STUDIES ON LATERAL BUCKLING OF WIDE FLANGE BEAMS, Report No. 5

Effect of Moment Gradient on Rotation Capacity of Beams and Design Principles of Bracing Members.

By Takeshi Nakamura and Minoru Wakabayashi

Synopsis

In this paper, reported is a design method of H-shaped beams in plastic range, in which the lateral buckling effects are taken into consideration. Based on the experimental results and semitheoretical aspects, a design formula which gives the relationship between the lateral bracing spacing and rotation capacity under moment gradient and a design principle for lateral bracings are derived and proposed.

1. 序

構造物の塑性設計法によって設計する場合、あるいは新しく規格化、制定された「新耐震設計法」の基礎としては一種の構造物の終局耐力、塑性変形能力の評価を行う場合には、はりの横断面配置はこれらを決定する要素として最も重要なものの一つであるといえる。本論は、H形断面はりの塑性域での横断面を対象として、横方向補剛間隔と塑性域での横断面によってはりとしての耐荷力が減少し始めるまでの塑性変形能力の関係及び各種補剛材の取付け方法とその効果ならびに補剛材に生ずる力に対する設計法について論ずるもので、前報Ⅰに続くものである。

2. 塑性変形能力に対するモーメント勾配の影響

前報Ⅰでは、同等曲げモーメントを受ける二軸対称H形断面はりの塑性域での横断面における横方向補剛間隔と塑性変形能力の関係をG. Haajier とB. Thürlimann 構造要素の局部座屈時の塑性総じた径を評価する際に用いた方法Ⅲに準じて、弾塑性横断面耐久性を基準にして単純化した塑性化領域の長さと塑性変形量の関係及び断面断面における曲げ曲げ低下関数の関係を用いて表現した。さらにその結果を実験結果と比較して、この表現が十分に精度で実験結果と対応することを確かめた。均等モーメント下での横方向力長比 \(\lambda_y = \frac{E}{\sigma_y} \) と塑性変形能力（Fig. 1 に示すように、M. G. Lay の定義による回転容量 \(R; R = \theta_e / \theta_{e-1} \) で表す）との関係を再掲すれば（1）式の通りである。

\[
\lambda_y = \sqrt{\frac{\pi^2}{1 + \nu} \left(\frac{E}{\sigma_y} \right)^2 \frac{f}{AH^2} \left(\frac{AH}{2\sigma_y} \right) \left[1 + \sqrt{1 + \left(\frac{E}{\sigma_y} \right)^2 \left(\frac{f}{AH^2} \right)^2 \left(\frac{AH}{2\sigma_y} \right)^2 } \right]}
\]

但し,

— 1 —
\(\lambda_p \)：有効繊維方向係数比 = \(\gamma / i_y \)

\(\gamma \)：横座屈長さ係数

\(l \)：繊方向補間間隔

\(i_y \)：弱軸まわり断面二次半径

\(A \)：断面積

\(H \)：断面矩

\(\varepsilon_p \)：塑性断面係数

\(f \)：サムプテン採り定数

\(E \)：ヤング率

\(\nu \)：ポアソン比

\(\sigma_y \)：降伏応力度

\(R \)：回転容許 = \(\theta_u / \theta_p - 1 \)

\(\theta_u \)：耐力低下を超える時のあたりの回転角

\(\theta_p \)：完全弾性を保つと仮定して断面が \(M_p \) に達する時のあたりの回転角

\(\tau \)：あたりの塑性化に伴う剛性低下係数で、

\[
\tau = \frac{1}{1 + R \left(\frac{E_{st}}{E} - 1 \right)} \quad (1. b)
\]

\(E_{st} \)：塑性化域での応力～歪関係の勾配

\(\varepsilon_y \)：降伏歪

\(\varepsilon_{st} \)：塑性が始まるときの歪

で表わされ、(1·a)，(1·b) 両式から \(\tau \) を消去すれば \(R \) と \(\lambda_p \) の関係が得られる。著者等の行った実験の結果との対応は、Fig. 2(a)。我が国で行われた実験の結果との対応は Fig. 2(b) のようである。

実験によれば、横座屈区間内で曲げモーメント分布に変化があれば、均等モーメントの場合に比べて同じ繊方向補間間隔に対する回転容量は増大する (Fig. 3)。

均等モーメント下での回転容量と横繊方向有効係数比の関係は、比較的簡単な横繊屈解析を基にして得ること

Fig. 1. Concept of rotation capacity of beams under uniform moment.

