<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>胃・膵におけるペプチド性医薬品の分布・代謝動態に関する研究 全文 dissertation</td>
</tr>
<tr>
<td>Author(s)</td>
<td>岩川 精吾</td>
</tr>
<tr>
<td>Citation</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.14989/doctor.r5783</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>
胃、膣におけるペプチド性医薬品の分布、代謝動態に関する研究

岩川精吾
胃, 腸におけるペプチド性医薬品の
分布, 代謝動態に関する研究

岩川精吾
総論の部
緒 言.. 1
第1章 薬物の胃, 腸内挙動解析を目的とする臓器灌流法の確立 2
 第1節 ラット摘出胃灌流法の検討 .. 3
 (1) 灌流実験法 .. 3
 (2) 酸分泌制御薬物に対する反応性 5
 (3) 考 察 .. 10
第2節 ラット摘出脾灌流法の検討 .. 12
 (1) 灌流実験法 .. 12
 (2) 腎外分泌制御薬物に対する反応性 14
 (3) 考 察 .. 16
第2章 胃におけるsecretin, elcatonin, aprotininの挙動 17
 第1節 secretin, elcatonin, aprotininの胃内代謝 18
 (1) secretinの代謝 .. 19
 (2) elcatoninの代謝 ... 19
 (3) aprotininの代謝 ... 21
 (4) 考 察 .. 26
第2節 secretin, elcatonin, aprotininの胃内分布 27
 (1) secretinの分布 .. 27
 (2) elcatoninの分布 ... 29
 (3) aprotininの分布 ... 30
 (4) 考 察 .. 31
第3章 腎におけるsecretin, elcatonin, aprotininの挙動 33
 第1節 secretin, elcatonin, aprotininの腎内代謝 33
 (1) secretinの代謝 .. 33
 (2) elcatoninの代謝 ... 36
 (3) aprotininの代謝 ... 42
 (4) 考 察 .. 45
第2節 secretin, elcatonin, aprotininの膵内分布 46
(1) secretinの分布 46
(2) elcatoninの分布 47
(3) aprotininの分布 49
(4) 考察 50
第4章 腸，膵におけるsecretinの特異的結合 51
第1節 secretinの胃における特異的結合 51
(1) 胃灌流法による結合特性の解析 51
(2) 細胞膜分画を用いた結合特性の解析 60
(3) 考察 68
第2節 secretinの膵における特異的結合 69
(1) 腸灌流法による結合特性の解析 71
(2) 細胞膜分画を用いた結合特性の解析 77
(3) 考察 85
結論 87
謝辞 90
実験の部 91
第1章 実験の部 91
第2章 実験の部 94
第3章 実験の部 96
第4章 実験の部 98
引用文献 102
緒 言

薬物の体内動態は薬効と密接に関連しており、それらを考慮した薬物治療が普及しつつある。特に標的組織における薬物挙動を正確に把握することは有効、安全な薬物療法を設定する上で重要な指針となる。

微量で作用を発現する生理活性ペプチドの臨床適用が近年着実に増大し、診断並びに治療薬としてペプチド性医薬品は重要な役割を果たしている。その体内動態に関する知見も集積しつつあり、体内から速やかに消失することがその挙動特性として認識されている。またその代謝は、蛋白分解酵素によるペプチド結合の解離が主要な不活性化過程とされ、従来の薬物代謝酵素の関与した酸化、鎖合反応等に基づくものと異なることが知られている。しかし肝、腎以外の臓器、組織におけるペプチド性医薬品の分布、代謝動態については不明の点が多い。一方、よりミクロな観点から単離細胞や細胞分画成分を用いた活性ペプチドの receptor（受容体）に関する検討が行われている。最近このこの分野における研究の進展はめざましく、これまで概念的でしかなかった receptorが実体として把握されるまでになっており、作用発現機序の解明に有用な情報を与えていている。

胃と膵は食餌の消化、吸収の他、各種ペプチドホルモンの分泌を行い、生体の恒常性維持に重要な位置を占める臓器である。これら消化器は近密な連携を保ちながらその機能を発揮しており、各種のペプチド性医薬品はこれら臓器の疾患時に診断、治療に活用されている。しかし胃、膵でのペプチド性医薬品の分布、代謝像は未だ明確となっていない。

そこで著者は臓器レベルでの薬物挙動を追跡する方法として、他の臓器、組織からの影響を無視し得る摘出臓器灌流法を改良して導入し、主にその方法により胃、膵におけるペプチド性医薬品の挙動を解析した。すなわち構造的特徴を有する secretin, elcatonin ([Asu] eel calcitonin), aprotininをモデルペプチドとして選び、それらの標的臓器である胃、膵でのこれらペプチドの分布、代謝像を生物薬剤学的観点から比較解析すると共に secretinでは活性発現と動態との関連を追求した。その結果、ペプチド性医薬品の臓器内動態及び薬効発現機序の解明上有用な基礎的知見を得ることができた。

以下、得られた結果を4章にあたり論述する。
第１章 薬物の胃、腸内挙動解析を目的とする臓器灌流法の確立

胃と腸は腹腔内で近接した位置を占め、それら相互の内、外分泌両面での連携は摂取された食餌の消化、吸収に重要な役割を担っている。またこれら器官の変調は消化性潰瘍等の疾患の要因となり、消化器臓器間の点からも、胃、腸間の機能面での関連性は近年注目を集めている。しかし薬物のこれら器官への分布、代謝動態を検討した報告は少なく、薬物療法上からもその解明が望まれている。

胃における薬物挙動は胃粘膜からの薬物吸収機構に関する報告が主で、胃内での薬物動態を研究した報文は少なく、特に体内から速やかに消失するペンチド性医薬品での検討は乏しい。また腸内への薬物の分布特性、腸液への移行性は近年Hori, Okumuraらによりサルファ剤、経口糖尿病薬等の低分子量薬物について検討がなされ、薬物の脂溶性、分子容等の物理化学的因子が、その分布、腸液への移行性を支配していることが明らかにされた。しかし未だペンチドホルモン等の高分子量薬物については不明の点が多い。

薬物の臓器内動態を追跡する方法としては、
(1) in vivo で薬物を投与後、臓器内濃度変化を観察する方法。
(2) 腸器を摘出後、in vitro でそのスライス、単離細胞、細胞分画成分への薬物の移行性、結合性を検討する方法。
(3) 臓器灌流法により薬物の灌流液中及び組織中濃度変化を観察する方法。

などに分類できるが、(1)の生体全体を用いる方法では他の各種臓器、組織からの影響を除外することが困難である。また(2)の in vitro 系では組織機能を充分維持できないと同時に薬物分布的方向性が考慮すべき問題点として残る。そこで(3)の臓器灌流法、薬物の特定臓器への分布、代謝特性を解析する手段として有用であると考えられるが、摘出し灌流することによる臓器の生理機能への障害が問題となる。従って第１章では摘出実験系で最もその反応性が低下しやすいとされる外分泌能に着目し、灌流実験系における胃酸分泌能、腸液分泌能への各種薬物の影響を検討することにより、灌流胃、腸の生理機能を検討した。
第1節 ラット摘出胃灌流法の検討

胃灌流法はこれまで内分泌機序の解明に用いられてきたが、その灌流系の主な問題点としては胃の主要な機能である酸分泌能を欠損していることであった。酸分泌能を保持した灌流法はこれまでに供血動物を還流系内に組み込んだ方法やindomethacin等の薬物で前処置後灌流を実施する方法が報告されているが、薬物の胃内動態を解析する上で供血動物や前処置薬物の影響を考慮しなければならず、これらの灌流法は不適当と言える。近年Van Huis and Kramerはfluorocarbonを酸素供給体として灌流液に加え、ラット胃を灌流した場合、pilocarpine投与で著明な酸分泌の亢進を認めたが、pentagastrin、histamineに対する反応性は乏しいことを報告している。
そこで各種の酸分泌刺激薬物に対しても反応し得る酸分泌能を保持した灌流法の確立を試みた。

(1) 灌流実験法
薬物の酸分泌への影響を検討する方法として、Ghosh and Schildのラット胃内容灌流法が良好な感受性、再現性を有し、“Schild's rat”として紹用されている。そこでそのin vivo実験法に対応するin vitro胃灌流法の開発を目指した。
体重約200gのWistar系雄性ラットを15〜20時間絶食後灌流実験に供した。Fig.1に示すように腹部大動脈よりカニューレ挿入し、腹腔動脈を経て左、右胃動脈に灌流液を0.7ml/minの一定速度で注入、門脈より流出させた。
また胃腔内には食道よりカニューレ挿入し、クエン酸一リン酸緩衝液（pH6.6）を1ml/minの流速で注入した。管腔側灌流液のpHを連続的に記録することにより酸分泌の経時変動を観察した。血管及び管腔とも一回灌流により検討し、灌流温度は37℃とした。
酸分泌細胞である壁細胞は低酸素状態に対して脆弱で、速やかにその酸分泌能が低下することが知られている。そこでまず血管灌流液組成を設定する目的でhistamineの刺激による酸分泌に及ぼす酸素の影響を検討した。その際肝灌流等数多くの臓器灌流に適用されているKrebs-Ringer重炭酸緩衝液（KRBB）を基本組成として用い、検討は95%O₂-5%CO₂混合ガスを通気したKRBB。
Fig. 1. Perfusion System of Isolated Rat Stomach

1; coeliac artery, 2; superior mesenteric artery,
3; renal artery, 4; superior suprarenal artery,
5; portal vein, 6; hepatic artery, 7; bile duct.

それに牛赤血球 25%を加え同様に混合ガスを通気した灌流液及びこれをN₂ガス
で置換した灌流液の三種を用いて行った。その結果、Fig.2に示すようにKRBB灌
流時にはある程度の基礎分泌は認められるもののhistamineによる分泌亢進は得
られず、牛赤血球を加え混合ガスを通気したKRBBを用いた場合のみhistamine
刺激による酸分泌の促進が観察された。従って酸分泌時における酸素供給の重
要性?がこの灌流系においても明らかとなったため、血管灌流液として牛赤血
球 25%を加え、95%O₂ – 5%CO₂混合ガスで通気したKRBBを以下の検討
で使用した。
Fig. 2. Effect of Oxygen on Acid Secretion in Isolated Perfused Rat Stomach
A; N₂-saturated dextran-KRBB containing 25% bovine erythrocytes, B; O₂-saturated dextran-KRBB solution, C; O₂-saturated dextran-KRBB containing 25% bovine erythrocytes.

(2) 酸分泌制御薬物に対する反応性

この灌流系における外分泌能を確かめるため各種の酸分泌刺激薬物を灌流し、その際の酸分泌動態を検討した。すなわち histamine, pilocarpine, cyclic AMP, dibutyryl cyclic AMP, theophylline を各々 10 分間血管内に灌流し、30 分間の酸分泌量を測定した。Table I）。

これら刺激薬物灌流により酸分泌は著明に増大し、histamine, cyclic AMP, dibutyryl cyclic AMP では濃度に依存した酸分泌の亢進が観察された。cyclic AMP の細胞膜透過性は dibutyryl cyclic AMP に比べ劣ることが
Table I. Stimulation of Acid Secretion by Various Stimulants in Isolated Perfused Rat Stomach

<table>
<thead>
<tr>
<th>Stimulant</th>
<th>Concentration</th>
<th>Acid output (μeq/30 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histamine</td>
<td>24 μM</td>
<td>0.95 ± 0.08<sup>a)</sup></td>
</tr>
<tr>
<td></td>
<td>33 μM</td>
<td>2.90 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>65 μM</td>
<td>4.44 ± 0.74</td>
</tr>
<tr>
<td></td>
<td>130 μM</td>
<td>4.29 ± 0.53</td>
</tr>
<tr>
<td>Pilocarpine</td>
<td>2.5 μM</td>
<td>0.38 ± 0.21</td>
</tr>
<tr>
<td></td>
<td>5.0 μM</td>
<td>0.74 ± 0.22</td>
</tr>
<tr>
<td>Cyclic AMP</td>
<td>1.0 mM</td>
<td>0.30 ± 0.07</td>
</tr>
<tr>
<td></td>
<td>2.0 mM</td>
<td>0.67 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>4.0 mM</td>
<td>2.53 ± 0.84</td>
</tr>
<tr>
<td>Dibutyryl cAMP</td>
<td>0.1 mM</td>
<td>1.00 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>0.2 mM</td>
<td>4.77 ± 0.76</td>
</tr>
<tr>
<td></td>
<td>0.4 mM</td>
<td>4.63 ± 1.47</td>
</tr>
<tr>
<td>Theophylline</td>
<td>5.6 mM</td>
<td>0.78 ± 0.30</td>
</tr>
</tbody>
</table>

Perfusion time of stimulant: 10 min.

