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Abstract

The aim of this thesis is establishment of an overall framework of a novel control param-

eter optimization of automotive engine. Today, control parameters of an automotive

engine have to be adjusted adequately and simultaneously to achieve plural criteria

such as environmental emissions, fuel-consumption and engine torque. This process is

called ‘engine calibration’. Because many electronic control devices have been adopted

for engine to satisfy these objectives, the complexity of engine calibration is increasing

year to year. Recent progress in automatic control and instrumentation provides a

smart environment called Hardware In the Loop Simulation (HILS) for engine calibra-

tion. In addition, Response Surface Methodology (RSM) based on statistical model is

currently employed as the optimization method. Nevertheless, this approach is com-

plicated by adequate model selection, precise model construction, and close model

validation to confirm the precision of the model output.

To cope with these problems, we noticed experiment-based optimization via HILS

environment based on Multi-objective Evolutionary Algorithms (MOEAs), that is ex-

pected to be a powerful optimization framework for real world problems such as en-

gineering design, as another automatic calibration approach. In experiment-based

optimization, the parameters of a real system are optimized directly by optimization

techniques in real time through experimentation. In this thesis, this approach is called

Experiment-Based Evolutionary Multi-objective Optimization (EBEMO) and it is pro-

posed as a novel automatic engine calibration technique. This approach can release

us from burdens of model selection, construction, and validation. When using this

technique, calibration can be done immediately after specifications have been changed

after optimization. Hence, EBEMO promises to be an effective approach to automatic

engine calibration. However, since conventional MOEAs face several difficulties, it is

not easy to apply it to real engines.

On the one hand, deterioration factors of the search performance of MOEAs in

real environments have to be considered. For example, the observation noise of sen-

sors included in output interferes with convergence of MOEAs. In addition, transient

response by parameter switching also has similar harmful effects. Moreover, the peri-

odicity of control inputs increase the complexity of the problems. On the other hand,

the search time of MOEAs in real environments has to reduce because MOEAs require

a tremendous number of evaluations. While we can obtain many measurements with
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HILS, severe limitations in the number of fitness evaluations still exist because the

real experiments need real-time evaluations. Therefore, it is difficult to obtain a set

of Pareto optimal solutions in practical time with conventional MOEAs. Additionally,

plural MOPs defined by plural operating conditions of map-based controllers has to be

optimized.

In this thesis, to overcome the difficulties and to make EBEMO using the HILS en-

vironment feasible, five techniques are proposed. Each technique is developed through

problem formulation, and their effectiveness are confirmed via numerical and real en-

gine experiments. First, observation noise handling technique for MOEAs is consid-

ered. Because observation noise deteriorates the search ability of MOEAs, a memory-

based fitness estimation method to exclude observation noise is introduced. Then, a

crossover operator for periodic functions is proposed. Periodicity exists in engineering

problems and leads to harmful effects on the performance of evolutionary algorithms.

Moreover, the influence of transient response caused by parameter switching for dy-

namical systems is considered. In order to solve this problem, a solver of traveling

salesman problems is used to determine the evaluation order of individuals. In addi-

tion, Pre-selection as acceleration method of MOEAs is proposed. In this technique,

the generated offspring are pre-evaluated in the approximation model made by the

search history, and then the promising offspring are evaluated in a real environment.

Finally, parameterization of multi-objective optimization problems is considered. In

engine calibration for maps, optimal control parameters have to be obtained at each

operating condition such as engine speed and torque. This problem can be formulated

in a form that needs to solve all of the plural multi-objective optimization problems

defined by plural conditional variables. To solve this problem effectively, an interpola-

tive initialization method is proposed. Through the real engine experiments, it was

confirmed that EBEMO can achieve a practical search accuracy and time by using

proposed techniques.

In conclusion, the contribution of EBEMO for engine calibration is discussed. Ad-

ditionally, the directions for future work are outlined.
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Chapter 1

Introduction

1.1 Background

Over 100 years ago, two German engineers, G. Daimler and K. Benz, developed spark

ignition gasoline engine that had almost same characteristic of modern engines. In this

era, although steam engines were the most popular power source and electric vehicles

had already been developed, they were gradually replaced by gasoline engines. The

performance of gasoline engine had improved year by year and the main stage of car

development moved from Germany to the United States. After legislation of Clean Air

Act of 1970 (Muskie Act), severe environmental emission regulations were introduced

to solve the air pollution problem, especially in the United States. To maximize the

performance of automotive engines and to satisfy the regulations, mechanical control

systems such as conventional carburetors and distributors were replaced by electronic

control devices. Automotive manufacturers developed many clean engine technologies

such as the fuel-injector, and catalytic converter. In response to ever stricter environ-

mental emission regulations in North America, Europe, and Japan, electronic control

systems significantly impact automotive development due to the need to enhance per-

formance and comply with the restrictions.

Today, design of control systems for modern automotive gasoline and diesel engines

is one of the most important engine development processes. Control management

is implemented in onboard computers called Electronic Control Units (ECUs). The

primary purpose of ECUs is to lower environmental exhaust emissions (carbon monox-

ide (CO), hydrocarbons (HC), nitrogen oxides (NOx)) and minimize fuel-consumption

thereby addressing environmental and global warming issues. On the one hand the

environment is a main concern of manufacturers and consumers, on the other hand the

maximization of engine torque and drivability are attractive features for consumers.

To achieve these countering requirements, many electronic control devices such as fuel-

injectors, variable valve timing, are mounted to current engines, and the parameters

of the ECUs have to be designed adequately. Hence, these evaluation criteria have to

be balanced simultaneously and precisely.

1
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Since the 1980s, application of control theory and modeling have increased in the

development of automotive controllers. For instance, closed-loop air-fuel ratio control

for three-way catalytic converter (TWC) is one of promising applications that had

been introduced in TWC. Yet, because internal-combustion engines have non-linearity

and complexity, a feedforward control called map-based control is still the main ap-

proach used in the development of engine control systems. In the map-based control,

electronic devices are controlled by stored parameters that correspond to operating

points on the maps of an ECU. Control parameters on the maps are determined by

pre-experimentation on each operating point. Each point is defined by input variables

such as engine speed and load torque in the engine control system [15, 39, 40, 63].

This process is called ‘engine calibration’. Since aforementioned evaluation criteria

have trade-offs, engine calibration is multi-criterion evaluation, which in turn makes it

very time-consuming process in the engine development. To make the process of en-

gine calibration more efficient, automatic design based on multi-objective optimization

[13, 96] is needed to replace the conventional manual calibration.

Simulation-based optimization using a precise theoretical model is one candidate

for automatic design [45, 64, 103]. This approach enables us to calibrate control pa-

rameters offline by using ‘virtual engines’ in place of real engines. Computational Fluid

Dynamics (CFD) is used to represent the virtual engines. This approach has been real-

ized because of recent progress in computer performance and parallelization technique

such as PC cluster [108].

Response Surface Methodology (RSM) [74], a statistical offline optimization tech-

nique, is currently employed for engine calibrations. Control parameters are calibrated

based on simple statistical models called response surface through few experiments

designed by Design of Experiments (DoE) [23, 41].

Currently, huge progress has been made in automatic control and instrumenta-

tion. Real-time simulation provides a smart environment called Hardware In the Loop

Simulation (HILS) for engine calibration through real experiments. This engine HILS

environment is composed of a real engine and an engine test-bench that simulates

vehicle-running conditions using a computer controlled ultra-low inertia dynamome-

ter. Significant advancement and progress has been made in the past few years allowing

RSM combined with an engine HILS bench to become the main stream in automatic

engine calibrations [88, 89].

1.2 Approach

Many numerical optimization methods such as gradient methods can be applied to the

theoretical and statistical engine models and can obtain optimal control parameters

offline. However, significant effort and time is needed to construct precise engine

models.
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Despite the fact that in theoretical models parts of flow dynamics, thermodynamics

and mechanical dynamics of engine are described, unknown parameters exist that have

to be estimated through real experiments. Moreover, to construct a physical and

chemical model of an internal-combustion engine in detail requires a lot of effort, and

is not cost effective. Additionally, the engine model based on CFDs requires substantial

simulation time in order to solve partial differential equations.

Whereas, in statistical models, although few measurement data that construct ap-

proximation model are determined by DoE, a lot of measurement data are needed to

verify the precision of the model. Additionally, model selection is a critical and time-

consuming process that influences the optimization result. Furthermore, these engine

models must be re-constructed because engine specifications are frequently changed in

the early stage of development.

To cope with the aforementioned problems, we notice online optimization, that

is, experiment-based optimization via HILS environment as another automatic cali-

bration approach overcomes the shortcomings of using statistical models and DoE. In

this thesis, the term ‘experiment-based optimization’ is used to mean “the parame-

ters of a real system are optimized directly by optimization techniques in real time

through experiments”. This approach can release us from burdens of adequate model

selection, precise model construction, and close model validation. When using this

technique calibration can be done immediately after specifications have been changed

after optimization.

We paid special attention to Multi-objective Evolutionary Algorithms (MOEAs)

that is a multi-objective optimization method based on Evolutionary Algorithms (EAs)

as an experiment-based optimization method. MOEAs are optimization methods that

make the best use of the features of multipoint search in EAs, and can obtain the

set of Pareto optimal solutions, the rational solutions of multi-objective optimization

problems, at one time [14, 18]. Multi-objective optimization based on MOEAs is called

Evolutionary Multi-objective Optimization (EMO). Currently, MOEAs are widely ap-

plied to real world problems through computer simulations. We call this approach

Experiment-Based Evolutionary Multi-objective Optimization (EBEMO) in this the-

sis, and we are sure it is a promising field of applications.

Although EAs were originally suitable for experiment-based optimization [87, 97],

this no longer holds true because automotive engine calibration through experiments

includes several problems. Since optimization through experiment is severely limited

by the condition of limited evaluation time and fluctuation of observation, we have to

develop methodologies that overcome these problems for EBEMO. Two of these are

called ‘expensive evaluation cost problem’ and ‘uncertainty environment problem’ re-

spectively, and are challenging and attractive topics in recent research into EAs. More-

over, the periodicity of control inputs and the plural operating conditions of map-based

controllers have to be considered from a viewpoint of engine controls. Therefore, in or-

der to construct a practical automatic engine calibration technique based on EBEMO,
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these difficulties have to be solved one at a time.

1.3 Outline of Thesis

Through this thesis, the fundamental methodology of EBEMO for automotive engine

calibration as a novel overall approach will be established. This thesis is composed by

the following chapters after this introductory chapter.

Chapter 2 first explains the details of automotive engine control and its calibration

techniques. A description of the foundation of map-based control that is widely used

for internal combustion engine control in automotive industries is given. For calibration

of the maps, the concept of HILS, a key technology of experiment-based optimization,

is also introduced.

Chapter 3 introduces the basic scheme of EMO. Mathematical definitions of Pareto

optimal solution and the foundation of MOEAs are denoted briefly. Moreover, the

aims and the difficulties of EBEMO are discussed.

In Chapter 4, an observation noise handling technique for MOEAs is discussed. In

experiment-based optimization, observation noise added to sensor data is a problem in

precise optimization of real world applications. To solve this problem, a memory-based

fitness estimation method is used to estimate true fitness value. The effectiveness of

the proposed method is confirmed through numerical experiments and a real engine

experiment.

In Chapter 5, a periodicity of objective function that exists in engineering prob-

lems such as mechanical systems is discussed. Periodic landscape of objective function

leads to harmful effects on performance of evolutionary algorithms, because local op-

timal solutions are generated due to the periodicity. A crossover operator for periodic

functions is proposed in order to overcome this problem. It is demonstrated that the

proposed operator has good performance to not only on periodic functions but also on

non-periodic functions in bounded search spaces.

In Chapter 6, an influence of transient response that is caused by parameter switch-

ing for dynamical systems during optimization is considered. To cope with this prob-

lem, Individual Evaluation Scheduling (IET) is proposed. In this technique, a solver

of traveling salesman problems is used to determine the evaluation order of individu-

als. Formal numerical experiment and experiment using a real engine are executed to

demonstrate the effectiveness of IET.

In Chapter 7, a reduction of the number of evaluations is considered. It is an

intriguing research topic in evolutionary computation with simulation-based optimiza-

tions that have expensive calculation costs such as CFDs as main applications. Pre-

selection is proposed as an acceleration method of MOEAs for experiment-based opti-

mization. In this technique, the generated offspring are evaluated in advance with the

approximation model made from the search history, and then only offspring promising
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in the previous evaluation are applied to a real environment. It is confirmed that the

proposed method can effectively reduce the number of evaluation in both numerical

experiments and real engine experiments.

In Chapter 8, a parameterization of multi-objective optimization problems is consid-

ered. In engine calibration for maps, optimal control parameters have to be obtained at

each operating condition such as engine speed. First, a new problem class called Para-

metric Multi-objective Optimization Problems (PMOPs) is introduced to handle this

problem. This is a problem of solving all of plural multi-objective optimization prob-

lems defined by plural conditional variables. Next, interpolative initialization method

is proposed to solve PMOPs effectively. This method demonstrates good performance

when applied to a simple numerical test function.

In Chapter 9, the over all conclusions of this thesis are presented. Additionally,

future works and directions of EBEMO are discussed.



Chapter 2

Automotive Engine Calibration

2.1 Outline

In this chapter, first fundamentals of automotive engine control are briefly introduced.

After that, an outline of automatic engine calibration is described. Currently, two

types of techniques are used in automotive industries instead of manual calibration.

One is theoretical simulation-based optimization that does not use real engines, the

other is response surface methodology that constructs empirical models via engine

testing. Additionally, Hardware In the Loop Simulation (HILS) environment that

is a newer automatic measurement environment is introduced. Recent progress in

automatic engine calibration is based on RSM with an engine HILS environment.

2.2 Automotive Engine Control

In automotive engine control, feedback and feedforward controllers are used to sat-

isfy the performances and restrictions. For example, feedback control of air-fuel ratio

for a three-way catalytic converter is used to meet with environmental legislation. A

feedforward control called ‘map-based’ or ‘lookup-table’ is widely used for engine con-

trol systems to handle nonlinearity and complexity of internal-combustion engines.

As shown in Fig. 2.1, electronic devices such as fuel injectors and spark ignitions are

controlled to desired values calculated by maps. For example, injector map outputs

injection timing and injector energizing time to control amount of fuel injected. The

fuel injector driver energizes the injectors to inject the desired amount of fuel precisely

at the optimal timing.

In a map-based control, the maps implemented in ECUs are represented by a grid

of engine operating conditions defined by input variables such as engine speed and load

torque. These desired values are stored as parameters that correspond to operating

points on the grid, and calculated by linear interpolation of these values for the input

variables that changes continuously. Figure 2.2 shows a conceptual diagram of map

calculation. A two-dimensional map, that is, two-inputs one-output function is usually

6
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Figure 2.1: Engine control system.

used. A map that has n×m grids is represented by l = n×m tuples (ui
1, u

j
2, x

(i,j)
d ), where

x
(i,j)
d is the output value that corresponds the grid (ui

1, u
j
2), i = 1, . . . , n, j = 1, . . . , m.

The representative operating points u1
1, . . . , u

n
1 and u1

2, . . . , u
m
2 are called ‘label’. The

desired ignition timing x̃d at the current operating condition (engine speed, torque) =

(ũ1, ũ2) is calculated by following linear interpolation [5, 6, 78]:

x̃d := (ũ2 − uj
2)

(
(ũ1 − ui

1)x
(i,j)
d + (ui+1

1 − ũ1)x
(i+1,j)
d

)

+ (uj+1
2 − ũ2)

(
(ũ1 − ui

1)x
(i,j+1)
d + (ui+1

1 − ũ1)x
(i+1,j+1)
d

)
,

where ui
1 ≤ ũ1 < ui+1

1 and uj
2 ≤ ũ2 < uj+1

2 are satisfied. Therefore, to develop

adequate maps, we have to find optimal control parameters by experimentation on

each operating point, and integrate them as maps. This optimization process is called

‘engine calibration’ [15, 39, 40, 63].

2.3 Automatic Engine Calibration

The basic framework of automotive engine calibration systems that combined a cal-

ibration computer with ECUs have been already developed in-1980s. For example,

Watanabe and Tümer have proposed an automotive engine calibration system for spark

ignition timing to satisfy low environmental emissions and low fuel-consumption [109].

Because a trade-off relationship exists between these evaluation criteria, engine cal-

ibration becomes a multi-criterion evaluation. The number of control parameters of

previous engine calibrations was significantly smaller than current ECUs as shown in

Watanabe’s study, and the manual calibration using full-factorial testing or engineer’s

heuristic law was standard. However, the number of the devices and the complexity
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Figure 2.2: Calculation of map.

of the systems gradually increased, and engine calibration has become a very time-

consuming process in the engine development. In order to accomplish this process

more efficiently, automatic design based on multi-objective optimization is needed to

replace the conventional manual calibration.

2.3.1 Simulation-Based Optimization

Precise theoretical simulation-based optimization is one candidate of automatic design.

Instead of real engines, ‘virtual engines’ represented by computer code such as Compu-

tational Fluid Dynamics (CFD) is used for optimization. Recent progress in computer

performance and parallelization techniques such as PC cluster have been realized as a

practical approach. Moreover, various optimization techniques such as gradient meth-

ods and genetic algorithms can be applied to theoretical models. For instance, Hiroy-

asu et al. have applied multi-objective evolutionary algorithms to phenomenological

diesel engine models called HIDECS [45]. Their objectives are minimization of fuel-

consumption, NOx, and Soot (Carbon particulate matter), and decision variables are

parameters of multiple injection strategy. Similarly, Kim et al. have applied micro-GA

for a diesel engine simulation using KIVA-3V code [64]. Srinivasan and Tanner also

have applied a gradient method for same type of simulation [103]. They have optimized

multiple injection strategy.

This approach enables the calibration of control parameters offline without real
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engines. It is an effective approach because optimization can be executed even when

no engine is available. However, the following drawbacks exist in this approach:

• To construct a physical and chemical model of an internal-combustion engine in

detail requires a lot of effort, and it is not cost effective.

• Unknown parameters exist and eventually have to be estimated via the real

engine experiments. Otherwise, the optimization results might only be used as

the information about qualitative tendencies.

• The fluid and thermal dynamics of the engine model need enormous simulation

time due to need to solve complex numerical calculation such as partial differen-

tial equations.

2.3.2 Response Surface Methodology

Response Surface Methodology (RSM) is an offline optimization technique based on

Design of Experiments (DoE) and statistical approximation models that can reduce

the large evaluation burden of engineering designs [74]. Approximation function of

relationship between decision variables and objective function value is called ‘response

surface’. In RSM, DoE methods such as Latin Hypercube Sampling (LHS), Center

Composite Design (CCD) and D-Optimal Design are employed to determine evalu-

ated solutions in decision variable space. Additionally, polynomials, artificial neural

networks and radial basis functions are usually used to construct response surfaces.

In automotive industries, the term ‘Design of Experiments’ currently means the

entire process including design planning, the modeling and the optimization, although

the original the term meant only design planning. Moreover, this calibration process

is also called ‘Model-Based Calibration’. In this thesis, the term ‘Response Surface

Methodology’ is used with the same meaning as the aforementioned terms.

The typical engine calibration process by using RSM shown in Fig. 2.3 is as follows:

1. Set an operating point of the engine determined by an engine speed and a load

torque.

2. Determine a set of evaluation control parameters based on DoE.

3. Measure the engine output using the control parameters.

4. Build the response surfaces of the engine output from the measured data using

approximation modeling techniques.

5. Optimize the response surfaces offline by the control parameters, e.g., use generic

mathematical (multi-objective) optimization method.
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6. Verify the performance of the optimum control parameters in the real engine,

and then return to Step 1) if necessary.

2. Design of 
experiments

3. Measurement of 
engine output 4. Building 

response surface

5. Optimization 
of response 

Map 6. Validation of 
optimal solution 1. Choosing 

operating condition

Figure 2.3: The procedure of response surface methodology.

Alonso et al., for example, have applied genetic algorithms for diesel engine models

constructed by artificial neural networks [1]. This type of application can be seen in

many previous works [23, 41, 88, 89]. They have optimized air mass, Exhaust Gas

Recirculation (EGR), injection pressure, and multi injection strategy to minimize the

weighted sum function of fuel consumption and exhaust emissions.

RSM can reduce the number of tests, and improve the efficiency of calibration

process. However, the following drawbacks exist in this method:

• Re-evaluation of the parameters and re-construction of the response surfaces is

necessary when the specifications of the tested engine are changed.

• The model selection and the design of experiments must be re-examined when

new electronic control devices and their parameters are added.

• There is a possibility for the occurrence of a large modeling error. The influence

on the calibration cannot be neglected when the complex characteristics of an

engine are approximated by straightforward functions such as a second-order

polynomial.

2.3.3 Hardware In the Loop Simulation

In recent automotive development, we can use a smart environment called Hardware

In the Loop Simulation (HILS) for automated measurement. HILS is a technique
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for accurately simulating a whole system by synchronizing a simulator with a real

machine to evaluate the performance of a large-scale system. Although the term ‘HILS’

usually means an ECU verification process with real time engine/vehicle simulators in

automotive control system developments, this term is used in a wider meaning in this

thesis.

Figures 2.4 depicts an engine test-bench as a HILS environment. The engine test-

bench shown in Fig. 2.5 consists of an ultra-low inertia dynamometer and a dynamo

controlling computer having I/O interfaces. The ultra-low inertia dynamometer shown

in Fig. 2.6 is connected with the crankshaft of the engine and controls load torque in real

time. The dynamo controlling computer implements transmission and vehicle models

to evaluate the engine in a condition almost identical to that of real cars. Moreover,

instruments such as an exhaust gas analyzer, a fuel flow meter and a combustion

analyzer are connected to measure the engine performances.

A calibration PC connects with the ECU which controls electronic devices. The

control parameters on the maps can be changed automatically by the PC’s software or

manually by the operator. The calibration PC monitors the outputs from the engine

test-bench, the instruments, and the ECU. Therefore, the calibration PC can handle

this environment including a real machine in a manner similar to a simulation, and

can use mathematical optimization methods. The HILS environment that introduced

Engine
� Control devices

Ultra-low inertia 
dynamometer

Computer
� Transmission model
� Vehicle model

Calibration computer
� MOEA

ECUECU

Instruments
� Exhaust gas analyzer
� Combustion analyzer
� Fuel flow meter

HILS environment

Figure 2.4: Block diagram of the engine HILS environment and the calibration PC.

RSM as optimization method is used as an automatic engine calibration system, and

this approach has made significant progress and advancement over the past few years.

However, we do not feel that RSM sufficiently takes full advantage HILS ability to take

a lot of samples automatically, because RSM is usually adopted for the problems that

cannot take many samples. We believe that a new methodology that brings out the

best performance in HILS is necessary.
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Figure 2.5: The engine test-bench.

Figure 2.6: The ultra-low inertia dynamometer.

2.4 Summary

In this chapter, the brief introduction of automotive engine control and engine calibra-

tion was described. Although automotive engine calibration is one of the most impor-

tant development processes, current engine calibration is too complex to solve manually

because of many control parameters and performance requirements. Currently, we can

choose two methods, theoretical simulation-based optimization and Response Surface
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Methodology (RSM). In fact, recent automatic engine calibration systems widely have

adopted RSM combined with Hardware In the Loop Simulation (HILS) environments.

The drawbacks of theoretical simulation and RSM and necessity of new methodology

for HILS environment were emphasized.



Chapter 3

Evolutionary Multi-objective
Optimization

3.1 Outline

When we consider what the best internal-combustion engine is, the engine should be

evaluated from various viewpoints; maximum horse power, maximum torque, minimum

amount of exhaust emissions, fuel-consumption, response, sound, noise, and so on. Let

us consider the engine torque and the fuel-consumption as two engine performances.

