有限振幅波理論による wave shoaling について

安 田 孝 志・土 屋 義 人

ON WAVE SHOALING BY FINITE AMPLITUDE WAVE THEORIES

By Takashi Yasuda and Yashito Tsuchiya

Synopsis

In this study, a theory of wave shoaling is described by the energy flux method, in order to make clear characteristics of wave transformation such as changes of wave hight and wave length and effects of higher order terms of nonlinearity and dispersion in the wave equations on the wave transformation with shoaling.

As a result, characteristics of wave transformation according to changes of the water depth and current velocity are found. It is also found that the effect of the higher order terms on the wave transformation is remarkable.

1. 緒 言

浅水変形 (wave shoaling) に関する取り扱いとしては、周知のように、エネルギーフラックス法のほかに、基礎方程式を直接数値的に解く方法、あるいは簡略化した基礎方程式を数値的または解析的に解く方法などがあるが、いずれの方法にも一長一短があり、現在なお決定的手法は確立されていないようなである。ここでは、変形に及ぼす勾配の効果や波形の変形効果などの評価の点で問題はあるが、定形波の理論のエネルギーフラックスの保存則への適用によって、容易 wave shoaling に及ぼす波動理論における高次近似の効果を明らかにすることができるエネルギーフラックス法を用い、流れの影響をも含めつつ浅水変形の特性を明らかにする。

ところで、エネルギーフラックス法による傾斜海浜上の波の変形に関する研究はこれまで数多く行われ、それぞれ優れた成果を挙げてきているが、この方法では、用いる保存形式およびそれに用いるべき有限振幅波理論が適切であることが必須となる。前者の問題としては、波数の保存則より導かれる周波数が不便という仮定が、クノイド波の適用において必ずしも自明でないという問題のほかに、流れの場での波の形の計算に用いられるエネルギーフラックスの表示が、Phillips, Jonsson らおよび後藤によるそれぞれ異なっているために、wave shoaling の計算結果も異なったものになっているという問題がある。さらに、後者の問題としては、従来の有限振幅波理論には、波速の任意性の問題があり、このため、山口もによって明らかにされたように、用いる波速の定義に応じて波の変形特性も異なったものになっている。

そこで、本研究では、前者の問題については基礎となる保存形式から用いるべき基礎的関係を導き、後者の問題については Stokes の波速の定義に依存しない著者らの有限振幅波理論を用いることによって、wave shoaling の計算を行う。

2. 基礎方程式

周期が場所的に変化しないという仮定は、定常波での波数の保存則からも形式的に確かめられるが、クノ
イド波理論では、角周波数 \(n \) と周波 \(T \) の間に波の特性に応じて変化する第1種完全楕円積分 \(K(k) \) を媒介とした次式

\[
n = \frac{2K(k)}{T}
\]

(1)

の関係があるため、角周波数 \(n \) が一定であっても周波 \(T \) は必ずしも一定ではない。ここに、\(k \) は母数である。

この点を明らかにするためには、斜面上での波の理論の展開が必要であるのが、ここでは従来と同様、周波 \(T \) は場所的に一定であると仮定し、問題点の指摘に留める。

また、流量 \(Q_o \) の定常な流れの場での波の変形を扱うには、質量に関する保存式が必要となり、それは次式で表される。

\[
\frac{dQ_o}{dx} = 0, \quad Q_o = \rho (h + \delta h) U + Q = \text{const.} \tag{2}
\]

ここに、\(\delta h \) は平均水位と静水位との差を示し、\(Q \) は波による質量流束を示す。これから、任意水深での流速 \(U \) は

\[
U = \frac{Q_o}{\rho (h + \delta h)} - \frac{Q}{\rho (h + \delta h)} \tag{3}
\]

で表され、\(Q_o \) のみならず \(Q \) および \(\delta h \) にも依存することがわかる。なお、\(\delta h \) は運動量の保存式を用いて、次式より求められる。

\[
\frac{d}{dx} (M+S) = - \rho g (h + \delta h) \frac{d\delta h}{dx} \tag{4}
\]