^a Mean ± S.E. of 3-4 experiments.

報告されており、¹² 本灌流法によっても酸分泌の增大に必要な濃度が cyclic AMP では dibutyryl cyclic AMP より数倍高値を示した。

次に histamine H₂-receptor antagonist である cimetidine の histamine による酸分泌亢進に及ぼす影響を検討したところ、Fig.3 に示すように cimetidine は histamine による酸分泌を可逆的に抑制した。なお同様の結果が同じく histamine H₂-receptor antagonist の metiamide 灌流によっても得ら

—6—
Fig. 3. Effect of Cimetidine on Acid Secretion Induced by Histamine in Isolated Perfused Rat Stomach
A representative of three experiments is shown.

Fig. 4 Aに示すように酸分泌の増大が観察され、tetrabastrinに対する成熟ラットでの反応欠如が成長に伴うgastrin receptorの変動、胃粘膜内pepsin活性の変化等に起因することを推測させた。事実、ラットの胃粘膜中pepsinogen含量が生後17日齢まで成熟レベルの20％程度で一定しているのに対し、18日齢以降急激に上昇し30日齢で成熟ラットと同じレベルに達することをFurihataら13)は報告している。そこで胃粘膜中pepsin活性と酸分泌の関連性を明らかにすべく、pepsinの特異的阻害薬であるpepstatin14)に着目し、その酸分泌に及ぼす影響を検討した。Fig.4 Bは血管灌流中にpepstatin(1μM)を加えtetrabastrinの作用を成熟ラットの胃を用いて検討したものです。pepstatin存在時著明な酸分泌の増
Fig. 4. Effect of Tetragastrin on Acid Secretion in Isolated Stomach

(A) Immature rat (32 g of body weight) stomach was perfused without pepstatin. (B) Adult rat (170 g) stomach was perfused with 1 μM pepstatin. (C) Guinea pig (260 g) stomach was perfused without pepstatin. These data are representative of 3-7 experiments.
大が観察された。この結果はラット胃を灌流する場合，gastrinによる酸分泌が胃粘膜内 pepsinあるいはそれに類似した酵素により左右されることを示唆した。そのため胃粘膜中 pepsinogen 含量がラットより少ないモルモット胃（Table II）を pepstatinを加えない条件下で灌流し，tetragastrin の酸分泌に及ぼす影響を同様に検討した。その結果 tetragastrin 灌流時モルモット胃からの 酸分泌は pepstatin 非存在下においても増大することが認められた（Fig.4 C）。

また pepstatin存在下で histamine，tetragastrin による酸分泌動態を観察したところ，histamine，tetragastrin 共に酸分泌の亢進は迅速であったが，tetragastrinに比して histamine灌流時初期5分間は認むべき増大は得られなかった（Fig.5）。既に James 比は in vivo 実験により histamine に比し，pentagastrin がより速やかに酸分泌を増大させることが報告しており，この結果は彼の観察とも対応する。

さらにそれ自体では酸分泌を刺激しない濃度である10 μMの theophylline を共存させることで tetragastrinに対する酸分泌反応性が顕著に改善し，その反応は gastrin 濃度に依存して増大した（Fig.6）。theophylline は cyclic AMP を分解する phosphodiesterase の阻害薬であると共に adenosine receptor 拮抗薬の働きも有している。胃酸分泌にも adenosine "R" receptor が抑制的に関与していることが明らかにされており，この結果は adenosine receptor が gastrin による酸分泌に介在し，その分泌を調節している可能性を示唆した。

Table II. Pepsinogen Activity in the Gastric Mucosa of Rat and Guinea Pig

<table>
<thead>
<tr>
<th></th>
<th>Pepsinogen activity (μg tyrosine/min/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>Rat</td>
<td>118.0 ± 5.1^a)</td>
</tr>
<tr>
<td>Guinea pig</td>
<td>48.3 ± 4.0</td>
</tr>
</tbody>
</table>

a) Mean ± S.E.
Fig. 5. Effect of Histamine and Tetragastrin on Acid Secretion in Isolated Perfused Stomach of Adult Rat

Histamine (A) or tetragastrin (B) was perfused for 30 min in the presence of 1 μM pepstatin. The results represent the mean ± S.E. of three (histamine) or seven (tetragastrin) experiments after subtracting basal secretion.
Fig. 6. Effect of Tetragastrin on Acid Secretion in Isolated Perfused Rat Stomach

Acid secretion was stimulated by the perfusion of tetragastrin (0.3-30 nM) for 10 min in the presence of 10 μM theophylline. Each point represents the mean value of 3-4 experiments with SEM indicated.
第2節 ラット摘出膵灌流法の検討

前述した胃灌流法に比べ膵灌流法は insulin, glucagon等のホルモン分泌機序の検討に繁栄されている。しかし薬物の膵内挙動を膵灌流法を用いて解析した報告は少なく、特に Okumura が 5) により経口糖尿病薬等の分布特性が報告されているにすぎない。また内分泌能と共に膵の主な生理機能とされる膵液分泌について膵灌流法により検討した報告は乏しい。21) その灌流法も十二指腸の一部も灌流する膵十二指腸灌流法が採られており、ヘプチド性薬品の膵内挙動を正確に把握するには多くの活性ヘプチドの発生部位である十二指腸からの影響を排除することが必要となる。すなわち十二指腸を灌流系より除いた膵灌流法を確立することが必要と考えられた。

そこで従来の Penhos らの膵十二指腸灌流法 18) を改良し、膵と十二指腸間の血管をすべて結紮後灌流を実施し、胃と同様に内分泌機能をその生理機能の指標とし、膵灌流法の確立を目指した。

(1) 灌流実験法

摘出膵灌流法は Grodsky ら 19) によりほぼ完成され、Sussman ら 20) Penhos ら 18) がその改良法を報告している。そこで完全に膵を摘出後灌流を実施する目的で Penhos らの in situ 膵灌流法を基にして改良を行った。

体重約 250 g の Wistar 系雄性ラットを用い、基質的には Penhos らの方法 18) を採用し、膵灌流法と同じく、腹部大動脈よりカニューレを挿入し、灌流液を注入、門脈カニューレより流出させた。膵液採取用カニューレは膵胆管の十二指腸開口部に設置した（Fig.7）。 灌流温度は 37 ℃ とし、一回灌流により灌流液を 2 ml/min の一定速度で注入した。膵と十二指腸間の血管は縫合糸により注意深く結紮し、灌流開始 15 分間の安定期中に灌流液の漏出、浮腫等の認められないことを確認後実験を実施した。灌流液は Krebs-Ringer 重炭酸緩衝液に 5.6mM glucose, 0.5% bovine serum albumin, 4.6% dextran70 を加え、95% O₂ - 5%CO₂ 混合ガスを通気、pH7.4 に調整した溶液を使用した。
Fig. 7. Perfusion System of Isolated Perfused Rat Pancreas

Fig. 8. Effect of Secretin on Pancreatic Juice Flow in Isolated Perfused Rat Pancreas

Pancreatic juice flow was stimulated by the perfusion of secretin (0.06-16 nM) for 5 min.
A: Changes of flow rate induced by the perfusion of secretin. ○: 0.06 nM, □: 0.24 nM, ▲: 1.0 nM, △: 4.0 nM, ■: 16 nM. B: Relationship of secretin concentration and total juice volume for 30 min. Each point represents the mean value of 3-4 experiments. The vertical lines give the SEM.
(2) 腸外分泌制御薬物に対する反応性

腸液分泌を促進するホルモンとして、secretin、pancreozyminの2種のペプチドが知られ、腸外分泌能検査薬として繁用されている。そこで腸灌流時にこれらペプチドを加え、腸液及びamylase分泌の変化を検討した。まずsecretinを5分間灌流した際の腸液分泌動態を観察したところ、secretin灌流時腸液分泌速度の増大が灌流初期より認められ（Fig.8A）、30分間の腸液分泌量もsecretin濃度に依存して増大した（Fig.8B）。

この結果はTachibana22）が報告したsecretin静注時におけるラット腸からの腸液分泌挙動とも類似し、secretinに対する反応性がこの改良した灌流法でも保持されていることを示唆した。

次にpancreozyminを灌流時のamylase分泌動態について検討したところ、Fig.9に示すように腸液分泌の増大とともに腸液中amylase活性がpancreozymin灌流により著明に上昇し、pancreozymin灌流期間中は一定速度で分泌されていることを認めた。またこのamylase分泌に及ぼすcalcitoninの影

Table III. Effect of Elcatonin on Amylase Output Induced by Pancreozymin in Isolated Perfused Rat Pancreas

<table>
<thead>
<tr>
<th></th>
<th>Amylase output (x10³ U/20 min) a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without elcatonin</td>
</tr>
<tr>
<td>0-20 min</td>
<td></td>
</tr>
<tr>
<td>Pancreozymin (50 mU/ml)</td>
<td>4.28 ± 0.66</td>
</tr>
<tr>
<td>+ Elcatonin (7 nM)</td>
<td>4.92 ± 0.86</td>
</tr>
<tr>
<td>+ Elcatonin (35 nM)</td>
<td>4.25 ± 0.70</td>
</tr>
</tbody>
</table>

a) Mean ± S.E. of three experiments
b) Significantly different from pancreozymin alone (20-40 min), p<0.05.
Fig. 9. Effect of Pancreozymin on Pancreatic Juice Flow and Amylase Secretion in Isolated Perfused Rat Pancreas

Pancreatic juice flow and amylase secretion were stimulated by the perfusion of pancreozymin (50 CHR mU/ml; as indicated by open column) during 40 min. Each point represents the mean of three experiments with SEM indicated. □: amylase output, ●: juice flow.

響も[Asu1,7]el calcitonin(elcatonin)を用い追跡したが、従来の報告25）のごとく、amylase分泌がelcatoninにより抑制されることを認める(TableⅢ), calcitoninの脳外分泌抑制作用面からの脳炎治療薬への応用24）を支持する結果が得られた。

以上の結果は、この摘出脳灌流法によっても脳がほぼ生理機能を保っていること、さらに生体内における状態に近い環境下で脳内での薬物挙動が解析可能であることを示している。
(3) 考察

胃灌流法に比べ腺灌流法を用いた報告は数多く認められたが、それらを薬物挙動追跡に適用した報告はOkumuraらの経口糖尿病薬と他の薬物の腺内分布面での相互作用を論じたものが認められるにすぎず、それも腺と共に十二指腸の一部も灌流される方法が採れていた。そこで十二指腸と腺間の血管を絞紗後灌流を実施することで腺のみを灌流し、ペプチド性薬品の挙動解析に及ぼす十二指腸内在性活性ペプチドの影響を除くこととした。この改良法によっても腺の分泌能は保持されており、secretin, pancreozyminに良好な反応性を示すことが認められた。従ってこの摘出腺灌流法は薬物の腺内動態解析に有用な系であると考えられ、前記の胃灌流法と共にペプチド性薬品の胃、腺内での代謝および分布特性について、主にこの腺器灌流法により以下の三章で検討した。
第2章 胃におけるsecretin, elcatonin, aprotininの挙動

胃における薬物動態の研究にはこれまで主に胃を吸収器官としてとらえものが多く、低分子量薬物の場合、薬物の脂溶性、解離度などの物理化学的性質が胃上皮からの吸収特性や血液から胃への移行特性を支配していると考えられてきた。3) しかし薬物の分布、代謝臓器としての胃の位置づけは未だ不明確で、特にベプチド性医薬品の胃内挙動は検討がなされていない。そこで胃、腸を主な標的臓器とし、しかも構造的特徴を有する三種のペプチド、secretin, elcatonin, aprotininをモデル薬物として選び、胃内におけるこれらペプチド性医薬品の分布、代謝特性を先に確立したラット摘出胃灌流法により検討した。

