Master Thesis

Design and Implementation of
a Certified Mail Exchange System
Using Simultaneous Secret Exchange

Supervisor Professor Yasuo OKABE

Department of Intelligence Science and Technology
Graduate School of Informatics
Kyoto University

Keita SHIMIZU

February 6, 2009

Design and Implementation of a Certified Mail Exchange System
Using Simultaneous Secret Exchange
Keita SHIMIZU
Abstract
In this paper we design a certified e-mail exchange system based on simultaneous
secret exchange protocol proposed by Okamoto and Ohta. We selected their protocol
because it is superior infliciency, especially at the view point of the number of

sessions.

At first, we designed the whole procedure mainly based on Okamoto and Ohta’s
protocols, adding processes to confirm the contents each party have received. In this
system, we want to realize good properties often referred in certified mail researches
with TTPs, for example ‘send-and-forget’. So we assume two players, an MTA (Malil
Transfer Agent, e.g. SMTP Server) and an MUA (Mail User Agent, e.g. the client
the sender or the receiver use) in each party, and designed construction which enables
‘send-and-forget’ for the sender when the sender can control an MTA, or enables to
exchange messages for the sender with the receiver directly when cannot.

Then, we made message formats in the form of XML to send each transactions.
We selected the method of attaching transaction XML to e-mail to communicate mes-
sages to realize reachability. With this method, it takes rather long time to complete
exchanging secret keys and get contents of the mail or receipt when the mail delay is
large. Then we proposed a method to reduce the number of exchanging transactions.
This method doubles the number of bits sent at once after some bits have been sent
regularly. The ‘fairness’ is defined as the maximum of thféedeénce of time needed
to calculate the remaining bits of keys at any time, where tffergince is taken be-
tween two players. This amount is ‘at most twice’ in a normal simultaneous secret

exchange protocols, while it is ‘at most constarfatence’ in our method.

oooobbogoooboobouooooon
ooouobobooooooobood
g od
good

gododobooooooooooonoooouooooooooooooon
goooooooo.ooooo,gobgooooooooooooooon
godoobooooooboooouooooooooa.

goooooooooooooo,oggooodooooooboooooo
goodoooooooooooooo,oonooooooooooooon
dooooooo.ooooboooobooooooooo,TTPOO0OOOOO
000000000000 000000000 Send-and-forgefl OO0 OO 00
00o000o0oO0.000,00000000000004d MTA (Mail Transfer
Agent, SMTPO OO O O), MUA (MailUser Agent,0 OO, 000000000
O0000o0O0)oz0000000000000.000000000 MTA
00000000000 Send-and-forgel MUA O OOOOOOOOOOOO,
godoobooooooboooooooooooooooooooooon
ogooo. oo, 0o0ooooooooooboboobooooboooon
goooooo XML OOOoOoooo.

godooooobbbbbooooooobbbbbbbouoooo
goodoo XMLOODO0OO0O0OO0OO0OO0O0DOO0O0O0OO,0000b0b00oobooon
goobboooboobooo,oobboobbuooobbuooooboboo
gbgodobootiobobouobobouoouon. oouoouood
000oo0ooobooobobooo,jooboooboooboboobooo 1
gbgouogooouoouoboouooooonobo.ooouooood
oot ooouoobouoobooood
0,000 ooooboooobgoonooooooonot
gogo.ggogouooooo,goodoonougonooooboooonot
gogoooooo.

Design and Implementation of a Certified Mail Exchange System

Using Simultaneous Secret Exchange

Contents
Chapter 1 Introduction 1
1.1 Background. 1
1.2 Structureof Thesis 1
1.3 Resultof ThisPaper i 2
Chapter 2 Preliminaries 3
21 RelatedWOrks 3
2.2 BasicConcept 4
221 CertifiedMail 4
2.2.2 Party ... 4
223 TrustedThirdParty............ 5
2.2.4 Simultaneous SecretExchange 5
225 OkamotoandOhta94........., 6
2.3 Problemsand Assumptions 8
Chapter 3 Design 11
3.1 Outlinesof NormalCase 11
3.2 SHUCIUIe 12
3.21 DirectStyle......... 12
3.22 AgentStyle 13
3.2.3 HalfAgentStyle 14
3.3 TransactionMethod 14
3.4 Session Management 15
341 MailllDandSessionID.............. 15
3.4.2 ExpirationTime 15
3.5 ErrorCase. 16
Chapter 4 Implementation 18

4.1

Message Format. 18

Chapter 5 Consideration and Improvement

5.1 Consideration

Chapter 6 Reducing the Number of Sessions
Chapter 7 Conclusion
Acknowledgments

References

30

31

Chapter 1 Introduction

1.1 Background
We contracts signings or important messages with certified mailibyne, as the
conception of e-mail was designed to be used only among academic researchers.

Although e-mail have become the most popular way of exchanging messages
above all, today we cannot make sure that an e-mail has arrived at the hand of re-
ceiver. Some methods which sender get the receiving notification have been pro-
posed. The HTML headers ‘Return-Receipt-To’, or ‘Disposition-Notification-To’
are the examples of methods. The former is a original extension of ‘send-mail’,
and the latter is defined in RFC 2298 [1]. With these protocols, the sender can ob-
tain receipt if the receiver agrees to send it. However these methods fundamentally
depends on receiver's cooperations. If the receiver does not want to cooperate or
prevent sending the receipt, the sender cannot receive it.

So, fairness becomes the most serious problem in such situations. Against such a
backgrounds, “certified e-mail” started to be studied. Researches of this realm started
as a variety of the contract signing problem, but today various kinds of methods of
implementations are proposed.

Today, some commercial services have launched, and the frame is standardized
in 1ISO 13888 [2], and USPS (United States Postal Service) also started a service
“Certified Mail” from 2001, which is an e-mail version of a traditional certified malil
on paper mail. Today, information technology has developed greatly, and many busi-
ness communications are on-line. So, the importance of this realm has been and will
be increasing and more convenient alternative is required.

1.2 Structure of Thesis
This paper consists of six sections. At the beginning, we remark the background of
this research and make clear what we would do in this Chapter 1.

