
Master Thesis

Design and Implementation of
a Certified Mail Exchange System

Using Simultaneous Secret Exchange

Supervisor Professor Yasuo OKABE

Department of Intelligence Science and Technology
Graduate School of Informatics

Kyoto University

Keita SHIMIZU

February 6, 2009

i

Design and Implementation of a Certified Mail Exchange System
Using Simultaneous Secret Exchange

Keita SHIMIZU

Abstract

In this paper we design a certified e-mail exchange system based on simultaneous

secret exchange protocol proposed by Okamoto and Ohta. We selected their protocol

because it is superior in efficiency, especially at the view point of the number of

sessions.

At first, we designed the whole procedure mainly based on Okamoto and Ohta’s

protocols, adding processes to confirm the contents each party have received. In this

system, we want to realize good properties often referred in certified mail researches

with TTPs, for example ‘send-and-forget’. So we assume two players, an MTA (Mail

Transfer Agent, e.g. SMTP Server) and an MUA (Mail User Agent, e.g. the client

the sender or the receiver use) in each party, and designed construction which enables

‘send-and-forget’ for the sender when the sender can control an MTA, or enables to

exchange messages for the sender with the receiver directly when cannot.

Then, we made message formats in the form of XML to send each transactions.

We selected the method of attaching transaction XML to e-mail to communicate mes-

sages to realize reachability. With this method, it takes rather long time to complete

exchanging secret keys and get contents of the mail or receipt when the mail delay is

large. Then we proposed a method to reduce the number of exchanging transactions.

This method doubles the number of bits sent at once after some bits have been sent

regularly. The ‘fairness’ is defined as the maximum of the difference of time needed

to calculate the remaining bits of keys at any time, where the difference is taken be-

tween two players. This amount is ‘at most twice’ in a normal simultaneous secret

exchange protocols, while it is ‘at most constant difference’ in our method.

ii

同時秘密交換を利用した配達内容証明が可能な
電子メールシステムの設計および実装

清水敬太

内容梗概

本論文で我々は証明付き電子メール配達システムを同時秘密交換プロトコル

に基づいて設計した.我々は効率,特にセッションの回数の観点から優れている

ことから岡本・太田らの提案したプロトコルを選択した.

岡本らのプロトコルを主軸として,我々は双方が受け取った内容に相異がない

かの最終確認のプロセスなどを加えて, メッセージと領収書を交換するための

手続きを設計した.システムを設計するにあたって我々は, TTPを用いて構成さ

れる証明付きメールの研究で頻繁に言及される Send-and-forgetなど良い性質を

実現させたかった. そこで,我々はそれぞれのパーティ内に MTA (Mail Transfer

Agent, SMTPサーバなど) , MUA (Mail User Agent,送信者,受信者が用いるメー

ルクライアント)の 2者が存在することを仮定した. これにより送信者が MTA

を制御下に置ける場合に Send-and-forgetをMUA のユーザレベルでは実現でき,

そうでない場合には受信者と直接メッセージ交換を行える構成を設計すること

ができた. そして, それぞれのトランザクションを伝送するためのメッセージ

フォーマットを XML としてまとめた.

我々は到達可能性を考慮してメッセージの伝達手段としてメールにトランザ

クションの XML を添付するという形式を選んだが,この方法ではメールの一往

復あたり遅延が大きい場合, 必要な秘密鍵の交換を完了してメールや領収書の

内容を入手するまでにかなり長い時間がかかってしまう. そこでセッションの

往復回数を減らすための手段として,ある数のビットを普通にに送った後には 1

度に送信する数を増加させていくという手法を提案した. 同時秘密交換プロト

コルでは両者が鍵を計算して解こうとしたときにかかる時間の公平性が求めら

れ,それは通常は「かかる時間割合が二倍以内である」という条件により保障さ

れている.我々の手法においては,「かかる時間差が大きくなることはない」こ

とにより保障される.

Design and Implementation of a Certified Mail Exchange System
Using Simultaneous Secret Exchange

Contents

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Structure of Thesis . 1

1.3 Result of This Paper . 2

Chapter 2 Preliminaries 3

2.1 Related Works . 3

2.2 Basic Concept . 4

2.2.1 Certified Mail . 4

2.2.2 Party . 4

2.2.3 Trusted Third Party . 5

2.2.4 Simultaneous Secret Exchange . 5

2.2.5 Okamoto and Ohta’94 . 6

2.3 Problems and Assumptions . 8

Chapter 3 Design 11

3.1 Outlines of Normal Case . 11

3.2 Structure . 12

3.2.1 Direct Style . 12

3.2.2 Agent Style . 13

3.2.3 Half Agent Style . 14

3.3 Transaction Method . 14

3.4 Session Management . 15

3.4.1 Mail ID and Session ID . 15

3.4.2 Expiration Time . 15

3.5 Error Case . 16

Chapter 4 Implementation 18

4.1 Message Format . 18

Chapter 5 Consideration and Improvement 25

5.1 Consideration . 25

Chapter 6 Reducing the Number of Sessions 26

Chapter 7 Conclusion 28

Acknowledgments 30

References 31

Chapter 1 Introduction

1.1 Background
We contracts signings or important messages with certified mail by off-line, as the

conception of e-mail was designed to be used only among academic researchers.

Although e-mail have become the most popular way of exchanging messages

above all, today we cannot make sure that an e-mail has arrived at the hand of re-

ceiver. Some methods which sender get the receiving notification have been pro-

posed. The HTML headers ‘Return-Receipt-To’, or ‘Disposition-Notification-To’

are the examples of methods. The former is a original extension of ‘send-mail’,

and the latter is defined in RFC 2298 [1]. With these protocols, the sender can ob-

tain receipt if the receiver agrees to send it. However these methods fundamentally

depends on receiver’s cooperations. If the receiver does not want to cooperate or

prevent sending the receipt, the sender cannot receive it.

So, fairness becomes the most serious problem in such situations. Against such a

backgrounds, “certified e-mail” started to be studied. Researches of this realm started

as a variety of the contract signing problem, but today various kinds of methods of

implementations are proposed.