Fig. 2(a)，(b)。Relationship between rotation capacity and lateral bracing spacing.
とができたが、本節ではこの方法をモーメント勾配がある場合に拡張して、比較的簡単な半理論式を得ようとするものである。

Fig. 4 に示すように、両端で M_1, M_2 の大きさの端モーメントによる変曲を受けるのはりを考える。（b）図には曲げモーメント分布、（c）図にはフランジの歪分布を示す。のはりの右端より $y_1 l$ の位置が丁度断面の全塑性モーメントに達した状態を想定してやる、この点より右側は断面は圧縮域に入ってしまい、左側は圧縮域にある状態を仮定する。図中の記号を参照しながら、$M_1, M_2, \varepsilon_1, \varepsilon_2$ を書きかえると,

$$M_1 = \frac{1}{1-(1-\alpha)\gamma_1 \cdot \gamma_2} \cdot M_p \cdot \beta \cdot M_p$$

$$M_2 = \alpha \cdot M_1 = \alpha \cdot \beta \cdot M_p$$

$$\varepsilon_1 = \varepsilon_{sl} + \frac{(1-\gamma_1) \gamma_1}{1-(1-\alpha)\gamma_1} \cdot \frac{E}{E_{st}} \cdot \varepsilon_g$$

$$\varepsilon_2 = \frac{1}{1-(1-\alpha)\gamma_1} \cdot \varepsilon_g$$

となる。

のはり右端の強軸に関するたわみ角 θ は、

$$\frac{H}{2} \cdot \theta \cdot l = \varepsilon_g \cdot \frac{l^2}{6} \left(\frac{2+\alpha}{1-(1-\alpha)\gamma_1} + \frac{(\varepsilon_{st} - 1) \cdot 3\gamma_1(2-\gamma_1)}{E_{st} - 1} \right) \cdot \gamma_1(3-\gamma_1) \cdot \gamma_1$$

一方、右端が丁度全塑性モーメントに達する時のたわみ角 θ_F は、

Fig. 4. Model of H-shaped beam under moment gradient.

Fig. 5. Approximation in elastic range.
\[
\frac{H}{2 \cdot \theta_p \cdot l} = \varepsilon_f \cdot \frac{P}{6} \cdot (2 + \alpha)
\]

従って，回転容量 \(R \) は,

\[
R = \frac{\theta_p - \theta}{\theta} - 1 = \frac{(2 + \alpha) + \left(\frac{E_{st}}{\varepsilon_f} - 1 \right) 3\gamma(2 - \gamma) (1 - (1 - \alpha) \gamma) + \left(\frac{E_{st}}{\varepsilon_f} - 1 \right) (1 - \alpha) \gamma (3 - 2 \gamma)}{(2 + \alpha) (1 - (1 - \alpha) \gamma)} - 1
\]

と表現できる。

はり右端が塑性化した場合による曲げ剛性低下係数の評価は次のように行う。まず弾性時に，Fig. 5(a) の分布の強軸曲げを受けるはりのフランジ軸力の分布は (b) 図のようにになる。Fig. 6 図のように材の途中で軸力変化する棒材の弾性座屈を考慮する時には (c) 図に示されるような単位モーメントに対する曲率分布となりやすい曲げ剛性が変化する一定軸力を受ける棒との類似性が近似的に成立するものとして解析してもよい近似度の解が得られるから，ここでは単位端モーメントを受けて (c) 図のような曲率分布となる材のたわみ角によって剛性低下を近似的に評価することとする。この図より，はり右端のたわみ角を計算すると,

\[
\theta_{ei} \cdot l = \frac{1}{E \varepsilon_f} \cdot \frac{P}{6} \cdot (2 + \alpha)
\]

一方，このはりが降伏して右端から \(\gamma, l \) の長さだけが硬さ化域の剛性で変形する状態を考えると，曲率分布は Fig. 6 に示すように仮定できる。このようなはりの右端でのたわみ角は,

\[
\theta_{pl} \cdot l = \frac{1}{E \varepsilon_f} \cdot \frac{P}{6} \left[(2 + \alpha) + \left(\frac{E_{st}}{\varepsilon_f} - 1 \right) (3\gamma(2 - \gamma) - \gamma (1 - \alpha) (3 - 2 \gamma)) \right]
\]