We would explain the related works and current problems in Chapter 2. On the
basis of those problems, we show an assumption and problems this thesis would
concern.

Based on the assumptions we assumed in Chapter 2, we consider how to realize

the protocol in the Chapter 3, and explain how we should implement it in Chapter 4.
We show a improvement scheme for more rapid exchange in Chapter 5. In the

last chapter, we summarize the contributions of this paper.

1.3 Result of This Paper
In this paper, we designed a system that includes sender clients and receiver clients,
and their representational servers. They process the gradual secret exchange protocol
and realize certified e-mail without TTPs. To realize them, we considered how they
should process e-mail exchanges, and be implemented in a system. In this process,
we designed the entire procedures and error processes, and transactions needed.
We realized ‘send-and-forget’ by considering an MUA and an MTA in each par-
ties. At last, we considered a method to decrease the number of sessions and needed

time to complete the procedure significantly.

Chapter 2 Preliminaries

2.1 Related Works

As we have already mentioned in Section 1.1, there have been already many re-
searches about certified mail, and concerning it, contract signing. Researches about
certified mail derives from those about contract singing. So in this subsection, we
sometimes refer to researches about contract signing. Those researches seem to be
classified by the dependency on the third party.

One type of studies uses“@rusted Third Party” (TTP) , which serves as an
intermediary. This type is the most major and some researches are commercialized.
Merkle. R is a pioneer of this realm[Mer78], but their system wasiicient in the
number of communication rounds and computation. After that, many researchers
have been engaged in this category and proposed some variants. Zhou and Gollman
is a representative example of researches on this model [3]. And then, Other re-
searchers also proposed some good properties. For example, Asokan et al. proposed
“optimistic protocol”, in which TTP is only used in case of dispute [4]. (On the other
hand, a system TTP is always used is called “on-line”), and Imamoto et al. proposed
a scalable on-line system [5]. But systems on this model are fundamentally depen-
dent on third party’s reliability. So TTPs need to be managed by reliable community
or company, and the burden tends to be large.

Another type of studies assumes the existence of the third party, which serves as
a reliable source of randomness and can play a roll of judge [6], [7].

Although these approaches have the advantage that they make no assumptions
regarding the computing power of parties, requiring the use of a third party is still
considered some what strong. Moreover, this type is applied only to contract contract

signing, not to certified mail.

And the other type realizes certified mail without third parties. No other party
would have relation with sender and receiver in exchanging mail or contract signing,
so the sender or the receiver do not need to prepare trusted third parties. They should

draw on others only in case of dispute, and they can claim his or her legalityeif s

executed procedure fairly. In spite of these advantages, there are not many studies
about systems on this model by comparison to certified mail systems with TTPs.
Researches about this model concentrate on secret exchange protocols, especially
gradual secret exchange protocol. We explain this protocol in the later subsection.

M.Luby[8] made the basic concept of “simultaneous secret exchange.” They de-
velop a slightly biased coin, and proposed the way to exchange a secret bit according
to the result of flipping it. This method used the probability and law of great numbers.
M.Blum [9] proposed a concept of gradual secret exchange protocol and designed a
protocol based on the factoring problem. Afterward, some researches have been done
on this protocol, for example Yao et al. citeyao1986gae and Cleve et al. [10]. Even,
Goldreich and Lempel’s protocols [11] are based on “oblivious transfer.” Goldreich
also referred to use it certified e-mail. Okamoto and Ohta[12] also proposed some
simultaneous secret exchange protocols. Protocols they proposed are practically ef-
ficient and are proven to be secure under general assumptions such as the existence
of one-way permutations and one-way functions.

In spite of these theoretical heritages, there are almost no researches which de-
signed e-mail exchange systems based on these theories.

2.2 Basic Concept

2.2.1 Certified Mall

In the real world, there are both “contents-certified mail” and “delivery-certified
mail” on paper mail. Usually the former requires greater care and includes the func-
tion of the latter. But both of them are not sdtdrent on e-mail from this viewpoint

of technical dfficulties. So we say “certified mail” to indicate “contents-certified
mail” if not otherwise specified.

2.2.2 Party

We use this word to indicate each side of sender and receiver (Alice and Bob). If an
MTA (e.g. SMTP server) is under Higer control or be trusted by hjimer, we con-
sider the MTA is in higher the party. This discussion would concern the discussion
in Section 3.2 “Structures.”

2.2.3 Trusted Third Party

The word “third party” indicates a party other than the sender and receiver. Especially
“trusted third party(TTP)” is a third party that both sender and receiver believe to be
fair and correct, and give approval to see contents of mails.

2.2.4 Simultaneous Secret Exchange

A simultaneous secret exchange protocol is executed between a sender (we call her
Alice) and receiver (we call him Bob) as follows: At first, Alice generates a secret
key a (n bits string) and Bob also generates a secretiaypits string). We assume

that these keys are secrets to each other. Then, they exchange these keys each other.
To prevent a party from obtaining a secret without revealinghkisown secret, they
exchangef (a) andg(b), here Alice cannot obtaib from g(b), similarly Bob cannot
obtaina from f(a). Then, Alice and Bob opea andb bit by bit. Okamoto and
Ohta[1994] pointed out a simultaneous secret exchange protocol needs to satisfy the
following conditions.

e CorrectnessEach party can check the validity of each bit at each stage, to en-
sure that a garbage has not been received. If they cannot check at each stage,
garbage bits can be detected finally afterrablits are sent. However, this is
too late. In this occasion, dishonest party have gotten correct bits, while honest
party gets garbage bits and he cannot obtain the true bits thereatfter.

e FairnesslLet T(i) be the time of computing the remainindpits when Bob re-
ceived first 6 —i) bits ofa. The diference between(i) andT(i—1) (1<i <n)
should be small. If the dlierence is non-negligible, then Bob has non-negligible
advantage over Alice at the stage that Alice has releasedi (+ 1) bits and
Bob has releasech(- i)bits. Here, note that this condition should be satis-
fied even when = 1. That isT(1) should be almost 0, sincE0) = 0. So,
for example, the following naive protocol does not satisfy the fairness, since
there exists a big gap betweg&i(l) andT (0): f(a) = (fo(Xp), ..., fo(Xn)), Where
a = (HC(xy), ..., HC(x,)). (HC(X) denotes the hard core bit of Goldreich[1989]
of X) (i = 1, ..., n) is revealed Alice’s (or Bob’s}th step of the revealing phase.
Then, T(1) is the running time of invertindo, which is non-negligibly greater
thanT(0) = 0.