An engine under these criteria should achieve large torque and low fuel-consumption

simultaneously. However, to obtain large torque, engine needs more fuel. Whereas to

achieve low fuel-consumption, engine needs to suppress torque. Hence, the offsetting

performances should be treated as multidimensional variables, rather than single scalar

ones, in the optimization process.

In this chapter, first, definition of Multi-objective Optimization Problems (MOPs)

and Pareto optimal solution as a theory of handling such multiple evaluation criteria

are introduced. Next, a brief introduction of Multi-objective Evolutionary Algorithms

(MOEAs) is explained. Moreover, the motivation and the difficulties of Experiment-

Based Evolutionary Multi-objective Optimization (EBEMO) in applying optimization

through experiment such as HILS are discussed.

3.2 Multi-objective Optimization

3.2.1 Problem Formulation

Multi-objective Optimization Problem (MOP) is one of the problem class that has

plural objectives. In this chapter, minimization problems are considered. Without lost

of generality, every maximization problems can be transformed

max
x

f(x)

14
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into minimization problem

min
x
−f(x),

where f is an objective function, and x = [x1 x2 · · · xn]T is n-dimensional decision

variable vector. In the following, decision variable vector is called ‘solution’.

An aim of MOPs is to optimize objective functions by cooperating with each other

as much as possible. MOPs are generally defined as the search for x to minimize

competing m-objective functions

f(x) = [f1(x) f2(x) · · · fm(x)]T

under p inequation constraints

g(x) := [g1(x) g2(x) · · · gp(x)]T ≤ 0.

Because the objective functions compete with each other, the unique optimal so-

lution for all the objective functions may not be obtained. Hence, Pareto optimal

solution is introduced as a solution concept in place of the unique optimal solution.

The concept of Pareto optimal solution, rational solutions of MOPs, was introduced

by Vilfredo Pareto who was an economist at the turn of the 19th century and into the

20th century. Pareto optimal solution is defined by dominance comparison of solution

in MOPs. The definition of dominance comparison is shown below:

Definition 3.1. (Pareto Dominance)

Let x1, x2 ∈ X, where x = [x1 x2 · · · xn]T．x1 is said to dominate x2 if and only if

f(x1) is partially less than f(x2), i. e. ,

∀i ∈ {1, 2, . . . , m}, fi(x
1) ≤ fi(x

2) ∧ ∃i ∈ {1, 2, . . . , m}, fi(x
1) < fi(x

2).

If x1 dominates x2, x1 is a more suitable solution than x2.

Next, the definition of Pareto optimal solution based on the dominance comparison

is shown below:

Definition 3.2. (Pareto Optimal Solution)

Let a solution x∗ ∈ X. x∗ is said to be a Pareto optimal solution, if there exists no

other feasible x ∈ X that dominates x∗.

Pareto optimal solution is also called ‘non-dominated solution’.

Weakly Pareto optimal solution that is relaxation concept of Pareto optimal solu-

tion is introduced as follows:
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Definition 3.3. (Weakly Pareto Optimal Solution)

Let a solution x∗ ∈ X. x∗ is said to be a weakly Pareto optimal solution, if there exists

no x ∈ X such that ∀i ∈ {1, 2, . . . , m}, fi(x) < fi(x
∗).

The purpose of MOPs is searching the set of Pareto optimal solutions, that is,

Pareto optimal set described below:

Definition 3.4. (Pareto Optimal Set)

For a given MOP, the Pareto optimal set X∗ is defined as:

X∗ := {x ∈ X| 6 ∃x∗ ∈ X, x∗ dominates x}

Figure 3.1 shows an example of Pareto optimal set of a two-objective optimization

problem. The left hand side of figure indicates objective function space and the right

hand side of figure depicts decision variable space. In the decision variable space,

Pareto optimal set is shown by solid line. The curve composed by the Pareto optimal

set in the objective space is generally called ‘Pareto frontier’. Similarly, the weakly

Pareto optimal set in the objective space is called ‘weakly Pareto frontier’.

1x

2x

Feasible region

1f

2f

Pareto frontier

Feasible region

Pareto optimal set

Figure 3.1: The conceptual diagram of Pareto optimal set.

3.2.2 Scalarization Method

Scalarization is the most common strategy to obtain Pareto optimal solutions. In

scalarization methods, MOPs are characterized to Single-objective Optimization Prob-
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lems (SOPs) and are solved by appropriate single-objective optimization methods.

Among the many ways of scalarization methods, two of the methods are explained in

the following:

Weighted Sum Method

In weighted sum method, objective function vector f(x) is transformed into a scalar

objective function F (x) as follow:

min
x

F (f(x))

F (f(x)) =
m∑

i=1

wifi(x), wi ≥ 0,
m∑

i=1

wi = 1,

where wi is weight of i th objective function. Figure 3.2 shows a conceptual diagram

of weighted sum method. This method can find various Pareto optimal solutions by

sweep of wi. However, this method have a drawback, that is, the solutions in concave

Pareto frontier are not obtained.

Feasible region

1f

2f

Pareto frontier

Figure 3.2: Weighted sum method.

ε-Constraint Method

In this method, a primary objective function fk is selected and then other functions are

converted to constraints that have some upper bounds ε. This method is also called
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constraint transformation method. The problem is formulated as follows:

min
x

fk(x)

subject to fi(x) ≤ εi, i = 1, . . . , m, i 6= k,

where ε = [ε1 · · · εk−1 εk+1 · · · εm]T. This method can find various Pareto optimal

solutions by sweep of εi even concave Pareto frontier. The conceptual diagram is shown

Fig. 3.3.

Feasible region

1f

2f

Pareto frontier

1ε

Figure 3.3: ε-constraint method.

These methods are easy to understand and implement, and are widely used. How-

ever, these methods obtain only one Pareto optimal solution via one optimization trial.

Pareto optimal set, that is relative solutions for MOPs, has many alternative so-

lutions. Hence, Decision Maker (DM) finally selects the most suitable solution called

‘preference solution’ from Pareto optimal set after the multi-objective optimization.

This process is called Multi-Criterion Decision Making (MCDM). If DM has a prior

knowledge such as the priority order, importance (weight), upper bounds, and other

trade-off information, DM can determine appropriate a weight vector or constraint

vector. Hence, DM might obtain a preference solution via few iterations. If the DM

lacks prior knowledge, trial-and-error will be required to obtain the preference solution.
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3.3 Evolutionary Multi-objective Optimization

Over past decade, Evolutionary Multi-objective Optimization (EMO) has been paid

attention as a practical multi-objective optimization method, because of dramatic

progress of the computer performance, and have been applied to many real world

problems (See detailed survey by Coello Coello et al. [14]). A general requirement of

MOPs is to obtain the whole set of Pareto optimal solutions because plural Pareto op-

timal solutions exist. Multi-point search, that is one of the features of EAs, is suitable

for this requirement. The purpose of MOEAs is to search the Pareto approximation

set of the Pareto optimal set as precisely as possible since MOEAs are a stochastic

search.

In this section, first, basic framework of Evolutionary Algorithms (EAs) is intro-

duced. EAs are basis methodologies of MOEAs that are extended algorithms suitable

for solving MOPs. Next, brief introduction of MOEAs is described. Customarily in

EAs, decision variable vector is called an ‘individual’, the set of individual is called

a ‘population’, objective function is called a ‘fitness function’, the objective function

value is called ‘fitness’ and so on. In this thesis, these notations adhere to the customs

when describing EA operations.

3.3.1 Evolutionary Algorithms

EAs are a generic name of some natural-inspired optimization techniques, and are in

the class of stochastic and direct optimization algorithms without gradient information.

The origin of EAs was the research activity of three groups established independently

in-1960s, they were, Genetic Algorithms (GA) [47, 37], Evolution Strategy (ES) [87, 97],

Evolution Programming (EP).

The typical procedure of EAs is described as follow:

1. Initialization: Generate an initial population P (0) randomly, and set the number

of generations t = 0.

2. Evaluation: Calculate the value f(x) of the objective function for individuals in

the population P (t).

3. Selection: Select the individuals as parents from the P (t).

4. Crossover: Generate offspring for the population of the next generation with the

crossover operation pre-specified probability.

5. Mutation: Add random perturbation to the offspring with the pre-specified mu-

tation probability.

6. Termination: If a termination condition is satisfied, finish this procedure; other-

wise, set t := t + 1 and return to Step 2).
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3.3.2 Multi-objective Evolutionary Algorithms

Multi-objective Evolutionary Algorithms (MOEAs) are optimization methods that

make the best use of the features of multipoint search of EAs, and can obtain Pareto

approximation set at the same time. Nowadays, MOEAs are widely applied to real

world problems via computer simulations such as automotive engineering design [71],

optical lens design [81], machine learning [60] and robust design [21]. Various MOEAs

techniques, for example, MOGA [34], PESA [16], NSGA-II [19], and SPEA2 [116] have

been proposed.

In the following, NSGA-II is introduced as a representative MOEA. In this thesis,

the term ‘non-dominated individual’ means an individual that is not dominated by

other individuals in the population. Moreover, the population of final generation is

called ‘Pareto approximation set’, and the population distribution in the objective

function space is called ‘approximation Pareto frontier’.

NSGA-II

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) proposed by Deb et

al. [19] is well known as an excellent implementation of MOEA, although various

MOEAs have been proposed. NSGA-II is able to obtain high level of accuracy and a

wide spread Pareto approximation set with high accuracy and converge by following

features.

Feature 1: High validity individual ranking method based on dominance comparison.

Feature 2: Sorting algorithm based on crowding measure to judge the density of

population and to maintain diversity.

Feature 3: Elitism to preferentially leave non-dominated individual for the next gen-

eration.

Figure 3.4 shows the conceptual diagram of NSGA-II. The algorithm of NSGA-II

is as follows:

1. Select parents from population P (t) by binary tournament selection based on the

rank and the crowding distance (crowded tournament selection, see Appendix

B. 3).

2. Generate offspring population Q(t) by applying crossover and mutation operators

to the selected parents.

3. Calculate the fitness of population R(t) = P (t) ∪Q(t).

4. Calculate the rank of R(t) by non-dominated sorting algorithm (see Appendix

B. 1) and sort R(t) in ascending order by the rank as a key.
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5. Calculate the crowding distance of R(t) of each rank (see Appendix B. 2) and

sort the individuals that have same rank in ascending order by the crowding

distance as a key.

6. Select high-ranked |P | individuals from R(t) as next generation.

7. If an termination condition is satisfied, finish this procedure; otherwise, return

to Step 1).

Non-dominated
sorting

Crowding distance
sorting

Rejected

P(t) P(t+1)

Q(t)

R(t)

P(t): Population
Q(t): Offspring population

)()()( tQtPtR ∪=

Figure 3.4: Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II).

Details of non-dominated sorting, crowding distance and crowded tournament selection

are described in Appendix B.

3.4 Experiment-Based Evolutionary Multi-objective

Optimization

3.4.1 Aims of EBEMO

Evolution Strategy (ES), one of EA method proposed by Rechenberg and Schwefel

in-1960s, was originally developed for experiment-based optimization [87, 97]. In this

thesis, the term ‘experiment-based optimization’ is used to mean “the system param-

eters of a real system are optimized directly by optimization techniques in real time

through experiments”.

In real experiments, observation values usually include measurement error by sen-

sor noise, transient response and so on. Hence, gradient-based optimization meth-

ods such as steepest decent method and quasi Newton method are difficult to apply
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to experiment-based optimization because the numerical differential calculation using

fluctuated observation values misleads the search direction. However, direct search

methods such as local search, simulated annealing do not use gradient information.

Therefore, they can adequately avoid the influence of fluctuated observation values. In

particular, because EAs are multi-point searches that have a set of search information,

they have robustness for measurement error in the sense that they can optimize mean

fitness of population. Therefore, experiment-based optimization by using EAs is a

suitable approach for real world problems.

Various engineering applications of experiment-based optimization using EAs have

been studied. For example, Kim and Lee have applied ES to a time delay controller for

the position control system of electro-hydraulic servo [65]. Shi et al. have optimized the

covariance matrices of Extended Kalman Filter for an induction motor speed estimation

by GA [98]. Neri et al. have applied their original GA that considers observation noise,

for gain and coefficient optimization of an AC servo motor controller [77]. Moreover,

Kamihira et al. have proposed Bio-Control Architecture (BCA) for adaptive vehicle

controller [61]. Although most previous research has used single-objective EAs, Büche

et al. have applied NT-SPEA that has a noise tolerant scheme to parameter tuning of

gas-turbine controllers [10].

Therefore, it is a natural and realistic approach to apply MOEAs directly to HILS

environments introduced in Chapter 2. Both of improvement in computer performance

and progress of automatic measurement environments such as HILS make for easy

installation of MOEAs. This approach is called Experiment-Based Evolutionary Multi-

objective Optimization (EBEMO) in this thesis. In EBEMO for engine calibration, we

do not need to build theoretical or statistical engine models needed in RSM, instead

we are able to use the optimization results directly. Therefore, some processes such as

design of experiments, model selection, and verification can be omitted. Moreover, the

automated data measurement using the HILS lightens the burden of the parameter

adjustment. As a result, since a certain number of the trial-and-error evaluations

by MOEAs can be allowed, the EBEMO using HILS environments can be a smarter

calibration technique.

3.4.2 Difficulties of EBEMO

Because EAs are robust optimization techniques, online optimization applied naive

application of existing MOEAs to experiment-based optimization may be an effective

approach for complex real systems that can not be modeled easily. However, to achieve

a practical level EBEMO have to solve two main problems in its application.

The first problem is the search performance of MOEAs in real environments. Con-

ventional MOEAs do not sufficiently consider some factors that deteriorate search

performance. For example, observation noise of sensors included in output is one such

factor. Additionally, especially in engine calibration, the influence of transient response
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by parameter switching is a serious problem. Moreover, from a viewpoint of engine

control, we also have to consider the periodicity of control inputs.

The second problem is the search time of MOEAs in real environments. Generally

speaking, MOEAs require a tremendous number of evaluations. While we can obtain

many measurements with HILS, there still exists severe limitations in the number

of fitness evaluations because real experiments need real-time evaluations. Hence, it

is difficult to obtain a Pareto approximation set in practical time with conventional

MOEAs. In addition, plural MOPs corresponding to the operating conditions of maps

have to be optimized to integrate map-based controllers. For example, when a map

is represented by 10× 10 grids, we have to solve 100 MOPs at one engine calibration

process.

Therefore, we should develop some innovative techniques to overcome the difficulties

that are potentially and essentially included in online optimization of real systems. In

the following chapters, five techniques to solve aforementioned difficulties for EBEMO

are proposed.

3.5 Summary

In this chapter, the definition of MOPs and the concept of Pareto optimal solution were

introduced. In addition, the foundation of conventional multi-objective optimization

methods and MOEAs were introduced. Moreover, as a typical MOEA technique, the

detail of NSGA-II proposed by Deb et al. was denoted. The concept of EBEMO was

also introduced. In particular, the aims of EBEMO approach and its difficulties were

emphasized. EBEMO is an integrated problem of various difficulties. The rest of this

thesis, these piled difficulties will closely be solved one by one to compose automatic

engine calibration methods.



Chapter 4

Handling of Observation Noise

4.1 Outline

Currently, MOEAs are applied to many real-world problems as multi-objective opti-

mization methods. Because Evolutionary Algorithms are a flexible framework, multi-

objective optimization for real systems and simulations using random numbers are

promising applications. Observation values of these applications have uncertain fluc-

tuation, which is one of its attractive research topics [10, 36, 48, 99, 100].

The aim of multi-objective optimization by MOEAs is acquisition of Pareto ap-

proximation set which uniformly distributed in the neighborhood of Pareto frontier.

However, search efficiency under constrained evaluations and precision of shape of

approximation Pareto frontier fluctuated by uncertainty of observations are also im-

portant factors, when real systems are optimized online. Previous studies have focused

on techniques to obtain the Pareto approximation set. There has been little researches

focused on the search efficiency and the precision of the shape of approximation Pareto

frontier.

In the following, the problem with the application of conventional MOEAs to MOPs

having observation noise is discussed. Then, Memory-based Fitness Estimation and

Distribution-based Selection GA (MFE-DSGA) that is suitable for noisy environments

is proposed. Moreover, the effectiveness of the proposed method is confirmed through

numerical experiments and a real engine experiment.

4.2 MOEAs for Uncertainty Environment

4.2.1 Background

In this chapter, unconstrained m-objective optimization problems that have uncer-

tainty in observation values, that is, observation noise are considered. The uncon-

strained multi-objective optimization problem with observation noise is defined as fol-

24
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lows:

min
x
〈F (x)〉, x ∈ X ⊂ Rm

Sampled value︷ ︸︸ ︷
F (x) =

True fitness︷ ︸︸ ︷
f(x) +

Observation noise︷︸︸︷
δ ,

F (x) =




F1(x)
...

Fn(x)


 , f(x) =




f1(x)
...

fn(x)


 , δ =




δ1
...
δn


 ,

where 〈〉 represents expectation value over observation noise δ. In other words, this

problem defines as a minimization problem of expectation value of sample 〈F (x)〉. In

this thesis, continuous space is assumed as search space of x.

Features 1 to 3 introduced by NSGA-II described in Chapter 3 are indispensable

elements for MOEAs in problems that do not have uncertainty. However, the following

three problems occur in NSGA-II in environments with observation noise [10, 48].

Problem 1: The ranking algorithm becomes unstable. This problem easily leads to

the dismissal of good individuals and stagnation of the search.

Problem 2: The distribution of the population becomes biased because the crowding

measure is not appropriately allocated. Hence, diversity maintenance does not

work well.

Problem 3: Since the individual having good sampled fitness value is treated as an

elite and stored for a long term even if its true fitness is bad, the search per-

formance is decreased. In particular, dominated individual might be treated as

non-dominated individual by the dominance comparison based on the sampled

value. This phenomenon easy occurs in a multi-objective optimization problem

that has a weakly Pareto frontier.

Fig. 4.1 shows the conceptual diagram of the phenomenon of which a weakly

Pareto individual becomes a ‘fake’ non-dominated individual. Assume that the

observation noise is added for true fitness f(x) of weakly Pareto individual x

within the range shown in gray circle. If observation noise that improves objective

function f1 is added, x is treated as a non-dominated individual by the domi-

nance comparison based on the sample value F (x). This fake non-dominated

individual can survive until dominated by other individuals. When the weakly

Pareto frontier is widened, a large crowding measure can be allocated to x easily

and the possibility selected as parent increases. As a result, it causes the search

performance to be decreased.
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Figure 4.1: A weakly Pareto individual treated as a non-dominated individual.

4.2.2 Related Works

For the aforementioned problems, the following methods have been proposed as MOEAs

that are suitable for the uncertainty:

Rank Estimation

Hughes has proposed Multi-Objective Probabilistic Selection EA (MOPSEA) [48].

MOPSEA applies the rank estimation method based on probability distribution for

conventional MOEAs.

This approaches can solve problems 1 and 3, because the ranking becomes stable

through rank estimation. However, it is necessary to know the standard deviation of

the observation noise beforehand. Moreover, problem 2 occurs because the sample

value is used for crowding measure calculations.

Fitness Estimation

In this thesis, estimation of true fitness value f(x) is expressed as f̃(x). f̃(x) is called

estimated value.

Singh et al. have discussed MOEAs that uses the mean value of plural sample values

as the estimated value [100]. They have recommended five or more as the number of

samples to be used. In addition, they also have proposed a method that uses the

mean of sample values of past evaluated same individual stored in search history as

an estimated value. This method can solve problems 1 and 2 because the ranking
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and crowding measures become stable by using the estimated values. However, the

increase in the number of evaluation is a significant problem. When a small number

of samples is evaluated, problem 3 cannot be solved because estimation error cannot

be reduced sufficiently. Singh has proposed a method combining this method with

MOPSEA. However, the problem with the number of evaluations cannot be solved.

Consideration of Influence of Elitism

Singh et al. have investigated non-elitism NSGA-II [99]. They concluded that the

performance of this method is better than that of conventional NSGA-II. However,

when elitism is not used, it is thought that convergence slows down, and hence making

it unsuitable for a real problem.

Büche et al. have proposed NT-SPEA (Noise Tolerant SPEA) and applied it for

the experiment-based optimization of gas turbines [10]. In NT-SPEA, non-dominated

individuals have their own lifespan and are re-evaluated when the lifespan is completed.

This technique can regularly remove outliers, that is, individuals added extreme noise.

However, problems 1 and 2 cannot be solved because NT-SPEA uses sampled values.

4.3 Memory-based Fitness Estimation and

Distribution-based Selection Genetic Algorithm

In this section, MOEAs that are suitable for a problem having uncertainty of observa-

tion value is proposed. This MOEA is called Memory-based Fitness Estimation and

Distribution-based Selection Genetic Algorithm (MFE-DSGA). MFE-DSGA utilizes

the following three solutions to solve three problems that discussed in the previous

section.

Solution 1: To stabilize the search for uncertainty by using estimated value for indi-

vidual evaluation, a fitness estimation method that does not increase the number

of evaluation is introduced.

Solution 2: To maintain the diversity and to improve estimation accuracy, a selection

method that pays attention to population distribution is introduced. The parents

are selected from a sparse area of population.

Solution 3: To maintain the effectiveness of elitism by excluding the weakly Pareto

individuals treated as fake non-dominated individual, an extended dominance

comparison is introduced.

A prototype algorithm of MFE-DSGA is shown below. In this algorithm, Euclidean

distance is used in both of decision variable space and objective function space. Hence,

domain of decision variables and range of objective function have to be normalized

beforehand.
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1. Evaluate all fitness vector f(x) of the initial population P (0), t = 0 in a real

environment, and preserve individuals and their fitness vector in search history

set H.

2. Select one parent from a sparse area of distributed population in the objective

function space from the non-dominated population Pnd ∈ P (t) (details are de-

scribed in Subsection 4.3.2), and select another parent at random from P (t).

3. Generate a family population F (t) that is composed by the aforementioned par-

ents and offspring generated by crossover, and obtain their sampled value.

4. Calculate the estimated value of population R(t) = P (t) ∪ F (t) by using the

memory-based fitness estimation method (details are described in Subsection

4.3.1).

5. Calculate the rank of R(t) by an extended dominance comparison (details are

described in Subsection 4.3.3). An offspring in F that has the same chromosome

of individual in P (t) is ranked the lowest.

6. Calculate the crowding measure of R(t) of each rank, and sort them in ascending

order based on the crowding measure, and select high-ranked |P | individuals of

R(t) for the next generation.

7. If the termination condition is satisfied, finish this procedure; otherwise, set

t := t + 1 and return to Step 2).

The aim of Step 2) in MFE-DSGA is to generate offspring around specific parents.

When a large size of the offspring population is taken such as in conventional NSGA-

II, it is easy to lose the diversity in the early stages of the search. Therefore, to

prevent this problem, the size of family |F | is set smaller than |P |. In this chapter,

UNDX (Unimodal Normal Distribution Crossover) proposed by Ono et al. [80] is used

as crossover operator. Moreover, crowding distance of NSGA-II as a crowding measure

and Pareto ranking method proposed by Fonseca and Fleming [34] as a ranking method

are used. In Fonseca’s Pareto ranking method, rank r(x) of individual x dominated

by p individuals is calculated by a following equation:

r(x) = 1 + p. (4.1)

Details of aforementioned solutions are described in following subsections.

4.3.1 Fitness Estimation Method for MOEAs

Sano and Kita have proposed Memory-based Fitness Estimation Genetic Algorithm

(MFEGA) that have a fitness estimation method [91, 93]. MFEGA is a Real-Coded

Genetic Algorithm (RCGA) suitable for single-objective optimization for a fitness func-

tion with uncertainty. The algorithm of MFEGA is shown as follows:
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1. Install a stochastic model of uncertainty of fitness function before the search.

2. Obtain sampled values of the fitness value of individuals during the search.

3. Preserve individuals and their sampled values as a search history.

4. Estimate the fitness value of individuals using a statistical method based on the

stochastic model defined in Step 1) and the search history.