Today, some commercial services have launched, and the frame is standardized

in ISO 13888 [2], and USPS (United States Postal Service) also started a service

“Certified Mail” from 2001, which is an e-mail version of a traditional certified mail

on paper mail. Today, information technology has developed greatly, and many busi-

ness communications are on-line. So, the importance of this realm has been and will

be increasing and more convenient alternative is required.

1.2 Structure of Thesis
This paper consists of six sections. At the beginning, we remark the background of

this research and make clear what we would do in this Chapter 1.

We would explain the related works and current problems in Chapter 2. On the

basis of those problems, we show an assumption and problems this thesis would

concern.

Based on the assumptions we assumed in Chapter 2, we consider how to realize

1

the protocol in the Chapter 3, and explain how we should implement it in Chapter 4.

We show a improvement scheme for more rapid exchange in Chapter 5. In the

last chapter, we summarize the contributions of this paper.

1.3 Result of This Paper
In this paper, we designed a system that includes sender clients and receiver clients,

and their representational servers. They process the gradual secret exchange protocol

and realize certified e-mail without TTPs. To realize them, we considered how they

should process e-mail exchanges, and be implemented in a system. In this process,

we designed the entire procedures and error processes, and transactions needed.

We realized ‘send-and-forget’ by considering an MUA and an MTA in each par-

ties. At last, we considered a method to decrease the number of sessions and needed

time to complete the procedure significantly.

2

Chapter 2 Preliminaries

2.1 Related Works
As we have already mentioned in Section 1.1, there have been already many re-

searches about certified mail, and concerning it, contract signing. Researches about

certified mail derives from those about contract singing. So in this subsection, we

sometimes refer to researches about contract signing. Those researches seem to be

classified by the dependency on the third party.

One type of studies uses a“Trusted Third Party” (TTP) , which serves as an

intermediary. This type is the most major and some researches are commercialized.

Merkle. R is a pioneer of this realm[Mer78], but their system was inefficient in the

number of communication rounds and computation. After that, many researchers

have been engaged in this category and proposed some variants. Zhou and Gollman

is a representative example of researches on this model [3]. And then, Other re-

searchers also proposed some good properties. For example, Asokan et al. proposed

“optimistic protocol”, in which TTP is only used in case of dispute [4]. (On the other

hand, a system TTP is always used is called “on-line”), and Imamoto et al. proposed

a scalable on-line system [5]. But systems on this model are fundamentally depen-

dent on third party’s reliability. So TTPs need to be managed by reliable community

or company, and the burden tends to be large.

Another type of studies assumes the existence of the third party, which serves as

a reliable source of randomness and can play a roll of judge [6], [7].

Although these approaches have the advantage that they make no assumptions

regarding the computing power of parties, requiring the use of a third party is still

considered some what strong. Moreover, this type is applied only to contract contract

signing, not to certified mail.

And the other type realizes certified mail without third parties. No other party

would have relation with sender and receiver in exchanging mail or contract signing,

so the sender or the receiver do not need to prepare trusted third parties. They should

draw on others only in case of dispute, and they can claim his or her legality if s/he

3

executed procedure fairly. In spite of these advantages, there are not many studies

about systems on this model by comparison to certified mail systems with TTPs.

Researches about this model concentrate on secret exchange protocols, especially

gradual secret exchange protocol. We explain this protocol in the later subsection.

M.Luby[8] made the basic concept of “simultaneous secret exchange.” They de-

velop a slightly biased coin, and proposed the way to exchange a secret bit according

to the result of flipping it. This method used the probability and law of great numbers.

M.Blum [9] proposed a concept of gradual secret exchange protocol and designed a

protocol based on the factoring problem. Afterward, some researches have been done

on this protocol, for example Yao et al. citeyao1986gae and Cleve et al. [10]. Even,

Goldreich and Lempel’s protocols [11] are based on “oblivious transfer.” Goldreich

also referred to use it certified e-mail. Okamoto and Ohta[12] also proposed some

simultaneous secret exchange protocols. Protocols they proposed are practically ef-

ficient and are proven to be secure under general assumptions such as the existence

of one-way permutations and one-way functions.

In spite of these theoretical heritages, there are almost no researches which de-

signed e-mail exchange systems based on these theories.

2.2 Basic Concept
2.2.1 Certified Mail

In the real world, there are both “contents-certified mail” and “delivery-certified

mail” on paper mail. Usually the former requires greater care and includes the func-

tion of the latter. But both of them are not so different on e-mail from this viewpoint

of technical difficulties. So we say “certified mail” to indicate “contents-certified

mail” if not otherwise specified.

2.2.2 Party

We use this word to indicate each side of sender and receiver (Alice and Bob). If an

MTA (e.g. SMTP server) is under his/her control or be trusted by him/her, we con-

sider the MTA is in his/her the party. This discussion would concern the discussion

in Section 3.2 “Structures.”

4

2.2.3 Trusted Third Party

The word “third party” indicates a party other than the sender and receiver. Especially

“trusted third party(TTP)” is a third party that both sender and receiver believe to be

fair and correct, and give approval to see contents of mails.

2.2.4 Simultaneous Secret Exchange

A simultaneous secret exchange protocol is executed between a sender (we call her

Alice) and receiver (we call him Bob) as follows: At first, Alice generates a secret

key a (n bits string) and Bob also generates a secret keyb(n bits string). We assume

that these keys are secrets to each other. Then, they exchange these keys each other.

To prevent a party from obtaining a secret without revealing his/her own secret, they

exchangef (a) andg(b), here Alice cannot obtainb from g(b), similarly Bob cannot

obtaina from f (a). Then, Alice and Bob opena andb bit by bit. Okamoto and

Ohta[1994] pointed out a simultaneous secret exchange protocol needs to satisfy the

following conditions.

• CorrectnessEach party can check the validity of each bit at each stage, to en-

sure that a garbage has not been received. If they cannot check at each stage,

garbage bits can be detected finally after alln bits are sent. However, this is

too late. In this occasion, dishonest party have gotten correct bits, while honest

party gets garbage bits and he cannot obtain the true bits thereafter.