If these conditions are satisfied, for polynomial time machines Alice and Bob, at

any stage of protocol, Bob obtaiasif and only if Alice obtainso.

Here, we assume the case Alice (or Bob) wants to send a pseudo key. If she made
X from the genuine secret key and began to send the pseudo bits from the middle of
secret exchange, then Bob can detect the unfairness at once. If shexfrfaoie
a pseudo key from the beginning, Bob cannot detect the unfairness until he gets the
pseudo key and fails to decrypt the message. But in this case, he can at least protest
that Alice sent a worthless key by showing the encrypted message and the key, and
then, receipt is repealed.

Comparing simultaneous secret exchange to simple bit-by-bit exchange like this
way, the former has the advantage of preventing a party from attacking like “send a
different key and repeat affirent message.” This is not easy, but possible, especially
in the case that the message is very short. If we use a simultaneous secret exchange,
the pair of ‘the encrypted message’ and ‘the secret key’ are firmly fastened at the
time Alice sends the first mail. So Bob can make a receipt for the pair in relief. We
summarized these comparisons in Table 1.

In addition, all communication between Alice and Bob have each party’s signa-
tures. So if someone try its to attack with man-in-the-middle method, he can inter-
cept and block the message, but cannot modify it. Replay attack would work at some
level, but the time stamps can limit thé&ieiency.

In this realm, the name “gradual secret exchange” is often used in the papers.
Typically, “gradual secret” exchange means one-directional secret releasing (so, above
procedure itself represents “gradual secret exchange”), and protocols are called “si-
multaneous secret exchange protocol” when “gradual secret exchange protocol” is
symmetrically used to exchange secrets bi-directional. Moreover, sometimes these
“secret exchange” is called “secret releasing.” These are seems in the same meaning.
We standardize “secret exchange” throughout this paper.

2.2.5 Okamoto and Ohta’94

Okamoto and Ohta[12] proposed some patterns of simultaneous secret exchange pro-
tocols. One of protocols in their thesis, which use one-way permutations is realized
as follows. We assume a problem that the sender Alice wants to send séiiet

6

Table 1: Comparison of Each Methods

abscond regenerate dierent | pseudo key sending
message attack

simple sending x Cannot Preventx After receiving the| 00 Cannot Prevent, but
first message, Sendemprotest when the re-
can send another keyceiver cannot decrypt
arbitrarily. the message with the
key.

bit-by-bit exchange| o Preventable

simultaneous secreto Preventable | o determined when
exchange first message received

stringssa = (X, ..., X1) (Sa €u {0, 1}") to the receiver Bob.
Step 1l Let ¥ be a family of tight one-way permutations, affigl € ¥, wherei
denotes the security parameter.

f; 1{0,1)) = {0,1),(i=12..n)

Here¥ is consist off = {fs,, fs,, .., f5,}. fs is uniquely determined with.
The sender Alice randomly generates the parameteys, 6k, 6, ...,5,. Then
Alice calculates-bit string X as follows:

X = X,

X = Xllfs_, (X 1), (i =2,...,n),
X = 15,06)-

Here,x|ly means concatenation of strimgand stringy.

Step 2 Alice sends {1, 62, ..., 6,) and X to Bob to commit to Alice’s secred,.

Step 3 When Bob receives them, Bob checks whetlderd®, ..., 6,) are valid for
the parameters of , and whetheX € {0, 1}". If they do not hold, Bob halts the
protocol. Otherwise, Bob write$4, 6>, ..., dn), X on the output to keep them.

[End of commitiment stage]

Step 4 In descending order far= n, ..., 1, repeat the following procedures sequen-
tially. Alice sendsx' to Bob.

Step 5 Wheni = n, Bob checks whetheX = f; (x) holds or not.
Wheni =n-1,...,1, Bob checks whether

[Xi*+1] i = f5i (XI*)

Here, K], denotes the leastbits of x, and [x]? denotes the most bits of x. If
it does not hold, Bob halts the protocol. Otherwise, Bob wiitesd (x)* as an
output.
At last, Bob can gex; from eachx; for all i (sincex = [x]%).
[End of secret releasing stage]
In using this procedure to simultaneous secret exchange, both Alice and Bob execute
above protocol bi-directionally.

Protocols they proposed can be constructed based on more general assumptions
such as one-way permutations and one-way functions, while the exidfingpmt
simultaneous secret exchange protocols are based on more constrained assumptions
such as specific number theoretic problem, the existence of oblivious transfer primi-
tive or trap-door one-way permutations.

Furthermore, this protocol is one of the moffi@ent protocol in the protocols
ever proposed in an aspect of number of sessions between Alice and Bob. We sup-
pose Even'’s protocol[11], which uses oblivious transfer. To exchange keylnts?

2 = n (times) oblivious transfers ands22n (times) normal transfer, then for alh6
(times) of transfers are needed. In contrast, Okamoto and Ohta’s protocol needs only
4n + 2 (times) of normal transfers to exchange keysmobAs.

This property is appreciably significant in applying the protocol to the mail ex-
change. Regarding these advantages, we use their protocols we explained above in

our system.

2.3 Problems and Assumptions

Zhou and Gollman pointed out two problems about certified e-mails without TTPs|[3].
One is about “selective receipt” they call. When the receiver received the mes-

sage, he can select not to generate a receipt and send back it to the sender. To avoid

8

absconding with the important information, the sender usually sends the message
with encrypting at first. Indeed the sender can prevent the with this way, he can
still select not to send the receipt when the message is inconvenient to the receiver.
Selective receipt fundamentally cannot be prevented without TTPs.

