' \) および \(\omega e' \) の変動の様子を示す。これは \(\rho \) および \(b \) を一定とすれば、剛体の質量を変えずに高さを変えたと見れば良く、そのときの剛体の密度 \(\rho' \) は \(l_0 \) に逆比例することになる。\(l_0 = 0 \) の場合は、（7）式より明らかにように、並進および回転がそれぞれ独立の場合の固有振動数が与えられ、\(\omega e' \) は並進のみ、\(\omega e' \) は回転のみの固有振動数に対応する。但し回転慣性に関するパラメータ \(m_R \) は \(m_H / 3 \) に等しい。\(l_0 \) の存在は回転の影響を考慮することであり、必ずしも \(l_0 \) の増加が固有振動数の減少を意味していないが、一般的な傾向として、\(m_H \) および \(l_0 \) の増加に伴い、\(\omega e' \) および \(\omega e' \) ともに減少の性質を示す。これは剛体基礎円の相対的な減少による地盤剛性の相対的低下によるものである。\(m_H = 1.6 \) および3.2の場合をみると \(l_0 \) の増加に伴い \(\omega e' \) は一応増大し次いで減少
している。これはm_Hおよびl_0の小さな場合、即ち、軽くて低い解体では回転を考慮することにより並進のみの場合よりも固有振動数が増加することがあり得ることを示している。この系の各次振動モードは次第数で表わされるが、単純にその実系数によってモードをみると、一般に1次振動は心の水平変位の方向と回転の方向は一致してあり、回転の中心が重心よりも下にあるいわゆる下心ローリングを示し、一方、2次振動は上心ローリングを示す。$m_H=1.6$の場合$l_0<0.4$の範囲で1次振動が上心ローリングであり、2次振動が下心ローリングを示してある。$0.4<l_0<0.5$で、その関係が入れ替わっているのが見られたが、モードに関してはさらに調べる必要がある。m_Hの大きさの場合、固有振動数はl_0の影響をあまり受けず、特にω_4についてこの傾向は著しく、m_Hが支配的であり、これは従来の定数パネ系について言われていることと一致している。

Fig. 8 は1次気動数に対する2次振動数の比を示した。Fig. 7において既に見られたように、(8)式による次数の判別法によれば、$m_H=1.6$ $l_0=0.5$~0.6で$\omega_4' < \omega_4$の関係が見られたが一般に$\omega_4' > \omega_4$。

![Fig. 8](image)

Fig. 8 Fundamental frequency ratio of rigid body-ground system, $m_H=m_H(1+l_0^2)/3$.

![Fig. 9](image)

Fig. 9 Equivalent critical damping ratio of rigid body-ground system, $m_H=m_H(1+l_0^2)/3$.

— 7 —
で、固有振動数比は が増加と共に増大することが判る。が増加するとてこの比は一定化の傾向を示している。又、一般的傾向としては同質量の剛体であれば高い程度振動数比が大になることを示している。

Fig. 9 は両の曲げ振動に対する等価粘性減衰比を示したものである。並進を主体とする 1 次減衰についてみると が増加伴い減衰は減少している。これは固有振動数の場合同じく、相対的な基礎の減少によって説明されるよう。一方、回転を主体とする 2 次減衰は の増加に対して一定の減衰を示しているが、 の増加に対して増大している。 の小さな領域で であり、低い剛体は 2 次振動を無視することを示しているが、 の増大と共に 1 次振動を無視することを示す。

Figs. 7 ～ 9 においては、(6) 式の関係を用いて および を独立に与えた。従って、 をパラメータとして固定して考え を変化させるとき、剛体密度が変化することになる。ところで、剛体密度 を一定とすれば は次式の様に表わされる。

\[m_H = 16 \frac{\rho'}{\rho} l_0, \quad m_R = \frac{16}{3} \frac{\rho'}{\rho} l_0 (1 + l_0) \]

Fig. 10 Fundamental frequency of rigid body-ground system, \(m_H = 16 l_0 \rho'/\rho, \ m_R = m_H (1 + l_0^2)/3 \).