• FairnessLet T(i) be the time of computing the remainingi bits when Bob re-

ceived first (n− i) bits ofa. The difference betweenT(i) andT(i −1) (1≤ i ≤ n)

should be small. If the difference is non-negligible, then Bob has non-negligible

advantage over Alice at the stage that Alice has released (n − i + 1) bits and

Bob has released (n − i)bits. Here, note that this condition should be satis-

fied even wheni = 1. That isT(1) should be almost 0, sinceT(0) = 0. So,

for example, the following naive protocol does not satisfy the fairness, since

there exists a big gap betweenT(1) andT(0): f (a) = (f0(x1), ..., f0(xn)), where

a = (HC(x1), ...,HC(xn)). (HC(x) denotes the hard core bit of Goldreich[1989]

of x) xi(i = 1, ..., n) is revealed Alice’s (or Bob’s)i-th step of the revealing phase.

Then,T(1) is the running time of invertingf0, which is non-negligibly greater

thanT(0) = 0.

5

If these conditions are satisfied, for polynomial time machines Alice and Bob, at

any stage of protocol, Bob obtainsa, if and only if Alice obtainsb.

Here, we assume the case Alice (or Bob) wants to send a pseudo key. If she made

X from the genuine secret key and began to send the pseudo bits from the middle of

secret exchange, then Bob can detect the unfairness at once. If she madeX′ from

a pseudo key from the beginning, Bob cannot detect the unfairness until he gets the

pseudo key and fails to decrypt the message. But in this case, he can at least protest

that Alice sent a worthless key by showing the encrypted message and the key, and

then, receipt is repealed.

Comparing simultaneous secret exchange to simple bit-by-bit exchange like this

way, the former has the advantage of preventing a party from attacking like “send a

different key and repeat a different message.” This is not easy, but possible, especially

in the case that the message is very short. If we use a simultaneous secret exchange,

the pair of ‘the encrypted message’ and ‘the secret key’ are firmly fastened at the

time Alice sends the first mail. So Bob can make a receipt for the pair in relief. We

summarized these comparisons in Table 1.

In addition, all communication between Alice and Bob have each party’s signa-

tures. So if someone try its to attack with man-in-the-middle method, he can inter-

cept and block the message, but cannot modify it. Replay attack would work at some

level, but the time stamps can limit the efficiency.

In this realm, the name “gradual secret exchange” is often used in the papers.

Typically, “gradual secret” exchange means one-directional secret releasing (so, above

procedure itself represents “gradual secret exchange”), and protocols are called “si-

multaneous secret exchange protocol” when “gradual secret exchange protocol” is

symmetrically used to exchange secrets bi-directional. Moreover, sometimes these

“secret exchange” is called “secret releasing.” These are seems in the same meaning.

We standardize “secret exchange” throughout this paper.

2.2.5 Okamoto and Ohta’94

Okamoto and Ohta[12] proposed some patterns of simultaneous secret exchange pro-

tocols. One of protocols in their thesis, which use one-way permutations is realized

as follows. We assume a problem that the sender Alice wants to send secretn-bits

6

Table 1: Comparison of Each Methods

abscond regenerate different

message attack

pseudo key sending

simple sending ×Cannot Prevent× After receiving the

first message, Sender

can send another key

arbitrarily.

△Cannot Prevent, but

protest when the re-

ceiver cannot decrypt

the message with the

key.

bit-by-bit exchange ○ Preventable

simultaneous secret

exchange

○ Preventable ○determined when

first message received

stringssA = (xn, ..., x1) (sA ∈U {0,1}n) to the receiver Bob.

Step 1 Let F be a family of tight one-way permutations, andfδi ∈ F , wherei

denotes the security parameter.

fδi : {0,1}i → {0,1}i , (i = 1,2, ..., n)

HereF is consist ofF = { fδ1, fδ2, .., fδn}. fδi is uniquely determined withδi.

The sender Alice randomly generates the parameters ofF , δ1, δ2, ..., δn. Then

Alice calculatesn-bit stringX as follows:

x∗1 = x1,

x∗i = xi || fδi−1(x
∗
i−1), (i = 2, ..., n),

X = fδn(x
∗
n).

Here,x||y means concatenation of stringx and stringy.

Step 2 Alice sends (δ1, δ2, ..., δn) andX to Bob to commit to Alice’s secretsA.

Step 3 When Bob receives them, Bob checks whether (δ1, δ2, ..., δn) are valid for

the parameters ofF , and whetherX ∈ {0,1}n. If they do not hold, Bob halts the

protocol. Otherwise, Bob writes (δ1, δ2, ..., δn), X on the output to keep them.

[End of commitiment stage]

7

Step 4 In descending order fori = n, ...,1, repeat the following procedures sequen-

tially. Alice sendsx∗i to Bob.

Step 5 Wheni = n, Bob checks whetherX = fδn(x
∗
n) holds or not.

Wheni = n− 1, ..., 1 , Bob checks whether

[x∗i+1] i = fδi (x
∗
i).

Here, [x]a denotes the leasta bits of x, and [x]a denotes the mosta bits of x. If

it does not hold, Bob halts the protocol. Otherwise, Bob writesxi and (xi)∗ as an

output.

At last, Bob can getxi from eachx∗i for all i (sincexi = [x∗i]
1).

[End of secret releasing stage]

In using this procedure to simultaneous secret exchange, both Alice and Bob execute

above protocol bi-directionally.

Protocols they proposed can be constructed based on more general assumptions

such as one-way permutations and one-way functions, while the existing efficient

simultaneous secret exchange protocols are based on more constrained assumptions

such as specific number theoretic problem, the existence of oblivious transfer primi-

tive or trap-door one-way permutations.

Furthermore, this protocol is one of the most efficient protocol in the protocols

ever proposed in an aspect of number of sessions between Alice and Bob. We sup-

pose Even’s protocol[11], which uses oblivious transfer. To exchange key of 2n bits,

2 ∗ n (times) oblivious transfers and 2∗ 2n (times) normal transfer, then for all 6n

(times) of transfers are needed. In contrast, Okamoto and Ohta’s protocol needs only

4n+ 2 (times) of normal transfers to exchange keys of 2n bits.

This property is appreciably significant in applying the protocol to the mail ex-

change. Regarding these advantages, we use their protocols we explained above in

our system.