As the second problem, they pointed the unfair modification of timestamps. This
means the receiver can generate a receipt, and then a time stamp included in the
receipt at arbitrary times. Because of these problems, they claim that TTPs are es-
sential for a certified mail system.

Despite these indications, we still think that certified mail systems are useful even
if it cannot prevent selective receipt. For the first problem, we assume an example
problem as follows.

Alice have a business secret which enables making big money, and she
wants to sell it to Bob. She needs a proof that Bob received the secret if
Bob received the secret. Bob also wants a proof that Alice sends a genuine
secret, or he claims that she sent a fake secret if the received secret is not
genuine.
In the case of the above example selective receipt would not be a problem. So we
make an assumption that both sender and receiver basically agree to exchange a
mail. Both parties hope to exchange secret and receipt fairly, and a party can protest
to others(courts for example) only when the other party act a dishonest.

For the second problem, we think the first message and other parts of procedures
should possess an expiration time. With this configuration, each party needs to return
a reply in some times, or the procedure would fail and the exchanging would stop.
Though we don’t use one in this paper, if a system uses a third party for time-stamp,

we can expect more time accuracy for the system.

Under these assumptions, we think a system without TTPs would be helpful to
enable to exchange secret fairly. We think our system would resolve following prob-
lems.

1. Alice sent a message and Bob received it. But Bob claims that he did not receive
it.

2. Alice did not send a message to Bob. But she claims that she has certainly sent
it to Bob.

3. Alice sent a fake message to Bob, and Bob received it. But Alice claims that she
sent the genuine one to Bob.

We consider how the system resolves these problems in Section 5.1 “Considera-
tion.”

At last, we add an assumption about transmission channel. Alice’s MUA and
Bob’s MUA can always communicate with e-mail, but not always with other meth-
ods. This is because there are often barriers blocks their communications, e.g. fire-
walls.

10

Chapter 3 Design

In this section, we show how we designed the system. We drew upon HTTP1.1[13]
and some books[14][15].

3.1 Outlines of Normal Case

We assume a sender(Alice) and a receiver(Bob). Each party may be a user which use

a terminal machine of network, or may be a user and an MTA which is under control

of user, as previously mentioned.

The normal procedure is as follows. We assume all session is exchanged with
signature.

Step 1 At first, Alice makes a messagd, and write an abstract afl. And she
generates a secret k&, and encryptM with K,. (We call encryptedM as
E«.(M).) Alice sendsE (M), X andP, to Bob. X is a transformed, with
Okamoto and Ohta[12], arf,, the parameters of it.

Step 2 When Bob receive the first message from alice, Bob checks the message
validity and looks the abstract of the contents. If the abstract meets his wishes,
makes a receipt tokerR] contains the abstract and his signature, and dates.
Then he generate a secret KQy encryptR with it(Ey, (R)). Then he also gener-
ateY, a transformed,, with Okamoto and Ohta[1994] arR}. He send€y, (R),

Y, andPy to Alice.

If Alice can decodeEy, (R) and getsR, she can protest Bob certainly received
the Message. Her&, andK, need to be the same encryption method and to
have the same length.

Step 3 Alice and Bob execute the simultaneous secret exchange to excKange
andKjy, referring toX, Y andP,, P,. The exchange begins from Alice, and each
party exchange keys bit by bit.

Step 4 When all bits ofK, is sent, Alice decrypt&,, (R) with K, and getR. Bob
getsM same as Alice.

Step 5 Each of them confirm the contents. Alice makes a digeslpH(R). She
sendsH(R) to Bob.

Step 6 Bob receivedH(R). If H(R) was correct, he also makeKM) and sends it

11

to Alice.
Step 7 Alice confirmH(M) and it is correct, this procedure ends.
We explain about error cases later Section 3.5.

3.2 Structure
Here, we assume parties which are consist of a user using an MUA and an MTA the
user controls. Each user trusts on the MTA, and can delegate some part of procedures.

On such assumption, we consider how these should members acts in executing
procedures. Considering the rolls of each members, we suppose regal patterns can
be classified into following 3 cases.

e Direct Style Sender Alice and Receiver Bob exchanges secret each other di-
rectly.

e Agent Style Alice delegates secret key and secret exchange procedure to the
MTA when she sends the first mail. And Bob received the mail, he also delegates
secret key and procedure to the MTA of his party. Then the MTAs of both sides
exchange the secret key, and both users receive the message or receipt.

e Half Agent Style Alice delegates secret exchange procedure to the MTA when
she sends the first mail. But Bob does not delegate. After Bob received the mail,
he exchange secrets with the MTA of Alice’s party.

In what follows, we would check up the advantages and disadvantages of each
style.

3.2.1 Direct Style

User Alice and Bob exchanges secrets each other directly. In this style, the whole
session are closed and-to-end a great advantage to be introduced, since Alice and
Bob need not to have control of an MTA to have session each other.

Pointing disadvantage, Alice must wait for Bob’s responseS&ud-and-Forget
cannot be realized in this style. “Send-and-Forget” is a good manner which is often
discussed about around the realm of certified mail, which represent “sender need
not wait for session after send the first message, andhadireeeds to do for getting
receipt is only just waiting.” So with this model, burden onto Alice is significantly
large.

In addition, it sometimes can befiicult to have session by the methods except

12

Figure 1: Direct Style

e-mail, since there can be firewalls, NAT, and so on.
3.2.2 Agent Style

Figure 2: Agent Style

S

User Alice send the first mail to Bob through the MTA she trusts, and the MTA
represent her and exchange secrets as her agent. After Bob received the mail, he also

Secret Exchange
Session @

delegates to the MTA of his party. Then, each agent MTAs exchange the secret keys.
As an advantage, “Send-and-Forget” is realized with this style,.
As a disadvantage, introduction cost is large comparing to direct style. Both Alice
and Bob need to introduce the system on their MTA.

