安富観測坑で記録された山崎断層の地震(1984年5月30日，M5.6)にかかわる地殻変動

渡辺邦彦・尾池和夫

CRUSTAL DEFORMATIONS RELATED TO THE YAMASAKI FAULT EARTHQUAKE ON MAY 30TH, 1984, M5.6, OBSERVED AT THE YASUTOMI OBSERVATION TUNNEL

By Kunihiko Watanabe and Kazuo Oike

Synopsis

On May 30th, 1984, an earthquake of M5.6 occurred at the Yamasaki fault. Concerning to this earthquake, precursors, co- and post seismic phenomena of various kinds were observed. Among these, crustal deformations observed by extensometers and tiltmeters were analyzed. Both the strain and tilt steps were observed. Aftereffects of the ground strain were also recognized too.

We concluded that these are compound phenomena consisting of both the strain originated at the hypocentral region and the peculiar local strain effects around the observation site.

Besides, it can be regarded that fault zones or fractured zones are “windows for earthquake prediction”, where the signals related to earthquakes frequently appear.

I. はじめに

山崎断層は地震予知のテストフィールドであり，1975年11月，安富観測坑において伸縮計による観測が始始されて以来，種々の分野の観測・解析がなされている1),2),3). 1984年5月30日，山崎断層系の 喜塩断層4)（護持断層）を震源とすると考えられる M5.6 の地震（以下，今回の地震という）が発生した5). 山崎断層近傍で M5 を超える地震としては，1973年以来，11年ぶりのことであった。伸縮計の観測開始以来現在まで，山崎断層の周辺に発生した M4 以上の地震の分布を Fig.1 に示す。この図によると，今回の地震が最近では特筆すべきであったことが分かる。

山崎断層の周辺に発生した M4 クラスのいくつかの地震について，その前兆や地震発生時あるいは地震後の，いわゆる，直接的・地震にともない変動が観測されたという報告がなされている4)5). 特に地球化学的，地球電磁気学的分野にこれに地震関連現象が認められた例が多い。しかし今回の地震は，その規模こそ M5.6 であったが，安富観測トンネルからの観測距離で約 20 km，震央距離で約 3 km と非常に近距離に発生したため，同観測トンネル内の伸縮計・傾斜計もそれを捕えている可能性は非常に大きい。

安富観測トンネルは山崎断層の破断帯を横切るように掘削されている。断層破断帯が地震予知のための，いわゆる“ツボ”と考えられていることは以前より折り済んで議論されている6),7). その意味で安富観測トンネルで今回の地震に係わる地殻変動現象が記録されているであろうことは充分期待された。反面，安富観測トンネルはかなりが 4〜8 m と非常に浅く，気象や人为的ノイズの影響を受けやすいことも事実である。しかし通常の地殻変動観測では普通は除去に努められるこれらの影響も，地震予知を目的とする立場に立てば，
観測点近傍の場の状態を反映するインジケーターとして有用に利用され得ることが考えられる。我々が得る観測記録は、様々な信頼が混在したものであって、その中から地震に関わる信頼を弁別しながら抽出することは困難な問題であるが、知識とデータの蓄積によって徐々に可能となりつつある。本稿では観測結果を正確に把握・解釈することに主眼をおき、その理論的解析は次の機会に譲った。以下の章で、伸縮計と傾斜計で得られた観測結果について述べる。

Fig. 1 The Yamasaki fault and distribution of earthquakes (M≥4, 1976. Nov.-1984. Dec.). Open circles denote the earthquake on May 30th, 1984 and its aftershocks.

Fig. 2 Observation tunnel lying 4–8 meters below the Chugoku highway. Extensometers (nemerals) and tiltmeters (star) are settled in the tunnel.

2. 伸縮計による観測結果

2.1 伸縮の経年変化

Fig. 3 に1975年に伸縮計による観測が開始されてより、1984年12月末までの伸縮変化を示す。図中の成分の数字は、Fig. 2 に示したその番号のセンサー設置点と固定端との間の変を表す。観測点の短かよし、伸縮の変化は主に年間の気温によることが考えられる。初めは78–79年で最も、それより大体において伸びの傾向にあったものの、この傾向が徐々に傾向が減少、あるいは傾きを軽じた。次の傾斜変化は81–82年で最も、この時期を終にして伸び傾向から伸び傾向に変わった。それが83年の冬に至り、また縮み傾向に変わったよう。この後、傾斜の変化には、今回の地震によるストレイン・ステップ（後述）が重なっているが、かなり激しい変動のようである。