2.3 Problems and Assumptions
Zhou and Gollman pointed out two problems about certified e-mails without TTPs[3].

One is about “selective receipt” they call. When the receiver received the mes-

sage, he can select not to generate a receipt and send back it to the sender. To avoid

8

absconding with the important information, the sender usually sends the message

with encrypting at first. Indeed the sender can prevent the with this way, he can

still select not to send the receipt when the message is inconvenient to the receiver.

Selective receipt fundamentally cannot be prevented without TTPs.

As the second problem, they pointed the unfair modification of timestamps. This

means the receiver can generate a receipt, and then a time stamp included in the

receipt at arbitrary times. Because of these problems, they claim that TTPs are es-

sential for a certified mail system.

Despite these indications, we still think that certified mail systems are useful even

if it cannot prevent selective receipt. For the first problem, we assume an example

problem as follows.

Alice have a business secret which enables making big money, and she

wants to sell it to Bob. She needs a proof that Bob received the secret if

Bob received the secret. Bob also wants a proof that Alice sends a genuine

secret, or he claims that she sent a fake secret if the received secret is not

genuine.

In the case of the above example selective receipt would not be a problem. So we

make an assumption that both sender and receiver basically agree to exchange a

mail. Both parties hope to exchange secret and receipt fairly, and a party can protest

to others(courts for example) only when the other party act a dishonest.

For the second problem, we think the first message and other parts of procedures

should possess an expiration time. With this configuration, each party needs to return

a reply in some times, or the procedure would fail and the exchanging would stop.

Though we don’t use one in this paper, if a system uses a third party for time-stamp,

we can expect more time accuracy for the system.

Under these assumptions, we think a system without TTPs would be helpful to

enable to exchange secret fairly. We think our system would resolve following prob-

lems.

1. Alice sent a message and Bob received it. But Bob claims that he did not receive

it.

9

2. Alice did not send a message to Bob. But she claims that she has certainly sent

it to Bob.

3. Alice sent a fake message to Bob, and Bob received it. But Alice claims that she

sent the genuine one to Bob.

We consider how the system resolves these problems in Section 5.1 “Considera-

tion.”

At last, we add an assumption about transmission channel. Alice’s MUA and

Bob’s MUA can always communicate with e-mail, but not always with other meth-

ods. This is because there are often barriers blocks their communications, e.g. fire-

walls.

10

Chapter 3 Design

In this section, we show how we designed the system. We drew upon HTTP1.1[13]

and some books[14][15].

3.1 Outlines of Normal Case
We assume a sender(Alice) and a receiver(Bob). Each party may be a user which use

a terminal machine of network, or may be a user and an MTA which is under control

of user, as previously mentioned.

The normal procedure is as follows. We assume all session is exchanged with

signature.

Step 1 At first, Alice makes a messageM, and write an abstract ofM. And she

generates a secret keyKa, and encryptM with Ka. (We call encryptedM as

Eka(M).) Alice sendsEka(M), X and Pa to Bob. X is a transformedKa with

Okamoto and Ohta[12], andPa, the parameters of it.

Step 2 When Bob receive the first message from alice, Bob checks the message

validity and looks the abstract of the contents. If the abstract meets his wishes,

makes a receipt token (R) contains the abstract and his signature, and dates.

Then he generate a secret keyKb, encryptRwith it(Ekb(R)). Then he also gener-

ateY, a transformedKb with Okamoto and Ohta[1994] andPb. He sendsEkb(R),

Y, andPb to Alice.

If Alice can decodeEkb(R) and getsR, she can protest Bob certainly received

the Message. Here,Ka andKb need to be the same encryption method and to

have the same length.

Step 3 Alice and Bob execute the simultaneous secret exchange to exchangeKa

andKb, referring toX, Y andPa, Pb. The exchange begins from Alice, and each

party exchange keys bit by bit.

Step 4 When all bits ofKa is sent, Alice decryptsEkb(R) with Kb and getsR. Bob

getsM same as Alice.

Step 5 Each of them confirm the contents. Alice makes a digest ofM, H(R). She

sendsH(R) to Bob.

Step 6 Bob receivedH(R). If H(R) was correct, he also makesH(M) and sends it

11

to Alice.

Step 7 Alice confirmH(M) and it is correct, this procedure ends.

We explain about error cases later Section 3.5.

3.2 Structure
Here, we assume parties which are consist of a user using an MUA and an MTA the

user controls. Each user trusts on the MTA, and can delegate some part of procedures.

On such assumption, we consider how these should members acts in executing

procedures. Considering the rolls of each members, we suppose regal patterns can

be classified into following 3 cases.

• Direct Style Sender Alice and Receiver Bob exchanges secret each other di-

rectly.

• Agent Style Alice delegates secret key and secret exchange procedure to the

MTA when she sends the first mail. And Bob received the mail, he also delegates

secret key and procedure to the MTA of his party. Then the MTAs of both sides

exchange the secret key, and both users receive the message or receipt.

• Half Agent Style Alice delegates secret exchange procedure to the MTA when

she sends the first mail. But Bob does not delegate. After Bob received the mail,

he exchange secrets with the MTA of Alice’s party.

In what follows, we would check up the advantages and disadvantages of each

style.

3.2.1 Direct Style

User Alice and Bob exchanges secrets each other directly. In this style, the whole

session are closed inend-to-end, a great advantage to be introduced, since Alice and

Bob need not to have control of an MTA to have session each other.

Pointing disadvantage, Alice must wait for Bob’s response. SoSend-and-Forget

cannot be realized in this style. “Send-and-Forget” is a good manner which is often

discussed about around the realm of certified mail, which represent “sender need

not wait for session after send the first message, and all s/he needs to do for getting

receipt is only just waiting.” So with this model, burden onto Alice is significantly

large.

In addition, it sometimes can be difficult to have session by the methods except

12

Figure 1: Direct Style

e-mail, since there can be firewalls, NAT, and so on.

3.2.2 Agent Style

Figure 2: Agent Style

User Alice send the first mail to Bob through the MTA she trusts, and the MTA

represent her and exchange secrets as her agent. After Bob received the mail, he also

delegates to the MTA of his party. Then, each agent MTAs exchange the secret keys.

As an advantage, “Send-and-Forget” is realized with this style,.