ここに、\(M \) は波と流れの質量輸送に依存した運動量流束を示し、\(S \) は過剰運動流束を示す。radiation stress を示す。

さらに、エネルギー・フラックスの表示については、著者で述べたような表示の不統一という問題があり、この問題を解決するためには非定常項を除いたエネルギー保存式に立ち返る必要がある。流れのある場合での静水面を基準にしたエネルギー保存式として、Phillipsらにより示された全エネルギーに関する保存式および波のエネルギー・フラックスに関する保存式があり、それぞれ式 (5) および (6) のように表される。

\[
\frac{\partial}{\partial t} \left\{ \frac{Q_i}{2\rho (h + \delta h)} + \frac{\rho g}{2} (h-k) - \frac{Q_s^2}{2\rho (h + \delta h)} + E \right\} + \frac{\partial}{\partial x} \left\{ \frac{Q_j^2}{2\rho (h + \delta h)} + g \delta h Q_o \right\} +
\]

\[
\frac{Q_j^2}{2\rho (h + \delta h)} + \frac{\rho g Q_j}{2\rho^2 (h + \delta h)} + UE + F + US = 0 \tag{5}
\]

ここに、\(E \); 波の全エネルギー、および \(F \); 波のエネルギー・フラックスである。これら両式はいずれも共系でのエネルギー保存式であることから、いずれを用いても良く、Longuet-Higgins らや Phillips は定常場での式 (6) を用いて変形の概算をしている。しかしながら、エネルギー・フラックス法では、\(\partial U/\partial x \approx 0 \) と仮定するため、次式に示すエネルギー・フラックスの表示が用いられ、radiation stress の影響が無視されることになる。

\[
UE + F - \frac{Q_j Q_s}{2\rho^2 \delta h^2} = \text{const.} \tag{6}
\]

これに対して前者は、定常場での式 (5) より導かれるエネルギー・フラックスの表示式 (8) を用いている。エネルギー・フラックスの表示式 (8) を用いている。この場合、\(\partial U/\partial x \approx 0 \) と仮定していなくても radiation stress の影響は無視されることになるが、式 (5) の第1項に水深が含まれているため、この式の深海波への直接の適用是不可能となる。このため、それらをあわせて行った観察の計算には若干問題があると言えよう。また、Jonsson らは、流体の流れ場でのBernoulli
安田・土屋：有限振幅波理論による wave shoaling について

式の表示から水深の減少に伴って海底勾配に関係なく set down が生じることを示すとともに、平均エネルギー水頭を基準にした全エネルギーの保存式より、次式に示すエネルギーフーラックスの表示を導いている。

\[
(1+\frac{U}{c}) (U+c_{\theta}) E = \text{const.} \]

(9)

この式、\(c_{\theta}\)は波のエネルギー輸送速度である。そこで、Jonssonらによって行われた平均エネルギー水頭の計算に問題のあることに加えて、さきのエネルギー保存式の深海波への適用に難を伴う場合と同様の問題点が指摘されよう。これらのことから、著者間は平均エネルギー水頭の計算上の問題点を解決するとともに、エネルギー水頭を基準にした、式 (5) および (6) に対応するエネルギーの保存式をそれぞれ（10）、および（11）に示すように導いた。

\[
\frac{\partial}{\partial t} \left[\frac{Q_{\theta}^2}{2\rho(h+\delta_h)} - \frac{Q_{\theta}^2}{2\rho(h+\delta_h)} + E + \frac{\rho h}{2} (\delta_{\theta}^2 - \delta_h^2) \right] + \frac{\partial}{\partial x} \left[\frac{Q_{\theta}^2}{2\rho^2(h+\delta_h)^2} + \frac{Q_{\theta}^2}{2\rho^2(h+\delta_h)^2} \right]
\]

\[+ U E + F + U S - g \delta_{\theta} Q_{\theta} = 0 \]

(10)

\[
\frac{\partial}{\partial t} \left[E - \frac{Q_{\theta}^2}{2h(h+\delta_h)} \right] + \frac{\partial}{\partial x} \left[U E + F - \frac{Q_{\theta}^2}{2h^2(h+\delta_h)^2} \right] + g \frac{\partial U}{\partial x} = 0 \]

(11)