上に、外気温の変動の影響による年間変化が伸縮の年間変化として重畳していると述べた。そうすると当然、外気温の経年変化の影響も伸縮の経年変化に反映されていると考えられる。Fig. 4 に大阪における毎日の最高・最低気温から求めた各月平均の最高・最低気温を示す。伸縮変化とその傾向が非常によく一致していることが認められる。しかし、84年からの伸縮傾向変動はストレイン・ステップを差し引いたも非常に大きく、気温変化ののみでは説明できないと思われる。しかしこの傾向変化は最近1年ほどであることであり、今後しばらくその動向を見る必要がある。
Fig. 3 Secular variation of the ground strain. Each numeral denotes the strain component between the point of that number and the fixed point.

Fig. 4 Variation of atmospheric temperature at Osaka. Upper and lower curves denote maximum and minimum temperature respectively.
2.2 降雨レスポンスの変化

安富観測坑の伸縮計計のばあい、降雨に対して縮み変化を示すことが多いため、NW–SE 方向の伸縮計計に関して降雨に伴う変化を、単位降雨量あたりの固定端と各センター設置点の間の相対変位に換算して、その平均を年間変化的伸びの季節と縮みの季節にわけて示したものが Fig.5 である。NW–SE 方向の場合、成分 1, 2, 3 ……の順に指数関数的に減少し、かつその係数には季節変化が認められるのが一般的である。NE–SW 方向の伸縮計計の場合も縮み変化を示すことが多いが、その量はかなり小さい。これについては、降雨による観測坑周辺の山地からの澗が降雨しながら増加するモデルが考えられるが定かでなく、この仮説についてはこれ以上言及しない。確かに84年になっての降雨レスポンスは、通常のように指数関数的には減少せず、NE–SW 方向の伸縮計計においてすらかなりの振幅を示している。Fig.5 と同様の手法でNW–SE、NE–SW 両方向について今回地震前 4 ヶ月程の降雨レインズを Fig.6 に示す。距離（被検）に対して相対変位量がほぼ直線的に変化していることは、各部分の歪が一定に近いことを意味する。また、通常は降雨に対してそれ程大きな振幅を示さないNE–SW 方向も、NW–SE 方向と同程度のレスポンスを示している。これから、地震発生の数箇月前には降雨レインズが平素と異って大きくなっていたことが認められる。84年秋の降雨量は非常に少なく、この降雨レインズ異常の出現単一を同定することは困難であった。

2.3 地震の際のストレイン・ステップとその解釈

5月26日の本震、および9個の余震の際にストレイン・ステップと思われる歪の不連続が観測された。本震によるステップ量は、伸縮計の成分相互間で多少ばらつきがあるが、2〜5.5×10^{-6} strain であった。これらの歪不連続を、伸縮計の固定端を不動点と仮定してこの点に対する各センターの相対変位に応じて図示したものが Fig.7 である。これによって、本震およびその直後に数時間の余震によるステップは、NW–SE、NE–SW 両方向の伸縮計計とも、ほとんどの場合縮みを示し、断層方向（6〜7成分）には伸びであった。次に、本震から3日余り後の6月2日16時の余震（M4.5）によるステップは、本震と同じ方向であったが、その振幅は、本震直後、すなわち本震から、1時間および3時間後に発生した2個の M4.5 の余震によるそ
Fig. 7 Strain steps at the main shock and major aftershocks. Those are converted into relative displacement and illustrated with directions.
Fig. 8 Time versus distances from the main shock to aftershocks. Earthquakes of $M \geq 3.5$ (after Tottori Microearthquake Obs.) are shown. For 2 days just after the main shock, there occurred scarcely any earthquake in the area nearer than 2 km from the hypocenter. After 2 days had passed, earthquakes started to occur in that area.