MFEGA stores evaluated individual in the past to the search history and estimates

fitness value of focused individuals by using the search history. It has been confirmed

that MFEGA is able to optimize noisy test problems more effectively than plural

sampling method. Figure fig4-2 shows the uncertainty model that MFEGA adopts.
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Figure 4.2: A stochastic model of fitness functions.

This model combines two uncertainties. One is change of fitness function repre-

sented by normal distribution. The variance of the normal distribution is assumed to

be proportional to the distance from the focused individual. The other is observation

noise. In Fig. 4.2, the horizontal axis indicates Euclidean distance from the focused

individual in the decision variable space, and vertical axis indicates the variance of

fitness. Assuming that fitness f(h) of individual h seen from focused individual x

represented by a square is represented by a normal distribution given by mean f(x)

that is the true fitness value, and variance kd that is change of fitness function:

f(h) ∼ N(f(x), kd), (4.2)

which is proportionally changed to distance d from x, where k is the weight of distance

in the decision variable space.

Hence, sampled value F (h) is modeled as f(h) that is added observation noise

represented by normal distribution given by mean 0 and variance σ2
E:

F (h) = f(h) + δ ∼ N(f(x), kd + σ2
E), (4.3)

δ ∼ N(0, σ2
E). (4.4)
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From the model shown in Fig. 4.2, estimated value f̃(x) of true fitness f(x) is

obtained by using the following maximum likelihood estimation method:

f̃(x) =

F (x) +
H∑

l=2

1

k′dl + 1
F (hl)

1 +
H∑

l=2

1

k′dl + 1

. (4.5)

Individuals in the search history H are represented by hl, l = 1, 2, . . . , H, and F (hl) is

sampled value at hl. dl is the Euclidean distance from the focused individual x to hl.

Moreover, it is k′ = k/σ2
E.

In this chapter, k-Fixed MFEGA that uses constant k′ is used [91, 93]. The param-

eter k′ is unknown including variance σ2
E of observation noise. In experiment-based

optimization, σ2
E is set taking into consideration prior knowledge such as data taken

in preliminary experiments.

Since this fitness estimation method of MFEGA is an independent algorithms from

GAs, it can be easily combined with MOEAs. Hence, it is expected that the fitness

estimation method can stabilize individual ranking and search effectively.

However, this fitness estimation method of MFEGA is not necessarily suitable

for MOEAs because the method adopts the uncertainty model that assumes the use

of single-objective GAs. Equation (4.5) calculates estimated value by using stored

individuals in search history, and the individuals are weighted by the reciprocal of

Euclidean distance. On the one hand, in single-objective GAs, the weights of distant

individuals becomes relatively small, because the population converges in the vicinity

of the optimal solution in the last stage of the search. On the other hand, the pop-

ulation is widely distributed in the vicinity of Pareto optimal set in MOEAs. If the

aforementioned Eq. (4.5) is used for estimation, the boundary of Pareto frontier (both

ends of the Pareto curve in cases with two objectives) are allocated comparatively large

weights. Hence, the accuracy of the estimated value deteriorates. To cope with this

problem, following fitness estimation equation is used for each objective function:

f̃i(x) =

Fi(x) +
H∑

l=2

1

k′idl
3 + 1

Fi(hl)

1 +
H∑

l=2

1

k′idl
3 + 1

, i = 1, . . . , n. (4.6)

In Eq. 4.6, we adopt cubic dependency on distance dl instead of the linear one in

Eq. 4.5.

Thus the influence received from distant individuals in the search history is sup-

pressed more. Hence, an appropriate estimated value can be expected to be obtained

even in the last stage of the search.
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4.3.2 Selection Operator using Population Distribution

As discussed in Chapter 3, binary tournament selection and elitism type generation

alternation models are widely used in MOEAs such as NSGA-II. In addition, offspring

population size |Q| equals to population size |P | in almost all implementations. These

two operations lead to the loss of diversity and selection bias of specific parents. In

NSGA-II etc., when the number of non-dominated individuals exceeds the popula-

tion size, diversity maintenance operation for non-dominated individuals are executed.

However, it is difficult to make all individuals becomes non-dominated individuals un-

der uncertainty. In this situation, bias of distribution of the sampled values in the

search history is caused. As a result, the accuracy of the estimated value worsens in

some areas. To maintain the diversity and to improve the accuracy of estimated value

all over the Pareto frontier with certainty, a selection operator that pays attention to

the population distribution is introduced. This method is called ‘distribution-based

selection’.

An algorithm for two-objective problems are described as follows:

1. Sort non-dominated population Pnd in ascending order by the objective function

f1 as a key.

2. Calculate the Euclidean distance between adjoined individuals in the objective

function space.

3. Select one individual at random as a parent from two individuals that comprise

the maximum distance.

4. Select one individual at random as the other parent from the population P .

When the fitness vectors of non-dominated population Pnd are sorted in ascending

order by objective function f1 as a key, objective function f2 is sorted in descending

order. The distance between adjacent individuals is calculated by using this feature in

this algorithm.

In more than three objective problems, non-dominated individuals are distributed

on a manifold. In such cases, when objective function vectors are sorted by f1 as a

key, other elements of objective functions are not sorted. Therefore, it is necessary

to determine the neighborhood of individuals by some method. In MFE-DSGA, the

neighborhood is determined by Delaunay triangulation of non-dominated individuals.

Delaunay triangulation is an algorithm of computational geometry [4].

An algorithm for m-objective problems is described as follows:

1. Project non-dominated population Pnd in m-dimensional objective space for m−
1-dimensional hyper-plane.

2. Apply Delaunay triangulation of projected Pnd. Pnd is divided to m−1-dimensional

simplex in m− 1-dimensional hyper-plane.
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3. Transpose projected Pnd to m-dimensional space by adding the element that is

removed.

4. Restore the element lost through projection to triangulated Pnd, and return them

to m-dimensional space.

5. Calculate the volume of all simplex.

6. Randomly select one individual among n individuals that compose the maximum

simplex.

7. Randomly select one individual as the other parent from population P .

The computational complexity of Delaunay triangulation in a two-dimensional plane is

O(|Pnd| log |Pnd|), where |Pnd| is the number of non-dominated individuals. If geometry

conversion [4] is used, Delaunay triangulation of m-dimensional space becomes equiva-

lent to the problem of constructing a convex hull in m+1 dimensional space. Hence, it

is understood that the distribution-based selection algorithm for two-dimensional space

is essentially the same as the algorithm for m-dimensional space. If Pareto frontier is

continuous, offspring are easily generated around non-dominated individuals in the

sparsely populated areas by proposed distribution-based selection. It can be expected

to positively search maintaining diversity. For a problem that has discontinuous Pareto

frontiers, there is a possibility that non-dominated individuals on the edge of a Pareto

frontier could be selected as a parent. This parent weakens the effect that generates

the offspring in sparsely populated areas of non-dominated individuals. However, the

distribution-based selection is a realistic choice because it is thought that real world

problems hardly have discontinuous Pareto frontiers.

4.3.3 α-domination Strategy

In experiment-based optimization, due to observation noise or estimation error, there

is a possibility that dominated individual may survive as a non-dominated one. Figure

4.1 shows a situation in which a weakly Pareto individual is treated as a non-dominated

individual. Such an individual is called ‘fake’ non-dominated individual in this chapter.

To solve this problem, we use the α-domination strategy proposed by Ikeda et

al. [49] for the ranking applied to the estimated values. The α-domination strategy is

defined as an expansion of dominance comparison as follows:

Definition 4.2. (α-domination)

Let x1,x2 ∈ X, where x = [x1 x2 . . . xn]T．x1 is said to α-dominate x2 if and only if

∀i ∈ {1, 2, . . . , m}, gi(x
1,x2) ≤ 0 ∧ ∃i ∈ {1, 2, . . . , m}, gi(x

1,x2) < 0,
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where

gi(x
1,x2) = fi(x

1)− fi(x
2) +

n∑

j 6=i

αij(fj(x
1)− fj(x

2)).

In α-domination strategy, weighted linear sum of all objective functions is used for

the definition of dominance comparison. The weights are given by the ratio of each

objective function. When an objective function fi is compared by the α-domination

strategy, another objective function fj is considered in a ratio of αij. The conceptual

diagram of the α-domination strategy is shown in Fig. 4.3. The solid black line indicates

a Pareto frontier. The black and gray circle indicate non-dominated and dominated

individual, respectively. Normal dominance comparison is execute by the dotted gray

line. While the dominance comparison based on α-domination strategy is executed

by the solid gray line. For example, an individual that needs to greatly corrupt fj to

improve fi a little is dominated easily. As a result, fake non-dominated individuals are

excluded efficiently.

1f

2f

α

α

Non-dominated individual 

Dominated individual

Figure 4.3: α-domination strategy.

4.4 Numerical Experiments

4.4.1 Experiment Settings and Measures

Two-objective optimization problem ZDT1 and ZDT2, and three-objective optimiza-

tion problem DTLZ2 [20, 114] that are standard test problems of MOEAs are described
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as follows:

• ZDT1

f1(x) = x1

f2(x) = g(x)(1−
√

f1/g(x))

g(x) = 1 + 9 ·
n∑

i=2

xi

n− 1

xi ∈ [0, 1], i = 1, . . . , n

This function has a convex Pareto frontier. In this experiment, n = 2 is used.

• ZDT2

f1(x) = x1

f2(x) = g(x)(1− (f1/g(x))2)

g(x) = 1 + 9 ·
n∑

i=2

xj

n− 1

xi ∈ [0, 1], i = 1, . . . , n

This function has a concave Pareto frontier. In this experiment, n = 2 is used.

• DTLZ2

f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2)

f2(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2)

f3(x) = (1 + g(x)) sin(x1π/2)

g(x) =
n∑

i=3

(xi − 0.5)2

xj ∈ [0, 1], i = 1, . . . , n

This function is m-objective optimization problem (m ≥ 3) having a concave

Pareto frontier. In this experiment, m = 3 and n = 3 are used.

Finally, noisy test problems using numerical experiments based on ZDT1, ZDT2,

and DTLZ2 are defined as follows:

Fi(x) = fi(x) + δi, δi ∼ N(0, σ2
N), i = 1, . . . , n,

where δi represents observation noise, and N(0, σ2
N) is 0 mean σ2

N variance normal

distribution random number. These problems are called Noisy ZDT1, Noisy ZDT2

and Noisy DTLZ2, respectively. The number of dimension is m = 2 for Noisy ZDT1
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and Noisy ZDT2, and m = 3 for Noisy DTLZ2. Standard deviation of δi is σN = 0.1

for all problems.

In this experiment, performances of MOEAs were compared by the mean values of

the plural trials for three evaluation measures described below:

Coverage: This measure is proposed by Hiroyasu et al. [44], and it indicates the ratio

of Pareto frontier that is covered by the population. The coverage is defined as

C =
1

m

m∑
i=1

ci

cmax

, (4.7)

where m is the number of the objective functions, cmax is the number of small

areas where a hyper-plane composed of m − 1 objective functions are evenly

divided, and ci is the number of areas including the true fitness of individuals

projected to the hyper-plane. The best value of this measure is 1. In the case of

two-objective problems，the population is projected to f1 and f2 axises. In the

case indicated in the left hand side of Fig. 4.4, the coverage is C = 1/2× (3/5 +

3/5) = 0.6. Similarly in the case of three-objective problems，the population is

projected to three planes f1− f2，f1− f3，and f2− f3. The conceptual diagram

is shown in the right hand side of Fig. 4.4.

In this experiment, cmax = 50 (m = 2) and cmax = 10 (m = 3) were used. Because

MFE-DSGA introduces α-domination strategy, decreased coverage is predicted.

Hence, we can verify the influence by using this measure.

Mean Absolute Error: This measure indicates the error of the population for Pareto

optimal set X∗. The mean absolute error is defined as the mean value of Eu-

clidean distances from each individual to the nearest solution in X∗. The con-

ceptual diagram is shown in Fig. 4.5. In this experiment, the Pareto optimal sets

of ZDT1, ZDT2, and DTLZ2 are given by

X∗
ZDT1 = X∗

ZDT2 = {x1 ∈ [0, 1], x2 = . . . = xn = 0},
X∗

DTLZ2 = {x1, x2 ∈ [0, 1], x3 = . . . = xn = 0.5}.

Hence, the Mean Absolute Error of the population is calculated by

Aerror =





1

|P |n
|P |∑
i=1

n∑
j=2

|xi
j| （ZDT1,2）

1

|P |n
|P |∑
i=1

n∑
j=3

|xi
j − 0.5| （DTLZ2）

, (4.8)

where |P | is the population size of P . The best value of this measure is 0.
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Mean Estimation Error: Mean Estimation Error between true fitness and esti-

mated value is defined as follows:

Eerror =
1

|P |m
|P |∑
i=1

m∑
j=1

|fj(x
i)− f̃j(x

i)|. (4.9)

Minimum value of the mean estimation error is 0. This measure is used for

verification of ascendancy of MFE-DSGA to plural sampling.

Individual

1f

2f

Pareto frontier

1f
2f

3f

Figure 4.4: Coverage measure (left: two-objective, right: three-objective).

In numerical experiments, following three method was used.

MFE-DSGA: Setting parameters k′ and αij are determined by pre-experiments.

NSGA-II: The sampled value is used as the fitness. Individuals are not re-evaluated

in this method.

Sample-5 NSGA-II: The mean value of five times of the sample value is used as the

estimated value. Individuals are not re-evaluated in this method.

Additionally, test problems without noise are optimized by NSGA-II to compare the

performance under noiseless environments. Experiment settings are shown in Table 4.1.

In these numerical experiments, the number of evaluations was considerably smaller

than in typical experiments, because real engine experiments were considered. The

performances of each method are compared by the mean value of 30 trials of evaluation

criteria.
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Pareto optimal set

1x

2x

Individual

Figure 4.5: Mean absolute error measure.

Table 4.1: Experiment parameter.

Parameter NSGA-II MFE-DSGA

Evaluation 3000
Population Size 100
Children Size 100 8

k′i(i = 1, . . . , n) － 310000(Noisy ZDT1,2)
31000(Noisy DTLZ2)

αij(i, j = 1, . . . , n, j 6= i) － 0.1

4.4.2 Discussion of Results

Table 4.2 shows the results of experiments. It is understood that MFE-DSGA indi-

cated the best performance on coverage, mean absolute error and mean estimation

error. Especially, it shows very high performances on other methods for Noisy ZDT1

and Noisy ZDT2. Moreover, decrease of coverage is relatively small compared with

the Noiseless NSGA-II. However, the proposed method only obtained a slightly bet-

ter result than Sample-5 NSGA-II on Noisy DTLZ2 the three objective optimization

problem used as the benchmark. The defined objective function space of DTLZ2 is

comparatively small while the function spaces of ZDT1 and ZDT2 are large. Hence,

because all methods are capable of obtaining good individuals in the early stages of
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the search, it seems that the difference is minor. In comparison of mean estimation

error, precision of the estimated value of MFE-DSGA is better than that of Sample-5

NSGA-II. Note that the performance difference in coverage comparison is the result of

the following:

• Coverage of MFE-DSGA mainly is lost by α-domination strategy that cuts down

on both ends of the Pareto frontier.

• Coverage of NSGA-II and Sample-5 NSGA-II is mainly lost as a result of bias in

the population distribution.

Figures 4.6, 4.7 and 4.8 show the final generation population distribution of true

fitness and estimated value (in NSGA-II, sampled value is used.). We can see that the

estimated values of MFE-DSGA accurately approximate true Pareto frontier. This in-

formation is sufficient for decision making. In NSGA-II, the difference between sampled

value distribution and true Pareto frontier is very large even though the population

converged. Additionally, in Sample-5 NSGA-II, the convergence of population is not

good despite the fact that the error ratio between true fitness and estimated value is

small. Plural sampling can improve accuracy of estimated value. However, since the

number of generation is few, the population hardly converges to the Pareto frontier.

Moreover, we can confirm that the fake non-dominated individuals can be excluded by

α-domination strategy, although they survived in the results of NSGA-II and Sample-5

NSGA-II.

In short, we can conclude that MFE-DSGA is effective for real problems where

evaluating the fitness function many times is difficult.

4.5 Real Engine Experiment

In this section, we execute on-line multi-objective optimization of real engine in order

to validate the effectiveness of proposed method. Here, the decision variables are the

control parameters of Electronic Control Units (ECUs), and the objective functions are

exhaust emissions. Electronic devices are precisely controlled, and the condition fluc-

tuations of extended operation of the engine are relatively small. However, because of

the measurement variation of exhaust emissions measured by the exhaust gas analyzer

are large, this problem can be treated as a problem that has uncertainty fluctuation of

observation values. Hence, MFE-DSGA can be expected to be effective.

4.5.1 Experiment Settings

The four stroke gasoline engine from a road sport motorcycle was used in the exper-

iments to validate the effectiveness of proposed algorithm. MFE-DSGA were applied

to a two-objective four-variable function optimization problem of the engine. Setting

of the multi-objective optimization problem was as follows:
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Figure 4.6: Population distribution with MFE-DSGA on Noisy ZDT1.
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Figure 4.7: Population distribution with NSGA-II on Noisy ZDT1.
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Figure 4.8: Population distribution with Sample-5 NSGA-II on Noisy ZDT1.

Objective Functions: HC (minimization), NOx (minimization).

Decision Variables (Control Parameters): ignition timing (IGN), fuel-injection

timing (INJ), intake valve timing (VT-IN), exhaust valve timing (VT-EX).

Generally, there is a trade-off between HC and NOx. Also, changing the aforementioned

decision variables, i.e., the engine control parameters, complicates the trade-offs. The

HC and NOx were measured at a constant air-fuel ratio and vehicle speed. Air-fuel ratio

is ratio of air and gasoline mass, and is controlled by fuel-injection time of injector to

achieve theoretical air-fuel ratio. Vehicle speed calculated by the computer is controlled

by the opening angle of the throttle valve to track the desired speed.

MFE-DSGA were programmed into a calibration PC. In the calibration PC, the

objective functions and decision variables were processed as normalized values. The

calibration PC was connected to an ECU by a serial communication. An individual

evaluation sequence is as follows:

1. Convert an evaluated individual into control parameters.

2. Transmit the control parameters to the ECU.

3. Receive the sampled data of the engine’s output from the ECU and instruments

for a prescribed period.
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4. Calculate the estimated value of the true fitness for control parameters using the

sampled data.

The experiment condition of MFE-DSGA is as follows: Population size |P | = 50

and offspring population size |Q| = 8 were used. The number of evaluations was 800

(parents in family population F was re-evaluated). The mean value of the sampled

data was used as the estimated value. The evaluation time was about half a day.

MFE-DSGA employed UNDX as a crossover operator. The crossover rate was 1.0.

Since UNDX shows good performance without mutation, we did not use mutation

operator.

4.5.2 Discussion of Results

Figure 4.9 shows the population distribution of the estimated value in the objective

function space. The horizontal axis indicates HC, and the vertical axis indicates NOx

respectively. Hence, the direction of optimization is in the lower left part of the graph.

Each axis is shown in normalized scale. Moreover, Fig. 4.10 indicate population dis-

tribution in decision variable space. Each axis is also shown in normalized scale.

From Fig. 4.9, we can see that the approximation Pareto frontier shows convex

shape. In addition, we can understand the properties of control parameters from

Fig. 4.10:

• Ignition timing IGN was widely distributed. On the other hand, fuel-injection

timing INJ and exhaust valve timing VT-EX converged in the vicinity of 0.9 and

1.0 respectively (see the upper right and left part of Fig. 4.10).

• A strong correlation exists between IGN and intake valve timing VT-IN. VT-IN

approaches from 0.6 to 0.0 provided that the IGN moves from 0.3 to 0.8 (see the

upper center part of Fig. 4.10).

Through discussion with engine calibration experts, we confirmed that the characteris-

tic of the Pareto approximation set was appropriate as the performance of the engine.

Hence, we can conclude that MFE-DSGA is effective for real engine calibration.

4.6 Summary

In this chapter, Memory-based Fitness Estimation and Distribution-based Selection

GA (MFE-DSGA) was proposed to optimize MOPs that have observation noise as an

uncertainty. First, the problems of conventional MOEAs for a noisy environment was

introduced. Next, MFE-DSGA that is extension of MFEGA proposed by Sano and

Kita [91, 93] for MOPs was proposed and its details were discussed. The effectiveness

of the proposed method was validated through numerical experiments and a real engine

experiment.
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Figure 4.9: Population distribution on the objective function space in multi objective
optimization of engine control.
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Figure 4.10: Population distribution on the decision variable space in multi-objective
optimization of engine control.



Chapter 5

Crossover Operator for Periodic
Functions

5.1 Outline

In engineering design, a timing optimization for an apparatus with a cycling mecha-

nism such as that of an internal-combustion engine can be defined as an optimization

problem of periodic function. For instance, the fuel injectors inject fuel into the cylin-

ders once for 2 rotations of the crankshaft in a four stroke gasoline engine. As a result,

the fuel injection timing 0 and 720 degrees BTDC (Before Top Dead Center) have the

same combustion effect. Thus making the engine output become periodic functions for

the fuel injection timing.

Additionally, the following real world applications including periodicity can be con-

sidered:

• Timing optimization for electric motors.

• Rotation pattern matching in image processing.

• Optimization of two corners in protein structure estimations.

• Position optimization of link mechanisms such as robotic arms.

In these problems, we can define continuous periodic function optimization problems

that have 2π cycle when paying attention to one angular variable:

min
θ

f(θ) = f(θ + 2Nπ), θ ∈ R, N = 0,±1,±2, . . .

To solve the aforementioned problems by using Genetic Algorithms (GAs), it is

a common approach to convert to a non-periodic continuous function optimization

problem by defining a domain that represents one cycle such as [θmin, θmax] = [−π, π]:

min
θ

f(θ), θ ∈ [θmin, θmax].

44
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If we define a wider domain, plural optimal solutions that have the same fitness exist.

Hence, GAs that are a multi-point search method based on crossover operators might

search un-expected areas between the plural optimal solutions.

It is well known when GAs are applied to continuous function optimizations, the

fact that Real-Coded GAs (RCGAs) that consider continuity of decision variables

indicate higher optimization performance than bit-string GAs that use binary code

[30, 31, 66, 80]. It can be expected that Unimodal Normal Distribution Crossover

(UNDX) proposed by Ono et al. [80] and Blend Crossover (BLX-α) proposed by Es-

helman et al. [30] have a higher search capability than One-point Crossover (1X) and

Uniform Crossover (UX) for bit-string GAs [37], because they generate offspring by

using interpolation and extrapolation based on continuousness of search space.

In this chapter, single-objective RCGAs are considered. A crossover operator to op-

timize periodic functions is proposed and its effectiveness is shown. At first, UNDX for

Periodic function (UNDX-P), a new concept crossover operator for periodic functions,

is proposed. Next, basic statistical properties of UNDX-P are considered. Additionally,

the effectiveness of UNDX-P for periodic and non-periodic functions is demonstrated

through numerical experiments.

5.2 Crossover for Periodic Functions

When a periodic function is optimized by RCGAs, the characteristics of the problem

depend on the domain definition. Consider a unimodal periodic function depicted on

the left side of Fig. 5.1. When the domain is defined through division in the vicinity

of the optimal solution, this function has the global and a local optimal solution as

shown on the right side of Fig. 5.1.

For these periodic functions, naive application of a RCGA faces two difficulties:

Sampling bias: Since most crossover operators of RCGAs such as BLX-α and UNDX

often generate offspring in the vicinity of the center of the search space, it is

difficult to optimize functions whose optimal solution exists near the boundary.

The sampling bias can be reduced by defining a wider domain of search space

for normal functions. However, it is difficult to apply this method to periodic

functions because plural global optimal solutions appear [106, 101].

Evolutionary stagnation: When plural powerful local optimal solutions exist far

apart, offspring are generated in the areas that step over them. As a result, the

search stagnates [104].