As a disadvantage, introduction cost is large comparing to direct style. Both Alice

and Bob need to introduce the system on their MTA.

13

Figure 3: Half Agent Style

3.2.3 Half Agent Style

User Alice send the first mail to Bob through the MTA she trusts, and the MTA rep-

resent and exchange secrets as her agent. After Bob received the mail, he exchange

with Alice’s agent MTA. In this style,Send-and-Forgetis realized. Introduction is

easier than agent style. In addition it would be easier for Bob to have session with an

MTA by the methods except e-mail.

Considering disadvantage, it would be difficult for Bob to reply as a certified mail

as this style is asymmetrical. We think this would not be so many case, considering

the way of certified mail. To say more, if both side introduce the system of this style,

users can exchange secrets bi-directionally.

Considering these advantages and disadvantages, we decided to construct the

system realizes ‘Direct Style’ and ‘Half Agent Style’, and Alice can select how to

use. So it is desirable that Alice can use the agent with minimum difference from the

way of using in “Direct Style.”

3.3 Transaction Method
We need to design how Alice and Bob communicate and send transactions to each

other. Here, we made an assumption about transmission channel as follows.

Alice’s MUA and Bob’s MUA can always communicate with e-mail, but

not always with other methods. This is because there are often barriers

14

blocks their communications, e.g. firewalls.

We made decision to realize both ‘Direct Style’ and ‘Half Agent Style’ in the pre-

vious section. We want to ensure the reachability always for Alice and Bob, so we

adopt e-mails for the communication method.

We made transaction message body with XML. XML is superior in the points as

follows.

• It is easy to be used in Internet environment. it is constructed on text data, so

suitable for e-mail.

• It can represent common computer science data structures: records, lists and

trees.

• The hierarchical structure is suitable for this application.

• It has strict syntax and parsing requirements, so easy to be verified.

• In can contains binary data with base 64 encoding, which is also used for MIME

contents.

We defined message formats on XML in Section 4.1. Parties attach this XML mes-

sage to e-mails and send it.

3.4 Session Management
3.4.1 Mail ID and Session ID

In this system, each certified e-mail session has unique id (we call ‘MID’, an ab-

breviated expression of ‘mail id’). Each certified e-mail session would execute a

simultaneous secret exchange session, which contains two gradual secret exchange

protocol. Then we allot unique ids for each gradual secret exchange session (we call

‘SID’, an abbreviated expression of ‘session id’).

The MID and the first SID is generated by the sender Alice and stored her client.

If she use the agent MTA, it stores the MID and the SID.

3.4.2 Expiration Time

When Bob received the message from Alice or her agent, Bob stores SID and MID

and generates another SID and store it. Here, there are one MID and two SIDs. He

sends a SID he generated with the MID in his encrypted receipt.

Alice, or her agent, who received the encrypted receipt stores the another SID.

15

When each SID generated, it can have a expiration time optionally. Each player

stores the expiration time with SID.

In case one of expire time comes before they complete the secret exchange, s/he

must report time out error. We think about errors at next subsection.

3.5 Error Case
When processing procedures, various kinds of errors are supposed to occur. We

classified errors into three categories, and allot error codes for each kind of errors.

If an error occurs, the player should inform it to the other party. S/he use the xml

format at the next subsection along with error codes to inform what happened at

his/her hands.

Error codes are as follows.

Protocol Errors The message is invalid, so parties should not process it.

• 400 Bad Request: If the message is invalid because of wrong or lack of

message elements, this error is reported.

• 412 Request Too Large: If the message is too large, this error is reported.

• 416 Contents Invalid: If the contents (encrypted message, date, value) is

invalid, this error is reported.

Processing Errors Failures and halts occur in processing. This includes user-

oriented ones.

• 408 Time Expired: When the expired time is overred before complete

secret exchanges, this error is reported.

• 481 Call/Transaction Not exist: When a message which does not corre-

spond to current procedures arrives, this error is reported.

• 486 Now Busy: If the application system cannot carry on the procedure

because of some problems or burdens, this error is reported.

User Errors User-oriented halts, includes not much of secret exchange checking.

• 488: Not Acceptable: If the receiver Bob does not want to receive the

message, he can select reporting this error and end the procedure.

• 489: Value Not Match: If the value does not have consistency while pro-

cessing secret exchange, this error is reported.

• 430: Terminated: When a party want or need to stop the procedure from

16

some reasons, s/he can use this error.

Restart Session some error occur even if the transaction has no fault. The party

received the error report can select to restart sessions if the reported error is ‘408:

Time Expired’ or ‘486 Now Busy’. If s/he want to restart the session, s/he should

behave as following.

• In case 408, s/he can regenerate new sessions with new SID under the same

MID. To regenerate sessions, s/he should use the transaction xml of⟨restart/⟩.
• In case 486, s/he can restart the session. S/he need to resend the same transaction

at regular intervals.

In addition, if s/he cannot receive the responding transaction, s/he can resend the

same transaction to the other. If a party receive the same message twice or more,

need to ignore it, not to report ‘481 Call/Transaction Not exist’. This process need to

avoid the case each party would wait for each other forever, as it can be happen the

transaction mail disappears somewhere.

17

Chapter 4 Implementation

4.1 Message Format
We made a message format which is consist of xml list.

We show a example of message format, which the sender Alice sends to Bob at

the Step (1).

Encrypted Message

1 <send>

2 <mid>83f93ac93dabd342</mid>

3 <sid>f39aac353d2f0235</sid>

4 <from>alice@i.kyoto-u.ac.jp</from>

5 <to>bob@i.net.ist.kyoto-u.ac.jp</to>

6 <mail-dest>alice@cmtp.net.ist.i.kyoto-u.ac.jp

7 </mail-dest>

8 <date>20011101184732</date>

9 <expire>20011102184732</expire>

10 <abst>(abstract of message)</abst>

11 <c-mes>(encrypted message($E_{k_a}(M)$))</c-mes>

12 <key type="DES" length="64"/>

13 <protocol type="okamoto">

14 <envelope>(transformed secret key(X))</envelope>

15 <params>

16 <param num="1">(parameter 1)</param>

17 <param num="2">(parameter 2)</param>

18 <param num="3">(parameter 3)</param>

19 <param num="4">(parameter 4)</param>

20 <param num="5">(parameter 5)</param>

21 <param num="6">(parameter 6)</param>

22 ...