13

Figure 3. Half Agent Style

@

' Encr);pted Mail)

[I—

p Alice’s MTA | | Bob’s
r----| Party MTA — Party MTA - @ *

(& (-D

il

L e e —]
\.7 o v | — —
m '

Session

~

3.2.3 Half Agent Style
User Alice send the first mail to Bob through the MTA she trusts, and the MTA rep-
resent and exchange secrets as her agent. After Bob received the mail, he exchange
with Alice’s agent MTA. In this styleSend-and-Forgetis realized. Introduction is
easier than agent style. In addition it would be easier for Bob to have session with an
MTA by the methods except e-mail.

Considering disadvantage, it would béfdiult for Bob to reply as a certified mail
as this style is asymmetrical. We think this would not be so many case, considering
the way of certified mail. To say more, if both side introduce the system of this style,
users can exchange secrets bi-directionally.

Considering these advantages and disadvantages, we decided to construct the
system realizes ‘Direct Style’ and ‘Half Agent Style’, and Alice can select how to
use. So itis desirable that Alice can use the agent with minimtii@rdnce from the
way of using in “Direct Style.”

3.3 Transaction Method
We need to design how Alice and Bob communicate and send transactions to each
other. Here, we made an assumption about transmission channel as follows.

Alice’s MUA and Bob’s MUA can always communicate with e-mail, but

not always with other methods. This is because there are often barriers

14

blocks their communications, e.g. firewalls.
We made decision to realize both ‘Direct Style’ and ‘Half Agent Style’ in the pre-
vious section. We want to ensure the reachability always for Alice and Bob, so we
adopt e-mails for the communication method.
We made transaction message body with XML. XML is superior in the points as
follows.
e |tis easy to be used in Internet environment. it is constructed on text data, so
suitable for e-mail.
e It can represent common computer science data structures: records, lists and
trees.
e The hierarchical structure is suitable for this application.
e It has strict syntax and parsing requirements, so easy to be verified.
¢ In can contains binary data with base 64 encoding, which is also used for MIME
contents.
We defined message formats on XML in Section 4.1. Parties attach this XML mes-
sage to e-mails and send it.

3.4 Session Management
3.4.1 Mail ID and Session ID
In this system, each certified e-mail session has unique id (we call ‘MID’, an ab-
breviated expression of ‘mail id’). Each certified e-mail session would execute a
simultaneous secret exchange session, which contains two gradual secret exchange
protocol. Then we allot unique ids for each gradual secret exchange session (we call
‘SID’, an abbreviated expression of ‘session id’).

The MID and the first SID is generated by the sender Alice and stored her client.
If she use the agent MTA, it stores the MID and the SID.
3.4.2 Expiration Time
When Bob received the message from Alice or her agent, Bob stores SID and MID
and generates another SID and store it. Here, there are one MID and two SIDs. He
sends a SID he generated with the MID in his encrypted receipt.

Alice, or her agent, who received the encrypted receipt stores the another SID.

15

When each SID generated, it can have a expiration time optionally. Each player
stores the expiration time with SID.

In case one of expire time comes before they complete the secret exchéege, s
must report time out error. We think about errors at next subsection.

3.5 Error Case
When processing procedures, various kinds of errors are supposed to occur. We
classified errors into three categories, and allot error codes for each kind of errors.
If an error occurs, the player should inform it to the other partheSuse the xml
format at the next subsection along with error codes to inform what happened at
higher hands.
Error codes are as follows.
Protocol Errors The message is invalid, so parties should not process it.
e 400 Bad Request If the message is invalid because of wrong or lack of
message elements, this error is reported.
e 412 Request Too Largelf the message is too large, this error is reported.
e 416 Contents Invalid If the contents (encrypted message, date, value) is
invalid, this error is reported.
Processing Errors Failures and halts occur in processing. This includes user-
oriented ones.
e 408 Time Expired: When the expired time is overred before complete
secret exchanges, this error is reported.
e 481 CallTransaction Not exist When a message which does not corre-
spond to current procedures arrives, this error is reported.
e 486 Now Busy If the application system cannot carry on the procedure
because of some problems or burdens, this error is reported.
User Errors User-oriented halts, includes not much of secret exchange checking.
e 488: Not Acceptable If the receiver Bob does not want to receive the
message, he can select reporting this error and end the procedure.
e 489: Value Not Match: If the value does not have consistency while pro-
cessing secret exchange, this error is reported.

e 430: Terminated: When a party want or need to stop the procedure from

16

some reasons/le can use this error.
Restart Session some error occur even if the transaction has no fault. The party
received the error report can select to restart sessions if the reported error is ‘408:
Time Expired’ or ‘486 Now Busy’. If the want to restart the sessiorhe should
behave as following.
e In case 408, /be can regenerate new sessions with new SID under the same
MID. To regenerate sessionghe should use the transaction xmkoéstart).
e Incase 486,/pe can restart the sessionth&need to resend the same transaction
at regular intervals.

In addition, if ghe cannot receive the responding transactigre san resend the
same transaction to the other. If a party receive the same message twice or more,
need to ignore it, not to report ‘481 CAltansaction Not exist’. This process need to
avoid the case each party would wait for each other forever, as it can be happen the
transaction mail disappears somewhere.

17

© o N o g A~ w N P

NN NN NN R B B B B R R R R
® 0 KA W N P O © ® N o 0 A~ W N P O

Chapter 4 Implementation

4.1 Message Format
We made a message format which is consist of xml list.

We show a example of message format, which the sender Alice sends to Bob at

the Step (1).

Encrypted Message

<send>
<mid>83f93ac93dabd342</mid>
<sid>f39aac353d2f0235</sid>
<from>alice@i.kyoto-u.ac.jp</from>
<to>bob@i.net.ist.kyoto-u.ac.jp</to>
<mail-dest>alice@cmtp.net.ist.i.kyoto-u.ac.jp
</mail -dest>
<date>20011101184732</date>
<expire>20011102184732</expire>
<abst>(abstract of message)</abst>
<c-mes>(encrypted message($E_{k_a}(M)$))</c-mes>
<key type="DES" length="64"/>
<protocol type="okamoto">
<envelope>(transformed secret key(X))</envelope>
<params>
<param num="1">(parameter 1)</param>
<param num="2">(parameter 2)</param>
<param num="3">(parameter 3)</param>
<param num="4">(parameter 4)</param>
<param num="5">(parameter 5)</param>
<param num="6">(parameter 6)</param>
<param num="64">(parameter64)</param>
</params>
</protocol>
</send>

e mid Unique ID provided for each Certified Mail.