ここで、\(h\)は平均エネルギー水頭であり、また\(\delta_{\theta}\)は次式で表される。

\[
\delta_{\theta} = h - h
\]

これを、式 (11) は式 (6) に一致することがわかるとともに、式 (6) は深海波への適用が可能であるところから、式 (4) の近似をゼロと仮定すれば、結局、共存系でのエネルギーフーラックスの表示としては式 (7) を用いればよいことがわかる。これから、ここで行う波の変形の計算に用いる条件式として、次式をあげることができる。

\[
T = \text{const.} \]

\[
U = \frac{Q_{\theta}}{\rho h} \frac{Q_{\theta}}{\rho h}
\]

\[
U E + F - \frac{Q_{\theta}^2}{(ph)^2} \]

(13)

さて、総括で述べたように、有限振幅波理論として Stokes 波理論の第 4 次近似解、新しいクノイド波理論の第 3 次近似解および擬 Stokes 波理論の第 4 次近似解を用いることにより、式 (13) の適用によって wave shoaling を表すうすの諸式が得られる。

まず、Stokes 波理論および擬 Stokes 波理論を用いた場合には、次式が得られる。

\[
(1+\frac{1}{4}) \left(\frac{h}{L_0} \right)^{1/2} \left[1 + \frac{F_r - \frac{1}{6} \left(\frac{2\pi h}{L} \right)^2}{1 + \left(\frac{2\pi h}{L} \right)^2} \right] = \frac{55}{3024} \left(\frac{2\pi h}{L} \right)^6
\]

\[
\quad + \frac{941}{64800} \left(\frac{2\pi h}{L} \right)^8 + \frac{9}{128} \left[2 \left(\frac{2\pi h}{L} \right)^2 + 1 \right] = 0 \]

(14)

\[
F_r = \frac{Q_{\theta}}{\rho g} \frac{1}{2} \left[3 - \frac{1}{6} \left(\frac{2\pi h}{L} \right)^2 + \frac{7}{18} \left(\frac{2\pi h}{L} \right)^4 - \frac{641}{7560} \left(\frac{2\pi h}{L} \right)^6 \right]
\]

\[
- \frac{9}{32} \left(\frac{2\pi h}{L} \right)^4 \left[1 + 3 \frac{3}{32} \left(\frac{2\pi h}{L} \right)^2 \right] \]

(15)

\[
\frac{1}{8 \pi} \left[\frac{8}{\pi} \right]^2 \left(\frac{h}{L_0} \right)^{-4} \left[1 + \frac{3}{4} \right] A_\theta = \frac{1}{8} \left[1 - \frac{1}{2} \left(\frac{2\pi h}{L} \right)^2 + \frac{9}{72} \left(\frac{2\pi h}{L} \right)^4 + \frac{133}{3024} \left(\frac{2\pi h}{L} \right)^6 \right]
\]

\[
+ F_r \left[1 + \frac{11}{60} \left(\frac{2\pi h}{L} \right)^4 + \frac{13}{105} \left(\frac{2\pi h}{L} \right)^6 \right] + \frac{1}{512} \left(\frac{2\pi h}{L} \right)^4 \left[9 + 15 \left(\frac{2\pi h}{L} \right)^2 + \frac{3}{2} F_r \right] \left(\frac{2\pi h}{L} \right)^6 \]

(16)

ここで、\(L_0\)；深海波の波長、\(L\)；水深 \(h\)での波長および \(F_r\)；流れの Froude 数であり、さらに \(A_\theta\) および
\(A_0 \) はそれぞれ次の各式により求められる。

\[
A_0 = \left(\frac{h}{L_0} \right)^{1/3} \left(\frac{256(2n h/L)}{18(3+5(2n h/L))} \right)^{1/3} \left[1 + \frac{16384a^4}{1243(3+5(2n h/L))^2} \left(\frac{L_0 H}{h} \right)^{2/3} + 1 \right]^{1/3} \\
- \left(\frac{h}{L_0} \right)^{1/3} \left(\frac{256(2n h/L)}{18(3+5(2n h/L))} \right)^{1/3} \left[1 + \frac{16384a^4}{1243(3+5(2n h/L))^2} \left(\frac{L_0 H}{h} \right)^{2/3} + 1 \right]^{1/3}
\]

\[
\frac{3}{8} A_0 + A_0 = -\pi \left(\frac{H_0}{L_0} \right) = 0
\]