5.2.1 Related Works

Tsutsui have proposed Boundary Extension by Mirroring (BEM) to reduce the influ-

ence of sampling bias [106]. This method introduces mirroring extension of the bound-
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Figure 5.1: Landscapes of a periodic function by domains.

ary of function domain. However, evolutionary stagnation cannot be solved because

local optimal solution cannot be excluded.

Someya and Yamamura have proposed Toroidal Search space Conversion (TSC)

to solve this problem [101]. TSC can exclude the sampling bias by extending the

mirror-copied domain and connecting it like torus to consider the continuousness of

the boundary. The effectiveness of TSC has been demonstrated through the detailed

comparative study for BEM. However, we have to make attention to the following two

points:

• TSC requires a complex judgment process of the positions of parents for crossover

operation.

• TSC leads a complexity of multimodality by extension operation of search space.

Tomobe et al. have proposed a method of generating offspring to supplementary

angle domain, when the angle between parents becomes π or more for domain [−π, π]

[105]. However, following problems are considered:

• This method requires the judgment of supplementary angle for parents.

• It is difficult to apply to multi-parent crossover operators such as UNDX-m [67]

and SPX [43].
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Hence, a more generalized method is required.

In the following subsections, we first propose a ‘crossover operator on hypersphere’,

and a ‘crossover operator for periodic functions’ as a special case of the crossover

operator on hypersphere.

5.2.2 Crossover Operator on Hypersphere

n− 1-dimentional unit hypersphere Sn−1 on n-dimensional space Rn is defined as

Sn−1 =

{
[x1 · · · xn]T ∈ Rn

∣∣∣∣∣
n∑

i=1

x2
i = 1

}
. (5.1)

A problem that obtains a n-dimensional unit direction vector can be generalized as a

problem that the population distributes on Sn−1. For instance, a weighted sum vector

decision problem for scalarization of plural objective functions is treated as such a

problem. To solve these problems, we propose a simple extension of crossover operator

on hypersphere. The algorithm is described below:

1. Select parents xp from the population distributed on Sn−1.

2. Apply a crossover operator for xp as points in Rn and generate offspring xc′. If

||xc′|| < ε, re-generate offspring, where ||xc′|| is Euclidean norm of xc′ and ε is a

small positive value.

3. Normalize xc′ by following equation:

xc =
xc′

||xc′|| , (5.2)

and obtained offspring xc that is converted to the point on Sn−1.

We call the crossover operator on hypersphere by using UNDX [80] UNDX on Hy-

persphere (UNDX-H). Offspring generated by UNDX-H are distributed on the hyper-

sphere. Hence it is able to search by RCGAs because the continuousness on hypersphere

is kept.

5.2.3 Crossover Operator for Periodic Functions

Let us consider periodic function f : R → R that has the angle θ corresponding to a

point [cos θ sin θ]T on a one-dimensional unit-circle.

S1 =
{
[x y]T ∈ R2

∣∣ x2 + y2 = 1
}

. (5.3)

We propose UNDX for periodic function (UNDX-P) based on UNDX-H to solve this

problem. A conceptual diagram of UNDX-P is illustrated in Fig. 5.2, and the algorithm

is as follows:
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1. Obtain a point [xp yp]T = [cos θp sin θp]T on a unit circle S1 corresponding θp a

variable of periodic function.

2. Apply UNDX for parents converted to points on a unit circle S1 = {[x y]T ∈
R2|x2 +y2 = 1}, and generate offspring [xc yc]T as points on the two-dimensional

space R2

3. Calculate the angular variable θc for offspring by using

θc =





tan−1 yc

xc if xc ≥ ε

sgn(yc) · (π − tan−1
∣∣ yc

xc

∣∣) if xc ≤ −ε
sgn(yc) · π

2
if |xc| < ε, |yc| ≥ ε

0 if |xc| < ε, |yc| < ε

, (5.4)

where sgn(·) is the signum function, and ε is a sufficiently small positive number.

Generally, Eq. (5.4) is implemented in programming languages as a function

called atan2(y, x).

2θ
3θ

1θ
x

D

y
cθ

x

y

Figure 5.2: Conceptual diagram of UNDX for Periodic function (UNDX-P). UNDX is
applied for three parents θ1, θ2 and θ3 converted to the points on a unit circle S1 (left).
Angular variables θc of the generated offspring on the R2 are calculated by Eq. (5.4)
(right).

When UNDX-P is applied for a n-dimensional periodic function f : Rn → R

whose decision variable is n-dimensional angular vector θ = [θ1 θ2 · · · θn]T ∈ Rn, the

following procedure is executed.

1. Transpose each element of θ to the point of S1.

2. Apply UNDX for extended parent [x1 y1 x2 y2 · · · xn yn]T ∈ R2n.

3. Calculate each angular variables.

When UNDX-P is applied to a periodic function g : R → R whose domain repre-

sents one cycle is φ ∈ (φmin, φmax], not (−π, π], the following procedure is used.
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1. Apply an affine transformation from (φmin, φmax] to (−π, π]

θ = 2π · φ− φmin

φmax − φmin

− π, (5.5)

before applying a crossover.

2. Apply an inverse affine transformation from (−π, π] to (φmin, φmax]

φ = (φmax − φmin) · θ + π

2π
+ φmin. (5.6)

By applying the crossover by the aforementioned procedure, a periodic function is

optimized as a function that has substantially the same fitness landscape, and that does

not depend on the domain definition. Therefore, since the problems such as sampling

bias and evolutionary stagnation are avoided, improvement of the search performance

can be expected.

5.3 Basic Property of UNDX-P

In this section, statistical properties of UNDX-P are investigated. Then, the distribu-

tion of the generated offspring is discussed.

5.3.1 Statistical Property

The statistical properties of offspring generated by UNDX have been investigated by

Kita et al [66]. In UNDX-P, the following properties can be understood when a lot of

offspring are generated from a lot of individuals by crossover operator.

Parents Uniformly Distributed on Unit Circle: This is a typical situation of the

initial state of the search. In this case, the generated offspring are still uniformly

distributed on the unit circle, because UNDX generates offspring from symmetric

probabilistic density distribution.

Parents Converged Around Specific Angle: This is a typical situation of the last

stage of the search to converge the population on a local or the global optimal

solution. In this case, UNDX-P succeeds to the property of UNDX because a

neighborhood of a specific angle of the unit circle can be seen as a straight line.

General statistical properties of UNDX-P excluding the aforementioned ones has

been confirmed by the following numerical experiment. The steps of the experiment

are described below:

1. Generate 10000 individuals uniformly randomly on the domain (−απ, απ], shown

in Fig. 5.3.
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2. Apply UNDX to the individuals selected as parents randomly and generate off-

spring. In this operation, offspring (vector) are normalized to distribute them on

the unit circle S1.

3. Calculate the mean value and the standard deviation of x coordinates, and the

standard deviation of y coordinates of the parents and offspring population as

statistics.

y

x

απ

y

x

απ

Figure 5.3: A method of generating parents.

The result is shown in Fig. 5.4. Figure 5.4(a) shows each statistic for α. The mean

value (parents: solid line with plus marker, offspring: dotted line with square marker)

and standard deviation (parents: broken line with cross marker, offspring: dotted

broken line with diamond marker) of x coordinate of offspring distribution is slightly

larger than the parent distribution around from 0.2 to 0.8. Whereas, the standard

deviations (parents: broken line with asterisk maker, offspring: dotted broken line

with circle marker) of y coordinate are almost all the same. Figure 5.4(b) shows the

same data on the logarithm scale. It is understood that each statistic of offspring

distribution is corresponds well to the parent distribution in a minute angle of 0.1

or less. These results indicate that UNDX-P preserves the statistic of the parent

distribution.

5.3.2 Generated Offspring Distribution

Next, the offspring distribution generated by UNDX-P was confirmed by the following

numerical experiment. The parents were selected as follows, and UNDX-P generated

1.0× 105 offspring:

θ1 = απ, θ2 = −απ, θ3 = 0, α = 0.5, 0.3, 0.1.

The frequency distributions of the offspring were examined, where the domain [−π, π]

was divided into 100.
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Figure 5.4: Statistical measures of the UNDX-P.
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The obtained histogram is shown in Fig. 5.5. When the distance between two

parents is maximum on the S1, that is α = 0.5, the main search axis of UNDX runs

through the center of unit circle of R2. Hence, the offspring are generated to contain the

origin of R2. At that time, the offspring distribution generated by UNDX-P constructs

bimodal distribution that centers on the parents θ1 and θ2 in S1. In addition, offspring

are generated to the entire domain. The main search axis leaves the center of the unit

circle as the distance of the parents becomes small on S1. Since the offspring comes to

be distributed away from the center in R2, two peaks draw together gradually (α = 0.3)

and become the unimodal distribution (α = 0.1).

Though the aforementioned discussions, it is confirmed that UNDX-P is a crossover

operator which changes the offspring distribution from bimodal to unimodal depending

on the positions of parents. Such a property is caused by the transformation operation

from R2 to S1. The offspring are generated around the neighborhood of the parents

θ1 and θ2 instead of around the middle point of the parents by bimodal distribution

when α is around 0.5. This property is desirable for search.
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Figure 5.5: Frequency distributions of children by the UNDX-P.

5.4 Numerical Experiment of Periodic Function

5.4.1 Experiment Settings

In this section, the performance of UNDX-P is discussed through numerical experiment

of periodic functions. The periodic functions used to experiment are shown below. All

test periodic functions are minimization problems.
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• Periodic Unimodal

fPU(θ) = n +
n∑

i=1

cos(πθi)

θi ∈ [0, 2], i = 1, . . . , n.

This function has a unimodal landscape on the domain. The optimal solution

is 0 at θi = 2N + 1, i = 1, . . . , n, N = 0,±1,±2, . . .. The cycle is 2. In this

experiment, n = 10, 20 are used.

• Periodic Multimodal

fPM(θ) = 10n +
n∑

i=1

(5 cos(πθi)− 5 cos(10πθi))

θi ∈ [0, 2], i = 1, . . . , n.

This function has a multimodal landscape and a big-valley structure macroscopi-

cally on the domain. The optimal solution is 0 at θi = 2N +1, i = 1, . . . , n, N =

0,±1,±2, . . .. The cycle is 2. In this experiment, n = 4, 6 are used.

• Fletcher and Powell

fFP(θ) =
n∑

i=1

(Ai −Bi)
2

Ai =
n∑
j

(aij sin αj + bij cos αj)

Bi =
n∑
j

(aij sin θj + bij cos θj)

θi ∈ [−π, π], i = 1, . . . , n.

This function has a globally multimodal landscape [50] on the domain. The

optimal solution is 0 at [α1 α2 · · · αn]. There are plural optimal solutions that

have the same fitness. Moreover, there are many local optimal solutions. The

cycle is 2π. In this experiment, n = 6, 9 are used. The numerical value given in

Bäck [3] as a constant aij, bij, αi, i, j = 1, 2, . . . , n is used.

The shapes of three periodic test functions are shown in Fig. 5.6.

To move the relative position of the global optimal solution in domain of each

function, domain of fPU and fPM is defined by θi ∈ [0 + d, 2 + d], and domain of fFP is

defined by θi ∈ [−π(1+d), π(1+d)]. d is the offset of the domain of periodic functions,

and it takes d = 0.0, 0.3, 0.6, 0.9. The global optimal solution of fPU and fPM is the

center of the domain if d = 0. Moreover, the global optimal solution approaches the
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Figure 5.6: Shape of the periodic test functions (upper: Periodic Unimodal, middle:
Periodic Multimodal, lower: Fletcher and Powell (2-dimension)).
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boundary of the domain if d approaches 0.9. It is thought that the position of the

global optimal solution of fFP complexly changes depending on d. UNDX is used for

comparison of UNDX-P in the numerical experiment. In UNDX, when an individual

is generated at outside of domain, the individual is re-generated until it exists in

the domain. This method is called NoExt. In numerical experiment, offset d was

changed for UNDX-P and conventional method, and each different d was optimized

100 times. The performance of two crossover operators was evaluated by the number

of optimization and transition of convergence successes.

In this experiment, it is assumed that an optimal solution was discovered if the

function value becomes less than 1.0×10−7. Minimal Generation Gap (MGG) proposed

by Sato et al. [95] was used as a generation alternation. The population size |P | = 100

and the offspring population size |Q| = 50 were used. The crossover rate was 1.0. The

maximum number of evaluations was 1.0× 106.

5.4.2 Discussion of Results

The number of discovered global optimal solution in-100 trials is shown in Table 5.1.

The bold-font shows the least number of discovered optimal solution for d of each

problem.

Table 5.1: Performance comparison of the two methods for the three periodic test
functions.

Function UNDX-P NoExt
(Dimension) 0 0.3 0.6 0.9 0 0.3 0.6 0.9

Periodic 10 100 100 100 100 100 100 100 6
Unimodal 20 100 100 100 100 100 100 99 0
Periodic 4 100 100 100 100 100 96 73 65

Multimodal 6 98 100 95 100 98 37 13 7
Fletcher 6 100 99 100 100 100 100 75 27

and Powell 9 53 46 44 45 12 9 29 81

In Table 5.1, the number of discovered optimal solution of NoExt of fPU and fPM

decreases as the position of optimal solution approaches the boundary of the domain,

that is, d approaches 0.9. Whereas the result of UNDX-P was stable for changing

d. Moreover, the transitions of the average of best fitness of the trial that discovered

global optimal solution for fPU (n = 20) and fPM (n = 6) are shown in the upper part

and the middle of Fig. 5.7. The left column shows the results of UNDX-P, and the

right column shows the results of NoExt. For all test functions, it can be confirmed

that the convergence speed of UNDX-P was the same not depending on d, although

the convergence speed of NoExt slowed as d approached 0.9. These results indicate
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that UNDX-P has substantially optimized the function that have the same landscape.

UNDX-P is hardly influenced by d, and has discovered the optimal solutions by all

trials of fFP (n = 6), although the number of discovered optimal solutions of NoExt

decreased as d approached 0.9. In fFP (n = 9), UNDX-P stably discovered optimal

solutions through around 50 trials though the number of discovered optimal solutions

of NoExt changed greatly. Hence, UNDX-P can stably optimize without dependence

on the domain. The transitions of the average of best fitness of the trial that discovered

global optimal solutions for fFP (n = 9) are shown at the lower part of Fig. 5.7. Because

the obtained optimal solutions were different at each trial, the convergence speed varied

greatly in the last stage of the search. However, the convergence speeds of UNDX-P

for each d were almost all same until 2.0 × 105 evaluations. Hence, it is understood

that UNDX-P could stably search until converging to a neighborhood of plural global

optimal solutions.

In the optimization of fFP, two global optimal solutions and five local optimal

solutions of n = 6, and eight global optimal solutions and 27 local optimal solutions of

n = 9 were obtained by 800 trials (= 2 methods × 4 offsets × 100 trials), respectively.

The positions and the discovered number of global optimal solutions and the powerful

local optimal solutions are shown in Table 5.2. In Table 5.2, substantially equal solution

of which position is different by the domain definition is counted as a same solution,

The bold-font shows the maximum number of discovered solution of each condition.

At first, we examine the whole trend of obtained solutions. In UNDX-P, the ten-

dency of obtained solution indicated almost the same without depending on the do-

main. For instance, Opt1 and Opt2 of n = 6 were obtained almost half each. Addi-

tionally, half the number of obtained solution of n = 9 was Loc1 that was a powerful

local optimal solution. In contrast in NoExt, the tendency of obtained solution was

varied. The performance of NoExt was dependent on the domain setting. NoExt could

discover an optimal solution with a higher possibility than UNDX-P in one case, and

then decreased the performance in another case. These phenomena are caused by the

sampling bias that becomes easy to obtain the solution that exists in the vicinity of

the center of domain. Hence, it is understood that the performance of NoExt depends

on the domain setting.

Next, we examined the distribution of local optimal solution. Loc2 that was the

most obtained solution on n = 9, d = 0.6 is the powerful local optimal solution of

the Opt2 neighborhood. Loc2 has a element θ3 = −1.256637 that equals to the lower

bound of domain −π + 0.6π = −1.256637. Opt2 is a known optimal solution defined

by [α1 · · · α9]
T, that has element α3 = −1.283410 < θ3. Hence, it is considered that

Loc2 is a local optimal solution generated on the periodic boundary. Similarly, four

local optimal solutions of n = 6 and 22 optimal solutions of n = 9 were also generated

solutions on the periodic boundary because they have at least one element equal to the

boundary of the domain. In the powerful local optimal solutions shown in Table 5.2,

Loc1 of n = 6 and Loc2, Loc3, and Loc6 of n = 9 were such local optimal solutions.
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Note that these optimal solutions are obtained only by a specific offset of NoExt.

From the aforementioned discussions, we can understand that the positions of

global and local optimal solutions are complexly moved by definition of the domain,

if crossover operators of RCGAs that do not take into account the continuousness of

periodic boundary are applied for periodic functions. When the domains are defined,

a lot of new local optimal solutions are generated on the periodic boundaries. As a

result, new local optimal solutions increase the difficulty of optimization. For this dif-

ficulty, UNDX-P does not need to care about the definition of a domain that makes

new local optimal solutions by phase cutting. Hence, we can conclude that UNDX-P

is an efficient crossover operator for periodic function optimization.

Table 5.2: Comparison of the solutions which is optimized by the two methods.

n = 6 UNDX-P NoExt
Name Position Fitness 0 0.3 0.6 0.9 0 0.3 0.6 0.9

Opt1 (0.436, 0.551,…) 0 47 47 41 44 0 28 29 13
Opt2 (0.630, 0.693,…) 0 53 52 59 56 100 72 46 14
Loc1 (0.428, 0.551,…) 5.14 0 0 0 0 0 0 10 0
Loc2 (1.630, 0.976,…) 810.17 0 1 0 0 0 0 12 68

n = 9 UNDX-P NoExt
Name Position Fitness 0 0.3 0.6 0.9 0 0.3 0.6 0.9

Opt1 (0.164, 0.585,…) 0 16 10 12 5 3 1 4 1
Opt2 (0.436, 0.551,…) 0 5 6 4 9 1 2 6 8
Opt3 (1.028, 0.679,…) 0 2 3 1 0 0 0 2 15
Opt4 (1.207, 1.797,…) 0 3 6 6 7 2 0 1 3
Opt5 (1.307, 1.115,…) 0 6 8 3 2 2 0 4 11
Opt6 (1.671, 1.925,…) 0 1 1 3 3 0 1 12 4
Opt7 (1.705, 1.708,…) 0 12 11 13 14 4 4 0 1
Opt8 (1.851, 1.989,…) 0 8 1 2 5 0 1 0 38
Loc1 (0.319, -1.827,…) 1.28 44 52 51 53 4 4 2 5
Loc2 (0.456, 0.560,…) 7.98 0 0 0 0 0 0 26 0
Loc3 (0.276, 0.656,…) 107.92 0 0 0 0 0 23 0 0
Loc4 (0.937, -1.583,…) 246.65 0 0 0 0 0 28 1 0
Loc5 (0.953, 0.344,…) 248.77 3 2 5 1 63 23 4 0
Loc6 (0.949, -1.257,…) 409.54 0 0 0 0 0 0 22 0



CHAPTER 5. CROSSOVER OPERATOR FOR PERIODIC FUNCTIONS 58

0 1e+5 2e+5 3e+5 4e+5 5e+5

1e−6

1e−4

0.01

1 

Number of Evaluation

Fi
tn

es
s

 

 
d=0.0
d=0.3
d=0.6
d=0.9

0 1e+5 2e+5 3e+5 4e+5 5e+5

1e−6

1e−4

0.01

1

Number of Evaluation

Fi
tn

es
s

 

 
d=0.0
d=0.3
d=0.6

0 1e+5 2e+5 3e+5 4e+5 5e+5

1e−6

1e−4

0.01

1

Number of Evaluation

Fi
tn

es
s

 

 
d=0.0
d=0.3
d=0.6
d=0.9

0 1e+5 2e+5 3e+5 4e+5 5e+5

1e−6

1e−4

0.01

1

Number of Evaluation

Fi
tn

es
s

 

 
d=0.0
d=0.3
d=0.6
d=0.9

0 2e+5 4e+5 6e+5 8e+5 1e+6

1e−5

1 

1e+5 

Number of Evaluation

Fi
tn

es
s

 

 
d=0.0
d=0.3
d=0.6
d=0.9

0 2e+5 4e+5 6e+5 8e+5 1e+6

1e−5

1 

1e+5 

Number of Evaluation

Fi
tn

es
s

 

 
d=0.0
d=0.3
d=0.6
d=0.9

Figure 5.7: Convergence of the two methods (left: UNDX-P, right: NoExt) for the
three periodic test functions (upper: fPU, middle: fPM, lower: fFP).

5.5 Numerical Experiment of Non-periodic Func-

tion

In this section, the performance of UNDX-P for non-periodic functions is discussed. As

previously discussed, crossover operators of RCGAs such as UNDX have sampling bias.

Hence, it is known that optimization becomes difficult when the optimal solution is in
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the vicinity of the boundary of the domain [31, 101]. Toroidal Search space Conversion

(TSC) proposed by Someya and Yamamura [101] is one of the techniques used to cope

with this problem. While, UNDX-P does not have the same level of sampling bias as

TSC because of the mechanism of offspring generation. Moreover, UNDX-P does not

need the judgment process of parents position. Hence, it is possible to easily apply

it both periodic functions and non-periodic functions, while expecting a high level of

effectiveness.

5.5.1 Experiment Settings

The effectiveness of UNDX-P is discussed through a numerical experiment.

• Rastrigin

fRastrigin(x) = 10n +
n∑

i=1

(x2
i − 10 cos(2πxi))

xi ∈ [−5.12, 5.12], i = 1, 2, . . . , n.

This function is a non-periodic multimodal function that has big valley structure.

fRastrigin takes minimum value 0 by coordinates [0 · · · 0]. In this numerical

experiment, the number of dimension is n = 4, 6, 8.

The domain of fRastrigin is defined as xi ∈ [−5.12 + d, 5.12 + d], to change the relative

position of the global optimal solution in the domain as well as the experiment in

the section above. d = 0.0, 1.5, 3.0, 4.5 are offsets of the domain. The position of the

global optimal solution is the center of domain when d = 0, and it approaches to the

boundary of domain when d approaches 4.5. In a numerical experiment, UNDX-P was

applied to offset Rastrigin functions by following two methods:

1. UNDX-P is applied directly disregarding discontinuity in the boundary of the

domain.

2. UNDX-P is applied after mirroring extension to solve discontinuity in the bound-

ary of the domain. The conceptual diagram of the extended search space is shown

in Fig. 5.8. The function value of the extended search space is calculated by the

following equation:

f(x) = f(y) (5.7)

y = [y1 y2 · · · yn]T (5.8)

yi =

{
xi if xi ≤ xmax

2xmax − xmin − xi if xi > xmax.
(5.9)
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Figure 5.8: Extended search space for the UNDX-P-Ext.

In this thesis, method 1 is called UNDX-P and method 2 is called UNDX-P-Ext re-

spectively. When UNDX-P is applied to a non-periodic function, the sampling bias can

be exterminated without expanding the search space. However, it might have negative

effect on the search performance if magnitude of boundary is extremely discontinuous,

although it is not problem in a periodic function because the connected boundary is

smooth. Whereas UNDX-P-Ext does not need the parents position judgment that

TSC needs. However, the multimodal complexity might be increased by search space

extension.

To compare it with the result shown in Someya’s thesis [102], numerical experiments

of UNDX-P and UNDX-P-Ext were executed under the same conditions. Population

size |P | = 100 and offspring population size |Q| = 50 were used. the crossover rate was

1.0. Minimal Generation Gap (MGG) was used as the generation alternation model.

The termination condition was defined as 1.5 × 106 evaluations or the best fitness

achieving 1.0× 10−7. The number of trials of each condition was 100.

5.5.2 Discussion of Results

The result of our experiment is shown in Table 5.3. In the table, the results excluding

UNDX-P and UNDX-P-Ext were citations from Someya’s thesis [102]. Explanation of

cited methods are as follows:

NoExt: Method that re-generates offspring if the offspring generates outside of the

domain.