Fig. 11 Equivalent critical damping ratio of rigid body-ground system, \(m_H = 16 l_0 \rho'/\rho, \ m_R = m_H (1 + l_0^2)/3 \).
剛体および地盤の密度比 ρ'/ρ をパラメータとして，固有振動数と減衰比を ω_0 の関数として図示したのが Fig. 10 および 11 である。$\omega_0=0$ の極限値は m_R, m_H が零に近づき，パネ特性 k_R および k_H の零点より定まる定数に近づく。これはパネ特性の係数によって支配されるものと思われる。Fig. 10, 11において ω_0 即ち剛体の高さの影響をより直感的に捉えることができる。全体的な傾向は Fig. 8, 9 と同じであって，ω_0 の増加に伴い固有振動数は減少しているが，ρ'/ρ が小さい場合，ω_0 は ω_0 に関し一時増加することが認められ，高くなることが必ずしも ω_0 の減少を意味しないことがある。減衰については，やはり ω_0 の小さい場合，$\gamma_{mR}>\gamma_{mH}$ であり，1 次減衰は ω_0 の増加と共に急減するのに反し 2 次減衰は ω_0 に関し殆ど一定となっている。

4. Ground Compliance を考慮した構造物の振動特性

前節で設定したような剛体一地盤連成系を構造物の基礎と地盤からなる下部構造と考え，さらに上部構造を接続した，構造物一地盤連成系の振動特性を考える。地盤の動特性が地盤との連成系としての構造物の振動特性に及ぼす影響を捉えやすいように，Fig. 12 に示すように，上部構造として最も単純な減衰のない線型の剛体断面 1 質点系に置換した連成系を想定する。この連成系が水平地動変位入力 F_H によって加振されるときの，基礎の応答と回転を考慮したラプラス変換系無次元基礎運動方程式は次の通りである。

![Fig. 12 Model of structure-ground system.](image)

$$
 m_{10} u_1 + g_1 (u_1 - U_H - h U_R) = 0 \\
 m_{02} u_H + k_R (q S) (U_H - l_0 U_R - U_H) - g_1 (u_1 - U_H - h U_R) = 0 \\
 m_{02} u_R + k_R (q S) (U_R - l_0 U_R - U_H) - h g_1 (u_1 - U_H - h U_R) = 0
$$

無次元パラメータおよび変数の定義は既出のものであるが改めて記ると次にまとめられる。

$$
 m_1 = \frac{M_1}{M}, \quad m_0 = \frac{M_0}{M}, \quad m_R = \frac{M_R}{\rho b^2}, \quad m_{00} = \frac{M_{00}}{M b}, \quad m_{R0} = \frac{M_{R0}}{\rho b^2} \\
 U_1 \lessgtr \eta_1 \lessgtr \frac{Y_1}{\bar{A}}, \quad U_R \lessgtr \eta_R \lessgtr \frac{Y_R}{\bar{A}}, \quad U_H \lessgtr \eta_H \lessgtr \frac{S_R}{\bar{A}} \\
 h = \frac{H}{b}, \quad l_0 = \frac{L_0}{b}, \quad g_1 \lessgtr \frac{K_1}{K}, \quad \gamma_R \lessgtr \frac{b u}{K} \\
 s \lessgtr \tau = \sqrt{\frac{K}{M}}, \quad \tau' \lessgtr \sqrt{\frac{\mu}{\rho}}, \quad \tau = q \tau' \\
 m_{00} = m_R \epsilon x^2, \quad m_{R0} = m_R \epsilon x^2
$$
\(M, K, J \) はそれぞれ質量、剛性、変位の基準量で上部構造の対応するものをとることにより、\(m_1 = 1, k_1 = 1 \) とする。従って、基礎固定とした上部構造のみの無次元固有振動数 \(\omega_k \) は 1 である。構造物の高さ \(H \) は基礎の半径に等しいとして \(h = 1 \) を設定した。

また、\(q \) は、下部構造に関する無次元時間 \(\tau' \) と上部構造に関する無次元時間 \(\tau \) を結ぶパラメータで、無次元振動数 \(\omega' \) に対する表現として求められたパネル特性 \(\kappa_H (\omega') \) および \(\kappa_q (\omega) \) は無次元振動数 \(\omega \) に対する表現としてそれぞれ \(\kappa_H (\omega q) \) および \(\kappa_q (\omega q) \) として用いられる。

上部構造と下部構造を結ぶパラメータとして、上部構造および下部構造をそれぞれ独立としたときの最低次固有振動数 \(\lambda \) を採用する。前節において基礎と弾性地盤からなる系の固有振動数 \(\omega_k' \) が求められているので次の関係式が成り立つ。

\[
\lambda = \frac{\omega_k'}{\omega_k}, \quad \lambda = q \frac{\omega_k'}{\omega_k} = \frac{q}{\omega_k'}, \quad \text{….….…(11)}
\]