ただし, \(H_0 \); 海面の波高, および \(H \); 水波 \(h \) での波高である。
また, Stokes 波理論および新しいクノイド波理論を用いた場合には, つぎのようになる。

\[
2K \left[\frac{h}{2\pi L_0} (1 + A_0) \right]^{1/3} = -\frac{1}{2k} (3a) \left[1 + F_r - \frac{2k^2}{10k^4} (3a + k^2 - 2) + \frac{2k^2}{40k^4} \left(15\pi + 24k^2 - 4 \right) \right. \\
+ \left. 19k^2 - 64k^2 + 64 \right] - \frac{3k^6}{5600k^4} \left[10k^2 (6927e + 10799k^2 - 14112) - 2e (4603k^4 + 77092k^2 \\
- 80317) - 24155k^4 + 74838k^2 - 5959k^2 - 41974) \right] \right] = 0
\]

\[
F_r = \left(\frac{Q}{\rho g^2 L_0^3} \right) \left(\frac{h}{L_0} \right)^{1/3} = -e (3a + 2k^2 - 4) + k^2 - 1 - \frac{3k^2}{20k^4} \left(145\pi + 24k^2 - 4 \right) \\
+ e (34k^2 - 179k^2 + 179) (k^2 - 3k^2 + 2)
\]

\[
\frac{1}{8\pi} \left(\frac{h}{L_0} \right)^{1/3} A_0 \left(1 + \frac{a_1}{4} \right) = -\frac{k^2}{3k^4} \left(1 + F_r \right) \left(-k^2 + 2k^2 - 4 \right) + k^2 - 1 \\
+ \frac{k^2}{30k^4} \left(255e^2 + 313k^2 + 313 \right) - 29k^2 + 87k^2 - 58 \\
+ \frac{k^2}{30k^4} \left(195e^2 + k^2 + 2 \right) + e (48k^4 - 243k^4 + 243) - 24k^4 - 72k^2 - 48 \\
+ \frac{k^2}{4200k^4} - 25e (846e^2 + 11732k^2 - 22792) - e^2 (12721k^4 - 56716k^2 + 555961) \\
- e (1664k^4 + 35107k^2 - 232180) - 8321k^6 + 42765k^2 + 68886k^2 \\
- 34444 + \frac{k^2}{4200k^4} \left(255e^2 + 786k^2 - 15064 \right) - e^2 (89516k^4 \\
- 384566k^2 + 737366) - e (11952k^4 - 107444k^2 + 245020k^2 - 161480) \\
+ 5976k^4 - 31565k^4 + 51178k^2 - 25589) - \frac{k^2}{44k^4} \left(1 + F_r \right) \left(-e^2 (3a + 2k^2 - 4) + k^2 - 1 \right)^2
\]

ここに, \(e = E/K \), \(K \); 第 1 順完全幅円積分, \(E \); 第 2 順完全幅円積分および \(k \); 幅円積分の母数であり, \(\lambda \) は次式より求められる。

\[
\lambda = \left(-\frac{a_1}{27} + \frac{a_2}{6} - \frac{a_2}{6} + \frac{1}{6} (27 a_2 + 4 a_2 - a_2) + 4 a_1 a_2 - 18 a_1 a_2 k) \right) \left(\frac{a_2}{27} + \frac{a_2}{6} + \frac{1}{6} (27 a_2 + 4 a_2 - a_2) + 4 a_1 a_2 - 18 a_1 a_2 k) \right) \right]^{1/3}
\]

\[
a_1 = \frac{20k^4 (12a + 5k^2 - 10)}{10e (83a + 76k^2 - 136) + 130k^4 - 560k^2 + 560} \\
a_2 = \frac{20k^4 (12a + 5k^2 - 10)}{10e (83a + 76k^2 - 136) + 130k^4 - 560k^2 + 560} \\
a_3 = \frac{20k^4 (12a + 5k^2 - 10)}{10e (83a + 76k^2 - 136) + 130k^4 - 560k^2 + 560}
\]