となる。これより剛性低下係数 \(\tau \) は,

\[\tau = \frac{2 + \alpha}{2 + a + \left(\frac{E}{E_{tt}} - 1 \right) \gamma (3(2 - \gamma) - \gamma(1 - a)(3 - 2\gamma))} \]

\[\beta = \frac{1}{1 - (1 - a)\gamma_1} \]

\[R = \frac{a_2}{a_1} - 1 \]

\[a_1 = (2 + a)(1 - (1 - a)\gamma_1) \]

\[a_2 = (2 + a) + \left(\frac{E}{E_{tt}} - 1 \right) 3\gamma_1(2 - \gamma_1)(1 - (1 - a)\gamma_1) \]

\[+ \left(\frac{E}{E_{tt}} - 1 \right)(1 - a)\gamma_1^2(3 - \gamma_1) \]

\[- (1 - \gamma_2)\left[3\left(\frac{E}{E_{tt}} - 1 \right)(1 - (1 - a)\gamma_1) - \left(\frac{E}{E_{tt}} - 1 \right)(1 + a - (1 - a)\gamma_1) \right] \]

但し, \[\gamma_2 = \frac{2}{1 - a} - \gamma_1 \]

\[\tau = \frac{2 + \alpha}{2 + a + \left(\frac{E}{E_{tt}} - 1 \right) \gamma (3(2 - \gamma) - \gamma(1 - a)(3 - 2\gamma)) - (1 - \gamma_2)\left(\frac{E}{E_{tt}} - 1 \right)(1 + a - (1 - a)\gamma_1)} \]

となる。以上のように横断屈曲変形で曲げモーメント勾配のある場合について, 曲げ上昇率 \(\beta \), 回転量 \(R \), 剛性低下率 \(\tau \) に対する表現を得た。次に必要のは (1・a) 式に対応する表現である。これは弾性横断屈曲モーメントを与える式で出発して得ることができる。弹性状態にあるものが直線的に変化する曲げモーメントを受けたときの横断屈曲モーメントは, 大きな方の端モーメントを基準にして,

\[M_{er} = C \cdot \sigma M_{er} \]

但し,

\[C : \text{曲げモーメント勾配による修正係数} \]

\[C = \frac{1.88}{\sqrt{1 + 1.538a + a^2}} \]

\(a M_{er} \) : 均等モーメント時の横断屈曲モーメント

で表わされる。この関係が一部塑性化した場合においても成立するとすると,

\[\beta \cdot M_{er} = C \cdot \sigma M_{er} \]

と書ける。(16)式を均等モーメントの場合と同様に \(\lambda_\gamma \) についての表現で書きかえると,

\[\lambda_\gamma = \sqrt{\tau \left(\frac{C}{\beta} \right)^2 \frac{1}{1 + \nu} \cdot \left(\frac{E}{E_{tt}} \cdot \frac{A}{2Z_p} \right)^2 \cdot \left[1 + \frac{C}{\beta} \left(\frac{E}{E_{tt}} \cdot \frac{A}{2Z_p} \right)^2 \left(\frac{1 + \nu}{1 - \nu} \right) \right]} \]

となる。

(8), (10), (17) 式または, (13), (14), (17) 式から曲げモーメント勾配のある場合の横方向補間間隔と回転容量の関係が求まる。この方法によって求めた \(\lambda_\gamma - R \) の関係の例を Fig. 8 に示す。Fig. 9 は
Fig. 8. Relationships between rotation capacity and lateral bracing spacing under moment gradient based on design formula.

Fig. 9. Comparison of design formula with experimental results (R-l/i_y relationship).

Fig. 10. Comparison of design formula with experimental results (R-l/i_y relationship).

Fig. 11. Comparison of design formula with experimental results (R-l/i_y relationship).

Fig. 12. Effect of moment gradient on rotation capacity.