Fig.10にそれぞれのアミノ酸配列を示す。secretinは27個のアミノ酸よりなる直鎖状の塩基性ペプチドで、主に十二指腸粘膜より産生され、胃に対し酸

His-Ser-Asp-Gly-Thr-Phe-Thr-Ser-Glu-Leu-Ser-Arg-Leu-Arg-Asp-Ser-Ala-Arg-Leu-Gln-
Arg-Leu-Leu-Gln-Gly-Leu-Val-NH₂

A. Secretin (porcine)

CH₂—CH₂—CH₂

CONH-Ser-Asn-Leu-Ser-Thr-NHCH₂CO-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu-His-Lys-Leu-
Gln-Tyr-Pro-Arg-Thr-Asp-Val-Gly-Ala-Gly-Thr-Pro-NH₂

B. Elcatonin ([Asu¹⁷]eel calcitonin)

Arg-Pro-Asp-Phe-Cys-Leu-Glu-Pro-Pro-Tyr-Thr-Gly-Pro-Cys-Lys-Ala-Arg-Ile-Ile-Arg-
Tyr-Phe-Tyr-Asn-Ala-Lys-Ala-Gly-Leu-Cys-Gln-Thr-Phe-Val-Tyr-Gly-Gly-Cys-Arg-Ala-
Lys-Arg-Asn-Asp-Phe-Lys-Ser-Ala-Glu-Asp-Cys-Met-Arg-Thr-Cys-Gly-Gly-Ala

C. Aprotinin

Fig. 10. Amino Acid Sequence of Secretin, Elcatonin, and Aprotinin

-17-
分泌、gastrin分泌を抑制するenterogastrone活性を、胃に対しては腸液、重炭酸イオンの分泌を促進する作用を持つ。最近はこれらの作用に着目し、胃外分泌機能検査の他に、十二指腸潰瘍治療にも適応されている。25）

calcitoninは甲状腺（魚類では鰭後腺）より分泌されカルシウム代謝を調節するホルモンで、N末端部の1-7位がdisulfide結合により環状構造を形成している。このペプチドの血清カルシウム濃度低下作用を利用し、高カルシウム血症治療に用いられている他、gastrinおよび胃酸分泌の抑制作用を利用した消化性潰瘍治療への応用も注目されている。26）また近年ブナギcalcitoninの誘導体、[Asu1,7]eel calcitonin(elcatonin)が合成されその高活性および安定性により有用なcalcitonin誘導体として注目されている。このペプチドはブナギcalcitoninのN末端部のdisulfide結合がethylene結合に置換されている（Fig.10B）。
aprotininはtrypsin、kallikrein等のserine proteaseと強固なcomplexを形成し、それら酵素の活性を阻害する作用を持ち、急性肺炎、ショック等に適用されている。このペプチドはその分子内に3個のdisulfide結合を持ち、球状構造を保っているため、各種の蛋白分解酵素の作用を受け難いと報告されている。27）

これらペプチドの胃内挙動の追跡は125I標識ペプチド灌流時の流出液中および組織中の放射活性を測定するトレーサー法によりともにゲル法によりペプチド分子の存在形態を検討した。またradioimmunoassayによる検討も合わせて行った。

第1節 secretin、elcatonin、aprotininの胃内代謝

ペプチドホルモン等高分子量の活性ペプチドの体内挙動に関する研究は、ペプチドを5H、125I、131Iなどで標識後投与し、その放射活性の推移を観察するトレーサー法とBerson and Yalow28）により開発されたradioimmunoassayにより追跡する方法が採らわれていた。トレーサー法は錐敏な感度を有し、微量で活性を発揮するペプチド性医薬品には有用である。しかしペプチドの体内での代謝性を考慮すると、放射活性測定のみによる結果からペプチドの挙動を推察することはできないので、ゲル法により分離定量し検討を行った。また
radioimmunoassayによる方法は抗体の抗原識別性が問題となり、ペプチド本体を測定しているか否かが結果を解析する上で重要となってくる。従ってradio-immunoassayによる検討は先のトレーサー法による結果と対照しつつその解析を行った。

(1) secretinの代謝

secretinは典型的な不安定ペプチドであることが報告され、その血中半減期もヒトで2分と短く、筋肉、脳、腎等の組織、臓器により代謝されると報告されている。secretinはその分子内にtyrosine残基を含まないため、125I標識体の作成は困難とされていた。そこで、脳液分泌促進作用を有し、secretin抗血清にsecretinと同一の結合能を示す（Tyr1）secretin32の125I標識体をsecretinのトレーサーとして使用し、その胃内動態を検討した。

胃に125I-（Tyr1）secretin（0.1nM）を10分間灌流し、門脈流出液と組織抽出液をSephadex G-25を用いるゲル通過法により分析した際の溶出パターンをFig.11に示す。門脈流出液、組織抽出液ともに低分子分画に放射活性の増大が観察され、門脈流出液中の未変化体分画の割合は54.0±0.6%（mean±S.E.）に、組織抽出液中では15.1±0.9%に低下していた。

次に非標識secretinを灌流し、門脈中に出現するimmunoreactive secretinを測定したところ、その濃度は速やかに平衡に達したが、平衡後の濃度は灌流液よりも約40%低値を示した（Fig.12）。

以上の結果よりsecretinは胃内を通じて絶えず代謝されていることが判明し、体内各部位でのsecretin代謝が、その血中消失速度の大きい原因となっているものと考えられた。

(2) elcatoninの代謝

calcitoninは動物種によりそのアミノ酸配列が異なり、魚類のcalcitoninは哺乳類のcalcitoninに比べ強力な血清カルシウム低下作用を持つことが知られている。その高活性には魚類calcitoninの生体内での安定性が一部寄与しているとの報告もある。1) eel calcitoninの誘導ペプチド、（Asu17）eel calcit-
Fig. 11. Gel Filtration Profiles of Effluent and Tissue Extract from 125I-[Tyr1]secretin Perfusion

Samples taken 10 min after the beginning of the perfusion of 125I-[Tyr1]secretin were subjected to gel filtration on a 1.0 x 70 cm Sephadex G-25 column. The broken line represents the gel filtration profile of the standard secretin. A, effluent; B, tissue extract of stomach. Vo, void volume; Vt, column volume.
Fig. 12. Appearance of Immunoreactive Secretin in the Effluent from the Perfused Stomach during the Infusion of Secretin (70 pM)
Each point represents the mean ± S.E. of three experiments.

assayにより測定した結果、先のsecretin灌流時と同様にその流出液中濃度は
灌流液濃度よりも約30％低い値で平衡となった。（Fig.14）。

これらの結果はelcatoninも胃内を通過する際、絶えず一部が代謝されている
ことを示唆したが、その割合はsecretinよりもやや小さいことが明らかとなっ
た。

(3) aprotininの代謝

蛋白分解酵素阻害ペプチドのaprotininは腎に集積することが知られており、
34)その血中消失はヒトで2相性を示し、各々の半減期が0.7時間と7時間であ
Fig. 13. Gel Filtration Profiles of Effluent and Tissue Extract from ^{125}I-Elcatonin Perfusion

Samples taken 10 min after the beginning of the perfusion of ^{125}I-elcatonin were subjected to gel filtration on a 1.0 x 70 cm Sephadex G-25 column. The broken line represents the gel filtration profile of the standard elcatonin. A, effluent; B, tissue extract of stomach. Vo, void volume; Vt, column volume.
Fig. 14. Appearance of Immunoreactive Elcatonin in the Effluent from the Perfused Stomach during the Infusion of Elcatonin (0.3 nM)

Each point represents the mean ± S.E. of three experiments.

修飾体の酵素活性阻害の指標として検討した。その結果、未修飾 aprotinin の 125I 標識体は 92 %以上が trypsin と結合したのに対し、125I-還元 aprotinin、
125I-(S-carboxamidomethyl)-aprotinin では各自 30、62 %が trypsin と
結合するにとどまった。この結果は Vincent and Lazdunski の報告とも対応
し、分子内 disulfide 結合が aprotinin の酵素阻害活性に大きく寄与しているこ
とを示している。

ゲル滲過法により 125I-aprotinin の胃内代謝を検討したところ、Fig.15 に
示すように門脈流出液、組織抽出液共に放射活性の大部分は未変化体分画に溶
出された。

一方、還元 aprotinin の 125I 標識体を灌流した際には未変化体の割合は著明
に減少し、高分子量分画中放射活性が増大した（Fig.16AB, Table IV）。

-23-
Fig. 15. Gel Filtration Profiles of Effluent and Tissue Extract from 125I-Aprotinin Perfusion

Samples taken 10 min after the beginning of the perfusion of 125I-aprotinin were subjected to gel filtration on 1.5 x 90 cm Toyopearl HW-55 column. The broken line represents the gel filtration profile of the standard aprotinin. A, effluent; B, tissue extract of stomach.

また還元 aprotinin の SH 基を carboxamidomethyl 化した 125I 標識体を灌流した場合には低分子代謝物の顕著な増大を認めた（Fig. 16 CD, Table II）。

以上の結果は、secretin, elcatonin に比べ aprotinin は胃内で代謝をうけにくいこと、またその胃内安定性にその分子内 disulfide 結合が寄与していることを示している。さらに disulfide 結合修飾体が容易に代謝されたことから、分子内 disulfide 結合を持つ insulin の代謝に重要な glutathione-insulin transhydrogenase38類似の disulfide interchange enzyme が aprotinin 代謝の初期段階で介在しているものと予測された。
Fig. 16. Gel Filtration Profiles of Effluents and Tissue Extracts from 125I-Reduced Aprotinin (A,B) and 125I-[S-carboxamidomethyl]Aprotinin (C,D) Perfusion

Samples taken 10 min after the beginning of the perfusion of 125I-modified aprotinin were subjected to gel filtration on 1.5 x 90 cm Toyopearl HW-55 column. The broken line represents the gel filtration profiles of the tracer of modified aprotinin. A, C, effluent; B, D, tissue extract of stomach.
Table IV. Effect of the Modification of Disulfide Bonds on the Metabolism of 125I-Aprotinin in the Perfused Stomach

<table>
<thead>
<tr>
<th></th>
<th>Parent peptide fraction (%)<sup>a</sup></th>
<th>Effluent</th>
<th>Tissue extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>90.9 ± 0.8</td>
<td>83.7 ± 2.2</td>
</tr>
<tr>
<td>Reduced aprotinin</td>
<td></td>
<td>48.1 ± 4.6<sup>b</sup></td>
<td>65.8 ± 3.6<sup>b</sup></td>
</tr>
<tr>
<td>[S-carboxamidomethyl]aprotinin</td>
<td></td>
<td>51.3 ± 3.0<sup>b</sup></td>
<td>31.1 ± 5.7<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Mean ± S.E. of three experiments.

^b Significantly different from control (p<0.05).

Perfusion time: 10 min.