¢ sid Unique ID provided for each gradual secret exchange sessionsitveor-

respond to onenid.
e from Mail address of message sender.
e to Mail address of message receiver.

e mail-destMail address when receiver wish to exchange secrets on e-mail. This

element must be applied.
e date Time Stamp. Recorded in a format “YYYYMMDDttmmss.”

18

o g M W N B

© o N o O A~ W N P

=
o

expire Expiration time. This time corresponds to SID.

abst Abstract of message. This message is written in main body of e-mail in the
same way.

c-msg Encrypted message. This element is written in Base64 format. This
element corresponds & (M).

key The format type and length of secret key used to encrypt message. Each is
described in attributes of element.

protocol Appoint the protocol type used simultaneous secret exchange. (At the
moment, only “okamoto” is supported.)

envelopeTransformed secret key in Okamoto’s protocol, which works as a ver-
ification bits in secret exchange. CorrespondXxto

param Parameters used to determine one-way permutation in Okamoto’s pro-
tocol. This corresponds te,.

Contents of Message

<mssg>
<from>Alice</from>
<to>Bob</to>
<date>20011101184732</date>
<message>(Main Contents)</message>
</mssg>

from Name of message sender.

to Name of message receiver.

date Time Stamp. Recorded in a format “YYYYMMDDttmmss.”
messageéviain Message.

Encrypted Receipt Receiver Sends to Sender

<rcv>
<mid>83f93ac93dabd342</mid>
<sid>df830a82bd8f3034</sid>
<from>bob@i.net.ist.kyoto-u.ac.jp</from>
<to>alice@i.kyoto-u.ac.jp</to>
<date>20011101194732</date>
<expire>20011103194732</expire>

<c-rcpt>(encrypted receipt)</c-rcpt>
<key type="DES" length="64"/>

<abst>(abstract of message)</abst>

19

11
12
13
14
15
16
17
18
19
20
21
22
23
24

1
2

<protocol type="okamoto">
<envelope>(transformed receipt(Y))<envelope>
<params>
<param num="1">(parameter 1)</param>
<param num="2">(parameter 2)</param>
<param num="3">(parameter 3)</param>

<param num="

1
2
3

<param num="4">(parameter 4)</param>
5">(parameter 5)</param>
6

<param num="6">(parameter 6)</param>
<param num="64">(parameter64)</param>
</params>
</protocol>
</rcv>

e mid Unique ID provided for each Certified Mail.

¢ sid Unique ID provided for each gradual secret exchange sessionsitveor-
respond to onenid.

e from Mail address of receipt the sender(message receiver).

e to Mail address of receipt the receiver(message sender).

e date Time Stamp. Recorded in a format “YYYYMMDDttmmss”

e expire Expiration time. This time corresponds to SID.

e abstAbstract of message received at the previous step.

e c-rcpt Encrypted receipt. This element is written in Base64 format. This ele-
ment corresponds 6, (R).

e key The format type and length of secret key used to encrypt receipt. Each is
described in attributes of element.

e protocol Appoint the protocol type which is same to the one sender appointed
used simultaneous secret exchange. (At the moment, only “okamoto” is sup-
ported.)

e envelopeTransformed secret key in Okamoto’s protocol, which works as a ver-
ification bits in secret exchange. Correspond¥.to

e param Parameters used to determine one-way permutation in Okamoto’s pro-
tocol. This corresponds t#y,.

Contents of Receipt

<rcpt>
<from>Bob</from>

20

© o N o O N w

10
11
12
13
14
15
16
17
18
19

o g M W N P

<to>Alice</to>
<date>20011101184732</date>
<commitment>"I agree I received the message
in the envelope."</commitment>

<c-msg>(encrypt message received at step (1))</c-msg>
<envelope>(transformed secret key)</envelope>
<params>

<param num="1">(parameter 1)</param>
<param num="2">(parameter 2)</param>
<param num="3">(parameter 3)</param>

<param num="

1
2
3

<param num="4">(parameter 4)</param>
5">(parameter 5)</param>
6

<param num="6">(parameter 6)</param>
<param num="64">(parameter64)</param>
</params>

</rcpt>

e from Name of receipt sender.

e to Name of receipt receiver.

e date Time Stamp. Recorded in a format “YYYYMMDDttmmss.”

e commitment A commitment that the receiver certainly received the message
encrypted with the secret key, which was transformed by the following parame-
ters.

e envelopeTransformed secret key in Okamoto’s protocol received at Step(1).

e c-msgEncrypted message received at Step(1). This element is written in Base64
format. This element correspondskgQ (M).

e param Parameters received at Step(1).

Meesage for Each Step of Secret Exchange

<step>
<mid>83f93ac93dabd342</mid>
<sid>f39aac353d2£f0235</sid>
<value num="2">(transformed secret key at this step)</value>
<prev>(transformed secret key received at the previous step)</prev>
</step>

e mid Unique ID provided for each Certified Mail.

¢ sid The unique id of executing certified email exchange.

¢ value The transformed secret key at each of transformation. The step number is
described as an attribute.

21

AW NP

o g » W N P

o g M W N B

e prev The transformed secret key received at the previous step. If it is the first

step, this element is sent with empty.

Acknowlegement of Ending of the Session

<s-end>
<mid>83f93ac93dabd342</mid>
<sid>f39aac353d2£f0235</sid>
</s-end>

e mid Unique ID provided of the Certified Mail.
e sid Unique ID provided for each gradual secret exchange session.

Cetrtification from Receiver to Sender

<confirm>
<mid>83f93ac93dabd342</mid>
<sid>f39aac353d2£f0235</sid>
<date>20011101184732</date>
<m-dgst>(digest of received message)<m-dgst>

</confirm>

e mid Unique ID provided to the Certified Mail.

e date Time stamp.

e m-dgstDigest of received message. This digest is generate by applying SHA-1
to received message. Described in base64.