23 <param num="64">(parameter64)</param>

24 </params>

25 </protocol>

26 </send>

• mid Unique ID provided for each Certified Mail.

• sid Unique ID provided for each gradual secret exchange session. Twosid cor-

respond to onemid.

• from Mail address of message sender.

• to Mail address of message receiver.

• mail-dest Mail address when receiver wish to exchange secrets on e-mail. This

element must be applied.

• dateTime Stamp. Recorded in a format “YYYYMMDDttmmss.”

18

• expire Expiration time. This time corresponds to SID.

• abstAbstract of message. This message is written in main body of e-mail in the

same way.

• c-msg Encrypted message. This element is written in Base64 format. This

element corresponds toEka(M).

• key The format type and length of secret key used to encrypt message. Each is

described in attributes of element.

• protocol Appoint the protocol type used simultaneous secret exchange. (At the

moment, only “okamoto” is supported.)

• envelopeTransformed secret key in Okamoto’s protocol, which works as a ver-

ification bits in secret exchange. Corresponds toX.

• param Parameters used to determine one-way permutation in Okamoto’s pro-

tocol. This corresponds toPa.

Contents of Message

1 <mssg>

2 <from>Alice</from>

3 <to>Bob</to>

4 <date>20011101184732</date>

5 <message>(Main Contents)</message>

6 </mssg>

• from Name of message sender.

• to Name of message receiver.

• dateTime Stamp. Recorded in a format “YYYYMMDDttmmss.”

• messageMain Message.

Encrypted Receipt Receiver Sends to Sender

1 <rcv>

2 <mid>83f93ac93dabd342</mid>

3 <sid>df830a82bd8f3034</sid>

4 <from>bob@i.net.ist.kyoto-u.ac.jp</from>

5 <to>alice@i.kyoto-u.ac.jp</to>

6 <date>20011101194732</date>

7 <expire>20011103194732</expire>

8 <abst>(abstract of message)</abst>

9 <c-rcpt>(encrypted receipt)</c-rcpt>

10 <key type="DES" length="64"/>

19

11 <protocol type="okamoto">

12 <envelope>(transformed receipt(Y))<envelope>

13 <params>

14 <param num="1">(parameter 1)</param>

15 <param num="2">(parameter 2)</param>

16 <param num="3">(parameter 3)</param>

17 <param num="4">(parameter 4)</param>

18 <param num="5">(parameter 5)</param>

19 <param num="6">(parameter 6)</param>

20 ...

21 <param num="64">(parameter64)</param>

22 </params>

23 </protocol>

24 </rcv>

• mid Unique ID provided for each Certified Mail.

• sid Unique ID provided for each gradual secret exchange session. Twosid cor-

respond to onemid.

• from Mail address of receipt the sender(message receiver).

• to Mail address of receipt the receiver(message sender).

• dateTime Stamp. Recorded in a format “YYYYMMDDttmmss”

• expire Expiration time. This time corresponds to SID.

• abstAbstract of message received at the previous step.

• c-rcpt Encrypted receipt. This element is written in Base64 format. This ele-

ment corresponds toEkb(R).

• key The format type and length of secret key used to encrypt receipt. Each is

described in attributes of element.

• protocol Appoint the protocol type which is same to the one sender appointed

used simultaneous secret exchange. (At the moment, only “okamoto” is sup-

ported.)

• envelopeTransformed secret key in Okamoto’s protocol, which works as a ver-

ification bits in secret exchange. Corresponds toY.

• param Parameters used to determine one-way permutation in Okamoto’s pro-

tocol. This corresponds toPb.

Contents of Receipt

1 <rcpt>

2 <from>Bob</from>

20

3 <to>Alice</to>

4 <date>20011101184732</date>

5 <commitment>"I agree I received the message

6 in the envelope."</commitment>

7 <c-msg>(encrypt message received at step (1))</c-msg>

8 <envelope>(transformed secret key)</envelope>

9 <params>

10 <param num="1">(parameter 1)</param>

11 <param num="2">(parameter 2)</param>

12 <param num="3">(parameter 3)</param>

13 <param num="4">(parameter 4)</param>

14 <param num="5">(parameter 5)</param>

15 <param num="6">(parameter 6)</param>

16 ...

17 <param num="64">(parameter64)</param>

18 </params>

19 </rcpt>

• from Name of receipt sender.

• to Name of receipt receiver.

• dateTime Stamp. Recorded in a format “YYYYMMDDttmmss.”

• commitment A commitment that the receiver certainly received the message

encrypted with the secret key, which was transformed by the following parame-

ters.

• envelopeTransformed secret key in Okamoto’s protocol received at Step(1).

• c-msgEncrypted message received at Step(1). This element is written in Base64

format. This element corresponds toEka(M).

• param Parameters received at Step(1).

Meesage for Each Step of Secret Exchange

1 <step>

2 <mid>83f93ac93dabd342</mid>

3 <sid>f39aac353d2f0235</sid>

4 <value num="2">(transformed secret key at this step)</value>

5 <prev>(transformed secret key received at the previous step)</prev>

6 </step>

• mid Unique ID provided for each Certified Mail.

• sid The unique id of executing certified email exchange.

• valueThe transformed secret key at each of transformation. The step number is

described as an attribute.

21

• prev The transformed secret key received at the previous step. If it is the first

step, this element is sent with empty.

Acknowlegement of Ending of the Session

1 <s-end>

2 <mid>83f93ac93dabd342</mid>

3 <sid>f39aac353d2f0235</sid>

4 </s-end>

• mid Unique ID provided of the Certified Mail.

• sid Unique ID provided for each gradual secret exchange session.

Certification from Receiver to Sender

1 <confirm>

2 <mid>83f93ac93dabd342</mid>

3 <sid>f39aac353d2f0235</sid>

4 <date>20011101184732</date>

5 <m-dgst>(digest of received message)<m-dgst>

6 </confirm>

• mid Unique ID provided to the Certified Mail.

• dateTime stamp.