BEM: Boundary Extension by Mirroring proposed by Tsutsui [106]. Initial popula-

tion is generated in original domain. The extension rate is 0.25.

BEMe: BEM that generates an initial population in extended domain.

TSC: Toroidal Search space Conversion proposed by Someya et al. [101]
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Table 5.3: Performance comparison of the Rastrigin function for six methods, where
the results of NoExt, BEM, BEMe and TSC are a quotation from the thesis of Someya
[102].

UNDX-P UNDX-P-Ext NoExt
0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5

4 100 100 100 86 100 100 100 100 100 99 94 26
6 85 87 89 9 98 62 42 100 100 67 20 1
8 65 59 40 0 56 6 5 94 84 27 3 0

BEM BEMe TSC
0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5 0.0 1.5 3.0 4.5

4 100 100 99 86 100 97 98 87 100 100 100 100
6 99 77 57 13 98 84 80 8 96 79 44 100
8 91 26 10 0 79 34 22 1 79 35 5 97

The numbers in the Table 5.3 indicate the number of discovered optimal solutions, and

bold-font numbers show the worst value in same n, when d is changed.

The discovered number of optimal solutions of UNDX-P decreased when the optimal

solution approaches the vicinity of the boundary. In this point of view, the tendency

of UNDX-P is similar to NoExt, BEM and BEMe. However, UNDX-P indicated the

smallest deterioration and the best performance in six methods on d = 1.5 and d = 3.0.

Therefore, it is understood that UNDX-P has stable search performance for the position

of optimal solution. However, the performance of d = 0.0 is more inferior than other

methods. UNDX-P does not have sampling bias in the early stage of the search and

it generates offspring for any area evenly, while other methods generates offspring

in the vicinity of the center of the domain due to sampling bias. The landscape of

d = 4.5 does not have global smoothness, because of the discontinuous of boundary is

extremely large. It is thought that this fact leads to the poor performance of d = 4.5.

The tendency of UNDX-P-Ext was similar to TSC:

• The performance at d = 4.5 is very good.

• Since the extended landscape of d = 4.5 has a big valley structure globally, the

search is easy. Whereas, the performance at d = 1.5 and d = 3.0 is extremely

bad.

In these conditions, search becomes difficult because of increasing local optimal solution

and complexity of multimodality. Hence, UNDX-P is an effective crossover operator

for non-periodic function optimizations, because of a steady search performance for

the position of optimal solution and easy implementation.
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5.6 Summary

In this chapter, to solve continuous periodic function optimization problems which

often appear in engineering problems, UNDX for Periodic function (UNDX-P) was

proposed. At first, a crossover on hypersphere called UNDX on Hypersphere (UNDX-

H), and a crossover for periodic functions called UNDX-P that is the special case of

UNDX-H were defined. Next, through investigation of statistical property of UNDX-P,

it was indicated that UNDX-P preserves statistics roughly. Moreover, it was demon-

strated that UNDX-P can stably optimize periodic functions not to depend on the

domain of function through numerical experiments. UNDX-P was also applied to non-

periodic optimization problems because it does not have sampling bias in the early

stage of the search. The search performance showed that it was comparatively robust

for the position of optimal solution.

In Chapter 6 and 7, this method will be applied to a real world application, that

is, engine calibration to confirm the effectiveness.

The concept of crossover operator for periodic functions can easily be applied to

crossover operators of RCGAs other than UNDX. For instance, it is an interesting study

to investigate the performance of UNDX-m-P that is extended UNDX-m proposed by

Kita et al. [67] for periodic functions.



Chapter 6

Individual Evaluation Scheduling

6.1 Outline

Experiment-based optimization has to be carried out under uncertainty such as system

and observation noise within a quite limited evaluation time which is restricted by the

operation time and the durability of machine. Particularly, if the optimized object

is a dynamical system, we have to wait until the transient response caused by the

switching of system parameters is diminished to reduce the impact on the observed

performances. Since we have to apply many parameter candidates distributed widely

as population, we have to manage such problems in evolutionary approach, especially

in MOEAs.

In this chapter, an influence of dynamics for search performance is focused. For

reduction of loss time caused by such transient response in evaluation of criteria, two

techniques called Evaluation Order Scheduling and Evaluation Time Scheduling are

proposed. Numerical experiments using a formal test problem and experiment in a

HILS environment for a real internal-combustion engine demonstrate the effectiveness

of the proposed methods.

6.2 Influence of System Dynamics

Figure 6.1 shows a conceptual diagram of influence by uncertainty and transient re-

sponse added to observed value through experiments. It can be considered that the

observed value through experiments is composed by true output and following two

elements:

• Uncertainty caused by observation noise that is added to measurement instru-

ments.

• Influence of transient response to change of control parameters caused by system

dynamics.

63
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As an example of transient response caused by dynamics, transition of engine output

torque with control parameter switching is shown in Fig. 6.2. We can see that the

parameter switching leads to transient response of output torque.

Time

O
ut

pu
t

Uncertainty of 
observation noise

Transient response 
caused by system dynamics

Sampled value

Mean value
(Estimated value)

True steady-state value

Estimation error

+

Figure 6.1: Conceptual diagram of uncertainties in estimated value.

When we estimate the ‘true’ steady-state output from an observation value of such

a system, the general approach is as follow:

1. Wait on the observation value until it becomes stable.

2. Obtain the plural sampled value from observation.

3. Calculate the mean value of the sampled values as the estimated value of true

steady-state output.

However, the aforementioned two elements generate estimation error between the true

steady state output and estimated value.

If we can use a sufficiently long evaluation time, the estimation error will be small.

However, when the MOEAs are applied for the optimization of system parameters of

dynamical systems, the following dilemmas are caused:

• The performance of an individual should be measured after it settles enough to

evade the influence of the transient response.

• The measurement time of an individual should be shortened as much as possi-

ble since MOEAs require a large number of evaluations under the limited total

evaluation time.
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Figure 6.2: Transient response of an engine torque.

The waiting time of evaluation to diminish the influence of transient response is called

Invalid Evaluation Time (IET). Fig. 6.3 shows a conceptual diagram of the invalid

evaluation time generated by the transient response due to the switching of parameters.

In fact, we can confirm the transient response of an engine torque caused by parameter

switching from Fig. 6.4.

In this chapter, we propose a method called Individual Evaluation Scheduling (IES)

to improve the performance of experiment-based optimization of a system having dy-

namics. IES consists of two ideas, i.e., Evaluation Order Scheduling (EOS) and Evalu-

ation Time Scheduling (ETS). The former one is a technique used to decide evaluation

order in the population to improve the accuracy of the performance by reducing the

total magnitude of parametric change. The latter one is used to adjust the waiting

time for the transient response. Figure 6.5 is a conceptual diagram of the effect of EOS

and ETS on transient response caused by parameter switching.

6.3 Evaluation Order Scheduling

Let us consider a target to be optimized which is a stable dynamical system:

q̇ = f(q,x), (6.1)
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Figure 6.4: Transient response of an engine torque caused by parameter switching.

where q = [q1 q2 · · · qk]
T is a state variable vector, and x = [x1 x2 · · · xn]T is a system

parameter vector represented by an individual of MOEAs and switched at prescribed

intervals. In the following, we consider only the influence of transient response caused
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Figure 6.5: Conceptual diagram of the effect of the EOS and the ETS for transient
response caused by parameter switching.

by system dynamics, and here in referred to as ‘estimation error’.

It can be expected that the nearer parameter change makes the smaller equilibrium

point changes excluding nonlinear phenomena such as bifurcation. As a result, the

transient response can be expected to be suppressed, and if the system settles at its

steady state faster, the accuracy of the estimated value can be improved. Hence, the

problem is to find the evaluation order of the population that achieves the minimal total

magnitude of parametric change. It can be formulated as problem similar to that of the

Traveling Salesman Problem (TSP). For a TSP, when a certain tour shown in Fig. 6.6

is given, a tour replaced two arbitrary edges is called a 2-opt neighborhood. The local

search using 2-opt neighborhood is known as a simple but effective heuristics of the

TSP. Note that we have to find the shortest path with the starting point determined

by the system parameter used in the current operation. EOS algorithm based on the

2-opt method is described as follows:

1. Define a population whose order is optimized as P 0 = {x0, P}, where P =

{x1,x2, . . . , xN} as the population to be evaluated, N is the number of individu-

als, and x0 is an individual which was evaluated at last in the previous generation.

Note that the order of x0 is fixed at the first one.

2. Define a permutation of P as Z = (z1, z2, . . . , zN), and initialize Z.

3. Calculate the path length dtotal by

dtotal =
N∑

i=1

dzi−1,zi
, (6.2)

where z0 = 0, dzi−1,zi
=

√∑n
l=1 wl(a

zi−1

l − azi
l )2, and wl is the weight. It should
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be noted that we do not need to obtain a closed path, and therefore we exclude

the length return to x0.

4. Examine the path length of 2-opt neighborhoods of P 0 given by Z.

5. If there exists a path in the 2-opt neighborhood whose dtotal is shorter than that of

the current path, employ it as a new path, and then return to Step 4); otherwise,

read out Z as a locally optimal permutation, that is, the evaluation order of P .

A B

C D

A B

C D

Figure 6.6: 2-opt neighborhood.

Fig. 6.7 shows a concept diagram of EOS. In EOS, adequate normalization of deci-

sion variables should be employed in advance, since we use distance among parameter

sets.
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Figure 6.7: Conceptual diagram of the Evaluation Order Scheduling.

6.4 Evaluation Time Scheduling

Along with the convergence of the population, shift of the equilibrium point of a dy-

namical system gradually diminishes. Consequently, the transient response generated
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by switching individuals gradually becomes small as well. Thus, we attempt to change

the invalid evaluation time. Assume that EOS is adopted for the initial population

P (0) and the current population P (t) as generation t. First, the mean edge length of

initial population is calculated as

d̄(0) =
dtotal(0)

|P (0)| − 1
,

where dtotal(0) is the path length of P (0), and |P (0)| is the size of P (0). The invalid

evaluation time of a individual xi is adjusted as follows:

IETi = IETmax · di−1,i

d̄(0)
, i = 1, 2, . . . , N, (6.3)

where IETmax is called the maximum invalid evaluation time, and is a parameter to

be set in advance.

Incidentally, the method of automatically judging the output that has reached a

stable state might be applied instead of ETS. However, in actual EBEMO, not only

the influence of the transient response caused by dynamics but also the uncertainty

based on the observation noise is included in the observation value. Therefore, the

judgment condition of steady state has to be decided appropriately based on the mag-

nitude of observation noise, because there is a possibility that the steady state will

be undetectable indefinitely. Moreover, the judgment condition settings are necessary

for the plural outputs in EBEMO. Additionally, it is required that the settings be

changed to reflect the targets of the modification specifications and measuring instru-

ment changes. It is desirable to decrease such work as much as possible if operation on

an actual calibration scene is considered. Hence, ETS whose configuration parameter

is only IETmax is simple and practicable approach.

6.5 Numerical Experiment

6.5.1 Experiment Settings

In this section, the performances of the proposed and conventional methods were com-

pared through simulation of a dynamical system. Let us consider the following system

consisting of four independent mass-damper-spring systems that share common ad-

justable parameters K1 and K2 shown in Fig. 6.8:

Mq̈1 + Dq̇1 + K1q1 = −Mg (6.4)

Mq̈2 + Dq̇2 + K2q2 = −Mg (6.5)

Mq̈3 + Dq̇3 + 2K1q3 = −Mg (6.6)

Mq̈4 + Dq̇4 + 2K2q4 = −Mg, (6.7)



CHAPTER 6. INDIVIDUAL EVALUATION SCHEDULING 70

where qi is the position of the mass in which the freedom length of the spring is assumed

to be zero, M is the mass, D is a damping coefficient, and g is the gravity acceleration,

respectively. Since the gravity acceleration g affects the vertical direction of each mass,

the transient state is caused by the movement of equilibrium points when K1, K2 are

switched. The mass-damper-spring system and the time series of Eq. (6.4) of which

parameter K1 was switched at random every five seconds are shown in Fig. 6.9. We

can see that the transient response caused by switching K conforms to the example in

Fig. 6.6 very well.

Let us consider a problem of putting positions q1, q2, q3, q4 to the desired position

qd by adjusting K1, K2. With this system, objective functions are defined as:

f1 =
2∑

i=1

(qd − q̂i)
2 (6.8)

f2 =
4∑

i=3

(qd − q̂i)
2, (6.9)

where q̂ is the estimated value of the steady state position. Because K1 and K2 coded

as individual of MOEAs are switched by a prescribed interval as shown in Fig. fig6-8,

the estimation error for q caused by the transient response is included in f1 and f2. The

true objective functions excluding the system dynamics are calculated theoretically as

follows:

f true
1 =

2∑
i=1

(
qd − Mg

Ki

)2

(6.10)

f true
2 =

2∑
i=1

(
qd − Mg

2Ki

)2

. (6.11)

In summary, the aim of this problem is multi-objective optimization of true objective

functions f true
1 and f true

2 by using their estimated values f1 and f2. Because equilib-

rium points determined by same spring rate are different between Eqs. (6.3)(6.4) and

Eqs. (6.5)(6.6), in four mass–damper–spring systems, Eq. (6.3) and Eq. (6.5) that have

K1 and Eq. (6.4) and Eq. (6.6) that have K2 cannot satisfy qd simultaneously. Hence,

f true
1 and f true

2 cannot equal to 0 simultaneously, and trade-off between f1 and f2 exists.

The sampling rate was 100ms on the simulation. For q̂, we used the mean of sampled

values taken in one second after the invalid evaluation time since an individual was

switched. Hence, q̂ includes a part of the transient response, when the sampling is

executed before diminishing transient response sufficiently.

As for parameter values, M = 1, D = 1, K1, K2 ∈ [1, 5], g = 9.81, qd = −3 and

w1 = w2 = 1 were used. In this thesis, NSGA-II was employed as a MOEA. Individual

was coded as x = [K1 K2]. The population size |P | = 50, and the offspring population
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Figure 6.9: Transient response of the mass–damper–spring system.

size |Q| = 50 were used. UNDX [80] was used for crossover. Since the evaluation

value includes uncertainty due to dynamic behavior of the system, the population was

re-evaluated in this numerical experiment, i. e., R(t) = P (t) ∪ Q(t) was used as the

evaluation population. The search was ended at the evaluation time of 5000 seconds

on the simulation.

We compared the following cases:

Case 1: normal NSGA-II, IETmax = 1 [sec].
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Case 2: normal NSGA-II, IETmax = 4 [sec].

Case 3: NSGA-II+EOS, IETmax = 1 [sec].

Case 4: NSGA-II+EOS, IETmax = 4 [sec].

Case 5: NSGA-II+EOS+ETS, IETmax = 4 [sec].

In this experiment, 30 trials using different initial populations were executed, and

the performances of the MOEAs were compared by the mean values of the trials for

the two evaluation measures introduced in Chapter 4:

Coverage: In this experiment, m = 2 and cmax = 25 were used.

Mean Absolute Error: In this experiment, the Pareto optimal set is analytically

given by

X∗ = {x1, x2 ∈ [1.635, 3.27]|x1 = x2}.

In addition, to investigate the influence of proposed method on estimated value, mean

estimation error between true fitness and estimated value introduced in Chapter 4 is

used as follows:

Eerror =
1

|P |m
|P |∑
i=1

m∑
j=1

|f true
j (xi)− fj(x

i)|. (6.12)

where |P | = 50 ad m = 2 are used.

6.5.2 Discussion of Results

Table 6.1 shows the mean value and the standard deviation of coverage and mean

absolute error obtained in the final generation of 30 trials. The bold-font and under-

lined number indicate the best and second-best performances in five cases respectively.

Moreover, the mean value and the standard deviation of mean estimation error of 30

trials is shown in Table 6.2. From Table 6.1, Case 5 which is NSGA-II+EOS+ETS

with IETmax = 4 [sec] achieved the best mean absolute error and second-best coverage.

It is understood to show a high level of performance overall in comparison with the

others.

Figures 6.10,6.11 and 6.12 show the transition of coverage, mean absolute error and

mean estimation error, respectively. Markers in the figures indicate the finish time of

each generation. In Case 5, because the number of generations is different depending

on the trial, the mean of finish time is indicated. Case 5 was executed an average of

28 generations, Case 2 and 4 were executed 10 generations, and Case 1 and 3 were

executed 25 generations in the period of 5000sec. A detailed discussion of the effect of

EOS and ETS is described as follows.



CHAPTER 6. INDIVIDUAL EVALUATION SCHEDULING 73

Effectiveness of EOS

From the comparison between Case 1 (NSGA-II, IETmax = 1 [sec]) and 3 (NSGA-

II+EOS, IETmax = 1 [sec]), and between Case 2 (NSGA-II, IETmax = 4 [sec]) and 4

(NSGA-II+EOS, IETmax = 4 [sec]) in Table 6.1, it is understood that EOS improved

the coverage and the mean absolute error. It is clearly indicated that the mean es-

timation error of Case 3 becomes about 10% of that of Case 1. In Case 4 the rate

of mean estimation error is about 13% in Table 6.2. On the one hand, because the

influence of the transient response caused by system dynamics is controlled by EOS,

the estimation error decreased greatly, and the search of NSGA-II did not stagnate.

On the other hand, the effect of the improvement of Case 4 was not larger than that

of Case 3. This is because the effect of EOS became small since the transient response

were settled by the enough invalid evaluation time in Case 2. Hence, the margin of

improvement in Case 2 is smaller than that of Case 1, due to the estimation error

in Case 2 is already small. As a result, EOS can improve the mean estimation error

without depending on the invalid evaluation time. Especially it can be concluded that

it is effective for real problems where it is difficult to secure the long invalid evaluation

time needed.

Length of Invalid Evaluation Time

Regardless of EOS, the mean estimation error was improved to 20% by increasing

IETmax from 1sec to 4sec as indicated in Table 6.2. The long invalid evaluation time

can suppress the influence of the transient response and decrease estimation error.

For the mean absolute error shown in Fig. 6.10, the convergence velocity in Case 3

was the fastest, because the number of generations could be increased in the same

optimization time. The number of generations in Case 3 becomes large because the

evaluation time per individual is short if the total optimization time is same. Hence,

search is advanced easily in the early stage. Nevertheless, although the estimation

error is small, the number of generations in Case 4 is not enough to improve the mean

absolute error. In the early stage of the search shown in Fig. 6.11, the coverage of Case

3 was better than Case 4. However, the coverage in Case 4 overcame that in Case 3

at about 2000 seconds and obtained the best result in the end. The domination of

Case 4 becomes clear through comparison of each generation. The same coverage as

25th generation in Case 3 was obtained in the fourth generation in Case 4. This result

shows the necessity of a well distributed population by accurate ranking and crowding

distance calculation in the early stage of the search, to obtain an good coverage.

Effectiveness of ETS

As shown in Fig. 6.10, for ETS, the coverage in Case 5 improved at a rising velocity

comparably to that in Case 3, The coverage obtained in the end in Case 5 nearly
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equals that in Case 4. Additionally, as shown in Fig. 6.11, the mean absolute error of

Case 5 was slightly better than that of Case 4 after 3000 seconds. Figure 6.13 shows

the transition of the mean invalid evaluation time of Case 5 for each generation. The

invalid evaluation time of Case 5 in the early stage is longer than that of Case 3.

Therefore, because the crowding distance of the population can accurately be judged,

coverage equal to that in Case 4 is obtained. The invalid evaluation time of Case 5

was adjusted to 0.5sec by ETS in latter stage while that of Case 3 is 1sec. As shown in

Fig. 6.12, we can see that the mean estimation error of Case 5 in the latter stage was

equal to that of Case 3. This result implies Eq. (6.2) calculates invalid evaluation time

adequately, and reduces non-productive time. As a result, the mean absolute error

was improved because the number of generations in the same evaluation time can be

increased in the latter stage of the search. Therefore, by using ETS the merits of both

Cases 3 and 4 can be realized.

Table 6.1: Performance comparison of the test problem for five cases.

Case Coverage Mean Absolute Error
Mean Std. Dev. Mean Std. Dev.

Case 1 0.66133 0.05251 0.04101 0.01050
Case 2 0.81533 0.02763 0.04765 0.00935
Case 3 0.85200 0.04888 0.02740 0.00746
Case 4 0.90667 0.03614 0.04106 0.00818
Case 5 0.88733 0.03503 0.02501 0.00615

Table 6.2: Mean estimation error of the test problem for five cases.

Case Mean Std. Dev.

Case 1 5.5623× 10−2 7.7027× 10−3

Case 2 9.7972× 10−3 1.6326× 10−3

Case 3 5.5454× 10−3 1.1936× 10−3

Case 4 1.3411× 10−3 2.0685× 10−4

Case 5 6.0018× 10−3 7.0957× 10−4

6.6 Real Engine Experiment

6.6.1 Experiment Settings

A four stroke gasoline engine of a motorcycle, which is a different type than that used

in Chapter 4, was used in the experiments to validate the effectiveness of proposed IES
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algorithm. Normal NSGA-II and NSGA-II+IES, that is, NSGA-II+EOS+ETS were

applied to a two-objective four-variable function optimization problem of the engine.

The multi-objective optimization problem was set as follows:

Objective Functions: engine torque (maximization), fuel-consumption (minimiza-

tion).

Decision Variables (Control Parameters): fuel-injection timing (INJ), ignition tim-

ing (IGN), desired air-fuel ratio (AFR), valve control parameter (VCP).

AFR means the desired air-fuel ratio, that is ratio of air and gasoline mass, of the

feedback controller. VCP means desired value of the device that controls valve state.

In general, there is a trade-off between the engine torque and the fuel-consumption.

Additionally, changing the aforementioned decision variables, i.e., the engine control

parameters, complicates the trade-offs. The engine torque and fuel-consumption were

measured at a constant engine speed.

Both NSGA-II and NSGA-II+IES were programmed into a calibration PC. In the

calibration PC, objective functions and decision variables were processed as normalized

values. The calibration PC was connected to an ECU by a serial communication.

The experiment condition of NSGA-II is as follows: Population size |P | = 30 and

offspring population size |Q| = 30 were used. The number of evaluations was 1530

(Population P was re-evaluated as we did in the numerical experiments). The mean

value of the sampled data was used as estimated value.

Both NSGA-II and NSGA-II+IES employed UNDX-P as a crossover operator. The

crossover rate was 1.0. Since UNDX-P shows good performance without mutation, we

did not use a mutation operator.

After optimizations, the true fitness of the individuals were verified through a longer

measurement period. These were used for comparison of the approximation Pareto

frontier.

6.6.2 Discussion of Results

At first, we investigate the time series of the engine torque shown in Fig. 6.14. We can

see a large amount of vibration throughout the time series of normal NSGA-II, where

that of NSGA-II+IES changes more smoothly. These results indicate EOS determine

adequate evaluation order of the population convergence in the vicinity of the Pareto

optimal set. In addition, the suppression of transient response by EOS can improve the

accuracy of the estimated values. Moreover, a secondary effect of the smooth output

torque response is that it does not input rapid torque changes to engines. From the

viewpoint of apparatus protections, it is a quite desirable feature in experiment-based

optimizations.

Fig. 6.15 shows the population distribution of the estimated value and the true

fitness in the objective function space. Each axis is shown in normalized scales. From
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this figure, we can see that the Pareto approximation set shows a straight line shape,

and the accuracy of estimated value of the NSGA-II+IES is higher than that of the

normal NSGA-II. Table 6.3 denotes the mean estimation error calculated by Eq. (6.12).

We can confirm that the error of NSGA-II+IES is about 30% less than that of normal

NSGA-II. Hence, it is understood that the accuracy of the estimated value is improved

by EOS.

Table 6.3: Mean estimation error of NSGA-II and NSGA-II+IES.

MOEA Mean Std. Dev.