(4) 考 葉

構造的特徴を有する三種のペプチド, secretin, elcatonin, aprotinin を胃に灌流し、各々の胃組織中での代謝特性を比較検討した。その結果直鎖状ペプチドのsecretinが最も不安定で、一部環状のelcatoninがそれに続き、球状ペプチドのaprotininは代謝をうけにくいことが判明した。またaprotininの胃内安定性に分子内disulfide結合の寄与していることが推察された。

ペプチド性医薬品はその体内半減期が短かく、代謝クリアランスの大きいことが知られている。¹ またアミノ酸残基数が多くなるとその体内半減期も延長することがgastrin、somatostatin³⁹で報告されている。この胃灌流法により得た知見もアミノ酸配列の相違、特にdisulfide結合等の環状構造の有無がペプチドの代謝速度に影響を及ぼすことを明らかにした。これらの結果は生体全体での代謝像を反映する血液中での動態とほぼ対応しており、マクロな観点
では胃での代謝様式に特殊性が少ないことを示している。しかし胃におけるペプチドの作用発現作用持続にとって胃でのその動態は無視できないものであり、次節ではペプチドの胃内分布を検討した。

第２節 secretin, elcatonin, aprotinin の胃内分布

ペプチド性薬品の体内分布はそれらの分子量、低脂溶性等の物理化学的性質に支配され、主に細胞外液中に分布するとされている。また近年細胞膜上存在するreceptorの活性ペプチドによるdown regulation等に認められる結合像の変化や、125I標識ペプチドを用いたautoradiographyによる検討から一部のペプチドは細胞内に取り込まれることが明らかにされている。しかしこれらの検討はほとんどが生体内での生理的環境とは著しく異なる単離細胞等の実験系で行われたもので、活性ペプチドの分布の方向性が生物薬剤学的観点からも問題として残る。さらにペプチド性薬品投与時の特定標的臓器における分布像を検討した報告は少なく、作用との関連からもその解明が望まれている。

そこで前節で得たsecretin, elcatonin, aprotininの胃内における代謝特性面での知見を基に、これらペプチドの胃内分布動態を検討した。

(1) secretinの分布

secretin静注後のラット組織中への分布は、Robbinsらにより125I-[(Tyr⁵)]secretinを用いて検討され、投与後30分迄胃、肝への放射活性の移行が大きく、それ以降deiodinationのため胃腔内への125I⁻の分布の増大することが報告されている。しかし放射活性測定のみによる検討のためその分布した放射活性の本態は不明のままであった。

そこで125I-[(Tyr¹)]secretinをtracersとして灌流し、胃から流出してくる門脈流出液中放射活性の推移を追跡すると共に組織内に分布した放射活性をゲル高張法を用いて分析することにより胃へのsecretinの移行性を検討した。

Fig.17に示すように流出液中放射活性は速やかに平衡に達したが、胃組織中総放射活性は時間と共に増大した。しかしゲル過法により求めた胃内未変
Fig. 17. Distribution of 125I-[Tyr1]secretin in Isolated Perfused Rat Stomach

Solid circles represent the total radioactivity in 1 ml of effluent, the total height of open columns is the total radioactivity per g of stomach, and the hatched columns represent the intact secretin concentration, determined by gel filtration, in the stomach. Data are expressed as percent of perfusate. Each point is the mean value of 3 experiments. The vertical lines give the S.E..
elcatoninの体内動態は山内ら42)によりラットでの血中半減期は約5分と報告され、また同じ魚類calcitoninであるsalmon calcitoninのラットでの体内分布は臓器、組織間で二種類の分布様式を示すことがScarpaceら43)により

Fig. 18. Distribution of 125I-E!catonin in Isolated Perfused Rat Stomach

Solid circles represent the total radioactivity in 1 ml of effluent, the total height of open columns is the total radioactivity per g of stomach, and the hatched columns represent the intact elcatonin concentration, determined by gel filtration, in the stomach. Data are expressed as percent of perfusate. Each point is the mean value of 3 experiments. The vertical lines give the S.E..
125I標識体を用いて明らかにされている。彼らによると肝は速やかな取り込みとそれに続く迅速な代謝を行い、一方脇、骨は持続性を示す蓄積と緩徐な代謝を行った。しかし胃内への calcitonin の分布は検討されておらず、elcatonin の胃内分布をトレーサー法により検討することにした。

125I標識 elcatonin の分布は Fig.18 に示すように速やかで secretin 灌流時と同様に門脈流出液中放射活性は短時間で平衡に達した。また胃組織内未変化体の割合も灌流期間中やや上昇傾向を示したもののはば一定で 20 分後の分布容積は 0.15±0.02 ml/g wet weight であった。

ラット脇に elcatonin は高濃度取り込まれることが脇皮質スライスおよび脇灌流法により明らかにされている。またラット脇内には elcatonin 結合部位の存在することを Yamamoto が報告した。しかし、この結果はラット脇内への elcatonin の分布は細胞外液中への分布が大部分を占めていることを示唆した。

(3) aprotinin の分布

高い等電点 (pI 10.5) を示す塩基性ペプチドの aprotinin は serine protease と強固な complex を形成する他に、負電荷を持つムコ蛋白等に吸着する性質を有している。胃灌流法により 125I-aprotinin を灌流し、その胃内への分布特性を検討した結果、Fig.19 に示すようにその分布速度の速いこと、またその分布容積は 0.248±0.040 ml/g wet weight であることを認めた。この値は先の secretin, elcatonin が示した値の約 2.5 倍であり、胃内への aprotinin の分布性は secretin, elcatonin に比べ大きいことが認められた。

また灌流液濃度を変化させてもその分布容積に変動は観察されなかった(Table V)。腎尿細管 brush border membrane への aprotinin の結合性を Justらが検討し、その結合定数の小さいこと、一方結合部位数が多いことを報告している。一般にペプチドホルモンの receptor は高い結合定数と限られた結合部位数を示すことが知られているが、彼らの結果はこれら receptor の性状と対照的であった。従って aprotinin の胃内分布も特殊な取り込み、結合機構の寄与は小さく、胃の extracellular space に存在する serine protease やムコ多糖への結合が、比較的大きな aprotinin の分布容積の主因であろうと推測された。
Fig. 19. Distribution of 125I-Aprotinin in Isolated Perfused Rat Stomach

Solid circles represent the total radioactivity in 1 ml of effluent, the total height of open columns is the total radioactivity per g of stomach, and the hatched columns represent the intact aprotinin concentration, determined by gel filtration, in the stomach. Data are expressed as percent of perfusate. Each point is the mean value of 3 experiments. The vertical lines give the S.E..

(4) 考察

secretin, elcatonin, aprotininの胃内分布をラット摘出胃灌流法により検討し、これらペプチドの分布速度の速いこと、主に細胞外液中に分布することを認めた。aprotininはsecretin, elcatoninに比べその分布容積が大である
Table V. Effect of Unlabeled Aprotinin on the Distribution of 125I-Aprotinin in the Perfused Stomach

<table>
<thead>
<tr>
<th>Unlabeled aprotinin (μM)</th>
<th>Apparent volume of distribution (ml/g wet weight)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>$0.248 \pm 0.040^{a)}$</td>
</tr>
<tr>
<td>0.23</td>
<td>0.326 ± 0.052</td>
</tr>
<tr>
<td>2.30</td>
<td>0.321 ± 0.023</td>
</tr>
</tbody>
</table>

a) Mean ± S.E. of three experiments.
第3章 腸におけるsecretin, elcatonin, aprotininの挙動

前章において胃灌流法を用いsecretin, elcatonin, aprotininの胃内挙動を追跡し, disulfide結合の有無等によるベプチドの構造的特徴がそれらの胃内での代謝動態に反映することを明らかにした。またこれらベプチドの胃内分布速度は速く、主に細胞外液中の限られたスペースに分布するものと考えられた。

腸における薬物挙動はHoriらによって低分子量薬物の腸内分布、腸液移行性の支配要因について検討がなされ、薬物の分子容、脂溶性が重要な役割を果たしていることが明らかにされた。しかしベプチド性医薬品についてはこれまでほとんど検討がなされていなかった。そこで前章で得た知見を基にsecretin, elcatonin, aprotininの腸内での分布、代謝像についてラット摘出腸灌流法により検討を実施し、胃、腸における活性ペプチドの挙動を比較検討した。

第1節 secretin, elcatonin, aprotininの腸内代謝

腸内における活性ベプチドの代謝に関する研究は乏しく、主に島細胞より分泌されるinsulinなどのホルモン合成時のプロセッシングに関する検討がほとんどであった。そこで前章で用いた手法を腸にも適用し、secretin, elcatonin, aprotininの腸内代謝を腸灌流法により検討すると共により詳細にベプチドの腸内代謝を明らかにする目的で各種の活性ベプチド共存時におけるsecretinとelcatoninの代謝動態を比較検索した。

(1) secretinの代謝

胃に到達するsecretinの一部は胃内で代謝されていることを灌流実験系で認め、体内での速やかな消失に胃が一部関与していることを前章において指摘した。secretinの主な標的臓器の腸についてその代謝動態を明らかにすることは腸での作用機序解明の一助ともなると考えられる。そこでまず腸でもsecretinが胃と同様に代謝されるか否かについて検討した。さらに各種ベプチド併用時
Fig. 20. Gel Filtration Profiles of Effluent and Tissue Extract from 125I-[Tyr^1]secretin Perfusion

Samples taken 10 min after the beginning of the perfusion of 125I-[Tyr^1]secretin were subjected to gel filtration on a 1.0 x 70 cm Sephadex G-25 column. The broken line represents the gel filtration profile of the standard secretin. A, effluent; B, tissue extract of pancreas. Vo, Void volume; Vt, column volume.

におけるsecretinの代謝についても考察を加えた。

Fig. 20に125I-[Tyr^1]secretin（約0.1 nM）灌流10分後における門脈流出液、組織抽出液中の放射活性をゲル法により分析した結果を示すが、門脈流出液中未変化secretinの割合は灌流液の57.6±6.6％まで減少し、膵組織抽出液中では9.8±1.8％の割合でしか未変化体分画に放射活性は出現しなかった。

また非標識secretinを同時に灌流し、その代謝の飽和性について検討した。流出液中未変化体の割合に著明な変動は認められず、82nM secretinを加え灌流することで組織抽出液中の未変化体の割合がcontrolの約2倍に上昇する
Table VI. Effect of Various Peptides on the Metabolism of 125I-[Tyr1]secretin in the Perfused Pancreas

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Intact secretin fraction (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effluent</td>
</tr>
<tr>
<td>Control</td>
<td>57.6 ± 6.6</td>
</tr>
<tr>
<td>Secretin (16 nM)</td>
<td>67.6 ± 3.9</td>
</tr>
<tr>
<td>Secretin (82 nM)</td>
<td>60.1 ± 0.3</td>
</tr>
<tr>
<td>Aprotinin (500 U/ml)</td>
<td>62.5 ± 2.2</td>
</tr>
<tr>
<td>Insulin (100 mU/ml)</td>
<td>56.6 ± 7.6</td>
</tr>
<tr>
<td>Elcatonin (100 nM)</td>
<td>63.8 ± 2.4</td>
</tr>
<tr>
<td>Glucagon (3 μM)</td>
<td>67.8 ± 1.1</td>
</tr>
<tr>
<td>Tetracosactide (3 μM)</td>
<td>59.6 ± 5.0</td>
</tr>
</tbody>
</table>

a) Mean ± S.E. of three to five experiments.

b) Significantly different from control ($p<0.05$).

Perfusion time: 10 min.

ことを認めた（TableⅥ）。しかし生理的濃度範囲ではほとんどsecretinの
腎内代謝に飽和性は存在しないものと考えられる。

また各種のペプチドホルモンを同じく同時灌流しsecretinの腎内代謝への影
響を検討したところ、使用したinsulin, glucagon等の共存により125I-(Tyr1)
secretinの代謝が顕著に変動する結果は得られなかった（TableⅥ）。

次に非標識secretinを灌流、その門脈中への出現性からsecretinの腎内で
の代謝性をradioimmunoassayにより検討した。門脈中へのimmunoreactive
secretinの出現は速やかで、数分で灌流液濃度と平衡に達したが、平衡到達
後（1.5〜5分）の灌流液に対する濃度比でみると70 pM灌流時で0.59±0.07,
350 pM灌流時で0.67±0.02と灌流液よりも30〜40%低値を示した（Fig.21）。
Fig. 21. Appearance of Immunoreactive Secretin in the Effluent from the Perfused Pancreas during the Infusion of Secretin (●: 70 pM, ○: 350 pM)
Each point represents the mean ± S.E. of 3 experiments.

以上の結果より、secretin は胃で認めたと同様に腸でも速やかに代謝されていることが明らかになった。しかし各種活性ペプチドの共存によってもその代謝像に変化は観察されなかった。

(2) elcatonin の代謝

elcatonin は胃で一部が代謝されるが secretin よりその程度は小さいことを前章第 1 節で認めた。Fig.22 は^{125}I-elcatonin（約 0.1 nM）を腸に 10 分間灌流した際の門脈流出液、組織抽出液試料をゲル浄過法により分離したものは、その放射活性の分子量面での変化を示す。流出液中の未変化体分画に溶出される
Fig. 22. Gel Filtration Profiles of Effluent and Tissue Extract from 125I-Elcatonin Perfusion

Samples taken 10 min after the beginning of the perfusion of 125I-elcatonin were subjected to gel filtration on 1.0 x 70 cm Sephadex G-25 column. The broken line represents the gel filtration profile of the standard elcatonin. A, effluent; B, tissue extract of pancreas.
Fig. 23. Appearance of Immunoreactive Elcatonin in the Effluent from the Perfused Pancreas during the Infusion of Elcatonin (0.3 nM)

Each point represents the mean ± S.E. of 3 experiments.