Fig. 13. Effect of moment gradient on rotation capacity.
3. 横座屈に対する弾性補剛材の剛性と補剛効果

3.1 弾性補剛材の補剛効果に関する考察

前報より圧縮側フランジに取り付けたフランジの横方向変形を拘束する弾性横方向補剛材の剛性と塑性変形能力を高める効果の関係について考察し、これに対して，

$$k = \xi \frac{\sigma}{}$$

実際には，

$$k = \frac{R}{R_0}$$

で表される補剛材剛性が k の時の回転容量

$$R_0$$：補剛材がない時（剛性 0 の時）の回転容量

$$\frac{R}{R_0}$$：はりの横方向有効幅の比
\[k_{req} = 1.60 \times \frac{\sigma_y A}{f} = 3.2 \times \frac{\sigma_y A/2}{f} \]
(19)

を得た。

本節では、圧縮側フランジに取付けられた横変位を拘束する補剛材の効果だけでなく、引張側フランジに取付けた横変位拘束に対する補剛材及び断面の損れを拘束する補剛材の効果について考察する。

次に、断面に取付けられた横変位に対する補剛材の効果を簡単なモデルを用いて評価する。圧縮側フランジが横変位を拘束することに対しても Fig. 16 に示すように補剛材が補剛している状態を考える。今、圧縮側フランジ位置で横変位補剛力 \(F \) が生じて Fig. 16 の状態になっているとすると、図を参照して両力は、

\[F = F_c + F_t \]

\[F_t = F_i \]
(20・a)
(20・b)

但し、

\[F \]：横変位補剛力

\[F_c \]：剛性 \(k_c \) の圧縮側方向補剛材の補剛力

\[F_t \]：剛性 \(k_t \) の損れ補剛材の補剛モーメントに対応する力

\[F_i \]：剛性 \(k_i \) の引張側方向補剛材の補剛力

\[F_i = \alpha_c \delta_c \]
(21・a)

\[F_t = \kappa_t \delta_t \]
(21・b)

\[M_t = F_t d = \kappa_t \delta_t \phi = \kappa_t \delta_t \frac{\delta_t}{d} \]
(21・c)

(20・b) 式より、

\[\frac{k_t}{d^2} \delta_t = \kappa_t \delta_t = \kappa_t (\delta_c - \delta_t) \]
(22・a)

\[\delta_t = \frac{1}{1 + \frac{\kappa_t}{d^2}} \delta_c \]
(22・b)

(20・a) 式より、

\[F = \kappa_c \delta_c + \kappa_t \delta_t \]

\[= \left(\kappa_c + \frac{\kappa_t}{d^2} \right) \delta_c = k_{eq} \delta_c \]
(23)

ここで、

\[k_{eq} = \kappa_c + \frac{1}{1 + \kappa_t / d^2} \]
(24)
\[k_{teq} = \frac{k_l}{d^2} \] \hspace{1cm} \ldots \ldots \ldots (25)

とおけば,
\[k_{eq} = k_c + \frac{1}{\frac{k_{teq}}{k_l} + \frac{1}{k_t}} \] \hspace{1cm} \ldots \ldots \ldots (26)

として損れ補剛材及び引張側横方向補剛材の効果を等価な剛性をもつ圧縮側横方向補剛材として扱えることがわかる。

3.2 横方向補剛材に生ずる力に関する考察

横方向補剛材に生ずる力および補剛材の剛性の間の関係を考察するために Fig. 17 に示すようにはりの圧縮側断面だけを取り出して、断面の降伏圧縮力を維持したまま変形し続ける、材の中心線を2本の折線と仮定したモデルを用いる（基本的に G. Winter10 の使用したモデルに等しい）と、補剛点での横方向の力の釈合式は,
\[F = N_y \cdot \frac{2(\delta_0 + \delta_e)}{I} = k_c \cdot \delta_e \]
但し,
\(N_y \): モデルの降伏軸力
\(F \): 補剛力
\(\delta_0 \): 材中央の元たわみ
\(\delta_e \): 材中央のたわみ
\(k_c \): 補剛材剛性

となり、これを解くと,
\[\delta_e = \frac{1}{\frac{k_c}{2N_y} - 1} \cdot \delta_0 \] \hspace{1cm} \ldots \ldots \ldots (28)
\[F = \frac{1}{2N_y} \cdot \frac{1}{\frac{k_c}{2N_y} - 1} \cdot \delta_0 \] \hspace{1cm} \ldots \ldots \ldots (29)

が得られる。(29) 式の \(F \) と \(k_c \) の関係を \(\delta_0 \) を変化させ、文献 1) に述べた筆者の実験に対応する諸数を代入して求めると Fig. 18 の実線のようになる。対応する実験値は△印で示されている。ところで (29) 式中の \(2N_y / k_c \) は、完全に直線な材の座屈長さを \(l \) とするために必要は補剛材の剛性に対応する。この値を基準剛性 \(k_{teq} \) にとって \(\delta_0 / l \) を変化させて補剛力 \(F \) を示したのが Fig. 19 である。

Fig. 17. Model for lateral bracing force.