2.4 地震後の余効変動

(1) 時定数の短い余効変動

本震の際のストレイン・ステップに引き続いて、指数関数的にあるレベルに収束する、いわゆる短い余効的変動が観測された。余震数とも関し、断層が並行な分目他は、本震の際のステップと同方向であった。ストレイン・ステップを取り除いた地震前後の変化を Fig. 9 に示す。地震後9 - 11日ごろの大な縮みは、降雨によるものである。余効変動の時定数は1 - 5日と、成分によって異なった。それらの余効的変動が、本震後の震源域での断層運動の反映とすれば、伸縮計各成分で、同じ形状が観測されなければならないが、実際には振幅、時定数とも成分毎で異なっている。このことは、今回観測された余効的変化は、震源域での断層運動を表しているというより、むしろ、観測点近傍の局地的な変状状態の変化を反映しているものと考えられる。

(2) 時定数の長い余効変動

Fig. 10 に1984年1年間の伸縮計各成分の記録の上に、成分4と10の過去2年の記録を併せて示す。NE-SW方向の成分8 - 12は、5月30日のストレイン・ス
テップを差し引きすれば、縮みのピークは例年の年周変化と同じ4〜5月であり、特にピーク時期のずれは認められない。しかしNW-SE方向の成分1〜6は、ストレイン・ステップを差し引きすれば、一旦縮んで同じ4〜5月ごろにピークが現われながら、地震後再び縮みに転じ、6〜7月にピークになっている。このようにも示したのがFig.11である。点線は例年の年周変化の傾向を示す。NW-SE方向（図のA方向）のみに数10日の持続をもった余効的伸縮変化が認められ、NE-SW方向（図のB方向）はスティップを除いては例年どおりである。この伸縮変化の振幅・持続度は前述の短周期の余効的伸縮変化に比べて、成分相互間で比較的そろっている。これから推測するに、この伸縮変化は震源域の断層運動の時間的変化を反映している可能性がある。本震の断層面は本震の断層面と同様に断層面と同様に余効的伸縮変化を示す。したがってこの方向の余効的伸縮変化が認められたことは、震源域での現象をさらに詳しく分析するために役立つ重要な観測結果である。

3. 傾斜計による観測結果

3.1 継年変化にみられる傾斜の傾向

cosaの仮定を用いた測定結果を差分式傾斜計による観測が1981年11月より行われている。観測点はFig.2に示すように、特に地震の影響が現われやすいと考えられる、被動帯近くとした（一部の論文でテスト観測中の差分式傾斜計を用いたものがありました）。修正を行いFig.12によるティルト・ステップ分を補正した傾斜変動を図示で示した。補正後の場合と同様に、外気温の影響による年周変化が認められる。その振幅はおよそ4×10^-3 rad. 程度であるが、1983年の夏頃よりN、E方向への傾斜が加速された。NS方向に
ついて見れば、地震より半年以上前からのこのN方向への傾斜の増大が地震直前の5月には約2年の傾斜から予想されるレベルにまで達し、その後に地震の発生を迎える。すなわち地震の直前にはNS方向には特に傾斜の変化が見られなかったとも思われる。また地震の際には約1×10^{-5} rad. ほどS方向にステップ状に傾斜したが、その後約5年半に至り地震前2年での傾斜を延長したレベルに達している（傾斜量は図中のA）。すなわち、地震後半年を要して地震の際のステップ量を解消したとも考えられる。これに対してEW方向は、地震直前の5月には例年とはほぼ同じの約4×10^{-5} rad. である（図中のB）。以上をまとめると、NS方向は地震前には特に傾斜の変化が見られなかったが、地震後半年で徐々に傾斜の傾斜量を解消してゆき、いまでは例年の傾斜を延長したレベルに戻っている。これに対しEW方向は地震前に少し傾斜が見られていたが、地震時のステップ量はそれ以上に大きく、地震後は余効的変動はなく、直線成分のわずかが残った。伸縮の場合の余効的変動の方向性と同様に、傾斜についても余効的変動の方向性が認められたことは非常に興味深い。

3.2 地震時および地震後の傾斜変動

Fig.13 に今回の地震の前後約2カ月の傾斜変化を

Fig. 11 Variation of the ground strain in 1984. Dotted lines denote the schematic shape of the variations in ordinary years.

Fig. 12 (a) Secular variation of the ground tilt. In NS-comp., tilt step was reduced gradually, but in EW-comp., permanent change was recognized.
示す。併せて毎分サンプリング・データによる地震前後4時間の傾斜変動を示す。伸縮計の場合と同様に、降雨に対してはそれぞれN、E方向への傾斜変化を示すのが通常である。この図で見る限り、今回の地震を契機にして経年変化的傾向がそれぞれN、E方向に加速されたとの印象が得られるが、これは通常の経年変化で期待される方向でもあり、また降雨量も増えていくので何とも結論づけられない。

今回の地震の際に、傾斜変動の不連続が記録された。これはおそらく、ティルト・ステップと思われる。その量は、傾斜角にして約2.5×10^{-5} rad. でその方向は WSW であり、震央方向に近い。安富観測トンネルの周辺の基線測量網で基線角度測量が行われているが、これで求められたティルト・ステップとは方向・振幅ともに比較的良く一致している。