Response to Certification

<confirm_rep>
<mid>83f93ac93dabd342</mid>
<date>20011101184732</date>
<m-dgst>(digest)<m-dgst>
<reply>ok</reply>

</confirm_rep>

e mid Unique ID provided to the Certified Mail.
e date Time Stamp. Recorded in a format “YYYYMMDDttmmss.”
e m-dgst The message digest received at the previous step.

e reply Reply the message digest was correct or not with “ok” or “no.

Session End Request from message receiver to sender

22

© o N o g M w N P

PR R
N P O

a o~ w N P

<endreq>
<mid>83f93ac93dabd342</mid>
</endreq>

e mid Unique ID provided to the Certified Mail.

Reply to Session End Request

<endrep>
<mid>83f93ac93dabd342</mid>
</endrep>

¢ mid Unique ID provided to the Certified Malil.

Error Report

<error>
<mid>83f93ac93dabd342</mid>
<code>400</code>
<target>
<confirm>
<mid>83f93ac93dabd342</mid>
<sid>f39aac353d2f0235</sid>
<date>20011101184732</date>
<m-dgst>(digest of received message)<m-dgst>
</confirm>
</target>

</error>

e mid Mail ID in which the error occurred.

e codeError codes. We made error list at Section 3.5.

e target Send back the transaction XMhe received at last.
Request to Restart Session

<restart>
<mid>83f93ac93dabd342</mid>
<sid>43eaf9bd220alc88</sid>
<expire>20011103204732</expire>
</restart>

e mid Unique ID provided to the Certified Mail. When a party want to restart,
MID is carried over to new secret exchange session.

¢ sid When the secret exchange session restarts, each party generate SID again
correspond to new session.

23

a o~ W N P

e expire Expiration time. This time corresponds to SID. Expiration time is gen-
erated again along with regenerating the SID.
Reply to Restart Request

<restart_rep>
<mid>83f93ac93dabd342</mid>
<sid>a0@fe8dbb8ea334dc</sid>
<expire>20011103204812</expire>
</restart_rep>

e mid Unique ID provided to the Certified Mail. When a party want to restart,
MID is carried over to new secret exchange session.

¢ sid When the secret exchange session restarts, each party generate SID again
correspond to new session.

e expire Expiration time. This time corresponds to SID. Expiration time is gen-
erated again along with regenerating the SID.

e mid Appoint the MID to terminate.

24

Chapter 5 Consideration and Improvement

5.1 Consideration
Now, we consider how this system resolves the problems we assumed at the previous
section. Recent that, we made the following assumptions.
1. Alice sent a message and Bob received it. But Bob claims that he did not receive
it.
2. Alice did not send a message to Bob. But she claims that she has certainly sent
it to Bob.
3. Alice sent a fake message to Bob, and Bob received it. But Alice claims that she
sent the genuine one to Bob.

For each problem, users can deal with them as follows with this system.

1. Alice can protest by showing Bob’s receipt, which includes the commitment.
The receipt all together includes the transformed secret key and parameters Al-
ice sent. So Alice can claim that the receipt perfectly corresponds to the message
she sent. In case Bob had sent an invalid receipt, Alice should show whole the
communication log, and she can represent that the contents of the reéeipt di
from the abstract he received.

2. Aslong as both parties agree to use this system, Bob requires Alice to show his
receipt. If she did not send the mail, she cannot get the decrypted receipt.

3. Inthis case, Bob can allege thefdrence between abstract and the message he

received by showing the first mail and following secret exchange.

25

Chapter 6 Reducing the Number of Sessions

Although we selected Okamoto and Ohta’s protocol for théiciency, over 100
transactions are still needed to exchange 64 bits of secret keys. Thus we want to
reduce the number of sessions to reduce the time needed to complete procedures.
Considering how to deal with this problem, we compared the following three ap-
proaches.

1. Reduce the length of key bits.

2. After some bits have been sent, send the whole bits leftover at once.

3. After some bits have been sent, double the number of bits sent at once in each
round.

The first method is very simple, but has a problem in the view point of the cryp-
tographic strength apparently. The strength of a key is basically exponential in the
key length. So we cannot adopt this approach to reduce the number of transactions.

The second method is safer than the first, but this method ignores the fairness
discussed in Section 2.2.4. We need to care about the case in which one party has
sent whole the remaining bits, but the other receives it without sending the remaining
ones. In this case the fairness between two parties are broken apparently. So we
cannot adopt this approach, either.

In the last method, they double the number of bits they send at the next round
every time. the following is an example: Alice and Bob in turn send each other the
first 32 bits of their 64 bits secret keys. They send 1 bit at the 33rd step, 1 bit at the
34th step, 2 bits at the 35th step, 4 bits at the 36th step, and so on. Each party can
send the last 32 bits within 6 steps. More precisely, each party sends some amount of
bits at once at the first step, where this amount depends on th cryptographic strength.
After that, each party sends bits by doubling the number. As an extreme case, if we
start doubling from the first step, each party sends ldts at thei th step. In this
casen bits are exchanged withi@(log n) steps.

Suppose that at some moment during the procedure, Alice and Bob have received
some amount of bits, and they need to constrandtg of time, respectively, to cal-
culate the true message by, for example, an exhaustive search. Although the fairness
is originally defined as the maximumatio of ty, andtg and is always constant in

26

1.8e+038 T T T T
Our Method
Conventional Method — -

1.6e+038

1.4e+038

1.2e+038

1e+038

8e+037

remaining time to calculate

6e+037

4e+037

2e+037

6 8 10
steps

Figure 4: The decreasing offterences

Okamoto and Ohta’s protocol, it is also natural to define it as the maxidigier-
encebetween them. It is not hard to see that in our last method, this quantity is
maximum at the first step and decreases as the protocol proceeds as we show in Fig.
4, namely, the fairness is the same as the case of bit-by-bit protocol from the view-
point of the worst case analysis. Nevertheless, we have an advantage of reducing
the number of rounds exponentially. Hence, we decide to use the last method in our

designs described later.