Fig. 18. Relationship between lateral bracing force and rigidity of lateral braces.

Fig. 19. Relationship between lateral bracing force and rigidity of lateral braces.
Fig. 20. Laterally deflected shape of compression flange.

\[k_{eq} = \frac{2N_y}{l} \]
\[\ldots (30) \]

次に、Fig. 18 に示された実験結果の補剛材剛性について考察する。Fig. 17 に示される単一圧縮材に対して求められたものであるが、この図で補剛材の剛性が（30）式の値（破線）より小さい場合には単一圧縮材全体として半波形となるモードで座屈し、（30）式の値より大きい場合は逆対称−波形のモードで座屈する。文献10の実験の結果においては、はりの圧縮側フランジはFig. 20 に示すように SM30-C2 では対称波形に SM30-C3 では逆対称−波形に座屈しているが、取付けられた横方向補剛材の剛性はいずれも（30）式の値より小さい。この補剛材の座屈に対する補剛とH形断面はりの横座屈に対する補剛との補剛材の剛性的違いによる。すなわち、H形断面はりの横座屈の場合には断面のサンプル方向剛性および引張側フランジの横方向剛性によって圧縮フランジの横移動に対する補剛効果が助長されるからである。この効果を（26）式に示した方法によって近似的に等価な圧縮側フランジの横方向補剛材の効果に置換する。断面の挙動剛性は、中央断面に集中挙動モーメントが加わった時の剛性を基準にして、

\[k_{eq} = \alpha_1 \frac{2GJ}{l^2} \]
\[\ldots (31) \]

但し、

\[GJ \]：サンプル方向剛性
\[\alpha_1 \]：係数

引張側フランジの横方向剛性は圧縮側のモデル（Fig. 17）にならって、降伏した2本の折線棒の抵抗を基準にして、

\[k_l = \alpha_2 \frac{2N_y}{l} \]
\[\ldots (32) \]

但し、

\[\alpha_2 \]：係数

と表す。ここで簡単のためサンプル方向剛性は弹性時の値を保つとし、引張側フランジも2本の折線モデルの抵抗そのものを仮定し、\[\alpha_1 = \alpha_2 = 1 \] として等価横方向剛性を求めると、\[k_{eq} = 144 \ kg/cm \] となる。この値を圧縮横方向補剛材の剛性に加算して実験値を修正したのが Fig. 18 中の〇印である。これより SM30-C3 が逆対称−波形で座屈したのもうなずける結果となる。

3.3 弾性振れ補剛材の剛性と補剛効果に関する考察

本節では弾性振れ補剛材の剛性と補剛効果について考察する。Fig. 21 は実験により得られた振れ補剛材の剛性的変化と塑性変形能力（回転容許）の関係である。この振れ補剛材が変形能力を増大させる効果を評価する
ために、3.1節で述べた等価強方向剛性 k_{ee} 及び横方向補剛材が変形能力を増大させる効果を表す実験式 (18) 式を用いる。ここで (26) 式を用いて等価方向剛性を計算する際には、断面のサンプル損り剛性は弾性時の値を取るとし $a_1 = 1$ とするが、引張側フランジの横方向剛性は、横断面の引張側フランジの横方向変位が、圧縮側のそれの約1/2.5～1/10余となっている実験時の観察により、$a_2 = 1, 2.5, 5, \infty$ と変化させて計算する。$a_2 = \infty$ は引張側フランジがまったく横移動しない場合に相当する。回転モメントの計算手順は次の通りである。まず、等補剛材の剛性及断面の剛性を用いて (25) 式を用いて等価横方向剛性を計算し、その値から断面の剛性の寄与分を差し引いた値を有効な等価横方向剛性として (18) 式中の k に代入し回転容量 R を計算する。この手順によって求めた計算結果を Fig. 22 に示す。引張側フランジの横移動剛性の評価をするための係数 a_2 の値は実験時に観察された値の下限値 $a_2 = 2.5$ の場合が実験値との対応がよいようである。$a_2 = 2.5$ とした時の計算結果を実験結果と比較したものを Fig. 23 に示す。圧縮側横方向補剛材と横れ補剛材を同時に取付けた場合は比較的良く近似できている (Fig. 23(a))。Fig. 23(b) に示した横れ補剛材だけを取付けた場合及び横れ補剛材と引張側フランジの横方向補剛材を取付けた場合は、横断面形の変形をとめるスチフナー等を設けなかったためか横れ補剛材は十分機能を発揮していないようでやや近似度が良くない。