構造物—地盤連成系の振動特性のパラメトリックな考察をするために、次のパラメータについて変化させた。

即ち
\[
m_0 = 0.2, 0.8
\]
\[
m_H = 1.6, 8.0
\]
\[
l_0 = 0.05, 0.2, 0.5, 1.0
\]
\[
\lambda = 0.1 \sim 1.0
\]

(10) 式に対する固有値方程式は次の通りである。

\[
\begin{vmatrix}
 m_0 \omega_k^2 + \kappa_1 & -\kappa_1 \\
 -\kappa_1 & m_0 \omega_k^2 + \kappa_1 + \kappa_2 + \kappa_3 + \kappa_4 + \kappa_5 + \kappa_6 + \kappa_7 + \kappa_8
\end{vmatrix} = 0 \quad \text{….….…(12)}
\]

(3) および (4) 式の表現を用いることにより、(12) 式は \(s \) に関する 9 次代数方程式に帰着し、3 組の負の実数根を有する複素根と 3 実根を含む。前節の場合と同じ評価によって、各次固有振動数 \(\omega_1, 2\omega_2, 3 \omega_3 \) とそれに対応する等価粘性減衰比 \(h_{1e}, 2h_{2e}, 3h_{3e} \) を得るが、構造物系の振動特性として特に長周期の構造物を考えるのではなければ、又、1 実質増幅系であるので、第 1 次振動が第 1 程度に重要と考えられる。そこで、以下において、連成系 1 次固有振動数 \(\omega \) およびそれに伴う等価粘性減衰比 \(h_{1e} \) について、パラメトリックな考察を行う。

Fig. 13 に下部構造—上部構造質量比 \(m_0 \)、下部構造—地盤質量比 \(m_H \) によって分類し、\(l_0 \) をパラメータとして \(\omega \) および \(h_{1e} \) を \(\lambda \) に関するグラフとして示す。\(\lambda \) は上部構造と下部構造の相対的な剛性関係を示すもので、\(\lambda = 0 \) は基礎固定に対応し、\(\lambda \) の增加と共に地盤剛性は低下する。即ち地盤の相対的な剛性は \(\kappa_2 \) で評価されるが

\[
\kappa_2 = \frac{b_H}{K} \frac{b_H}{K_1} = \frac{m_0}{m_H \omega_k^2} = \frac{m_0}{m_H}, \quad \frac{1}{(\lambda \omega_k')^2}
\]

の関係が成立する。ここで \(\omega_k' \) は前節に示した様に、\(m_0, l_0 \) の関数であって、一般に、\(m_0, l_0 \) の増加と共に減少するがその減少の度合いは大きくなるため、\(\kappa_2 \) は \(m_0^2 / \lambda^2 \) に比例し \(m_H \) の減少関数となる。従って連成系の無次元固有振動数 \(\omega \) は基礎固定に対応する \(\lambda = 0 \) において 1 で、\(m_0 \) の小なる程、又 \(m_H, l_0 \) および \(\lambda \) の大なる程 \(\omega \) は低下する。他のパラメータを固定して \(m_0 = 0.2 \) から 0.8 に変化させることは、地盤の相対剛性を 4 倍にしたことに対応し、\(\omega \) の低下は 0.2 の場合の約 4 倍である。連成系固有振動数に直接的に影響を与えるものは \(\lambda \) であるが、上部構造を固定して考えれば、これは地盤に関するパラメータと云えることができる。\(\lambda \) の増加は地盤の軟化化に対応し、軟弱地盤での固有振動数の低下を示しており、有効周期の伸びは \(\lambda^2 \) に比例する傾向を示す。図中に示される O 印は、(12) 式で \(h = 0, l_0 = 0 \) とおいて求められる水
Fig. 13 Fundamental frequency and equivalent critical damping ratio of structure-ground system.
平振動のみを考えた場合の固有振動数である。パラメータ \(m_0, m_H, \lambda \) の影響については、既に水平振動のみを考えた場合の振動特性として報告し、本報において述べたのと同様であり、基礎の回転をさらに考慮することにより、連成系の固有振動数はさらに低下している。この低下の度合いは \(l_0 \) の値により大きく変化していることが認められ、\(m_H \) の小なる場合は特に \(l_0 \) よって大きく変化している。これは、前節で述べたように \(\omega_0 \) によって大きく変わり、地盤の相対的な剛性 \(E_0 \) を大きく変えることによる。