27

Chapter 7 Conclusion

We designed a certified e-mail exchange system based on simultaneous secret ex-
change protocol under the following assumptions.
e Both Alice (the sender) and Bob (the receiver) agree to exchange her message
and his receipt. They only want to avoid unfaffars.
e E-mail is the only method Alice and Bob can exchange messages.
The former is needed to limit the problems, as ‘selective receipt’ cannot be prevented
fundamentally without TTPs. We made the latter assumption to guarantee the reach-
ability considering the real environments with many barriers e.g. firewalls.
The problems that our system should resolve are listed as follows.
1. Alice sent a message and Bob received it. But Bob claims that he did not receive
it.
2. Alice did not send a message to Bob. But she claims that she has certainly sent
it to Bob.
3. Alice sent a fake message to Bob, and Bob received it. But Alice claims that she

sent the genuine one to Bob.

At first, we design the entire procedure mainly based on Okamoto and Ohta’s
simultaneous secret exchange protocols, adding processes to confirm the contents
each party have received in Section 3.1. We selected their protocols because of its
efficiency, as we discussed in Section 2.2.5.

In this system, we want to realize good properties often referred in certified mail
researches with TTPs, for example ‘send-and-forget’. So we assume two players, an
MTA (Mail Transfer Agent, e.g. SMTP Server) and an MUA (Mail User Agent
e.g. the client the sender or the receiver use) in each party. This approach enabled
the system to realize ‘send-and-forget’ for the sender when the sender can control an
MTA, or exchange messages for the sender with the receiver directly otherwise. We
discussed this problem in Section 3.2.

Considering from the assumptions, we adopt e-mails to the method of exchanging
transactions. So we designed each transaction formats on XML and attach it to e-
mails in Section 4.1.

28

We then considered how this system works in Section 5.1. Although we con-
firmed that this system actually solves the problems we assumed, it seems to take
rather long time in some situations. This is because there are over 100 transactions
between Alice and Bob until they complete the entire sessions, so the delay of e-mails
are greatly amplified.

To resolve this problem, we propose a key sending method in Section Chapter 6.
The ‘fairness’ is defined as the maximum of th&elience of time needed to calculate
the remaining bits of keys at any time, where th&alence is taken between two
players. This amount is ‘at most twice’ in a normal simultaneous secret exchange
protocols, while it is ‘at most constantftkrence’ in our method.

29

Acknowledgments

I would like to give my sincere thankfulness to my supervisor, Prof. Yasuo Okabe.
He gave me correct guidance, showed me a appropriate direction, and encouraged.
Because of his guidance, | was able to work this research from a simple interest. |
am extremely grateful to Assoc Prof. Shuichi Miyazaki for empathic guiding, sug-
gestion and coaching thesis. | also thanks to Assoc Prof. Motonori Nakamura for
good advices. | would also like to thank Ms. Kazumi Sakai afiid® stéf members
for proper clerical jobs.

| wish to express my sincere gratitude to all the members of Okabe Laboratory.
Especially My peer Mr. Keiji Maekawa taught me many useful and interesting topics
and being in friendly rivalry with me. Mr. Shin Maruyama gave me an opportunity of
training and social experience. Mr. Koji Kobayashi, Mr. Naoyuki Morimoto greatly
helps my questions and researches. And | am do thank the all other members in this
laboratory.

| also want to thank to Prof. Okamoto and Prof. Ohta. This research work is
greatly based on their researches and | was helped much by their books.

Finally I want to be thankful to my mother and my family about having always
supported me, and at last my father in heaven, who encouraged me always.

30

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Fajman, R.: An extensible message format for message disposition notifica-
tions, RFC 2298 (Proposed Standard) (1998). Obsoleted by RFC 3798.
ISO/IEC: ISO 13888-1 IT security techniques Non-repudiation Part 1: General
(1997).

Zhou, J. and Gollmann, D.: Observations on non-repudiatitmoc. ASI-
ACRYPT pp. 133-144 (1996).

Asokan, N., Schunter, M. and Waidner, M.: Optimistic protocols for fair ex-
changeProceedings of the 4th ACM conference on Computer and communi-
cations securityACM New York, NY, USA, pp. 7-17 (1997).

Imamoto, K. and Sakurai, K.: A scalable on-line certified E-mail protocol using
password authenticatiodyISA2002pp. 319-331 (2002).

Ben-Or, M., Goldreich, O., Micali, S. and Rivest, R. L.: A fair protocol for
signing contractslEEE Transactions on Information Theoryol. 36, No. 1,

pp. 40—46 (1990).

Rabin, M.: How to exchange secrets by oblivious transfer, Technical re-
port, Technical Report TR-81, Harvard Aiken Computation Laboratory, 1981
(1981).

Luby, M., Micali, S. and Rack, C.: How to simultaneously exchange a secret
bit by flipping a symmetrically-biased coiRyoc. FOCS pp. 11-21 (1983).

Blum, M.: How to exchange (secret) keySCM Trans. Comput. Syshol. 1,

No. 2, pp. 175-193 (1983).

Cleve, R.: Controlled gradual disclosure schemes for random bits and their
applicationsProc. CRYPTQpp. 573-588 (1989).

Even, Shimon, O. G. and Lempel, A.: A randomized protocol for signing con-
tracts,Communications of the ACMWoI. 28, No. 6, pp. 637-647 (1985).
Okamoto, T. and Ohta, K.: How to simultaneously exchange secrets by gen-
eral assumptiongroceedings of the 2nd ACM Conference on Computer and
communications securitpp. 184-192 (1994).

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and
Berners-Lee, T.: Hypertext Transfer Protocol — HTT.R, RFC 2616 (Draft

31

Standard) (1999). Updated by RFC 2817.

[14] Wood, D.:Programming Internet EmailO’REILLY (1999).

[15] SIProp ProjegiNoritsuna Imamura, Hirotaka Nisato, T. S. M. Private Im-
plementation ProtocoMainichi Communications (2007).

32