• m-dgst Digest of received message. This digest is generate by applying SHA-1

to received message. Described in base64.

Response to Certification

1 <confirm_rep>

2 <mid>83f93ac93dabd342</mid>

3 <date>20011101184732</date>

4 <m-dgst>(digest)<m-dgst>

5 <reply>ok</reply>

6 </confirm_rep>

• mid Unique ID provided to the Certified Mail.

• dateTime Stamp. Recorded in a format “YYYYMMDDttmmss.”

• m-dgstThe message digest received at the previous step.

• reply Reply the message digest was correct or not with “ok” or “no.”

Session End Request from message receiver to sender

22

1 <endreq>

2 <mid>83f93ac93dabd342</mid>

3 </endreq>

• mid Unique ID provided to the Certified Mail.

Reply to Session End Request

1 <endrep>

2 <mid>83f93ac93dabd342</mid>

3 </endrep>

• mid Unique ID provided to the Certified Mail.

Error Report

1 <error>

2 <mid>83f93ac93dabd342</mid>

3 <code>400</code>

4 <target>

5 <confirm>

6 <mid>83f93ac93dabd342</mid>

7 <sid>f39aac353d2f0235</sid>

8 <date>20011101184732</date>

9 <m-dgst>(digest of received message)<m-dgst>

10 </confirm>

11 </target>

12 </error>

• mid Mail ID in which the error occurred.

• codeError codes. We made error list at Section 3.5.

• target Send back the transaction XML s/he received at last.

Request to Restart Session

1 <restart>

2 <mid>83f93ac93dabd342</mid>

3 <sid>43eaf9bd220a1c88</sid>

4 <expire>20011103204732</expire>

5 </restart>

• mid Unique ID provided to the Certified Mail. When a party want to restart,

MID is carried over to new secret exchange session.

• sid When the secret exchange session restarts, each party generate SID again

correspond to new session.

23

• expire Expiration time. This time corresponds to SID. Expiration time is gen-

erated again along with regenerating the SID.

Reply to Restart Request

1 <restart_rep>

2 <mid>83f93ac93dabd342</mid>

3 <sid>a0fe8dbb8ea334dc</sid>

4 <expire>20011103204812</expire>

5 </restart_rep>

• mid Unique ID provided to the Certified Mail. When a party want to restart,

MID is carried over to new secret exchange session.

• sid When the secret exchange session restarts, each party generate SID again

correspond to new session.

• expire Expiration time. This time corresponds to SID. Expiration time is gen-

erated again along with regenerating the SID.

• mid Appoint the MID to terminate.

24

Chapter 5 Consideration and Improvement

5.1 Consideration
Now, we consider how this system resolves the problems we assumed at the previous

section. Recent that, we made the following assumptions.

1. Alice sent a message and Bob received it. But Bob claims that he did not receive

it.

2. Alice did not send a message to Bob. But she claims that she has certainly sent

it to Bob.

3. Alice sent a fake message to Bob, and Bob received it. But Alice claims that she

sent the genuine one to Bob.

For each problem, users can deal with them as follows with this system.

1. Alice can protest by showing Bob’s receipt, which includes the commitment.

The receipt all together includes the transformed secret key and parameters Al-

ice sent. So Alice can claim that the receipt perfectly corresponds to the message

she sent. In case Bob had sent an invalid receipt, Alice should show whole the

communication log, and she can represent that the contents of the receipt differ

from the abstract he received.

2. As long as both parties agree to use this system, Bob requires Alice to show his

receipt. If she did not send the mail, she cannot get the decrypted receipt.

3. In this case, Bob can allege the difference between abstract and the message he

received by showing the first mail and following secret exchange.

25

Chapter 6 Reducing the Number of Sessions

Although we selected Okamoto and Ohta’s protocol for their efficiency, over 100

transactions are still needed to exchange 64 bits of secret keys. Thus we want to

reduce the number of sessions to reduce the time needed to complete procedures.

Considering how to deal with this problem, we compared the following three ap-

proaches.

1. Reduce the length of key bits.

2. After some bits have been sent, send the whole bits leftover at once.

3. After some bits have been sent, double the number of bits sent at once in each

round.

The first method is very simple, but has a problem in the view point of the cryp-

tographic strength apparently. The strength of a key is basically exponential in the

key length. So we cannot adopt this approach to reduce the number of transactions.

The second method is safer than the first, but this method ignores the fairness

discussed in Section 2.2.4. We need to care about the case in which one party has

sent whole the remaining bits, but the other receives it without sending the remaining

ones. In this case the fairness between two parties are broken apparently. So we

cannot adopt this approach, either.

In the last method, they double the number of bits they send at the next round

every time. the following is an example: Alice and Bob in turn send each other the

first 32 bits of their 64 bits secret keys. They send 1 bit at the 33rd step, 1 bit at the

34th step, 2 bits at the 35th step, 4 bits at the 36th step, and so on. Each party can

send the last 32 bits within 6 steps. More precisely, each party sends some amount of

bits at once at the first step, where this amount depends on th cryptographic strength.

After that, each party sends bits by doubling the number. As an extreme case, if we

start doubling from the first step, each party sends 2i−1 bits at thei th step. In this

case,n bits are exchanged withinO(logn) steps.

Suppose that at some moment during the procedure, Alice and Bob have received

some amount of bits, and they need to consumetA andtB of time, respectively, to cal-

culate the true message by, for example, an exhaustive search. Although the fairness

is originally defined as the maximumratio of tA and tB and is always constant in

26

 0

 2e+037

 4e+037

 6e+037

 8e+037

 1e+038

 1.2e+038

 1.4e+038

 1.6e+038

 1.8e+038

 0 2 4 6 8 10

re
m

ai
ni

ng
 ti

m
e

to
 c

al
cu

la
te

steps

Our Method
Conventional Method

Figure 4: The decreasing of differences

Okamoto and Ohta’s protocol, it is also natural to define it as the maximumdiffer-

encebetween them. It is not hard to see that in our last method, this quantity is

maximum at the first step and decreases as the protocol proceeds as we show in Fig.

4, namely, the fairness is the same as the case of bit-by-bit protocol from the view-

point of the worst case analysis. Nevertheless, we have an advantage of reducing

the number of rounds exponentially. Hence, we decide to use the last method in our

designs described later.