NSGA-II 0.01099 0.00905
NSGA-II+IES 0.00779 0.00870
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Figure 6.14: Time series of engine torque (upper: NSGA-II, lower: NSGA-II+IES).

We also show the comparison of the Pareto frontier approximations by true fitness

in Fig. 6.16. This figure indicates that the NSGA-II+IES found a better convergence

of the Pareto optimal set than the normal NSGA-II, especially in high torque areas

around 0.8. This result indicates that the search process did not stagnate because

NSGA-II+IES improved the accuracy of estimated value.

In addition, the decision variable space of the final population is shown in Fig. 6.17.

Because the population of NSGA-II+IES is more converged than that of NSGA-II, we
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Figure 6.15: Population distribution in the objective function space (upper: NSGA-II,
lower: NSGA-II+IES).
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can confirm Pareto approximation solutions in decision variable space.
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Figure 6.16: Comparison of the approximation Pareto frontier by true fitness.

Moreover, though the search accuracy was improved, the search time of NSGA-

II+IES was shortened about 13% to that of the normal NSGA-II by ETS in the same

number of evaluations. Figure 6.18 shows the transition of the mean invalid evaluation

time for generations of NSGA-II+IES. The solid line indicates the mean IET of NSGA-

II, and the broken line indicates the fixed IET of NSGA-II. The horizontal axis means

the number of generation, and the vertical axis means normalized invalid evaluation

time. In this case, IET is normalized by the fixed IET of NSGA-II. Therefore, IETmax

of NSGA-II+IES is 2. We can confirm that NSGA-II+IES keeps IET about the 1st

until the 10th generation and gradually decrease it to 0.4 after that. Hence, it is

understood that ETS has reduced the invalid evaluation time as the distance between

individuals becomes smaller by converging to the neighborhood of Pareto best solution.

To confirm the validity of invalid evaluation time, standard deviation of sampling

data that is used to calculate the fitness of output torque and fuel consumption is

investigated. Each piece of sampling data is normalized. Figure 6.19 shows the mean

value of the standard deviation of each generation. Both of the minimum standard

deviations were from the initial generation. This result implies that the IETmax was

kind of large. The standard deviation of the output torque was stable after the 10th

generation, although it gradually became large along with shortening of the invalid

evaluation time. As for the standard deviation of the fuel consumption, it is understood
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that it gradually became small after it grew until the 10th generation. Hence, it can

be understood that the influence of the transient response included in the estimated

values was roughly constant through the generation. As a result, it can be concluded

that ETS will appropriately calculate the invalid evaluation time.

Through discussion with experts of engine calibration, we confirmed that the char-

acteristic of the Pareto approximation set was appropriate enough to represent the

performance of the engine, although the optimization time was not reached as low as

that of the operation time of the experts. Therefore, it can be concluded that IES is

an effective technique for the experiment-based EMO of real engines.

6.7 Summary

In this chapter, Individual Evaluation Scheduling for the experiment-based evolution-

ary multi-objective optimization was proposed. Through numerical experiment using

a formal test problem and experiment using a HILS environment for real engines, the

effectiveness of EOS and ETS can be summarized as follow:

• EOS can suppress the transient response caused by system dynamics by suitable

evaluation order of population. Hence, the estimation error for true fitness can

be reduced. As a result, EOS contributes to the improvement of search accuracy

because optimization process does not stagnate.

• ETS can adequately adjust the invalid evaluation time based on the distance

between individuals. Hence the non-productive invalid evaluation time can be

excluded. Therefore, ETS contributes to the improvement of search accuracy un-

der same total evaluation time, and reduction of search time under same number

of evaluation.

In conclusion, it was understood that the Pareto optimal solutions having the high

coverage and the small mean absolute error were obtained by EOS and ETS. Because

the proposed method is independent from specific MOEA, IES is applicable to various

MOEAs.
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Figure 6.18: Transitions of invalid evaluation time.
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Chapter 7

Acceleration Method using Fitness
Estimation

7.1 Outline

In Chapters 4 to 6, methods to solve the first problem, that is, the search performance

of MOEAs to the influence of observation noise, periodicity and system dynamics

were developed. Although the improvement of search performance through real engine

experiments were confirmed, a search time comparable to that of engine calibration

done by experts has yet to be achieved. To make EBEMO using the HILS environment

feasible, the most important pre-requisite is reduction of the number of necessary

fitness evaluations. Parallelization is one of the solutions for real world problems that

require enormous evaluation costs [22, 108]. However, the parallelization of engine

HILS environments is not a realistic choice in view of the installation cost and space.

As another approach, acceleration methods for EAs mainly studied have been used

to build approximation models from information of evaluated individuals in a real

environment and then using them as a low-cost surrogate. Figure 7.1 presents a typical

structure of acceleration method for EAs. EAs including MOEAs can adequately

switch both real environments and approximation models. Individuals evaluated in

real environments and these fitness are stored in the search history. The approximation

models are constructed by the search history.

Generally speaking, it is possible to decrease the total evaluation time substantially

because the evaluation cost of the approximation model is smaller than the real envi-

ronment. These acceleration methods have been applied to simulations, which demand

enormous evaluation costs such as Computational Fluid Dynamics (CFD) [11, 17, 52].

Therefore, we set out to solve this problem through the application of an ac-

celeration method by evaluation reductions of EAs. In the EBEMO, the perfor-

mance of the evaluation reduction under uncertainty such as observation noise is

highly important, although the previous works often assume noise-free environments

[17, 28, 29, 52, 62, 69, 70, 75].

84
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Figure 7.1: Schematic representation of the acceleration method for MOEAs.

In this chapter, an evaluation reduction is proposed to overcome the aforemen-

tioned problem by selecting the solution candidates by means of the estimated fitness

(estimated value) before applying them to the real experiment in MOEAs. This tech-

nique is called ‘Pre-selection’. For the estimation of fitness, we adopt Locally Weighted

Regression (LWR) [2]. The effectiveness of the proposed method is examined by some

numerical experiments and also a two-objective four-variable optimization problem of

a real internal-combustion engine using HILS.

7.2 Acceleration Method for MOEAs

7.2.1 Related Works

Since EAs are stochastic optimization method, offspring may be generated at a position

far from an area containing the optimal solution. It is undesirable to evaluate such

non-promising offspring in the real environment of costly evaluations. If the offspring

can be evaluated by the approximation model of the fitness, non-promising offspring

can be excluded beforehand to make optimization efficient. Such a technique called

Pre-selection or Pre-screening winnows promising offspring based on the estimated

value obtained by the approximation model [27, 59]. The Pre-selection has the feature

which does not lose the advantage of a direct search and updates the approximation

model every generation.

Figure 7.2 depicts a flow diagram of a Pre-selection algorithm. First, candidate

offspring are generated by using crossover and mutation operators and are evaluated on

the approximation model. Second, promising candidate offspring having good fitness

are evaluated in the real environment. Finally, generation alternation is executed

through comparison of the fitness value.

In conventional evaluation reduction for EAs, many researchers have employed
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Figure 7.2: Flow diagram of the Pre-selection algorithm.

many kinds of approximation modeling techniques for objective functions. For exam-

ple, polynomials [72], Artificial Neural Networks [53, 54, 55, 56, 59, 38], Radial Basis

Functions [76, 79], Support Vector Regression [107], Gaussian Process [11] and Kriging

(Design and Analysis of Computer Experiments, DACE [90]) [27, 110, 84, 113] are

adopted.

For instance, Emmerich et al. have proposed a Pre-selection for MOEAs which used

Kriging [28, 29]. They paid attention to a feature that Kriging can predict the mean

square error of the estimated values. To select individuals that have a high possibility

for improvement, they employed merit functions which consider the mean square error

of Kriging models for the ranking operation.

However, because Kriging generates approximation models that pass through all

the sample points, it is not suitable for the EBEMO in which evaluation values involve

uncertainties such as observation noise. Similarly, previous works have assumed noise-

free environments [17, 52, 62, 69, 70, 75].

Among the previous works, we paid special attention to the researches by Branke

et al. [8, 9]. They have proposed a Pre-selection that used Locally Weighted Regres-

sion (LWR) [2] to estimate values of candidates as an evaluation reduction for single

objective EAs, and have shown its effectiveness by detailed examinations. They also

have demonstrated that the fitness estimation by LWR was effective for the problems

that have uncertainty resulting from observation noise. Therefore, because our goal is

to develop an evaluation reduction for experiment-based EMO including uncertainties

such as observation noise, we employ LWR as an approximation modeling technique.

Moreover, we propose a Pre-selection algorithm which does not depend on features of

approximation modeling techniques.
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7.2.2 Locally Weighted Regression

In this chapter, m-objective n-dimensional optimization problems in continuous space

are considered. Locally weighted regression is a technique for fitting a local regression

to nearby data. This approach is also referred to as memory-based approach. Consider

a set of search history

H = {(h1,f(h1)), (h2,f(h2)), . . . , (hl,f(hl))},
which stores information of the search process of MOEAs, where h = [h1 · · · hn]T is

n-dimensional decision variable vector which was evaluated as an individual in a real

environment. f(h) = [f1(h) · · · fm(h)]T is m-dimensional objective function value

vector, l is the number of individuals stored in H.

A low polynomial such as constant, linear, or second-order is usually used for local

regression. A neighborhood set Ω of an individual (query) x = [x1 · · · xn]Tis generated

from H by k-Nearest Neighbors (k-NN) method based on the Euclidean distance

dE(h,x) =
√

(h− x)T(h− x).

Then, weighted regression is executed for Ω locally. Hence, l ≥ k must be satisfied,

where k is the size of Ω . If the dimension of decision variable vector is n, the minimum

number of k required for local regression model is as follows:

• Linear polynomial: n + 1

• Second-order polynomial without interaction terms: 2n + 1

• Second-order polynomial: (n + 1)(n + 2)/2

When we have to consider the influence of observation noise, we should set k depended

on the noise level.

When a second-order polynomial without interaction terms is employed as a local

regression model, the estimated value f̂(x) =
[
f̂1(x) · · · f̂m(x)

]T

is calculated by the

following equations:

f̂i(x) =
[
1 x1 · · · xn x2

1 · · · x2
n

]
bi (7.1)

bi =
(
XTWX

)−1
XTWyi (7.2)

X =




1 h11 · · · h1n h2
11 · · · h2

1n
...

1 hk1 · · · hkn h2
k1 · · · h2

kn


 (7.3)

yi =
[
fi(h

1) fi(h
2) · · · fi(h

k)
]T

, (7.4)

where hij is jth element of hi which is an individual near to ith from x in Ω , and W

is called weighted matrix which is a diagonal matrix with diagonal elements

wi =
√

K(dE(hi, x)), i = 1, 2, . . . , k. (7.5)
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K(·) is called weighted function or kernel function and is used to calculate the weight

of search histories. In this thesis, Gaussian kernel

K(d) = exp

(
−d2

u

)
(7.6)

is used, where u is a smoothing parameter and is set to be the distance to the kth

nearest search history in this chapter.

In MOEAs, we can assume the distribution of the population gradually converges

into the Pareto optimal set through the search. Hence, a lot of individuals near the

Pareto optimal set will be preserved in the search history set H. If convergence takes

place, a strong correlation between decision variables might appear when the effective

dimension of the Pareto optimal set degenerates in the decision variable space. There-

fore, multicollinearity should be considered. That is, estimation accuracy of regression

coefficient vector b deteriorates because the matrix XTWX gets close to singular and

numerical calculation of the inverse matrix (XTWX)−1 becomes unstable.

To avoid the influence of multicollinearity, we employ ridge regression [2, 46]. In-

stead of Eq. (7.2), ridge regression uses the following equation:

bi =
(
XTWX + λI

)−1
XTWyi, (7.7)

where λ is constant value, called the ridge parameter, used to avoid singularity of

matrix XTWX and to stabilize inverse matrix calculation.

7.2.3 Pre-selection for EBEMO

When Pre-selection is applied for single-objective EAs, the estimated value f̂(x) is used

for promising offspring selection. Hence, it is natural extension that the estimated value

vector f̂(x) is used for the selection in ranking based MOEAs such as NSGA-II. In

this case, an important point of Pre-selection for MOEAs is how to select the offspring

that should be evaluated in the real environment when lots of promising candidate

offspring of equal rank exist. Because we employ LWR for approximation modeling

technique, instead of the mean square error prediction of the Kriging [28, 29], we use

a sparsity criterion of each promising candidate offspring in the archived population

for a useful and effective search. This algorithm is constructed in the manner that the

offspring generated in an area having sparse distribution of non-dominated individuals

in the archived population is preferentially selected. In this chapter, crowding distance

proposed by Deb et al. [19] is used as a sparsity criterion.

Figure 7.3 shows the conceptual diagram of the proposed method. The prototype

algorithm is shown below:

1. Evaluate all of fitness vector f(x) in the initial population P (0), t = 0 in a real

environment, and preserve individuals and their fitness vectors in search history

set H.
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2. Generate a candidate offspring population QC(t) from the archived population

P (t) by applying the selection, crossover, and mutation operators.

3. Calculate estimated value vectors f̂(x) of RC(t) = P (t) ∪ QC(t) by using the

approximation model constructed by use of H.

4. Assign the rank of RC(t) by using the α-domination strategy proposed by Ikeda

et al. [49] based on f̂(x).

5. Add a candidate offspring which becomes a non-dominated individual to P (t),

and calculate its crowding distance (This operation is applied for all the non-

dominated candidate offspring.).

6. Select the evaluated offspring population Q(t) from the q non-dominated candi-

date offspring assigned with good crowding distance.

7. Evaluate offspring of Q in the real environment, and preserve the offspring to-

gether with the fitness vector in H.

8. Assign the rank and the crowding distance of R(t) = P (t) ∪Q(t) based on f(x)

(noise-free environment) or f̂(x) (noise environment) and select high-ranked |P |
individuals of R as next generation.

9. If the termination condition is satisfied, finish this procedure; otherwise, set

t := t + 1 and return to Step 2).

If the number of individuals stored in the search history set H is insufficient for the

construction of the approximation model, individuals are evaluated in the real envi-

ronment until it reaches the necessary number. The minimum number of l that needs

model construction depends on the problems and the modeling techniques. In the

proposed method, LWR is employed as a modeling technique. Hence, individuals are

only evaluated in the real environment when l < k. If we set k ≤ |P |, Pre-selection

can start after initial population evaluation.

Moreover, we employ the crowding distance proposed by Deb et al. [19] as a sparsity

measure. In Step 4), α-domination strategy is used to exclude individuals treated as

non-dominated individuals because of the estimation errors introduced in Chapter 4.

Since the proposed method enables the preferential evaluation of offspring generated

in a sparse area of distribution of non-dominated individuals in real environments,

improvement of the search performance and the accuracy of approximation models

can be expected.



CHAPTER 7. ACCELERATION METHOD USING FITNESS ESTIMATION 90

Archive population

Candidate offspring population

Feasible region

1f

2f

Pareto frontier

P
CQ

1f

2f

Figure 7.3: Conceptual diagram of the Pre-selection algorithms for EBEMO. The figure
on the left shows the set RC = P ∪ QC, and the figure on the right depicts crowding
distance calculation of candidate offspring which became non-dominated individuals.

7.3 Numerical Experiments

7.3.1 Experiment Settings

From the test problem set described by Deb [18], we employ two objective optimization

problems SCH, FON, ZDT1, and three objective optimization problem DTLZ2 for

numerical experiment.

• SCH

f1(x) =
1

n

n∑
i=1

x2
i

f2(x) =
1

n

n∑
i=1

(x1 − 2)2

xi ∈ [−4, 4], i = 1, 2, . . . , n.

This problem has a convex Pareto frontier.

• FON

f1(x) = 1− exp

(
−

n∑
i−1

(
xi − 1√

n

)2
)

f2(x) = 1− exp

(
−

n∑
i−1

(
xi +

1√
n

)2
)

xi ∈ [−2, 2], i = 1, 2, . . . , n.
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This problem has a concave Pareto frontier.

ZDT1 and DTLZ2 were introduced in Chapter 4. The number of decision variables of

all problems was n = 10.

In this chapter, NSGA-II [19] was employed as an MOEA. The archived population

size |P | = 30, the candidate offspring population size |QC| = 100 and evaluated off-

spring population size |Q| = 4 were used for the Pre-selection NSGA-II. For crossover,

UNDX proposed by Ono et al. was used [80]. Since it is known that the UNDX shows

good performance without mutation, we did not use mutation operation.

A second polynomial without interaction terms was employed as a local model.

Hence, the size of Ω have to satisfy k ≥ 2n + 1. Because the dimension of decision

variable space of test functions are n = 10, k ≥ 21 should be used. In this experiment,

the neighborhood set size for k-NN was calculated as follows:

k =

{
30 |H| ≤ 600

b0.05|H|c |H| > 600
, (7.8)

where |H| is the size of search history, bac is the maximum integer of a and under.

The parameter of α-domination strategy employed α = 0.05, and the ridge parameter

was λ = 0.0001. Normal NSGA-II (|P | = 30,|Q| = 30) was used for comparison. Be-

cause NSGA-II does not use estimated values as like Pre-selection, both of NSGA-II

re-evaluation P and no-evaluation P were employed. In re-evaluation, Fi(x) is cal-

culated by using new δi. The number of evaluations was 2030 (Pre-selection), 2040

times (NSGA-II, no-evaluation P ), and 2070 times (NSGA-II, re-evaluation P ), re-

spectively. Because the number of function evaluations is the most restrictive factor

for experiment-based optimization, comparison was carried out with the same num-

ber of function evaluation, although computation time is another candidate condition.

Thirty trials with different initial populations were conducted.

Performances of two methods were compared by the mean values of the 30 trials

for the two evaluation measures described below:

Coverage: In this experiment, cmax = 15 (m = 2) and cmax = 6 (m = 3) were used.

Mean Absolute Error: In this experiment, the Pareto optimal solution sets are

given by

X∗
SCH = {x1, . . . , xn ∈ [0, 2] | x1 = . . . = xn}

X∗
FON = {x1, . . . , xn ∈ [−1/

√
n, 1

√
n] | x1 = . . . = xn}

X∗
ZDT1 = {x1 ∈ [0, 1], x2 = . . . = xn = 0}

X∗
DTLZ2 = {x1, x2 ∈ [0, 1], x3 = . . . = xn = 0.5}.
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7.3.2 Performance Analysis under Noise-free Environments

First, we compare the results of the proposed and conventional method in a noise-

free environment. The results are shown in Table 7.1. The best performance in each

problem is indicated in the bold font. From Table 7.1, it is understood that the

proposed method outperforms NSGA-II. As an example, transitions of coverage and

mean absolute error for FON are shown in Figs. 7.4 and 7.5. The results indicate that

the proposed method can reduce the number of evaluations from the 2000 needed using

the conventional method to 400 evaluations. This tendency was similar on the other

three test problems, too.

Table 7.1: Performance comparison of the NSGA-II with Pre-selection and the normal
NSGA-II for four test functions in noise-free environment.

Test Method Coverage M. A. E.
Functions Mean S. D. Mean S. D.

SCH Pre-selection 0.98111 0.01894 0.11279 0.01850
NSGA-II 0.91444 0.03467 0.39274 0.07934

FON Pre-selection 0.98889 0.01822 0.03448 0.00538
NSGA-II 0.96556 0.03093 0.14048 0.02386

ZDT1 Pre-selection 0.98333 0.02099 0.00577 0.00412
NSGA-II 0.42000 0.18967 0.07670 0.02241

DTLZ2 Pre-selection 0.37068 0.05258 0.10044 0.01692
NSGA-II 0.24877 0.04334 0.15341 0.02265

Next, the influences of the Pre-selection parameters were examined on the following

condition. In this experiment, neither k nor α were analyzed because they are the

setting parameters for estimation.

• Candidate offspring population size |QC| = 30, 100, 300

• Evaluated offspring population size |Q| = 1, 4, 10

• Parameters of the UNDX 1

(σξ, ση) = (0.25, 0.175/
√

n), (0.5, 0.35/
√

n), (1.0, 0.7/
√

n)

These parameters were compared with the basic setting of the algorithm |QC| =

100, |Q| = 4, (σξ, ση) = (0.5, 0.35/
√

n). The FON (n = 10) was used as a test

function. Table 7.2 shows the result of the experiment. The following is understood

from Table 7.2.

1σξ = 0.5 and ση = 0.35/
√

n are recommended parameters in [80].
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Figure 7.4: Transitions of the coverage of FON in the noise-free environment.
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ment.
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• The search performances slightly improved whenever |QC| was increased from 30

to 300. However, since the difference between the performance of |QC| = 100

and |QC| = 300 was minor, it is not a good approach to simply increase the size

of QC in from the perspective of calculation cost.

• The performances of |Q| = 1 and |Q| = 4 were better than |Q| = 10. This

result indicates that the promising offspring were surely added to the archived

population P when the size of evaluated offspring population was small. However,

the number of candidate offspring per evaluated offspring increases if |Q| is set

small. Hence, it should be adjusted according to the calculation cost of the

approximation model.

• For σξ and ση, the recommended values got the best result. When the parameters

are small, that is, the offspring are generated in small region, extrapolation is

hardly expected. Therefore, mean absolute error deteriorated extremely. How-

ever, when they are generated in large region, there is only a minor difference

in the coverage for the recommended values while the mean absolute error is

decreased. Thus, if the parameters are too large, the density of the candidate

offspring generated in the vicinity of the Pareto optimal set becomes small, and

convergence of the population slows.

The difference of each performance excluding small value of the UNDX parameters

was relatively small for the performance of the normal NSGA-II. Hence, the proposed

method has robustness for the design parameter selection.

Table 7.2: Performance comparison of design parameters of the pre-selection algorithm
and the UNDX for FON.

Parameters Value Coverage M. A. E.
Mean S. D. Mean S. D.

Base – 0.98889 0.01822 0.03448 0.00538
|QC| 30 0.99111 0.01499 0.04987 0.00712

300 0.98556 0.02087 0.03205 0.00457
|Q| 1 1.00000 0.00000 0.02544 0.00444

10 0.98667 0.01878 0.04987 0.00766
(σξ, ση) (0.25, 0.175√

n
) 0.98000 0.03456 0.12192 0.04172

(1.0, 0.7√
n
) 0.99556 0.01153 0.06065 0.00697
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7.3.3 Performance Analysis under Observation Noise Envi-
ronments

In this subsection, the performance under the observation noise was examined because

it is the objective of this chapter to apply evaluation reduction to experiment-based

EMO. A simple expression of noisy test function is defined as follows:

Fi(x) = fi(x) + δi, δi ∼ N(0, σ2
i ), i = 1, 2, . . . ,m,

where, N(0, σ2
i ) is the normal distribution random number, and the standard deviation

σi is set at 10% of the i th range of the Pareto frontier.

In LWR, the observation noise can be filtered by appropriately adjusting parameters

such as parameters of weighted function K(·), smoothing parameter u, ridge parameter

λ, and choice of local model structure [2]. In this experiment, the ridge parameter was

employed for filtering the observation noise. The performances of λ = 0.01, 0.1, 1 were

examined with the basic setting λ = 0.0001 which was used in a noise-free environment

to avoid the influence of the multicollinearity.

Table 7.3 show the results of experiment. From these results, it is understood that

the effect of the ridge parameter adjustment is obvious, but it depends on the test

problems. Parameter value λ = 0.01 indicates a more stable performance than the

other values. The ridge parameter should be determined by using cross validation etc.,

but its calculation cost cannot be neglected. Thus, an indicator of the selection of

a more appropriate ridge parameter is one of the future tasks. However, while it is

derived from a small amount of experience, we propose the use of λ = 0.01 or less

under noise environments, and set a small value to such an extent that the inverse

matrix calculation does not become unstable under the noise free environment as the

primal choice.

The transitions of coverage and mean absolute error of FON are shown in Figs. 7.6

and 7.7. These figure indicate that the performance was improved by adjusting the

ridge parameter. The result in the noise-free environment showed improvement as well.

From the above-mentioned discussion, it was shown that the proposed method

performed better than normal NSGA-II under the observation noise environment.