Fig. 24. Insulin, aprotinin 共存時の典型的浸出パターンを示す。しかしこれら以外の glucagon, calcitonin 等のペプチドでは 125I-elcatonin の脇内代謝に大きな変動は認められなかった（Table VII）。

-38-
Table VII. Effect of Various Peptides on the Metabolism of 125I-Elcatonin in the Perfused Pancreas

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Intact elcatonin fraction (%)<sup>a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effluent</td>
</tr>
<tr>
<td>Control</td>
<td>66.1 ± 4.4</td>
</tr>
<tr>
<td>Aprotinin (500 U/ml)</td>
<td>81.4 ± 2.4<sup>b)</sup></td>
</tr>
<tr>
<td>Insulin (10 mU/ml)</td>
<td>88.5 ± 2.7<sup>b)</sup></td>
</tr>
<tr>
<td>Insulin (100 mU/ml)</td>
<td>88.3 ± 4.0<sup>b)</sup></td>
</tr>
<tr>
<td>Elcatonin (100 nM)</td>
<td>55.1 ± 7.5</td>
</tr>
<tr>
<td>Human calcitonin (30 nM)</td>
<td>65.3 ±11.9</td>
</tr>
<tr>
<td>Porcine calcitonin (100 nM)</td>
<td>68.9 ± 7.5</td>
</tr>
<tr>
<td>Salmon calcitonin (300 nM)</td>
<td>69.2 ± 2.7</td>
</tr>
<tr>
<td>Glucagon (3 μM)</td>
<td>72.1 ±11.2</td>
</tr>
<tr>
<td>Tetracosactide (3 μM)</td>
<td>75.0 ± 5.9</td>
</tr>
</tbody>
</table>

^{a)} Mean ± S.E. of three to seven experiments.

^{b)} Significantly different from control (p < 0.05).

Perfusion time: 10 min.

calcitonin代謝に及ぼす活性ペプチドの影響については、これまでにporcine calcitonin皮下授与時にaprotininを共存させると授与部位での代謝が低下することや、⁴⁹⁾ insulinがヒト乳癌細胞での125I-salmon calcitoninの代謝を抑制することが報告されているが、⁵⁰ aprotinin, insulinによるcalcitonin代謝抑制機序は不明であった。そこで典型的な蛋白分解酵素によるelcatoninの不活性化に及ぼすaprotinin, insulinの影響について in vitroにおいてradioimmunoassayにより検討した。その結果aminopeptidaseやcarboxy-
Fig. 24. Gel Filtration Profiles of Effluents and Tissue Extracts from the Concomitant Perfusion of \(^{125}\)I-Elcatonin with Aprotinin and Insulin

Samples, taken 10 min after the beginning of the concomitant perfusion of \(^{125}\)I-elcatonin with aprotinin (500 U/ml; A,B) or insulin (10 mU/ml; C,D), were subjected to gel filtration on 1.0 x 70 cm Sephadex G-25 column. The broken line represents the gel filtration profiles of samples obtained from control experiment. A,C, effluent; B,D, tissue extract of pancreas.

peptidase 等のexopeptidaseではelcatoninの不活性化が顕著ではなかったが、trypsin, chymotrypsin等のendopeptidase共存によりimmunoreactive elcatonin濃度の急速な低下が観察された（Fig.25）。そこでaprotininを加えelcatoninの不活性化速度を測定したところ、trypsin, chymotrypsinに
Fig. 25. Effect of Aprotinin and Insulin on Inactivation of Elcatonin by Proteases

Elcatonin (5.7 nM) was incubated with several proteases at 37°C in the presence of aprotinin (500 U/ml; ▲) or insulin (200 mU/ml; ○). Solid circle represents the value of control experiments. Each point is the mean ± S.E. of 3-4 experiments. A, leucine aminopeptidase (10 μg/ml); B, carboxypeptidase A (10 μg/ml); C, trypsin (0.1 μg/ml), D, chymotrypsin (10 μg/ml).
teaseに対する阻害活性は由来することが示唆された。しかし insulin の作用はこれらの酵素への直接作用では説明されなかった。近年 insulin が肝機能を調節する作用を持ち、51) 島細胞および腺房細胞にその receptor の存在することが報告されている。52) insulin は細胞膜蛋白の代謝回転を及ぼし、細胞膜蛋白分解酵素レベルが変動することによって、insulin による elcatonin 腎内代謝抑制の発現した可能性も考えられる。以上の知見は活性面のみならず代謝面についてもペプチド間相互作用を考慮すべきであることを示した。

(3) aprotinin の腎内代謝

Fig. 26. Gel Filtration Profiles of Effluent and Tissue Extract from ¹²⁵I-Aprotinin Perfusion

Samples taken 10 min after the beginning of the perfusion of ¹²⁵I-aprotinin were subjected to gel filtration on a 1.5 x 90 cm Toyopearl HW-55 column. The broken line represents the gel filtration profile of the standard aprotinin. A, effluent; B, tissue extract of pancreas.
前章で胃内における aprotinin の挙動を検討しその分子内 disulfide 結合が胃組織内での aprotinin の安定性に寄与していることを明らかにした。そこで胃においても aprotinin の代謝特性について分子内 disulfide 結合の影響を主に検討することとした。

125I- apologinin を腸内灌流した結果、Fig.26 に示すように門脈流出液、組織抽出液試料共にほとんど未変化体として存在していることがゲル濾過法により認められた。またこの未変化体の割合は非標識 aprotinin (0.23 または 2.3 μM) 共存灌流下でもほとんど変化しないことが認められた。（Table VII）。

Table VII. Effect of Unlabeled Aprotinin on the Metabolism of 125I-Aprotinin in the Perfused Pancreas

<table>
<thead>
<tr>
<th>Unlabeled aprotinin (μM)</th>
<th>Intact aprotinin fraction (%) a)</th>
<th>Effluent</th>
<th>Tissue extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>91.4 ± 2.4</td>
<td>94.9 ± 3.8</td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td>96.2 ± 1.0</td>
<td>94.3 ± 2.3</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>92.0 ± 3.1</td>
<td>94.4 ± 3.0</td>
<td></td>
</tr>
</tbody>
</table>

a) Mean ± S.E. of three experiments.

Perfusion time: 10 min.

次に aprotinin 分子内の disulfide 修飾体を 125I 標識後、腸内に灌流し aprotinin の腸内代謝への分子内部 sulfide 結合の寄与を考察した。Fig.27 のゲル濾過パターンが示すように、還元体および S-carboxamidomethyl 化体とともに未変化体として存在する割合は、著明に低下した（Table II）。特に 125I-還元 aprotinin では高分子量分画に溶出される放射活性が増大することを認め、内因性の SH 基を含む物質との間で分子間 disulfide 結合の形成されたことが推察された。
Fig. 27. Gel Filtration Profiles of Effluents and Tissue Extracts from 125I-Reduced Aprotinin (A,B) and 125I-[S-carboxamidomethyl]Aprotinin (C,D) Perfusion

Samples taken 10 min after the beginning of the perfusion of 125I-modified aprotinin were subjected to gel filtration on 1.5 x 90 cm Toyopearl HW-55 column. The broken line represents the gel filtration profile of the tracer of modified aprotinin. A,C, effluent; B,D, tissue extract of pancreas.
Table IX. Effect of the Modification of Disulfide Bonds on the Metabolism of 125I-Aprotinin in the Perfused Pancreas

<table>
<thead>
<tr>
<th></th>
<th>Parent peptide fraction (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effluent</td>
</tr>
<tr>
<td>Control</td>
<td>91.4 ± 2.4</td>
</tr>
<tr>
<td>Reduced aprotinin</td>
<td>28.3 ± 3.4<sup>b</sup></td>
</tr>
<tr>
<td>[S-carboxamidomethyl]aprotinin</td>
<td>57.5 ± 5.3<sup>b</sup></td>
</tr>
</tbody>
</table>

^a Mean ± S.E. of three experiments.

^b Significantly different from control (p<0.05).

Perfusion time: 10 min.

(4) 考 察

secretin, elcatonin, aprotinin の膣内代謝を肺灌流法により比較検討した結果、前章の肺灌流法を用いて解析した結果と同様に直鎖状ペプチドのsecretin が最も不安定で、一部環状構造を有するelcatonin とこれに続き、aprotinin は disulfide 結合を分子内で保持した状態では安定であることが判明した。脾への血流量（心拍出量の 1.3％⁵²）を考慮するとこれらペプチドの全身的消失に対する肺の寄与は少ないと考えられるが、secretin の膣内代謝が非常に速い事実は secretin の膣液分泌促進作用の持続性を一部制御していることが推測できる。またペプチド間の代謝面での相互作用を検討したところ、elcatonin の膣内代謝が insulin, aprotinin により抑制されることを認めた。aprotinin の抑制作用は膣内に存在する serine protease 阻害に基づくことが示唆されたが、insulin の抑制機序にはより複雑な機構の介在していることが推察された。

外因性 somatostatin の脾への取り込みを犬を用いた肺灌流法により検討し
たKawaiらの報告54によると、この14個のアミノ酸からなる一部環状ペプチドは腎を一回通過する毎に50－80％の割合で取り込まれる。またその際insulin, glucagonも約20％が取り込まれることも報告されている。従って著者の得た知見とこれらの知見を考察すると、これまで肝、腎に比べ考慮されることの乏しかった腎も各種活性ペプチドの取り込み、代謝機能として無視しきれないことが明らかとなった。

第2節 secretin, elcatonin, aprotininの腎内分布

前章でsecretin, elcatonin, aprotininの胃内への分布は細胞外液中が主であることを認めたが、腎内への活性ペプチドの分布は、放射性同位元素で標識したペプチドを静注し、その放射活性の推移を検討したものの41がほとんどで、分布した放射活性物質の本態を詳細に追跡した報告はなされていない。

そこで前節で得た腎内代謝の知見を基に、secretin, elcatonin, aprotininの腎内分布像を比較検討した。

(1) secretinの分布

Robbinsら41は125I-(Tyr6) secretin静注後の腎への放射活性の移行性を追跡し、腎造影剤としてのsecretinの可能性を検討した。しかし腎内に取り込まれた放射活性は少なく、その有用性は否定され、その後研究は進展していないうちに腎に分布した放射活性物質中に占める未変化体の割合など詳細は不明の点多い。

Fig.28に125I-(Tyr1) secretin灌流時における放射活性の推移とゲル過法により求めた腎組織中での未変化体の割合を示す。流出液中の放射活性は数分以内に平衡に達した。ゲル過法により測定した流出液と灌流液との濃度10分後におけるsecretin濃度比は0.55±0.07であり、組織と灌流液との濃度比は0.11±0.02であった。組織中に分布した小分子量の放射活性は灌流時間の経過に伴って増大することを認めたが、未変化体の組織中濃度はほぼ一定であった。腎液中への放射活性の移行は灌流期間中ほとんど検出されなかった。

次に主に細胞外液中に分布するinulinを灌流しその腎中濃度を測定した結果,
灌流液の15.8±1.2％（n=3）の値を示した。このためsecretinの分布は主に細胞外液中の限られたスペースに分布しているものと考えられた。

Fig. 28. Distribution of $^{125}\text{I-}[\text{Tyr}^1]\text{secretin}$ in Isolated Perfused Rat Pancreas

Solid circles represent the total radioactivity of effluent, total height of open columns represents the total radioactivity in the pancreas, and the hatched columns represent the intact secretin concentration, determined by gel filtration study, in the pancreas. Each point is the mean value of three experiments. The vertical lines give the S.E..

（2）elcatoninの分布

$^{125}\text{I-elcatonin}$を灌流し前節で用いたゲル汎過法により組織中elcatonin濃
Fig. 29. Distribution of 125I-Elcatonin in Isolated Perfused Rat Pancreas

Solid circles represent the total radioactivity of effluent, total height of open columns represents the total radioactivity in the pancreas, and the hatched columns represent the intact elcatonin concentration, determined by gel filtration study, in the pancreas. Each point is the mean value of 3-7 experiments. The vertical lines give the S.E..