【参考】
ウェブの面外変形の影響を次式を用いて近似的に考慮する。

$$k_{T+e} = \frac{k_T}{1 + \frac{k_T}{k_{Te}}}$$
但し、

k_T: 揎れ補剛材の剛性
k_{TW}: ウエブの変形を等価な弾性挙れ補剛材に換算した値です。

$k_{TW} = \frac{E_w}{2d} \times B_e$

B_e: ウエブの揺れ補剛材としての有効幅でここでは $B_e = 2d$ とした。

この近似的評価によると参考図のようになる。

3.4 揎れ補剛材が取付けられた時の補剛力の考察

本節では挎れ補剛材に生ずる力及び挎れ補剛材と同時に取付けられた圧縮側フランジ横方向補剛材に生ずる力を試験結果としてFig. 24, 25 に示すように挎れ補剛材の剛性を高めてゆけば圧縮側横方向補剛材に生ずる力は小さくなっている。一方、挎れ補剛材に生じた力についても Fig. 26, 27 に示すように挎れ補剛材の剛性を大きくすれば補剛力は小さくなる傾向にある。挎れ補剛材に生じた最大モーメントは Fig. 26, 27 の試験でみられる通り。
程度である。すなわち、はり断面の降伏軸力の1/2（はりの圧縮部分の降伏軸力に相当）の約1〜1.5%（F_T）にはり高（H）を乗じた値の補剛モーメント（M_T）が生じている。

次に、この捻れ補剛材および捻れ補剛材と同時に取付けられた圧縮側フランジ横方向補剛材に生ずる力を推定することを試みる。補剛材剛性と補剛力の関係を表す基礎資料として圧縮側フランジだけに横方向補剛材を取り付けた場合の実験結果、図28を用いる。先に捻れ補剛材の塑性変形能力に及ぼす効果を計算する際に求めた断面剛性的影響を差し引いた等価な横方向横剛性の値を図28の横軸の値に対応させて縦軸の値を読み取ればよい。この縦軸の値が捻れ補剛材だけが取付けられた場合及び捻れ補剛材と引張側横方向補剛材が同時に取付けられた場合の捻れ補剛材と動等価横方向補剛力（補剛モーメント（M_T）を断面のフランジ中心間距離（d）で除した値）に対応し、圧縮側フランジ横方向補剛材と捻れ補剛材が同時に取付けられた場合には両者の動等価補剛力の和となり、それぞれの分担は等価横方向剛性の比率から計算できる。この方法によって推定された補剛材剛性と補剛力の関係を対応する実験値と共に図29に示す（実線は計算結果、○印は実験値）、十分精度よい対応とはいえないので、ここでも引張側フランジの横方向剛性を表す係数 a_2 は2.5程度としておけばよいようである。

![Fig. 28. Experimental results of effect of rigidity of lateral bracing on bracing force in lateral bracing.](image)

![Fig. 29. Comparison of design formula with experimental results in lateral bracing force.](image)

(a) Bracing force in lateral bracing at compression flange used simultaneously with torsional bracing.

(b) Bracing force in torsional bracing used simultaneously with lateral bracing at compression flange.

(c) Bracing force in torsional bracing used isolatedly.

(d) Bracing force in torsional bracing used simultaneously with lateral bracing at tension flange.
3.5 補剛材の設計法

現在までに得られた資料を用いて補剛材の設計法についてまとめておく。

まず、塑性ヒンジ形成点をはさんで圧縮フランジに設けた横方向補剛材がはりの塑性変形能力を発揮させるために必要な剛性は (19) 式に示す通り $k_{req} = 1.6 \times \sigma_y A / l$ である。一方、この場合補剛材に働く力は、現時点では十分な資料がないが、松井は文献11）の偏心圧縮を受ける単一圧縮材の補剛に関する弾塑性解析に基づいて、

Winter によって提示された解析モデルに基づく解析による補剛力は、材中央での元たわみを $\delta_0 / l = 1/500$ （通常の材に許される元たわみの限度）とした時、数値解析結果の1/2.1～1/2程度となることを指摘している12）ので、これをもとに、十分な資料が得られるまで、元たわみ $\delta_0 / l = 1/500$ の時に 3.2 節の Fig. 17 のモデルに対して得られる補剛力の2倍を与える $\delta_0 / l = 1/250$ の時の補剛力と補剛材剛性の関係 (Fig. 30) を用いて設計に対する考え方を述べておく。