27

Chapter 7 Conclusion

We designed a certified e-mail exchange system based on simultaneous secret ex-

change protocol under the following assumptions.

• Both Alice (the sender) and Bob (the receiver) agree to exchange her message

and his receipt. They only want to avoid unfair affairs.

• E-mail is the only method Alice and Bob can exchange messages.

The former is needed to limit the problems, as ‘selective receipt’ cannot be prevented

fundamentally without TTPs. We made the latter assumption to guarantee the reach-

ability considering the real environments with many barriers e.g. firewalls.

The problems that our system should resolve are listed as follows.

1. Alice sent a message and Bob received it. But Bob claims that he did not receive

it.

2. Alice did not send a message to Bob. But she claims that she has certainly sent

it to Bob.

3. Alice sent a fake message to Bob, and Bob received it. But Alice claims that she

sent the genuine one to Bob.

At first, we design the entire procedure mainly based on Okamoto and Ohta’s

simultaneous secret exchange protocols, adding processes to confirm the contents

each party have received in Section 3.1. We selected their protocols because of its

efficiency, as we discussed in Section 2.2.5.

In this system, we want to realize good properties often referred in certified mail

researches with TTPs, for example ‘send-and-forget’. So we assume two players, an

MTA (Mail Transfer Agent, e.g. SMTP Server) and an MUA (Mail User Agent

e.g. the client the sender or the receiver use) in each party. This approach enabled

the system to realize ‘send-and-forget’ for the sender when the sender can control an

MTA, or exchange messages for the sender with the receiver directly otherwise. We

discussed this problem in Section 3.2.

Considering from the assumptions, we adopt e-mails to the method of exchanging

transactions. So we designed each transaction formats on XML and attach it to e-

mails in Section 4.1.

28

We then considered how this system works in Section 5.1. Although we con-

firmed that this system actually solves the problems we assumed, it seems to take

rather long time in some situations. This is because there are over 100 transactions

between Alice and Bob until they complete the entire sessions, so the delay of e-mails

are greatly amplified.

To resolve this problem, we propose a key sending method in Section Chapter 6.

The ‘fairness’ is defined as the maximum of the difference of time needed to calculate

the remaining bits of keys at any time, where the difference is taken between two

players. This amount is ‘at most twice’ in a normal simultaneous secret exchange

protocols, while it is ‘at most constant difference’ in our method.

29

Acknowledgments

I would like to give my sincere thankfulness to my supervisor, Prof. Yasuo Okabe.

He gave me correct guidance, showed me a appropriate direction, and encouraged.

Because of his guidance, I was able to work this research from a simple interest. I

am extremely grateful to Assoc Prof. Shuichi Miyazaki for empathic guiding, sug-

gestion and coaching thesis. I also thanks to Assoc Prof. Motonori Nakamura for

good advices. I would also like to thank Ms. Kazumi Sakai and office staffmembers

for proper clerical jobs.

I wish to express my sincere gratitude to all the members of Okabe Laboratory.

Especially My peer Mr. Keiji Maekawa taught me many useful and interesting topics

and being in friendly rivalry with me. Mr. Shin Maruyama gave me an opportunity of

training and social experience. Mr. Koji Kobayashi, Mr. Naoyuki Morimoto greatly

helps my questions and researches. And I am do thank the all other members in this

laboratory.

I also want to thank to Prof. Okamoto and Prof. Ohta. This research work is

greatly based on their researches and I was helped much by their books.

Finally I want to be thankful to my mother and my family about having always

supported me, and at last my father in heaven, who encouraged me always.

30

References

[1] Fajman, R.: An extensible message format for message disposition notifica-

tions, RFC 2298 (Proposed Standard) (1998). Obsoleted by RFC 3798.

[2] ISO/IEC: ISO 13888-1 IT security techniques Non-repudiation Part 1: General

(1997).

[3] Zhou, J. and Gollmann, D.: Observations on non-repudiation,Proc. ASI-

ACRYPT, pp. 133–144 (1996).

[4] Asokan, N., Schunter, M. and Waidner, M.: Optimistic protocols for fair ex-

change,Proceedings of the 4th ACM conference on Computer and communi-

cations security, ACM New York, NY, USA, pp. 7–17 (1997).

[5] Imamoto, K. and Sakurai, K.: A scalable on-line certified E-mail protocol using

password authentication,WISA2002, pp. 319–331 (2002).

[6] Ben-Or, M., Goldreich, O., Micali, S. and Rivest, R. L.: A fair protocol for

signing contracts,IEEE Transactions on Information Theory, Vol. 36, No. 1,

pp. 40–46 (1990).

[7] Rabin, M.: How to exchange secrets by oblivious transfer, Technical re-

port, Technical Report TR-81, Harvard Aiken Computation Laboratory, 1981

(1981).

[8] Luby, M., Micali, S. and Rackoff, C.: How to simultaneously exchange a secret

bit by flipping a symmetrically-biased coin,Proc. FOCS, pp. 11–21 (1983).

[9] Blum, M.: How to exchange (secret) keys,ACM Trans. Comput. Syst., Vol. 1,

No. 2, pp. 175–193 (1983).

[10] Cleve, R.: Controlled gradual disclosure schemes for random bits and their

applications,Proc. CRYPTO, pp. 573–588 (1989).

[11] Even, Shimon, O. G. and Lempel, A.: A randomized protocol for signing con-

tracts,Communications of the ACM, Vol. 28, No. 6, pp. 637–647 (1985).

[12] Okamoto, T. and Ohta, K.: How to simultaneously exchange secrets by gen-

eral assumptions,Proceedings of the 2nd ACM Conference on Computer and

communications security, pp. 184–192 (1994).

[13] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and

Berners-Lee, T.: Hypertext Transfer Protocol – HTTP/1.1, RFC 2616 (Draft

31

Standard) (1999). Updated by RFC 2817.

[14] Wood, D.:Programming Internet Email, O’REILLY (1999).

[15] SIProp Project/Noritsuna Imamura, Hirotaka Nisato, T. S. M. E.:Private Im-

plementation Protocol, Mainichi Communications (2007).

32