地盤からのエネルギー逸散による減衰は \(m_H \) とが \(\lambda \) 配合的であって、これは基礎の相対的な剛性と地盤の剛性に関係するので、\(m_H \) の小なる程 \(\lambda \) の大なる程減衰は大となる。等価的な傾向として、\(l_0 \) の大なる場合減衰は小と言えるが、\(m_H \) の小なる場合、\(\lambda \) との関係において、必ずしも \(l_0 \) の影響が同一であることを示しています。\(m_0 \) の影響は \(\lambda \) の小なる部分では \(m_0 \) が小なる程減衰は大であるが、\(\lambda \) の大なる領域では逆に \(m_0 \) が大きい程減衰は大となっている。

5. 結び

Ground Compliance の理論値をもとに、回転に対する地盤のパネ特性を有理関数型近似伝達関数として表現し、既に得られている水平震に対するパネ特性を同時に考慮し、弾性地盤上の場合、あるいは、上部構造一基礎一地盤連成系の固有値方程式の解より、系の固有振動数と地盤のエネルギー逸散による減衰特性を広範囲の歴史元パラメータ領域において評価した。

剛体一地盤連成系では水平動のみを考慮した場合と比較して、基礎の回転を考慮することによって、系の固有振動数は一般に低下するが、重量の小さな剛体では 1 次固有振動数は相対的に増加することが認められ、通常のパネ系による拘束の解釈によって生じる固有振動数の低下は疑問が見られた。地盤そのものには特別の減衰機構を考えていないが、地盤におけるエネルギー逸散による減衰の量は相当大きく、剛体の重量、高さ等に関し大きく変化することが示された。

1 質点上部構造と基礎一地盤系を結びとした連成系の固有振動数は、基礎の回転を考慮することにより、並進のみの場合よりさらに低下する。下部構造の特性の影響は地盤と上部構造の相対的な剛性比によって異なり、軟弱地盤である場合の系の固有振動数の低下は著しい。基礎の高さの影響は基礎一地盤質量比の小なる場合は大きく作用するが、基礎の高さがそれ程高くないと考えられるので、その影響は一般に少ないと考えられる。減衰に関しては、上部一上部構造振動数比と基礎一地盤質量比が支配的である。基礎の高さは一般に低い程減衰は大である。

本報に示されたように、地盤の水平および回転に対するパネ特性を有理関数型に表現することにより、任意の地盤外乱に対して、基礎の並進と回転を考慮した地盤一構造物連成系の応答解析が可能である。今後の研究として、このようなパネ特性一地盤連成系の非定常地盤応答解析をもとに、地盤の動特性が、構造物の地盤応答に及ぼす影響について追求したいと考えている。

最後に、本報の作成に当り、多大のご協力を賜った小林研究室の諸兄に対して、特に、図面作成の業をわずらわせた大谷啓一君に感謝の意を表します。

参考文献

3) 小野川・南井良一郎・井上 豊：矩形基盤の Ground Compliance とその Simulation について，京都大学防災研究所年報，第 7 号，昭 39. 3，pp. 164～178.
4) 小野川・南井良一郎・井上 豊：Ground Compliance を考慮した構造物の地震応答，京都大学
5) 小堀輝二・南井良一郎・井上 豊：Ground Compliance を考慮した構造物の地震応答（第 2 報）、
防災研究所年報，第 7 号，昭 39，3，pp. 179～194。
6) 小堀輝二・南井良一郎・井上 豊・鎌田輝男：Ground Compliance を考慮した構造物の地震応答
（第 3 報）、防災研究所年報，第 8 号，昭 40，3，pp. 193～218。
7) 小堀輝二・南井良一郎・鈴木 有・日下部馨：長方形基礎の Dynamical Ground Compliance（そ
の 1）ー半無限弾性地盤の場合ー、防災研究所年報，第 10 号 A，昭 42，1，pp. 261～281。
8) 小堀輝二・南井良一郎・井上 豊・鎌田輝男：Ground Complicance を考慮した弾塑性構造物の地
震応答，地震工学国内シンポジウム論文集，1966，pp. 267～272。
9) Kobo;i, T., R. Minai and Y. Inoue: On Earthquake Response of Elasto-Plastic Structure
Considering Ground Characteristics, Proc. of the Fourth World Conf. on Earthq. Eng..