度の時間変化を検討した。Fig.29 はその結果を示したもので、門脈流出液中放射活性が平衡に達すると共に組織中未変化体濃度も速やかに一定の値を維持した。灌流 10 分時での灌流液に対する組織中 elcatonin の濃度比は 0.18±0.02 であった。secretin の場合と同様に時間が経過に伴い組織中小分子量 fragment の増大が認められた。また非標識 elcatonin 100nM を加え灌流を行ったが、その時の灌流液に対する組織中濃度比は標識体単独灌流時との間で変動せず、その分布に濃度依存性を示さなかった。一方門では灌流法により組織中に elcatonin
が高濃度集積されることが明らかにされている。脇とは異なり脇にはelcatoninの分布に特殊な取り込み機構の介在している可能性が脇と同様に少ないものと考えられ、脇の細胞外液中の限られたスペースにelcatoninは大部分分布するものと推察された。

(3) aprotininの分布

Fig. 30. Distribution of 125I-Aprotinin in Isolated Perfused Rat Pancreas

Solid circles represent the total radioactivity of effluent, total height of open columns represents the total radioactivity in the pancreas, and the hatched columns represent the intact aprotinin concentration, determined by gel filtration study, in the pancreas. Each point is the mean value of three experiments. The vertical lines give the S.E.
aprotininは難代謝性であることを前節(3)ですので明らかにした。125I-aprotininを灌流し、その分布を検討した結果をFig.30に示す。ゲル汎過法により求めた組織中 aprotinin濃度は灌流液濃度の38.6±2.1%を示した。またこの分布容積は非標識 aprotinin 10、100 nMを加え、灌流した場合にも変動を認めなかった。

aprotininはムコ多糖やserine protease に結合することが知られているが、secretin, elcatoninに比べ大きい分布容積を示したことは、aprotininが肺内のextracellular spaceに存在するこれらの物質に結合していることを示唆した。

(4) 考 察

secretin, elcatonin, aprotininの肺内分布を比較検討し、その分布速度の早いこと、これらペプチドは主に細胞外液中の限られたスペースに分布することを認めた。secretin, elcatoninに比べて高い aprotininの肺内分布性は、aprotininの持つ蛋白分解酵素やムコ多糖への結合特性より推察すると、胃と同様に肺のextracellular spaceに存在する酵素や多糖への非特異的吸着に原因るものと考えられる。

従って先に検討した肺内分布の結果と総合すると、これらペプチドの胃、肺内分布像に顕著な臓器間変動は認められなかった。またその分布は肺でのelcatonin, aprotininの集積54,44)のような特殊な取り込み過程の寄与は小さく、主に拡散過程によって胃、肺内に分布しているものと考えられる。しかし分布像と作用との関連を解析するには、受容体への活性ペプチドの分布、結合特性を明らかにする必要がある。そこで次章では胃、肺を共に主な標的臓器とするsecretinを選択し、胃、肺内受容体レベルでのsecretinの挙動解析を試みた。
第4章 胃、膣におけるsecretinの特異的結合

前章までにsecretin、elcatomln、aprotininの胃、膣内における分布、代謝動態について検討を行い、secretinが他のベプチドに比べて代謝されやすいこと、ベプチドの構造的特徴が臓器内安定性、分布特性にも影響を及ぼしていること等を明らかにしてきた。これらベプチドの内、胃と膣に対して対照的{作用を発揮するsecretinに注目し、その胃、膣内受容体の性状を明確にする目的で標的臓器レベル、細胞膜レベルからsecretinの胃、膣での作用動態、分布動態、結合動態について対比較検討した。

従来のreceptorへの結合性についての解析は、細胞分画成分、単離細胞等を用いて実施したものがほとんどであった。生理的環境下でreceptorへの活性ベプチドの結合性を検討した報文は、insulin receptorをin vivoにおいて確認したZeleznik and Rothの報告、脳灌流系でperitubular membraneにinsulin receptorの存在を証明したPetersenらの報告等観察である。そこで前章までの検討に用いた灌流実験系によりsecretinの胃、膣での特異的結合について解析を試みた。

第1節 secretinの胃における特異的結合

secretinの酸分泌抑制作用は選択的でgastrin刺激時の酸分泌を抑制するのに対して、histamineによる酸分泌を抑制しないことがin vivo 動物実験により既に報告されている。そこでまず胃灌流法によりsecretinの胃酸分泌に及ぼす作用動態について検討を行い、次にsecretinの作用動態を支配する分布特性についてsecretin receptorに対応する特異的結合部位が同一灌流実験系で認められるか否かに注目し検討を行った。

(1) 胃灌流法による結合特性の解析

胃灌流法によりgastrin刺激時の酸分泌へのsecretinの影響を検討したところ、Fig.31Aに示すようにsecretin併用時に酸分泌が抑制される現象は認め
Fig. 31. Effect of Secretin on Gastrin-Induced Acid Secretion in Perfused Rat Stomach

The ordinate represents pH of luminal effluent as an index of acid secretion. Acid response to gastrin was significantly improved by the inclusion of 10 μM theophylline in the vascular perfusate, so that this perfusion experiment was performed in the presence of 10 μM theophylline. Although secretin did not directly inhibit acid secretion stimulated by gastrin (A), the pretreatment of secretin in the presence of gastrin significantly reduced the second response to gastrin (B). The perfusion periods of gastrin and secretin are indicated by open and hatched column, respectively.

Table X はこの結果を 30 分間の酸分泌量としてまとめたもので、secretin 併用時には酸分泌の低下は認められないのに対して、secretin 併用後の 2 回目の gastrin 刺激による酸分泌量は著明に減少した。この結果は gastrin による酸
分泌をsecretinが直接的、競合的に抑制しているのではないかことを示唆した。

secretinはgastrinのgastrin receptorへの結合を非競合的に阻害することで、胃粘膜からの重炭酸イオンの分泌およびsomatostatin分泌を促進することが報告され、またin vivo実験においてもsecretinの酸分泌抑制発現には遅れが認められる。従ってsecretinの酸分泌抑制作用にはこれら因子が複雑に関与しているものと考えられるが、この点に関してはsecretin結合部位との関連も含む(3)で考察する。

次にその作用を制御するsecretin receptorについて胃灌流法により検討を試みた。実験条件としては胃内に分布した125I標識secretinへの非標識secretinの影響を追跡する方法を採った。すなわち125I-(Tyr1) secretinを一定時間灌流後、灌流液のみで灌流することで細胞外液等に拡散している標識体を除き、その後非標識secretinを灌流液中に添加し灌流を行った。

その結果Fig.32に示すように非標識secretin添加後、門脈流出液中放射活性に一過性のピークが生じ、結合放射活性の置換を認めた。これは胃内で結合

<p>| Table X. Effect of Coadministered (A) or Preadministered (B) Secretin on Gastrin-induced Acid Secretion in the Perfused Stomach |
|-----------------|----------------|--------|
| Secretin on Gastrin-induced Acid Secretion in the Perfused Stomach |
| Acid secretion | % of first response |</p>
<table>
<thead>
<tr>
<th>(μeq/30 min)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 1 nM Gastrin</td>
<td>4.56 ± 0.77a)</td>
</tr>
<tr>
<td>+ 10 nM Secretin</td>
<td>4.62 ± 0.33</td>
</tr>
<tr>
<td>(B) 1 nM Gastrin + 10 nM Secretin</td>
<td>4.65 ± 0.49</td>
</tr>
<tr>
<td>2nd Response by 1 nM Gastrin</td>
<td>1.58 ± 0.66b)</td>
</tr>
</tbody>
</table>

a) Mean ± S.E.
b) Significantly different from initial response (p < 0.05).
Fig. 32. Effect of Unlabeled Secretin on the Concentration of 125I-$[\text{Tyr}^1]$ secretin in Effluent from Isolated Perfused Rat Stomach

Labeled secretin was perfused for 10 min, followed by 10 min perfusion without secretin. During the last 10 min, perfusion medium supplemented with unlabeled secretin (20 nM) was perfused (as indicated by open column). The displacement phenomenon is clearly demonstrated semilogarithmically in the inset. Each point represents the mean of three experiments.

していた標識 secretinが大量の非標識体により置換され，門脈流出液中に標識体が増大したためと考えられた。
Fig. 33. Effect of Vasoactive Intestinal Peptide (A) or Glucagon (B) on the Concentration of 125I-[Tyr1] secretin in Effluent from Isolated Perfused Rat Stomach

Labeled secretin was perfused for 10 min, followed by 10 min perfusion without secretin. During the last 10 min, perfusion medium supplemented with unlabeled vasoactive intestinal peptide (0.2 μM; A) or glucagon (0.6 μM; B) was perfused (as indicated by open column).

次にsecretinと多くのアミノ酸配列が共通するglucagon, vasoactive intestinal peptide(VIP)を非標識体として加え結合部位の識別性について検討を行った。しかしこれらペプチドでは標識secretinの結合置換現象は認められず(Fig.33), その部位の識別性の高いことが示唆された。

活性ペプチドのreceptor解析にはこれまで細胞分画成分，単離細胞等が主に
Fig. 34. Effect of Tetragastrin on the Concentration of $^{125}\text{I-}[\text{Tyr}^1]\text{secretin}$ in Effluent from Isolated Perfused Rat Stomach

Labeled secretin was perfused for 10 min, followed by 10 min perfusion without secretin. During the last 10 min, perfusion medium supplemented with 20 nM secretin was perfused as indicated by open column. Tetragastrin (137 nM) was perfused from the start of perfusion. By adding tetragastrin in the perfusate, the displacement phenomenon was significantly increased. Each point represents the mean ± S.E. of five (control) or three (tetragastrin) experiments. The points of tetragastrin-treated group at 20 nM secretin perfusion period were significantly different from control. ○, tetragastrin 137 nM; ●, control.
用いられており、標的臓器レベルにおけるreceptorへの結合特性はほとんど解明されていない。以上の結果はこれまで不明であったsecretinの胃内結合部位への結合特性を腸器灌流法の応用により解析し得ることを示唆している。また結合置換現象で認めたピークが小さいことよりその結合部位は、胃内の限局した部位に分布していることが推察された。

Fig. 35. Effect of Histamine on the Concentration of ^{125}I-[Tyr1]secretin in Effluent from Isolated Perfused Rat Stomach

Labeled secretin was perfused for 10 min, followed by 10 min perfusion without secretin. During the last 10 min, perfusion medium supplemented with 20 nM secretin was perfused (as indicated by open column). Histamine (0.1 mM) was perfused from the start of perfusion. ○, histamine 0.1 mM; ●, control.
Fig. 36. Effect of Unlabeled Elcatonin on the Concentration of 125I-Elcatonin in Effluent from Isolated Perfused Rat Stomach

Labeled elcatonin was perfused for 5 min, followed by 5 min perfusion without elcatonin. During the last 5 min, perfusion medium supplemented with unlabeled elcatonin (60 nM) was perfused (as indicated by open column).

gastrinは胃酸分泌、腫外分泌相方を促進する作用を持ち、secretinはそれらの作用に対し胃では抑制的に、一方腫では促進的に作用を発揮する。そこで次に対照的な胃、腫間でのgastrin、secretin相互作用についてその結合面から解析する目的で胃灌流法によりgastrinのsecretin結合部位への影響を検討した。

まず胃においてsecretinと反対作用を持つgastrinの影響について、その最小活性ペプチドであるtetragastrinを非標識体として用い灌流実験を行った
Fig. 37. Effect of Unlabeled Aprotinin on the Concentration of 125I-Aprotinin in Effluent from Isolated Perfused Rat Stomach

Labeled aprotinin was perfused for 10 min, followed by 10 min perfusion without aprotinin. During the last 10 min, perfusion medium supplemented with unlabeled aprotinin (2,3 μM) was perfused (as indicated by open column).
た（Fig.35）。

この結果は胃内secretin結合部位がgastrinにより調節されていることを示唆しており、胃内結合部位レベルでの相互作用がsecretinとgastrin間で存在することを示した。

一方elcatonin、aprotininでもsecretinの場合と同様の結合置換現象が生じるか否かについて検討したが、elcatonin、aprotininでは胃内での非標識体が125I標識体の置換現象を認められなかった（Fig.36, Fig.37）。従って胃内へのこれらペプチドの分布は、細胞外液中の分布が大部分を占め、特殊な結合機構の介在していないことが予測される。

胃内secretin receptorの性状については細胞レベル、細胞膜レベルにおいても検討がなされていない。そこでsecretin receptorが存在するとされる胃粘膜の血管細胞膜に着目し、それへのsecretinの結合性を次に検討することとした。