また本観によるティルト・ステップの直後に、時定数十分、振幅約1×10^{-5} の余効傾斜変動が記録された。いずれもティルト・ステップと同方向である。伸縮計の短時定数の余効変動と比較すれば、振幅はよく一致しているが時定数が数十分と非常に短い。おそらくこの傾斜余効変動も観測点周辺の局所的な動きを表しているものであろう。

4. 結論

今回の地震は M5.6 と、いわゆる中地震であったが、震源距離約 20 km という近距離に観測点があった。
ため、地震に直接関係あると思われる現象が地殻変動以外にも種々認められた。これは、近地地震であったこと、観測点が断層破砕帯に設置されていたという二つの理由によるものと思われる。
\[\text{断層や破砕帯等は地殻ブロックの境界として、変圧が集中する地域と考えられる。もとより地域に広範囲に応力が集中してくる、その範囲に含まれる断層や破砕帯等に特に変圧が集中してくる。そして、振動（潮汐、地震から人为的振動まで）、降雨、温度などに対するレスポンスが通常の場合とそれとは異なるくなることが考えられる。すなわち、地震の前兆現象としてこういったレスポンス異常の出現が期待される。今回のように地震の数カ月前より降雨レスポンスが異常値に大きく変化したこととはこの例と思われる。}
\]

伸びる形や傾斜計で観測された地震前後の種々の現象は、断層の断層活動を直接反映しているものと、観測点周辺の断層的な変状が地震によって変化したものとの合成物と考えられる。特に後者は、ストレイン- ステップの断層が必ずしもマグニチュードに限らず、むしろ時間の変化や観測成分相互間の差異すなわち存在し、また、より効果的な観測、傾斜変動にも局地性が認められることから推測される。それほど大きくない断層変形によってストレイン・ステップが観測された例は多数ある。しかもそのステップの方位が観測点周辺の局地的条件、たとえば年周変化の方向性などによって規定される場合が多い。こういった場合は、まさに上述の観測点周辺の断層的な変状が地震変動をきっかけとして変化したものと記録しているのであろう。

本稿では今回の地震に係わると考えられる観測事実を述べ、これに対して積分の定性的解釈を試みた。地殻変動の観測データの整理・解釈は観測に携わっている者でなければできない部分が多くあり、定量的な解析は別の機会にゆずることとする。

謝辞

「山崎断層研究グループ」代表である、京大防災研究所微小地震部門、岸本兆方教授を始めとする同グループ各位、および、微小地震部門の松尾成光、古賀光子氏には観測・解析にあたり種々の御指導、御助力を頂きました。また、日本道路公団福島管轄事務所および兵庫県安富町当局の方々、宇野野氏にはいろいろ御援助を賜りました。心より御礼申し上げます。

参考文献

3. 尾池和夫・渡辺良彦・中村重作・谷口義弘・岸本兆方：山崎断層地震予知テストフィールド連続観測システムについて、京大防災研年報、第24号 B-1、1981年、pp. 29-49.
4. 活断層研究会編：日本の活断層——分布図と資料——、東京大学出版会、1980。
5. 山崎断層研究グループ：SYMPHOS 坂崎断層、月刊地球、通巻67号、海洋出版株式会社、1985、pp. 4-62。
6. 山崎断層研究グループ：山崎断層テストフィールドシンポジウム資料集、1983。
7. 山崎断層研究グループ：山崎断層テストフィールドシンポジウム資料集1984年7月23、24日、1984年。
8. 藤森邦夫：地殻変動観測における効率的な地震予知——いわゆる「つば」の存在とその物理的意味の一考察——、地震学会講演予稿集、No.1、1985、pp. 265。
9. 渡辺良彦・尾池和夫・中村重作・岸本兆方：山崎断層観測観測における長周期変動の特徴、京大防災研年報、第26号 B-1、1983、pp. 87-94。
10. 渡辺良彦：山崎断層観測の変動に見られる外気温の影響、日本測地学会第61回講演会要旨、
11) 尾池和夫：降雨と地震発生との関係について、京大防災研年報、第20号 B-1、1976、pp. 35-45．
12) 山内常生・山田守・奥田隆：降雨に対する地殻歪・ゆれの異常と地震発生、地震、第2報、第34巻、1981、pp. 301-310．