7.4 Real Engine Experiment

7.4.1 Experiment Settings

A four stroke gasoline engine was used in the experiments to validate the effectiveness of

proposed Pre-selection algorithm. Normal NSGA-II and NSGA-II with Pre-selection

were applied to a two-objective four-variable function optimization problem of the
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Table 7.3: Performance comparison of the NSGA-II with Pre-selection and the normal
NSGA-II for four test functions in observation noise environment.

Test Method Coverage M. A. E
Functions Mean S. D. Mean S. D.

SCH Pre-selection 0.53444 0.08991 0.87487 0.12791
PS (λ = 0.01) 0.51333 0.10042 0.92023 0.15100
PS (λ = 0.1) 0.52889 0.13440 0.92978 0.11092
PS (λ = 1) 0.23889 0.16449 0.66298 0.21311
NSGA-II 0.53889 0.12505 1.39919 0.25304
NSGA-II re-eval 0.42889 0.17326 1.21128 0.20914

FON Pre-selection 0.58667 0.30895 0.24803 0.07067
PS (λ = 0.01) 0.81333 0.20652 0.23320 0.03756
PS (λ = 0.1) 0.91444 0.03784 0.21444 0.02942
PS (λ = 1) 0.88667 0.08867 0.16708 0.01619
NSGA-II 0.59111 0.17572 0.46592 0.11830
NSGA-II re-eval 0.55000 0.25846 0.39342 0.12063

ZDT1 Pre-selection 0.70111 0.15073 0.02299 0.00572
PS (λ = 0.01) 0.85444 0.10810 0.02391 0.00608
PS (λ = 0.1) 0.86778 0.07605 0.02490 0.00504
PS (λ = 1) 0.44333 0.16682 0.02721 0.00427
NSGA-II 0.27111 0.13326 0.16417 0.02460
NSGA-II re-eval 0.18889 0.13542 0.16063 0.02552

DTLZ2 Pre-selection 0.37006 0.04029 0.09112 0.01048
PS (λ = 0.01) 0.33056 0.05498 0.10956 0.01624
PS (λ = 0.1) 0.28889 0.04043 0.13826 0.02093
PS (λ = 1) 0.13920 0.04737 0.21268 0.02051
NSGA-II 0.17870 0.05481 0.16272 0.02175
NSGA-II re-eval 0.31914 0.05128 0.10804 0.01503

engine. In the following, NSGA-II with Pre-selection is called ‘Pre-selection’. The

setting of multi-objective optimization problem that was used in Chapter 6 is as follows:

Objective Functions: engine torque (maximization), fuel-consumption (minimiza-

tion).

Decision Variables (Control Parameters): fuel-injection timing (INJ), ignition tim-

ing (IGN), desired air-fuel ratio2 (AFR), valve control parameter (VCP).

Both NSGA-II and NSGA-II with Pre-selection were programmed into a calibration

PC. In the calibration PC, objective functions and decision variables were processed

2It is ratio of air and gasoline mass
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as normalized values. The calibration PC was connected to an ECU by a serial com-

munication.

The experiment condition of NSGA-II is as follows: Population size |P | = 30

and offspring population size |Q| = 30 were used. The number of evaluations was

1530 (Population P was re-evaluated). The mean value of sampled data was used as

estimated value.

The experiment conditions of Pre-selection were as follows: The population size

|P | = 30, candidate offspring population size |QC| = 100 and evaluated offspring

population size |Q| = 4 were used. The number of evaluations was 1530 (P was

not re-evaluated). Estimated value was calculated by LWR. Since the dimension of

decision variable space is n = 4, required size of Ω is k ≥ 9. In this experiment, k was

determined by Eq. (7.8). Additionally, we used α = 0.05 as parameter of α-domination

strategy, and λ = 0.01 as ridge parameter.

Both NSGA-II and Pre-selection employed UNDX-P as a crossover operator. The

crossover rate was 1.0. Mutation operators were not used.

After optimizations (NSGA-II: 1530 evaluations, Pre-selection: 130 and 1530 eval-

uations), the true fitness of the individuals were verified through a longer measurement

period. These were used for comparison of the approximation Pareto frontier.

7.4.2 LWR for Periodic Functions

As shown in Fig. 7.8, when the k-NN method is used in the vicinity of the edge of the

domain of the periodic function, the neighborhood set Ω cannot step over both ends

of the domain. Therefore, the approximation model is not smoothly connected and

the approximation accuracy is decreased in the vicinity of both ends of the domain.

To cope with this problem, we extend the k-NN method and LWR to approximate

periodic functions via the following procedures.

Assuming that the elements x1, . . . , xp, p ≤ n of an individual x represented by

n-dimensional vector have a periodicity of 2π cycle by suitable normalization, the

elements xp+1, . . . , xn do not have periodicity, and domain of each element is normalized

to [0, 1].

1. Define extended individuals of x and h stored in search history H as follows:

xP = [cos θ1 sin θ1 · · · cos θp sin θp xp+1 · · · xn]

hP = [cos φ1 sin φ1 · · · cos φp sin φp hp+1 · · · hn]

θi = 2πxi − π, φi = 2πhi − π, i = 1, . . . , p.
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Figure 7.8: Conceptual diagram of the LWR for periodic functions. The upper figure
shows the result of conventional LWR and the lower figure shows the result of extended
LWR for periodic functions.

2. Define distance between hP and xP as the following equation:

dP(hP,xP)

=

(
p∑

i=1

(
cos−1(cos φi cos θi + sin φi sin θi)

2π

)2

+
n∑

i=p+1

(hi − xi)
2

) 1
2

, (7.9)

where cos−1 is treated as a monotonously decreasing function by restricting value

region to [0, π].

3. Generate the neighborhood set Ω by k-NN method based on dP.

4. Calculate estimated value f̂(xP) of xp by applying LWR for Ω , where, following
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equations are used instead of Eqs. (7.1), (7.3), (7.5).

f̂i(xP) =
[
1 cos θ1 · · · xn x2

p+1 · · · x2
n

]
bi (7.10)

X =




1 cos φ11 · · · h1n h2
1,p+1 · · · h2

1n
...

...
...

...
...

...
...

1 cos φk1 · · · hkn h2
k,p+1 · · · h2

kn


 (7.11)

wi =
√

K(dP(hi
P, xP)), i = 1, 2, . . . , k. (7.12)

5. Employ f̂(x) = f̂(xP) as the estimated value of x.

To eliminate the influence of periodic functions, first, each periodic variable is converted

to a corresponding point on the unit circle in Step 1). Second, the distance of circular

arc is calculated by cos−1 under assumption that an angle between unit vectors exists

in [0, π]. Finally, function approximation is done in a higher dimensional space in Step

4). Incidentally, cos−1 in Eq. (7.9) is a costly function. Therefore to reduce calculation

cost, a linear decreasing function can be used instead of cos−1. As another approach,

the Euclidean distance between extended individuals can also be employed in place of

dP.

7.4.3 Discussion of Results

Analysis in Objective Function Space

Figures 7.9, 7.10, and 7.11 show the population distribution of the estimated value

and the true fitness obtained by the measurement for a longer period in the objective

function space. Additionally, Fig. 7.12 shows the comparison of the approximation

Pareto frontiers by true fitness. The horizontal axis indicates engine torque, and the

vertical axis indicates fuel-consumption respectively. Each axis is shown in normalized

scale. Hence, the direction of optimization is in the lower right part of the graph.

• The Pareto frontier approximated by population distributions shows straight line

shape. The torque proportionally moves from 0.5 to 0.8 provided that the fuel-

consumption changes from 0.55 to 0.8 in objective function space.

• In the comparison of true fitness, two approximation Pareto frontiers by Pre-

selection are especially improved around fuel-consumption of 0.8 compared with

that by NSGA-II. This is because Pre-selection does not receive the influence of

noise easily as a result of using the estimation value to search, since LWR can

calculate accurate estimated values for data which contain uncertainties.

• In Pre-selection, the estimation error of the fuel-consumption was larger than

that of the torque, because the response delay of the fuel-consumption is larger

than that of the torque in these experiments.
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• In Pre-selection, there were few differences between the approximation Pareto

frontiers of 130 evaluations and that of 1530 evaluations. This result indicates

that the Pre-selection works effectively and accelerates the search process re-

markably.

Analysis in Decision Variable Space

Figures 7.13, 7.14, and 7.15 indicate population distribution in decision variable space.

Each axis is also shown in normalized scale. They indicate the following results:

• A strong correlation exists between fuel-injection timing INJ and the valve control

parameter VCP. INJ approaches from 0.5 to 0.8 provided that the VCP moves

from 0 to 1.

• A weak correlation is seen between ignition timing IGN and VCP.

• Because the desired air-fuel ratio AFR converged towards the vicinity of 1, which

is the limit, the improvements in performance can be expected by expanding the

search space. In fact, engine calibration experts pointed out that the upper

limit of AFR is lower than usual, and that the results are reasonable under the

experiment conditions.

• VCP is distributed widely in the range from 0 to 0.5 compared with other pa-

rameters. It is thought that the trade-off strongly depends on VCP.

• In the comparison of decision variable space, population of Pre-selection showed

better convergence than that of NSGA-II.

Effectiveness of Pre-selection

In the experiment of NSGA-II, it was found that the population converged at around

1000 evaluations, via comparison with the population of final generation. Therefore,

the optimization time was decreased to about 13% of the original time needed by apply-

ing Pre-selection. Through discussion with experts of engine calibration, we confirmed

that the characteristics of the Pareto approximation set were an appropriate repre-

sentation of the performance of the engine, and that the optimization time achieved

a practical level when compared to the operation time needed by experts. Hence,

Pre-selection is an essential technique of EBEMO for engine calibration was validated.

7.5 Summary

In this chapter, a Pre-selection algorithm for EBEMO was proposed. First, the perfor-

mance of proposed method was examined through numerical experiments. As a result,
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Figure 7.9: Population distribution in the objective function space (NSGA-II, 1530
evaluations).

0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.6

0.7

0.8

0.9

1

Torque [Normalized value]

Fu
el

−c
on

su
m

pt
io

n 
[N

or
m

al
iz

ed
 v

al
ue

]

 

 

True fitness
Estimated value

Figure 7.10: Population distribution in the objective function space (Pre-selection, 130
evaluations).
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Figure 7.11: Population distribution in the objective function space (Pre-selection,
1530 evaluations).
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Figure 7.12: Comparison of the approximation Pareto frontier in the objective function
space by using true fitness.
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Figure 7.13: Population distribution in the decision variable space (NSGA-II, 1530
evaluations).

it was confirmed that the Pre-selection was able to reduce the number of evaluations

greatly for four test functions despite the presence of the observation noise. More-

over, the search performance did not change significantly when the setting parameters

of Pre-selection and UNDX were changed. These facts indicate that the proposed

method has robustness for the setting parameters.

Next, the Pre-selection was applied to EBEMO of real internal-combustion engines.

To demonstrate that MOEAs can optimize real engines in practical time by applying

Pre-selection, a real engine was optimized as a two-objective optimization problem.

As a result, it was confirmed that NSGA-II with Pre-selection was able to reduce

optimization time to about 13% together with improving search accuracy, and that

the achieved the optimization time at a practical level.
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Figure 7.14: Population distribution in the decision variable space (Pre-selection, 130
evaluations).

0 0.5 1
0

0.5

1

INJ

IG
N

0 0.5 1
0

0.5

1

INJ

A
FR

0 0.5 1
0

0.5

1

INJ

V
C

P

0 0.5 1
0

0.5

1

IGN

A
FR

0 0.5 1
0

0.5

1

IGN

V
C

P

0 0.5 1
0

0.5

1

AFR

V
C

P

Figure 7.15: Population distribution in the decision variable space (Pre-selection, 1530
evaluations).



Chapter 8

Parametric Multi-objective
Optimization

8.1 Outline

In a map-based control, the maps programmed in Electronic Control Units (ECUs) are

represented by a grid of engine operating conditions defined by input variables such

as engine speed and load torque. As described in Chapter 2, desired values of control

devices are stored as parameters corresponding to the operating points on the grid, and

calculated by linear interpolation of these values for the input variables that change

continuously. Therefore, we have to find optimal control parameters by experiment on

each operating point, and integrate them as maps.

Figure 8.1 shows a conceptual diagram of engine calibration using EBEMO. First,

an operating condition is chosen. Second, a Pareto approximation set that is a set of

control parameters such as ignition timing and fuel injection timing are obtained by

MOEAs under plural evaluation criterion such as emission of NOx and HC. Third, the

most preference solution is selected. Finally, the corresponding control parameters are

stored at the operating condition on the maps. Therefore, to complete the entire maps,

we have to solve many MOPs defined by operating conditions by the aforementioned

steps one at a time. In this thesis, variables such as the operating condition of engine

calibration are called the ‘condition variable’.

We focus on the problems that have to solve plural MOPs defined by condition

variables. In real problems such as engine calibration, even to solve a single MOP

requires a lengthy computation time, and hence in solving sets of MOPs, reduction of

computation time is a very important issue. In this chapter, first, Parametric Multi-

objective Optimization Problems (PMOPs) are defined as a new class of MOPs. Then,

an initialization method for MOEAs is proposed to reduce the total computation time.

In the proposed method, the Pareto approximation set of a MOP not already solved is

estimated by using plural Pareto approximation sets already obtained and then used

to initialize a new MOEA process. Moreover, the effectiveness of proposed method is

106
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Figure 8.1: Multi-objective optimization of engine control parameters under an oper-
ating condition.

confirmed through simple numerical experiments.

8.2 Problem Formulation

In formulation of decision making problems, we have to consider two types of variables.

The first variables to decide are the variables needed to achieve design objectives, and

the second variables are the ones given externally. In this thesis, we call the first

ones ‘decision variables’ and the second ones ‘condition variables’. A MOP that has

condition variables is defined as follows:

MOP(u):

Given u ∈ U ⊂ Rl

min
x

f(x,u) = [f1(x,u) · · · fm(x, u)]T

subject to x ∈ X(u) ⊂ Rn,

where x is n-dimensional decision variable vector, u is l-dimensional condition variable

vector and f(x, u) is m-dimensional objective function vector. X(u) is the feasible

region of x determined by u, U is a condition variable set. Figure 8.2 depicts the objec-

tive function landscape of MOP with condition variables and their Pareto optimal sets

X∗(u). If condition variables are changed from u1 (Fig. 8.2(a)) to u2 (Fig. 8.2(b)), the

landscape of objective functions change, and consequently the Pareto optimal solution

also changes.

In the study of Evolutionary Multi-objective Optimization (EMO), research that
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Figure 8.2: Schematic diagram of MOPs with condition variables.

treats the condition variables explicitly has recently been increasing because of the

need to deal with various real problems [32, 57, 58, 83, 112].

8.2.1 Related Works

Various MOPs can be formulated with various condition variable u ∈ R. An opti-

mization process of a normal MOP is represented by u = const. Random initialized

population converges gradually to the Pareto optimal set X∗(u).

If the condition variable changes randomly, and is not available in the deciding of

x, it represents an uncertainty MOP such as experiment-based or simulation-based

optimization including randomness. Many methods have been proposed to obtain a

more probable Pareto approximation solution [58].

A MOP that changes depending on a time t, it is called a Dynamic MOP (DMOP)

[32, 57, 73]. One requirement of MOEAs for DMOPs is to track X∗(u) that contin-

uously changes. To achieve this goal, Zhou et al. have proposed a re-initialization

method by using current and previous generation populations to predict the next gen-

eration population [112].

Ponweiser et al. have proposed Multiple-MOP (M-MOP) [83]. M-MOP is defined as

a problem that gains a solution set that satisfies simultaneously plural MOPs defined

by condition variables. They applied this formulation to the parameter optimization

of image data processing.

8.2.2 Parametric Multi-objective Optimization Problems

In this chapter, we formulate a new class of MOPs called Parametric Multi-objective

Optimization Problems (PMOPs). PMOP is defined as a problem to obtain the Pareto

optimal sets of plural MOPs defined by the condition variable vectors. When a set of

L condition variable vectors is given, PMOP is defined as a problem that has L MOPs



CHAPTER 8. PARAMETRIC MULTI-OBJECTIVE OPTIMIZATION 109

as sub-problems. Formulation of PMOP is as follows:

PMOP:

Solve MOP(ui), for all i = 1, 2, . . . , L

where MOP(ui) is defined by

min
x

f(x,ui) = [f1(x,ui) · · · fm(x, ui)]T

subject to x ∈ X(ui) ⊂ Rn, ui ∈ U ⊂ Rl.

A family of sets X ∗ = {(u1, X∗(u1)), . . . , (uL, X∗(uL))} is the solution of PMOP,

where X∗(u) is the Pareto optimal set of MOP(u).

Figure 8.3 indicates a optimization process of PMOP that have U = {u1,u2,u3, u4}
by MOEAs. In this thesis, the population of MOEAs for MOP(u) in tth genera-

tion is called a ‘halfway population’, and is denote by P (t,u). The population in

the final generation is called Pareto approximation set, and is denote by P (∗,u).

MOEAs are applied independently for each MOP. Finally, the approximation solu-

tion of X ∗ is obtained as a family of sets of Pareto approximation solution P∗ =

{(u1, P (∗, u1)), . . . , (uL, P (∗,uL))}. In previous research, such as Ponweiser’s M-

MOP, MOPs are optimized only once. Whereas PMOP is optimized through plural

MOPs optimization. This is the major difference between the problem formulation of

PMOPs and others.

8.3 Requirements for MOEAs in Real Applications

When a PMOP is given by numerical formulas and the evaluation cost is small enough,

it only has to optimize all MOPs to solve the PMOP. However, in experiment-based and

simulation-based optimization used in real applications, they require large evaluation

costs even for a single MOP. Hence, the total evaluation cost of the PMOP becomes

enormous. For example, it is common that 100 or more condition variable vectors are

set in development of a map in engine calibration. If the number of condition variable

vectors is 100 and MOEAs can solve a MOP in one hour, the total optimization time

to gain P∗ takes 100 hours.

Along with the increasing complexity of engine control systems, engine calibration

is becoming a time consuming process in engine development [88, 89]. To accomplish

this process efficiently, shortening of the calibration time is a major request from the

automotive industry. Therefore, the reduction methods of evaluation cost for PMOPs

are indispensable.

When a calibration engineer calibrates a map manually, it is natural approach to

choose the next selected condition variable on the basis of past experience. For exam-

ple, the landscapes of engine torque and fuel-consumption to the control parameters
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Figure 8.3: Optimization process in decision space of PMOP by MOEAs.

(air fuel ratio AFR, valve control parameter VCP) of a real engine operated at four

engine speeds is shown in Figs. 8.4 and 8.5. Each axis is normalized. In Fig. 8.4,

the engine torque landscape is inverted, that is, the low torque index indicates large

torque. We can see that the landscapes change continuously depending on the engine

speed.

We assume a continuity of objective functions for condition variables. Under this

assumption, we try to improve the search efficiency of MOEAs for PMOP by using the

history data obtained in the past.

Figure 8.6 shows a conceptual diagram of our proposal to improve the efficiency

by using interpolation of plural Pareto approximation sets for initialization opera-

tion. First, MOP(u1) and MOP(u4) are optimized by corresponding initial populations

P (0,u1) and P (0, u4) that are initialized randomly. Then, P (0,u2) is generated by the

interpolation of two Pareto approximation sets P (∗, u1) and P (∗,u4), and MOP(u2)

is optimized by using P (0,u2) as the initial population. After that, MOP(u3) is opti-

mized by using P (0, u3) that is interpolated from P (∗,u2) and P (∗,u4). As a result,

the total evaluation cost of PMOP can be reduced because the gray area can be omitted

(As can be seen when comparing Fig. 8.6 to Fig. 8.3 by the aforementioned operation.).
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Figure 8.4: Change of engine torque landscape by engine speed.
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8.4 MOEAs for Parametric Multi-objective Opti-

mization Problems

In this section, we propose MOEAs for PMOPs. The proposed method is composed

by following three modules and a memory shown in Fig. 8.7:

Condition Variable Scheduler: This module selects a condition variable uq that

determines solved MOP(uq) from the condition variable set U .

Initialization Operator: This module generates an initial population P (0, uq) of

MOP(uq) by following two methods:

1. Random Initialization Method: An initial population is randomly gen-

erated in the search space by using a uniform random number.

2. Interpolative Initialization Method: An initial population is generated

as an interpolated Pareto approximation set of MOP(uq) by using condition

variable vectors and corresponding halfway and Pareto approximation sets

stored in the search history that is described below.

These two methods should be used properly according to the number of condition

variable vectors stored in the search history.
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Multi-objective Evolutionary Algorithm: This module optimizes MOP(uq) by

using P (0, uq) generated by the initialization operator. Standard MOEAs such

as NSGA-II can be adopted for this module. In this chapter, the population size

|P | is same for MOP(ui), i = 1, . . . , L.

Search History: This module stores each condition variable vector and correspond-

ing halfway and Pareto approximation solutions as pair (u, P (t,u)). Preservation

of the halfway populations is for extension of the algorithm in the future and is

not essential in this chapter.

MOEA

Objective functions

Condition variable
scheduler

Initialization 
operator

Condition variable

Initial populationPopulation
Fitness

Individual
(Decision variable)

Fitness
(Objective function value)

Search history

Figure 8.7: Block diagram of a MOEA for PMOP.

8.4.1 Interpolative Initialization Method

We assume continuity of objective functions and condition variables of PMOPs we

proposed. To reduce the total evaluation cost under this assumption, an interpola-

tive initialization method that interpolates plural Pareto approximation sets previ-

ously searched and utilization of the interpolated population for initial population of

MOP(uq) to be solved. The conceptual diagram of the interpolative initialization

method is shown in Fig. 8.8, and the algorithm is as follows:

1. Construct a neighborhood set Ψ of query uq by k-nearest neighbor (k-NN)

method from condition variable vectors stored in the search history. Size of

Ψ should be k ≥ l + 1 when first order polynomial is used for regression, where

l is the dimension of condition variable space.

2. Compose a design matrix U by using k condition variable vectors, where U is
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k × (l + 1) dimensional matrix

U =




1 u11 · · · u1l
...

1 uk1 · · · ukl


 , (8.1)

and uij is jth element of ith nearest vector u to uq in Ψ .

3. Let P 1 ∈ Ψ be population corresponding u that is the nearest to uq. Make

up pairs for all individual in the reference population P 1 and k − 1 populations

P 2, . . . , P k, where P 1, . . . , P k are the Pareto approximation sets corresponding

Ψ .

4. Set i = 1.

5. Compose a vector yi
j = [x1,i

j · · · xk,i
j ]T by jth elements of x1,i, . . . xk,i, where x1,i

is ith individual in P 1, x2,i, . . . xk,i are individuals that make up pairs with x1,i

in P 2, . . . , P k.

6. Set j = 1.

7. Calculate jth element of a estimated individual x̂i
j by

x̂i
j = [1 uq

1 · · · uq
l ]γ

j
i (8.2)

γi
j = (UTU )−1Uyi

j. (8.3)

8. If j = n, compose the estimated individual x̂i = [x̂i
1 . . . x̂i

n]; otherwise set

j := j + 1 and return to Step 7).

9. If i = |P |, output x̂i, i = 1, . . . , |P | as P (0,uq); otherwise set i := i + 1 and

return to Step 5), where |P | is the population size of MOEAs.

In Step 3), optimal matching that minimizes the sum of the Euclidean distance between

two sets is executed to calculate the interpolated population. This problem can be

treated as a linear programming problem. However, 2-opt method is used to solve

optimal matching in this thesis.

In Step 7), the calculation of the inverse matrix (UTU )−1 becomes unstable numer-

ically, if the dimension of the neighborhood set Ψ reduces. In this thesis, the random

initialization method is used to avoid this problem when the minimum absolute value

of the eigenvalues of UTU are smaller than a small positive constant ε.
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Figure 8.8: Conceptual diagram of interpolation of Pareto approximation set (k =
2, n = 2, l = 1).