(2) 細胞膜分画を用いた結合特性の解析

胃灌流実験により胃内secretin receptorの存在が予測されたので、さらによりミクロな観点からその特性を明確にするため胃細胞膜分画へのsecretinの結合性について検討を行った。

胃粘膜より血管側細胞膜basolateral membrane分画を得る方法は、近年Culp and Forteによりdextranを用いる密度勾配透析法によりウサギの胃から精製する方法⑤が報告されているにすぎない。そこでより迅速かつ簡便に得る方法としてInuiらが報告した腎尿細管basolateral membrane vesicle調製法④を参考として、まず分別透析法によりラット胃粘膜より粗製細胞膜（crude plasma membrane）分画を得、この分画にPercollを10%（v/v）の濃度となるよう加えた後、48,000×gで30分間遠心分離を行って、細胞膜を分離、精製した（Chart 1）。
Gastric Mucosa

Homogenize in 0.25 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5, containing 100 U/ml Trasylol, 0.1 mM PMSF and 0.1 μM pepstatin

Homogenate

Centrifuge at 2400 g, rapidly and briefly, 3 times

Re-homogenize of pellet and centrifuge at 2400 g, rapidly and briefly, 3 times

Supernatant

Discard P1

Centrifuge at 2400 g for 15 min

Supernatant and Fluffy Layer

Discard P2

Centrifuge at 20500 g for 20 min

Fluffy Layer of Pellet

Discard P3 and Supernatant

Resuspend in 0.25 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5, containing 100 U/ml Trasylol, 0.1 mM PMSF and 0.1 μM pepstatin

Crude Plasma Membrane

Supernatant

Add Percoll to final concentration of 10%

Centrifuge at 480000 g for 30 min

Fractions of Percoll Gradient

Fraction I-V

Discard P4 and S

Centrifuge at 100000 g for 60 min

Resuspend in 100 mM Tris-HCl, pH 7.5, containing 100 U/ml Trasylol, 0.1 mM PMSF and 0.1 μM pepstatin

Plasma Membranes

Chart 1. Preparation of Plasma Membranes from Rat Gastric Mucosa
Table XI. Distribution of Marker Enzymes, Protein and Secretin Binding Sites during Preparation of Basolateral Membrane Fraction from Rat Gastric Mucosa

<table>
<thead>
<tr>
<th></th>
<th>(Na(^+)+K(^+))-ATPase</th>
<th>5'-Nucleotidase</th>
<th>Alkaline phosphatase</th>
<th>(K(^+)+H(^+))-ATPase</th>
<th>Acid phosphatase</th>
<th>Cytochrome c oxidase</th>
<th>Protein</th>
<th>Secretin binding</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>7.8±0.9</td>
<td>1.2±0.1</td>
<td>34.8±5.2</td>
<td>17.2±2.8</td>
<td>279±25</td>
<td>13.9±2.7</td>
<td>100.0</td>
<td>6.2±0.5</td>
</tr>
<tr>
<td>P1</td>
<td>13.8±4.0</td>
<td>0.6±0.1</td>
<td>19.0±1.5</td>
<td>16.8±1.7</td>
<td>171±26</td>
<td>11.0±2.0</td>
<td>21.3±1.8</td>
<td>5.3±1.2</td>
</tr>
<tr>
<td>P2</td>
<td>2.9±0.4</td>
<td>1.1±0.1</td>
<td>14.2±4.8</td>
<td>24.3±4.7</td>
<td>316±81</td>
<td>27.8±9.4</td>
<td>31.7±0.5</td>
<td>8.6±1.2</td>
</tr>
<tr>
<td>P3</td>
<td>8.1±4.7</td>
<td>4.0±0.1</td>
<td>24.8±2.6</td>
<td>12.1±5.4</td>
<td>980±15</td>
<td>59.5±7.3</td>
<td>1.4±0.1</td>
<td>6.6±1.7</td>
</tr>
<tr>
<td>P4</td>
<td>10.2±5.9</td>
<td>6.0±0.2</td>
<td>55.2±14.2</td>
<td>29.2±8.5</td>
<td>434±13</td>
<td>3.2±0.7</td>
<td>3.5±0.8</td>
<td>5.6±2.3</td>
</tr>
<tr>
<td>S</td>
<td>5.9±1.7</td>
<td>0.7±0.1</td>
<td>46.8±2.4</td>
<td>2.4±1.0</td>
<td>275±7</td>
<td>0.2±0.03</td>
<td>37.6±1.4</td>
<td></td>
</tr>
<tr>
<td>CPM</td>
<td>42.9±8.3</td>
<td>5.0±0.7</td>
<td>82.3±26.1</td>
<td>157.0±29.1</td>
<td>541±60</td>
<td>17.4±2.7</td>
<td>4.4±0.7</td>
<td>8.6±3.1</td>
</tr>
<tr>
<td>Fr. II</td>
<td>81.7±2.1</td>
<td>10.4±1.7</td>
<td>72.5±8.8</td>
<td>100.3±25.3</td>
<td>392±76</td>
<td>1.6±0.4</td>
<td>0.3±0.03</td>
<td>29.1±4.3</td>
</tr>
<tr>
<td>Fr. III</td>
<td>90.1±8.8</td>
<td>5.2±1.0</td>
<td>112.8±17.5</td>
<td>170.4±31.2</td>
<td>374±23</td>
<td>2.5±0.2</td>
<td>0.4±0.04</td>
<td>8.0±5.7</td>
</tr>
<tr>
<td>Fr. IV</td>
<td>40.8±7.4</td>
<td>4.3±0.9</td>
<td>96.7±18.2</td>
<td>206.6±37.3</td>
<td>431±11</td>
<td>5.8±0.7</td>
<td>0.7±0.1</td>
<td>8.3±1.2</td>
</tr>
<tr>
<td>Fr. V</td>
<td>5.7±2.7</td>
<td>6.7±1.0</td>
<td>60.3±23.1</td>
<td>90.6±18.1</td>
<td>579±94</td>
<td>35.4±2.5</td>
<td>0.7±0.1</td>
<td>3.9±1.6</td>
</tr>
</tbody>
</table>

Each value represents the mean±S.E. for 3-4 experiments, and expressed as specific activity (nmol/min per mg protein)/(Δ O.D./min per mg protein for cytochrome c oxidase, fmol/mg protein for secretin binding). Protein was expressed as percent of homogenate. Enzyme and secretin binding activities in each Percoll fraction were determined after the removal of Percoll. These activities in Fr. I were not able to be determined from the low recovery of membraneous material.
Table IIIは上記の速心分画法により得た分画中の指標酵素の分布を検討したもので、crude plasma membrane分画中にbasolateral membraneのmarkerとされる（Na⁺+K⁺）ATPaseが約5倍精製された。そしてこの分画をPercoll密度勾配遠心法により分離、遠心管上層より1mlづつ分取し指標酵素の分布パターンを検討した。（Na⁺+K⁺）ATPase活性はfr.No.11付近にピークが存在し、一方小腸等で管腔側細胞膜、apical membraneのmarkerとされるalkaline phosphataseは遠心管下層に活性ピークが認められた。（Fig.38）。そこで次に上層より6mlづつ5つのfraction（Fr.I〜V）にまとめ各々のfraction中の酵素分布を検討した。

Table IIIに示すように（Na⁺+K⁺）ATPase活性のピークが存在したFr.Ⅰ（上層より7〜12mlの分画）ではその比活性がhomogenateの10倍以上に上昇し、plasma membrane markerの5’-nucleotidase比活性も約8倍となった。またalkaline phosphataseの混入も少なく、胃でapical並びにtubulovesicular membraneの指標とされる（K⁺+H⁺）ATPase活性も他のfractionに比べ低い値を示した。さらにmitochondriaやlysosomeの混入はcytochrome c oxidase活性、acid phosphatase活性の測定より僅かであると考えられた。

この方法による（Na⁺+K⁺）ATPase活性の精製度は先に報告されたdextranを用いた調製法と同等であり、しかも短時間で調製可能な点を考慮すると、本法は感受性の高いreceptorを多く含む細胞膜分画の調製法として優れたものと考えられる。そこでこれら各分画と₁²⁵I-[Tyr₁]secretinの結合性を検討し、secretinのsubcellular componentへの結合特性を比較した。その結果、basolateral membrane分画のFr.Iが最も高い結合性を示したのに対し、他の分画ではhomogenateと同程度の低値であった（Table III）。

次にsecretinのbasolateral membrane分画への結合の時間経過を検討したところ、incubate開始30秒後にはほぼ結合は平衡に達し、また1分後に非標識体を1μMとなるよう添加した場合、急速な結合置換が生じ標識体の結合率は急速に低下した（Fig.39）。

以上の結果は先の灌流実験で認めたsecretinの結合置換現象が、胃粘膜basolateral membraneに存在するreceptorへの速やかな結合、置換特性に起因することを示唆している。
Fig. 38. Distribution of Marker Enzymes on Percoll Gradient

The Percoll gradient was collected from the top into 30 fractions of 1 ml. ○, (Na\(^+\)K\(^+\))-ATPase; □, alkaline phosphatase.

また^{125} 1標識secretinの結合に及ぼすsecretinとその類似ペプチドの影響を検討したところ、非標識secretin濃度に依存して標識体の結合は低下した（Fig. 40）。類似ペプチドのVIPは高濃度においてのみ結合低下作用を有したが、glucagonは1μMでもsecretinの結合に変動を与えなかった。

Scatchard plotによりその結合性を解析したところ、二種類の結合部位の存在することが推察され（Fig.40 inset）、高親和性結合部位の解離定数(Kd\(_1\))は2.5±1.4nM，最大結合部位数(n\(_1\))は0.6±0.3pmol/mg proteinを示し，低親和性結合部位のKd\(_2\)は133±2nM，n\(_2\)は15.8±3.8pmol/mg proteinであった。

著者の検討と同時期にGespachら^{65}はラットの胃底腺より分別遠心法により細胞膜分画（20,000×g分画）を調製し，それへのsecretinの結合性を報告した。彼らも二種類の結合部位が存在することを認め，またVIP，glucagon が
Fig. 39. Time Course of 125I-[Tyr1]secretin Binding to Basolateral Membrane Fraction from Rat Gastric Mucosa

Basolateral membrane fraction (18.2 μg of protein) was incubated with 125I-[Tyr1]secretin at 25°C. Dissociation of tracer from basolateral membrane fraction was observed after the addition of 1 μM unlabeled secretin (O). Each point is a mean of 3 determinations.

secretinの膜結合性に及ぼす影響も上記の結果と同様であった。VIPは細胞膜レベルでsecretinの結合性を高濃度領域でのみ抑制したが、通常のVIP濃度では起こり得ないものと考えられる。

次に先の灌流実験と同じ137nM tetragastrin共存時のsecretinの細胞膜結合性を検討したところ、tetragastrin共存よりsecretinの結合性が灌流実験と対応する形で増大した（Fig.41）。高親和性部位に注目して、両逆数プロットによりその変動を解析した結果、主に結合部位数がgastrinにより

-65-
Fig. 40. Effect of Secretin, VIP or Glucagon on Binding of 125I-Secretin to Plasma Membranes from Rat Gastric Mucosa

Plasma membrane fraction (108 ± 8 μg/ml of protein) was incubated with 125I-secretin (0.3 nM) plus increasing concentrations of unlabeled secretin (●), VIP (○), and 1 μM glucagon (▲). Each point is the mean ± S.E. of three separate experiments. Inset is a Scatchard plot of a representative experiment.

3 倍以上増大することを認めた（Table III）。

先の臓器レベルでの結果とこの細胞膜レベルの結果より胃内 secretin receptorがgastrinにより調節されていることが示され、secretinの胃での活性発現に、この相互作用が寄与していることを推察させた。
Fig. 41. Effect of Tetragastrin on Secretin Binding to Plasma Membranes from Rat Gastric Mucosa

Plasma membrane fraction (166 ± 14 μg/ml of protein) was incubated with 125I-[Tyr1]secretin (60 pM) and tetragastrin (137 nM) plus increasing concentration of unlabeled secretin at 25°C for one minute. Each point is the mean ± S.E. of three separate experiments. ○, tetragastrin 137 nM; ●, control. Inset is a double-reciprocal plot of binding data from a representative experiment.
Table XII. Effect of Tetragastrin on the Binding Characteristics of 125I-[Tyr1]secretin to Plasma Membranes from Gastric Mucosa

<table>
<thead>
<tr>
<th></th>
<th>K_d (nM)</th>
<th>n (pmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6.4 ± 4.5a</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>With tetragastrin</td>
<td>10.2 ± 1.2</td>
<td>2.1 ± 0.1b</td>
</tr>
</tbody>
</table>

a) Mean ± S.E. of three experiments.
b) Significantly different from control ($p < 0.05$).