Fig. 30 によれば補剛材に生ずる力をはりに生ずる圧縮断面破断点の2倍を目的にすれば、その時に必要な剛性は、$k_{req} = 1.7 \times \sigma_y A / l$ と読み取れる。塑性変形能力を発揮させるために必要な剛性と重ね合わせて、設計用の値としては多少安全側に丸めて、

$$k_{req} = 2 \times \frac{\sigma_y A}{l} - 4 \times \frac{\sigma_y A / 2}{l}$$

…………(34)

とする。

横方向補剛材が引張側フランジ位置だけしか取付けられない時に振れ補剛材として必要な剛性は、引張側フランジに取付けた横方向補剛材を圧縮側に要求される値と同じものとし、引張側フランジの横方向刚性の係数を $\alpha = 2.5$ を取り、簡単のため材のサブプレート変位剛性を零とすれば、所要の振れ補剛材の剛性は、3.1 節で考えた等価横方向剛性 (26) 式が (34) 式で与えられる圧縮側の横方向補剛材剛性に等しくなればよいと考えから、

$$k_{req} = 2 \times \frac{\sigma_y A}{l} - \frac{1}{k_{Trq}} + \frac{1}{2.5 \sigma_y A / l}$$

…………(31)

を解くことにより求まる。

$$k_{Trq} = 3.6 \times \frac{\sigma_y A}{l}$$

…………(32)

また、横方向補剛材が設けられずに振れ補剛材だけで補剛するような場合には (31) 式の引張側フランジの横方向補剛材の剛性を零とおくことによって、

$$k_{req} = 2 \times \frac{\sigma_y A}{l} - \frac{1}{k_{Trq}} + \frac{1}{2.5 \sigma_y A / l}$$

…………(33)

を求める。これを解いて、

$$k_{Trq} = 10 \times \frac{\sigma_y A}{l}$$

…………(34)

が所要剛性となる。しかし振れ補剛材を使用する時は振れ補剛材が有効に働くように十分強固なスチフナ等を設けて増大断面外断面形を防ぐ必要がある。

以上に述べた剛性を有する補剛材を適切に取付けた場合には各補剛材に働く補剛力は、

Fig. 30. Design chart of bracing force.
$F = 0.02 \times \frac{\sigma_f A}{2} = 0.01 \times \sigma_f A$

と考えてよい。

4. 結び

H形断面ばかりの塑性域での横断屈と横断屈補剛材の設計に関して次のように結果を得た。
(1) 横断屈区間において、均等曲げモーメントの場合のみならず曲げモーメントに偏荷がある場合についても横方向横断隔と塑性変形能力（回転容量）の関係を与える設計式をつくり、実験結果と比較して十分な精度があることを確かめた。
(2) 横方向補剛材及び損ね補剛材に必要である性及立強さに対する設計式を与えた。

参考文献

1) 若林繁・中村武：鉄骨丸柱ばかりの横断屈に関する研究（その4）—塑性設計ばかりの均等モーメント下での横断隔隔と回転容量の関係および補剛材の効果—、京都大学防災研究所年報、第16号B、昭48、pp. 95-111.
5) 若林繁・中村武・山本喜樹：鉄骨丸柱ばかりの横断屈に関する研究（その1）、京都大学防災研究所年報、第13号A、昭45.3、pp 365-380.
6) 若林繁・中村武：H形断面ばかりの弾性横断屈モーメントの修正係数に対する近似解―設計式、日本建築学会近畿支部研究報告集、構造系、昭53.5、pp 281-284.
7) 鈴木敏郎・小野徹郎：塑性設計梁に関する実験的研究（1）―等モーメントを受ける梁―、日本建築学会論文報告集、第168号、昭45.2、pp 77-84.
8) 鈴木敏郎・小野徹郎：塑性設計梁に関する実験的研究（2）―モーメント勾配をもつ梁―、日本建築学会論文報告集、第171号、昭45.5、pp 31-36.
11) 松井千秋・松村弘道：圧縮材の支点の補剛に関する研究（その1）弾塑性解析、日本建築学会論文報告集、第205号、昭48.3、pp 23-29.
12) 松井千秋：支点の補剛、日本建築学会鋼構造分科会座席小委員会、資料 No. 18、昭51.8、pp 1-11.