3. 一様海浜における波の変形

ここでは, 浄水変形の特性を波高および波長変化に関して明らかにする。
3.1 変形の計算

この場合には流れが存在しないので, \(F_r = 0 \) であるから, \(H_0/L_0 \) および \(h/L_0 \) を与えて \(H/H_0 \) および \(L/L_0 \) を求めることがになる。なお, ここで用いる新しいクノイド波理論および擬 Stokes 波理論の適用領域は, せつ動解の収束性から判断してそれぞれ \(T \sqrt{g/h} \approx 10 \) および \(15 \geq T \sqrt{g/h} \approx 8 \) であると考えられるから, 式 (19) および (21) については \(h/L_0 \leq 0.05 \) の領域において用い, 式 (14) および (16) については \(0.05 \leq h/L_0 \leq 0.1 \) の領域において用いることにした。そして, 以上の各式において \(F_r = 0 \) とおき, 逆補間法および Regular falsi 法の併用によって各式を同時に \(10^{-4} \) の精度で解いた。また, 最大波の計算については, Rankine-Stokes の最大波の条件を用いた。

3.2 計算結果および変形の特性

Figs. 1 および 2 は, それぞれ \(H/H_0 \) および \(L/L_0 \) と \(h/L_0 \) との関係を, \(H_0/L_0 \) をパラメターとして示したものであり, 図中の breaking inception は前述の方法で求めたものである。なお, \(h/L_0 \leq 0.05 \) での計算結果については, 近似解の収束性を検討するため, 第 1 次および第 2 次近似解による計算結果を併せて示した。

まず, Fig. 1 から, 近似の程度による相違は \(H_0/L_0 \) の増大とともに顕著になり, 特に breaking inception および \(h/L_0 \approx 0.05 \) 付近において顕著になることがわかる。しかしながら, 近似の高次化に伴って, 近似解が一様に収束する傾向が見られるとともに, 第 3 次近似解では微小振幅波理論による結果への収束性がきわめて良好となることから, ここに示した第 3 次近似解による結果は, 波高変化に関する shoaling の理論として十分な精度を持つものと言えよう。

ついて, 波長変化を示した Fig. 2 からも, Fig. 1 と同様な傾向が見られるが, 近似解による相違はさらに小さくなってしまおり, 第 3 次近似解の収束性は良好であることがわかる。このことは, 近似解による相違が波速に関しては比較的小さく, 特に \(T \sqrt{g/h} \geq 20 \) ではその相違をほとんど無視できることの結果と考えられる。また, クノイド波理論および擬 Stokes 波理論によるそれぞれの結果が \(h/L_0 = 0.05 \) において滑らかに

Fig. 1. Change of wave hight with water depth on sloping beach.

Fig. 2. Change of wave length with water depth on sloping beach.
4. 流れによる波の変形

4.1 変形の計算

この場合に 2 で導いた基礎方程式がそのまま用いられ、H_0/L_0 および h/L_0 のほかにさらに F_c を与えて H/H_0 および L/L_0 を求めることになるが、単位幅流量 Q_0 を一定とする場合には F_c の代わりに Q_0 を与え、式 (15) より (20) より F_c を求めて計算する必要がある。このため、Q_0 を与えて計算する場合には、式 (14), (15) および (16) の各式式 (19), (20) および (21) の各式をそれぞれ同時に解かなければならない。なお、各式を用いる領域は 3 の場合と同様に、また数値計算も同様に行った。さらに、最大波の計算についても波と流れの共存系の理論に Rankine-Stokes の最大波の条件をそのまま適用して行った。

4.2 計算結果および変形の特性

Figs. 4 および 5 は、水深とともに流れの変化する一定流量の場波が進入してきたときに生じる変形を示したもので、H/H_0 および L/L_0 と h/L_0 との関係を H_0/L_0 および $Q_0/\rho g T^3$ をパラメーターとして示している。なお、図中 $Q_0 > 0$ は逆流、および $Q_0 < 0$ は逆流を示す。この場合については、新しいクノイド波理論の第 2 次近似波による結果を併せて示したが、これから、Figs. 1 および 2 と比べて収束性がきわめて良好であり、流れのある場合についてもクノイド波理論の第 3 次近似波による結果は、十分な精度を持つことがわかる。