8.4.2 Condition Variable Scheduling

The interpolative initialization method generates the initial population by using plural

Pareto approximation sets stored in the search history. Hence, the order of selecting

condition variable vectors from the set U have a large influence on the efficiency of

solving PMOPs.

The following two types of selection order can be considered:

Type A: First condition variable vectors are selected to cover the entire condition

variable space, then interpolation is repeated after that.

Type B: A condition variable vector of neighborhood is selected, and extrapolation

is repeated.

Figure 8.9 illustrates the conceptual diagrams of the two scheduling algorithms of U

in two-dimensional space.

In this chapter, Type A and B algorithms are used for condition variable scheduling

as example implementation. The type A scheduling algorithm is shown below:
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Figure 8.9: Scheduling of condition variable vectors (left: Type A, right: Type B).

1. Obtain a subset U+ that forms the convex hull [4] of U , and add them to a list

Z.

2. Select a condition variable vector u∗ ∈ U− that has a maximum Euclidean dis-

tance from U− to the nearest condition variable vector in U+. U− := U\U+ is

the complementary set of U+.

3. Add u∗ to the tail of Z, and update U+ := U+ ∪ {u∗}, U− := U\U+.

4. If U− = ∅, output Z as the scheduled list of U ; otherwise, return to Step 2).

In addition, the type B scheduling algorithm is describe as follows.

1. Obtain a subset U+ that forms a first evaluated condition variable vector in U ,

and add them to a list Z.

2. Select u∗ ∈ U− that has minimum sum of Euclidean distance from U− to all

condition variable vectors in U+

3. Add u∗ to the tail of Z, and update U+ := U+ ∪ {u∗}, U− := U\U+.

4. If U− = ∅, output Z as the scheduled list of U ; otherwise, return to Step 2).

8.5 Numerical Experiment

8.5.1 Experiment Settings

The effectiveness of proposed method was examined through a numerical experiment.

We used the following two-condition two-objective n-variable problems:
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• TF-1

f1(x,u) =
1

n− 2

(
2∑

i=1

(xi − u2
i )

2 +
n∑

i=3

(xi − 1)2

)
(8.4)

f2(x,u) =
1

n− 2

(
2∑

i=1

(xi − u2
i )

2 +
n∑

i=3

(xi + 1)2

)
, (8.5)

xi ∈ [−2, 2], i = 1, . . . , n (8.6)

uj ∈ [0, 1], j = 1, 2 (8.7)

where x is the decision variable vector, and u = [u1 u2]
T is the condition variable

vector. Note that uj is squared in Eqs. (8.4)(8.5). This operation intentionally

causes regression error by the first order polynomial. Hence, the influence of the

regression error can be confirmed. The Pareto optimal set of TF-1 is X∗(u) =

{x1 = u2
1, x2 = u2

2, x3 = x4 = · · · = xn, xi ∈ [−1, 1], i = 3, . . . , n}.

• TF-2

f1(x,u) =
1

n− 2

(
(x1 − sin(u1π))2 + (x2 − sin(u2π))2 +

n∑
i=3

(xi − 1)2

)
(8.8)

f2(x,u) =
1

n− 2

(
(x1 − sin(u1π))2 + (x2 − sin(u2π))2 +

n∑
i=3

(xi + 1)2

)
(8.9)

xi ∈ [−2, 2], i = 1, . . . , n (8.10)

uj ∈ [0, 1], j = 1, 2 (8.11)

In this problem, the position of the Pareto optimal set does not correspond

to the condition variable vectors individually. The four corners of condition

variable space [0 0], [0 1], [1 0], [1 1] have same Pareto optimal set especially.

Hence, if these four points are selected as the initial condition variable vectors,

the interpolative initialization method does not work well. The Pareto optimal

set of TF-2 is X∗(u) = {x1 = sin(u1π), x2 = sin(u2π), x3 = x4 = · · · = xn, xi ∈
[−1, 1], i = 3, . . . , n}.

In this experiment, n = 20 is used. The codomain of condition variable vector is

[u1 u2] ∈ {0.0, 0.1, . . . , 1.0}2. All the combinations of u1 and u2 are in U . Therefore,

the size of U is L = 121.

In this chapter, NSGA-II was employed as a MOEA. In the experiment settings of

NSGA-II, population size |P | = 100 and offspring population size |Q| = 100 were used.

UNDX proposed by Ono et al. [80] was used as a crossover operator for real-coded GA.

The crossover rate was 1.0. Mutation operators were not adopted in this experiment.

In the proposed method, U is scheduled at first and uq is selected from the list Z

one at a time. Both, Type A and B algorithms are applied to TF-1 and TF-2. Next,
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if the number of u stored in the search history does not reach the neighborhood size

k, random initialization method is executed. Otherwise, interpolative initialization

method is executed. After initialization operation, MOEA optimizes MOP(uq) until

T th generations. The halfway population P (t, uq) and the final population P (T, uq)

are stored to the search history. In this experiment, T = 100 and k = 4 > l+1 = 2+1

were used, where l = 2.

8.5.2 Evaluation Measures

Following two evaluation measures were used:

• Minimum generation in which the proposed method achieved the same precision

of Pareto approximation set obtained by random initialization method.

• Relative precision of Pareto approximation set obtained by using the random and

interpolative initialization method at T th generation.

At first, 100 points including both ends of the Pareto optimal set X∗(u) are sampled

at equal intervals. This set is called the reference Pareto optimal set X ′(u). The

precision of P (∗,u) is represented by a similarity measure α with X ′(u).

The similarity measure α(R, S) of two sets R and S was defined by the following

equation:

α(R, S) =
1

2


 1

|R|
|R|∑
i=1

|S|
min
k=1

√√√√
n∑

j=1

(xi
j − x′kj )2 +

1

|S|
|S|∑
i=1

|R|
min
k=1

√√√√
n∑

j=1

(x′ij − xk
j )

2


 (8.12)

where |R| and |S| are the size of set, xi
j is the jth element of solution xi in R, and x′kj is

the jth element of solution x′k in S. A conceptual diagram of α is shown in Fig. 8.10.
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1x
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S R S

Figure 8.10: Conceptual diagram of similarity measure.
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First, the scheduling list Z is generated by using a condition variable scheduling

algorithm. Second, a test problem optimized by using only the random initialization

method and the mean value of 30 trials of α(PRandom(T, ui), X ′(ui)), i = 1, . . . , L is

calculated as

ᾱRandom(ui) =
1

30

30∑
j=1

α(P j
Random(T, ui), X ′(ui)).

Third, the test problem is optimized by using the interpolative initialization method

and the mean value of 30 trials of α(PInterp(t, u
i), X ′(ui)), t = 0, . . . , T, i = 1, . . . , L is

calculated as

ᾱInterp(t, u
i) =

1

30

30∑
j=1

α(P j
Interp(t, u

i), X ′(ui)).

In the scheduling list Z, all of the 30 trials are the same. Finally, the minimum

generation τ(u) that satisfies ᾱInterp(t, u) ≤ ᾱRandom(u) and ratio

α̂(u) =
ᾱInterp(T, u)

ᾱRandom(u)

are calculated.

8.5.3 Discussion of Results

Figures 8.11 and 8.12 are distribution of τ(u) and α̂(u) in two-dimensional condition

variable space. Furthermore, Figs. 8.13 and 8.14 are the sorted bar charts of τ(u) and

α̂(u), respectively. To clarify the effectiveness of proposed method such as the gray

area in Fig. 8.6, set of pair (u, τ(u)) was sorted in the descending order by τ(u) as

the key, and a set of pair (u, α̂(u)) was sorted in the descending order by α̂(u) as the

key. These results are discussed as follows:

• First of all, when U are scheduled by Type A algorithm, four vectors u =

[0 0]T, [0 1]T, [1 0]T, [1 1]T that form the convex hull of U are selected. Because the

four MOPs defined by these vectors are initialized by the random initialization

method, these achievement generations become 100. Similarly, If Type B algo-

rithm is adopted, four MOPs corresponding u = [0 0]T, [0 0.1]T, [0.1 0]T, [0.1 0.1]T

need 100 generations.

• In the results of TF-1 scheduled by Type A, the achievement generation of

[0.5 0.5]T becomes about 40, since the interpolative initialization method us-

ing the four vectors are applied. After that, the achievement generations of

[0.5 0]T, [1 0.5]T, [0.5 1]T become about 20. Finally, the achievement generations

of others become 0. This result implies we can directly employ the interpola-

tion initial populations P (0, u) as P (∗,u) without optimization. The generation

reduction ratio of the proposed method was about 96% in this case.
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• In the results of TF-2 scheduled by Type B, the number of achievement gen-

erations became 40-90 at several conditions. Because the four conditions con-

structing convex hull have the same the Pareto optimal set, it is understood that

the interpolative initialization method did not work well in the early stage of

the schedule. For instance, the Pareto optimal set of u = [0.5 0.5]T, that was

evaluated next to four condition vectors, is located the positions furthest away

from the four sets in the decision variable space. The generation reduction ratio

of the proposed method was about 90% in this case.

• In the results of TF-1 and TF-2 scheduled Type B were almost same. It is

understood that the results led to the continuousness of the condition variable

space in each problem. The generation reduction ratios of the proposed method

were about 93% in these cases.

• When comparing to the similarity measure of the final generation, it is understood

that the interpolative initialization method is able to obtain a Pareto approxima-

tion set that is on average around 31–38% better than the random initialization

method in Fig. 8.12.

Summary of condition variable scheduling is as follows:

• When Type A is used, the number of achievement generations can be reduced

for simple problems such as TF-1. However, an effect sufficient enough might

not be achieved for a problem such as TF-2.

• When Type B is used, a steady effect is achieved also in problems such as TF-2.

However, extrapolation is always executed in this algorithm. Hence, it is difficult

to use the extrapolated population of a condition vector far away from search

history.

Therefore, the proposed method is able to improve the precision of Pareto approx-

imation set under the same generation, as well as reduce the number of generations

needed.

8.6 Summary

In this chapter, Parametric Multi-objective Optimization Problems (PMOPs) were pro-

posed as a new problem class of MOPs with condition variables. Moreover, MOEAs for

PMOPs were discussed. To solve the PMOPs efficiently, an interpolative initialization

method was introduced. The proposed method interpolates plural Pareto approxi-

mation sets searched in the past and uses the interpolated population for an initial

population of a MOP defined by new condition variable. As a result, it was under-

stood that the proposed method has a possibility of evaluation cost reduction through

numerical experimentation.
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Figure 8.11: Distribution of the needed generation in condition variable space (upper
left: TF-1, Type A, upper right: TF-1, Type B, lower left: TF-2, Type A, lower right:
TF-2, Type B).

In the future, research on the following items will be conducted, and the practicality

of the MOEAs for PMOPs will be improved.

• The test functions used in the numerical experiments were comparatively simple

because of the need to confirm the basic behavior of the method. Therefore, it

is necessary to evaluate problems whose interpolations are more difficult.

• In the numerical experiments, the similarity measure α was introduced as an

evaluation measure to investigate the precision of Pareto approximation set in

decision variable space. The relationship between α and other evaluation mea-

sures [18] will be examined.

• In this thesis, two scheduling algorithms called Type A and B were employed.

However, because many scheduling algorithms can be considered, new scheduling

algorithms will be developed and their effectiveness will be investigated.

• The proposed method will be adopted for the calibration of real engines to confirm
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Figure 8.12: Distribution of the precision of solution in condition variable space (upper
left: TF-1, Type A, upper right: TF-1, Type B, lower left: TF-2, Type A, lower right:
TF-2, Type B).

its effectiveness.
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Figure 8.13: Comparison of the needed generation (upper left: TF-1, Type A, upper
right: TF-1, Type B, lower left: TF-2, Type A, lower right: TF-2, Type B).
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Figure 8.14: Comparison of the precision of solution (upper left: TF-1, Type A, upper
right: TF-1, Type B, lower left: TF-2, Type A, lower right: TF-2, Type B).



Chapter 9

Conclusion

9.1 Summary

In this thesis, to cope with the drawbacks of conventional automatic engine calibration

based on simulation-based optimization and Response Surface Methodology (RSM),

Experiment-Based Evolutionary Multi-objective Optimization (EBEMO) have been

studied as a novel approach. We are confident this is a promising calibration method

against the background of the progress of engine Hardware In the Loop Simulation

(HILS) environments.

In the following, the proposals in this thesis and the results described in aforemen-

tioned chapters are briefly summarized.

• In Chapter 4, we proposed Memory-based Fitness Estimation and Distribution

Selection GA (MFE-DSGA) to handle the influence of observation noise. At

first, we introduced the three problems of conventional MOEAs for noisy envi-

ronment. These problems are caused by three features of MOEAs, i. e. , ranking

algorithm, diversity maintenance, and elitism. Next, we proposed MFE-DSGA

that has three features to overcome these problems. The first feature is fit-

ness estimation method that is an extension of MFEGA proposed by Sano and

Kita [91, 93] for stabilizing ranking algorithm. The second feature is distribu-

tion based selection method to maintain the diversity of the population. The

third feature is the α-domination strategy proposed by Ikeda et al. [49] to elimi-

nate ‘fake’ non-dominated solutions survived by elitism. The effectiveness of the

proposed method was verified through numerical experiments and a real engine

experiment.

• In Chapter 5, we proposed UNDX for Periodic function (UNDX-P) to overcome

the periodicity of functions. At first, we introduced the difficulties of periodic

function optimization by EAs. When we apply EAs for periodic function opti-

mization, we face the sampling bias and the evolutionary stagnation. In order

to solve these problems, we proposed the basic framework of a crossover on hy-
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persphere called UNDX on Hypersphere (UNDX-H) and a crossover for periodic

functions called UNDX-P as a special case of UNDX-H. Through investigation

of statistical properties of UNDX-P, we found that UNDX-P has two suitable

properties that roughly preserve statistics and change offspring distribution from

bimodal to unimodal. Moreover, we demonstrated, through numerical exper-

iments, that UNDX-P can stably optimize periodic functions so they do not

depend on the domain of function. We also applied UNDX-P to non-periodic op-

timization problems because it does not have sampling bias in the early stage of

the search. As a result, the search performance showed that it was comparatively

robust for the optimum position.

• In Chapter 6, we proposed Individual Evaluation Scheduling (IES) to reduce

the influence of transient response caused by parameter switching of dynamical

systems. To cope with the influence of transient response, we proposed IES.

IES is composed of Evaluation Order Scheduling (EOS) and Evaluation Time

Scheduling (ETS). Through numerical experiment using a formal test problem

and experiment using a HILS environment for real engines, it was shown that

the proposed method was able to improve search accuracy and shorten search

time of MOEAs for dynamical systems simultaneously.

• In Chapter 7, we discuss further Pre-selection to accelerate optimization by re-

ducing the number of evaluation in experiment-based optimization. First, the

performance of proposed method was examined through numerical experiments.

As a result, it was confirmed that the Pre-selection was able to greatly reduce the

number of evaluations greatly for four test functions regardless of the presence

of the observation noise. Moreover, the search performance did not changed too

much when the setting parameters of Pre-selection and UNDX were changed.

These facts indicate that the proposed method has robustness for the setting

parameters. Next, the Pre-selection was applied for EBEMO of real internal-

combustion engines. To demonstrate that MOEAs can optimize real engines in

practical time by applying Pre-selection, a real engine was optimized as a two-

objective optimization problem. As a result, it was confirmed that NSGA-II with

Pre-selection is able to reduce optimization time to about 13% as well as improve

the search accuracy, and achieve the optimization time at a practical level.

• In Chapter 8, Parametric Multi-objective Optimization Problems (PMOPs) were

formulated as a new class of MOPs. To solve PMOPs efficiently, an interpolative

initialization method was introduced. This method interpolates plural Pareto

approximation sets searched in the past and uses the interpolated population for

an initial population of a MOP defined by new condition variable. The inter-

polative initialization method is based on optimal matching and linear regression.

The proposed framework is composed by four modules, i. e. , condition variable
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scheduler, initialization operator, an MOEA, and search history. The initializa-

tion operator selects between random and interpolative method depending on

the number of condition variable vector stored in the search history. In the nu-

merical experiments, two simple test functions were used to confirm effectiveness.

In addition, two types of condition variable scheduling algorithms were adopted.

As a result, it was understood that the proposed method has the potential to

reduce evaluation costs.

9.2 Contribution for Engine Calibration

In this thesis, EBEMO is provided as another way to approach automatic engine cal-

ibration with HILS environment, instead of Response Surface Methodology (RSM)

that is currently employed as the optimization method. In particular, it is consider

that EBEMO is effective in the early stages of engine calibration. Because the engine

specifications are often modified, the control parameters have to be optimized each

time. The calibration can be done immediately by using EBEMO after the modifica-

tions, whereas the statistical models must be re-constructed if RSM is adopted. Hence,

EBEMO will contribute to efficient engine calibrations, because some processes such as

design of experiments and model selection that are necessary in RSM can be omitted.

EBEMO is developed for automatic engine calibration, it is found that the proposed

methodology is useful for prototype engine evaluations. Currently, the proposed meth-

ods are integrated and used as a performance analysis tool for visualization of trade-offs

and control parameter correlation. In fact, calibration engineers have commented that

EBEMO is useful for the investigation of the engine specifications.

In implementation of EBEMO for engine calibration, we recommend following

structure:

Basic Structure: To optimize at an operating condition efficiently, application of

IES and Pre-selection to MOEAs such as NSGA-II are recommended. Because

Pre-selection for EBEMO inherits fitness estimation, sampling in sparse area,

and α-domination strategy from MFE-DSGA, it can optimize well in noisy en-

vironments. Moreover, IES can reduce the influence of transient response. The

both of the algorithms do not interfere in each other.

In the Pre-selection algorithm introduced in Chapter 7, IES is used for the initial

population P (0) and the evaluated offspring population Q(t) before the evalua-

tion of the real environment.

Periodic Control Parameter: If the problem has periodic control parameter such

as injection timing, UNDX-P should be adopted as the crossover operator.

Map Construction: In the engine calibration for map-based controller, the problem

we should solve is a PMOP. Therefore, the framework of MOEA for PMOP
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proposed in Chapter 8 should be employed. In the framework, the basic structure

can be used as a MOEA, because the Interpolative Initialization Method requires

only final population to generate initial populations.

Figure 9.1 shows the block diagram of EBEMO for engine calibration recommended

above. MFE-DSGA, IES, Pre-selection and Interpolative Initialization Method use
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Pre-selection
or MFE-DSGA
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Figure 9.1: Block diagram of EBEMO for engine calibration.

Euclidean distance in decision variable and objective function spaces. Therefore, ade-

quate normalization is important.

9.3 Future Work

In this thesis, a basic EBEMO framework for automotive engine calibration has been

constructed. However, several topics exist to construct a more effective framework.

Furthermore, expansion into other applications can be considered.
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Constraint Handling: In this thesis, unconstrained multi-objective optimization prob-

lems were dealt with. However, lots of real world applications usually have sev-

eral constraints. Hence, EBEMO with constraint handling techniques should be

studied to extend the application area.

Multi Criterion Decision Making: Selection of preference solution from the Pareto

frontier is the most important issue of post processing. For example, EBEMO

can give plural Pareto optimal sets corresponding map grids. Hence, to integrate

these solutions to maps, we have to select preference solutions one by one. This

decision making requires considerable effort. To lighten the burden of the deci-

sion making, a support tool based on Multi Criterion Decision Making (MCDM)

techniques [13] should be developed.

Extension to Other Applications: In this thesis, engine calibration focused on a

specific engineering application. However, EBEMO framework is promising ap-

proach for other real world applications because each proposed technique has

versatility.

For example, UNDX-P can be used as an universal crossover operator without

sampling bias for many applications, regardless of periodicity. IES can improve

the quality of optimization and protect optimized objects from extreme param-

eter switching of dynamical systems. Various mechanical and electrical systems

such as hydraulic actuator and electric motor are suitable engineering applica-

tions. Pre-selection can be applied to noiseless environments with expensive

evaluation cost such as CDF simulations, since we indicated the effectiveness

of proposed method under noiseless environment. Moreover, Agent-Based Sim-

ulation (ABS) as a complex simulation with randomness [51] and Interactive

Evolutionary Computation (IEC) as a ‘Human In the Loop Simulation’ are inter-

esting applications. Furthermore, the idea of interpolative initialization method

for PMOPs can readily be extended to Dynamic Multi-objective Optimization

Problems (DMOPs), because the time parameter t of DMOPs can be considered

as a kind of condition variable.



Appendix A

Real-Coded Genetic Algorithms

A.1 Unimodal Normal Distribution Crossover

Unimodal Normal Distribution Crossover (UNDX) proposed by Ono et al. [80] is de-

scribed as follows:

1. Select three parents x1, x2, and x3.

2. Calculate g = (x1 + x2)/2.

3. Calculate d = x1 − x2.

4. Calculate the distance D from x3 to main search axis that is the line through x1

to x2.

5. Generate offspring by following equation.

xc = g + ξd + D

n−1∑
i=1

ηiei,

ξ ∼ N(0, σ2
ξ ), ηi ∼ N(0, σ2

η),

where n is the number of dimension，N(0, σ2) is normal distribution random

number defined by mean 0 and variance σ2, and ei is the normal orthogonal

base vector of the subspace orthogonaled to the main search axis. σξ = 0.5 and

ση = 0.35/
√

n are recommended in [80].

Figure A.1 shows schematic diagram of UNDX.

A.2 Minimal Generation Gap

Minimal Generation Gap (MGG) proposed by Sato et al. [95], which is a generation

alternation model, is described as follows:
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Figure A.1: Unimodal Normal Distribution Crossover (UNDX).

1. Randomly generate an initial population.

2. Randomly select two parents from the population, and generate k offspring by

crossover operator.

3. Select the best individual and randomly select an individual from family that is

constructed by parents and k offspring.

4. Replace the couple of selected individuals to parents in the population.

Conceptual diagram of MGG is shown in Fig. A.2.

Population Family

Elite

Roulette Wheel Selection

Crossover

Parents

Offspring

Selection

Figure A.2: Minimal Generation Gap (MGG).
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NSGA-II

The non-dominated sorting, the crowding distance, and the crowded tournament se-

lection used in NSGA-II proposed by Deb et al. [19] are introduced in the following.

B.1 Non-dominated Sorting

The concept of the ranking method used in non-dominated sorting was originally in-

troduced in Goldberg’ textbook [37]. Non-dominated sorting algorithm is described as

follows:

1. Set rank r := 1.

2. Find the non-dominated set Pnd of population P .

3. Update Pr = Pnd and P := P\Pnd.

4. If P 6= ∅, set r := r + 1 and return to Step 2); otherwise, stop and declare all

sets Pi, for i = 1, 2, . . . , r.

Figure B.1 depict the rank number of population by non-dominated sorting.

B.2 Crowding Distance

Crowding distance of the set Pr is calculated as follows:

1. Call the number of solutions in Pr as l = |Pr|, and assign dj = 0 for j = 1, 2, . . . , l.

2. Sort Pr in worse order of fi for each objective function i = 1, 2, . . . , m, and find

the sorted indices vector I i.
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Figure B.1: Rank based on non-dominated sorting.
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Figure B.2: Calculation of crowding distance.

3. For i = 1, 2, . . . , m, assign a large distance to the boundary solutions, or dIi
1

=

dIi
l
= ∞, and for all other solutions j = 2 to l − 1, assign:

dIi
j
:= dIi

j
+

f
(Ii

j+1)

i − f
(Ii

j−1)

i

fmax
i − fmin

i

,

where I i
j denotes the solution index of the j th member in the sorted indices

vector of i th objective function.

Conceptual diagram of crowding distance is shown in Fig. B.2.
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B.3 Crowded Tournament Selection

A solution x1 wins a tournament with another solution xj if any of the following

conditions are true:

• If solution x1 has a better rank r1 < r2.

• If they have the same rank r1 = r2 but solution x1 has a better crowding distance

d1 > d2.
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