まず、順流の場合には、$H_0/L_0 \sim 0.0002$ 付近を境にして h/L_0 に対する H/H_0 の特性が変化し、$H_0/L_0 > 0.0002$ では非線形効果のために微小振幅波理論による結果と対応した特性を示している。しかしながら、波長の変化については、そうした傾向は現われず、いずれの H_0/L_0 の値に対しても h/L_0 に対する L/L_0 の変化に極値の生じる傾向が現われ、流れのない場合との相違がよく現われている。このように、順流の場合の波高変化に対しては、水深および流れ変化による相関効果が非線形効果を加えるために、微小振幅波理論による結果と異なった結果が生じるが、波長変化に対しては H_0/L_0 に関係なく流れの影響が現われること
Fig. 4. Change of wave height with water depth under constant discharge.

Fig. 5. Change of wave length with water depth under constant discharge.

がわかる。
一方、逆流の場合には、相反効果は現われておらず、両者の効果は一致していることがわかるとともに、
波長が短くなるために非線形性の卓越が抑えられ、微小振幅波理論による結果との相違は小さくなる傾向に
あることがわかる。

Fig. 6 は、H_0/L_o をパラメターとして各 h/L_o の位置での H/H_o および L/L_o と F_r の関係を示したものので、これから同一の H_0/L_o に対して h/L_o の減少とともには F_r の影響も減少することがわかる。これは、長波波の波になるに従って、流れの影響を受け難くなることを示し、すでに著者らが示した結果と一致している。また、F_r の影響は H_o/L_o の小さい波に対してより顕著であることがわかるが、これは、エネルギー輸送速度が H_o/L_o の減少とともに大きく、逆流の場合に H_o/L_o のより小さい波において顕著な波高の増大が見られるようになったことに加えて、順流の場合には波長の伸長が生じ、それによって非線形変形が増大するようになるため、H_o/L_o の大きい波では波高の変化が抑えられる結果と考えられる。

5. 結 語

以上、Stokes の波浪の変形に依存しない著者らの有限振幅波理論を保存式に適用することによって、Stokes の波浪の変形に基づく変形を除去した wave shoaling の計算を行い、傾斜海浜および流れの存在する場での波の変形特性を明らかにしたが、その主要な結論は次のようや要約される。

1) 波高および波長変化のいずれに対しても、新しいクノイド波理論の第 2 および第 3 次近似解による相違は小さく、一致した収束性が見られるに加えて、微小振幅波理論による結果への収束が第 3 次近似解において良好であることがわたった。

2) H_o/L_o が小さく、また H_o/L_o が大きくなるに従って、微小振幅波との相違が顕著となり、有限振幅波の変形が特徴づけられることがわたった。

3) 波浪の変形の波長変化の相違は、近似解の近似次数による相違の程度であるが、近似精度が高くなるに従って問題になるようである。

4) 流れのある傾斜海浜上の波の変形についても、近似解の収束性が良好であることが認められるとともに、順流の場合に生じる波の変形に及ぼす水深と流れの相反効果のために、波長変化に対しては H_o/L_o に関係なく極値が生じるが、波高変化に対しては H_o/L_o が十分に小さくなければ極値が生じないことがわ
かった。一方、逆流の場合はこうした相反効果は現われず、順流の場合よりも微小振幅波との相違が小さくなることが明らかとなった。

5) 一定水深の場で流速のみを変化させた場合の波の変形については、h/L_0 が小さく、また H_0/L_0 が大きくなるに従って、流れの波に及ぼす影響は非線形性の増大のために小さくなる傾向にあることが明らかとなった。

参考文献

4) 土屋義人・安田孝志：浅海における波の変形－特に soliton の発生について－，第20回海岸工学講演会論文集，1973，pp. 397-401.

8) 黄 烈輝・郭 金煉：流れの中における Stokes 波の shoaling について，第22回海岸工学講演会論文集，1975，pp. 69-73.

9) 山口正隆・土屋義人：有限振幅波理論に基づく波の shoaling について，第22回海岸工学講演会論文集，1975，pp. 59-73.