(3) 考 察

胃灌流実験により胃内にsecretinの特異的結合部位の存在することを認め、胃粘膜細胞分画成分へのsecretinの結合性より、その結合部位が血管側細胞膜basolateral membraneにあることを明らかにした。さらにその分画への結合特性と灌流法による結果が対応したことから、灌流法によりsecretin結合動態を追跡し得ることが判明した。またsecretinの酸分泌抑制作用を灌流法により検討し、その抑制発現までに遅れを認め、gastrin由来の酸分泌に対する抑制作用が直接的拮抗作用でないことを示唆した。

胃におけるsecretin結合能がgastrinの存在により、増大することを灌流実験ならびに細胞膜への結合実験相方で観察した。そして細胞膜分画への結合パラメータの解析によってその変動は、結合部位数の増大に起因することが示唆された。活性ペプチド、薬物間の相互作用を細胞膜への結合性から追究した報告は乏しく、VIPがネコsubmandibular glandへのmuscarnic cholinergic agonistの結合性を増大させること、66) 粗膜細胞膜somatostatin結合部位がC-CK（cholecystokinin-pancreozymin）により調節されること67)等わずかである。またsecretinはラット胃の細胞分画成分へのgastrinの結合性を非競合的に阻
害することが報告されている。58)

本節の知見は gastrin が secretin 結合部位を直接制御していることを示唆しており、先の報告58) と合わせて考察すると、secretin と gastrin receptor 相互においてその結合能を調節していることが推察された。そこで次に酸分泌作用との関連について考察を進めめた。

Grossman の仮説によると胃、膵では gastrin、CCK、secretin はひとつの receptor に働き、そこに存在する gastrin（CCK）部位と secretin 部位は相互に影響を及ぼしあっているとされている。62) また gastrin 大量投与時には胃内 gastrin 結合部位に down regulation の生じることが報告されている。68) 以上を総合するとその作用と結合との関連について、次を得解釈が可能となる。すなわち、酸分泌反応において gastrin と secretin の作用を比較した場合、初期において secretin に対する gastrin の優先性が存在し、酸分泌の増大を認める。そして gastrin receptor の活性化が起こると同時に gastrin によって secretin 結合能も増大し、secretin の酸分泌抑制作用が増強される。また同時に gastrin receptor の down regulation も生じ、それらに伴って酸分泌の低下が起こり酸が過剰分泌しない方向で調節されていることが考えられた。

事実、松尾は Heidenhain pouch 犬を用いて摂食後の gastrin と酸分泌動態について検討し、69) gastrin 分泌には二峰性の分泌ピークが摂食後認められるのに対して、最初のピークの時にのみ酸分泌の増大を観察した。すなわち二度目の反応性低下を交感神経性抑制機構の関与によるものと考察したが、secretin もその抑制に一部関与していることを本節の知見は示唆している。

これらペプチドの結合する細胞を特定することはできなかったが、secretin 結合部位の gastrin による直接的調節は酸分泌の生理的制御に有用な因子として働いている可能性が考えられる。次節ではラット膵で同様の検討を行い、secretin 結合部位の性状を胃、膵間で比較することとした。

第 2 節 secretin の膵における特異的結合

secretin の膵外分泌促進作用については、数多くの報告が認められ、21) 第 1 章第 2 節でも濃度依存性を示す膵液分泌の増大が脳室流法により確認できた。膵内 secretin 結合部位については、これまでにネコ、モルモット膵の単離細胞,
細胞膜を用いた報告がいくつかなされている。しかしラット腸内secretin結合部位については検討されておらず、また胃、腸内secretin結合部位を同様な実験条件下で比較解析した例は未だ報告されていない。そこでまず前節と同じく灌流実験法を用いて臓器レベルでのsecretin結合部位について検討を行った。

Fig. 42. Effect of Unlabeled Secretin on the Concentration of ^{125}I-Secretin (A) or ^{125}I-[Tyr1]secretin (B) in Effluent from Isolated Perfused Rat Pancreas.

Labeled secretin was perfused 5 min, followed by 5 min perfusion without secretin. During the last 5 min, perfusion medium supplemented with unlabeled secretin (20 nM) was perfused (as indicated by open column). The displacement phenomenon is clearly demonstrated semilogarithmically in the inset. Each point represents the mean ± S.E. of three (A) or four (B) experiments.
Fig. 43. Gel Filtration Profiles of Effluents from 125I-[Tyr1] secretin Perfusion

The effluents, which were collected at the time of one minute before (---) and one minute after the beginning of perfusion with unlabeled secretin (2 μM) (—), were subjected to gel filtration on 1.5 x 90 cm Toyopearl HW-55 column eluted with 3 M guanidine-HCl and 2.4 M formic acid at 4°C. The column was calibrated with blue dextran as a void volume marker (Vo), native secretin (SECRETIN) and 125I-tyrosine to indicate the internal volume (Vt).
Fig. 44. Effect of Unlabeled Secretin on the Concentration of 125I-[Tyr1]secretin in the Effluent from Isolated Perfused Rat Pancreas

A dose-dependent displacement was observed by the perfusion with unlabeled secretin; 15 nM (■), 3 nM (▲), 0.6 nM (○) and without unlabeled secretin (●). Each point represents the mean ± S.E. of at least 3 experiments.
Fig. 45. Effect of VIP (A) or Glucagon (B) on the Concentration of 125I-[Tyr1]secretin in Effluent from Isolated Perfused Rat Pancreas

Labeled secretin was perfused for 5 min, followed by 5 min perfusion without secretin. During the last 5 min, perfusion medium supplemented with unlabeled VIP (1.5 µM; A) or glucagon (0.6 µM; B) was perfused (as indicated by open column).
Fig. 46. Effect of Unlabeled Elcatonin on the Concentration of 125I-Elcatonin in Effluent from Isolated Perfused Rat Pancreas

Labeled elcatonin was perfused for 5 min, followed by 5 min perfusion without elcatonin. During the last 5 min, perfusion medium supplemented with unlabeled elcatonin (60 nM) was perfused (as indicated by open column).

確認する目的で、標識secretinの置換に及ぼす各種濃度の非標識secretinの影響を検討した。Fig.44に示すように標識secretinは非標識secretin濃度に依存して置換されること、豚でsecretinは比較的高親和性の結合特性を示すことが認められた。また置換された絶対量が灌流液濃度に比べ少ないことから、secretin結合部位が腸内の限られた部位に局在していることが推察された。

次に腸内secretin結合部位の識別性を検討するため、構造類似ペプチドのV
Fig. 47. Effect of Unlabeled Aprotinin on the Concentration of 125I-Aprotinin in Effluent from Isolated Perfused Rat Pancreas

Labeled aprotinin was perfused for 5 min, followed by 5 min perfusion without aprotinin. During the last 5 min, perfusion medium supplemented with unlabeled aprotinin (2.3 μM) was perfused (as indicated by open column).

I P. glucagonを非標識体として灌流した。しかし、これらペプチド灌流時門脈流出液中放射活性に変化は認められなかった（Fig.45）。従って胃と同様に灌流法により認めた腸内結合部位は高い識別性を有していることが明らかとなった。

一方 elcatonin, aprotininでは結合置換現象は観察されず，その分布結合特性が secretinと異なることを肺でも認めた（Fig.46，Fig.47）。
Fig. 48. Effect of Tetragastrin on the Concentration of ^{125}I—[Tyr1]secretin in Effluent from Isolated Perfused Rat Pancreas

Labeled secretin was perfused for 5 min, followed by 5 min perfusion without secretin. During the last 5 min, perfusion medium supplemented with unlabeled secretin (20 nM) was perfused (as indicated by open column). Tetragastrin (137 nM) was perfused from the start of perfusion. ○, tetragastrin 137 nM; ●, control.
2. 細胞膜分画を用いた結合特性の解析

ラット膵からの細胞膜分画の調製は先に述べた胃粘膜よりの細胞膜分画精製法を準用し分別遠心法、Percoll密度勾配遠心法により行った（Chart 2）。まず crude plasma membrane分画を分別遠心法により調製し、この分画に

<table>
<thead>
<tr>
<th>Pancreas</th>
<th>Homogenize in 0.25 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5, containing 100 U/ml Trasylol and 0.1 mM PMSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenate</td>
<td>Centrifuge at 2400 g, rapidly and briefly, 3 times</td>
</tr>
<tr>
<td>Supernatant</td>
<td>Discard Pellet 1</td>
</tr>
<tr>
<td>Supernatant</td>
<td>Centrifuge at 2400 g for 15 min</td>
</tr>
<tr>
<td>Supernatant and Fluffy Layer</td>
<td>Discard Pellet 2</td>
</tr>
<tr>
<td>Fluffy Layer of Pellet</td>
<td>Centrifuge at 20500 g for 20 min</td>
</tr>
<tr>
<td>Fluffy Layer of Pellet</td>
<td>Discard Supernatant and Pellet 3</td>
</tr>
<tr>
<td>Crude Plasma Membrane</td>
<td>Resuspend in 0.25 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5, containing 100 U/ml Trasylol and 0.1 mM PMSF</td>
</tr>
<tr>
<td>Supernatant</td>
<td>Centrifuge at 100000 g for 60 min</td>
</tr>
<tr>
<td>Fractions of Percoll Gradient</td>
<td>Centrifuge at 100000 g for 60 min</td>
</tr>
<tr>
<td>Fraction I-V</td>
<td>Discard Supernatant and Pellet 4</td>
</tr>
<tr>
<td>Centrifuge at 48000 g for 30 min</td>
<td></td>
</tr>
<tr>
<td>Resuspend in 100 mM Tris-HCl, pH 7.5, containing 100 U/ml Trasylol and 0.1 mM PMSF</td>
<td></td>
</tr>
</tbody>
</table>

Chart 2. Preparation of Plasma Membranes from Rat Pancreas
Table XIII. Distribution of Marker Enzymes and Protein in the Fractions Obtained during Purification of Plasma Membranes from Rat Pancreas

<table>
<thead>
<tr>
<th></th>
<th>5'-Nucleotidase</th>
<th>Cytochrome c oxidase</th>
<th>Amylase</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sp. act. %</td>
<td>sp. act. %</td>
<td>sp. act. %</td>
<td></td>
</tr>
<tr>
<td>Homogenate</td>
<td>5.3±0.5</td>
<td>3.7±0.4</td>
<td>1.1±0.1</td>
<td>100</td>
</tr>
<tr>
<td>Pellet 1</td>
<td>4.0±0.7</td>
<td>2.9±0.6</td>
<td>1.0±0.1</td>
<td>33.5</td>
</tr>
<tr>
<td>Pellet 2</td>
<td>2.9±0.4</td>
<td>6.6±2.3</td>
<td>1.3±0.1</td>
<td>25.3</td>
</tr>
<tr>
<td>Pellet 3</td>
<td>4.7±0.2</td>
<td>7.1±1.4</td>
<td>0.9±0.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Crude plasma membrane</td>
<td>25.4±1.7</td>
<td>2.9±0.7</td>
<td>0.1±0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Pellet 4</td>
<td>11.8±2.6</td>
<td>0.9±0.1</td>
<td>0.6±0.1</td>
<td>6.4</td>
</tr>
<tr>
<td>Supernatant</td>
<td>6.6±1.5</td>
<td>0.2±0.1</td>
<td>1.0±0.1</td>
<td>23.2</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>52.0±7.4</td>
<td>0.3±0.1</td>
<td>N.D.</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The specific activity of 5'-nucleotidase is expressed in nmol/min per mg protein; that of cytochrome c oxidase is in Δ O.D./min per mg protein; that of amylase is in 10^3 units/30 min per mg protein. N.D., not detectable. Each value represents the mean ± S.E. of three preparations. % represents the percentage of the enzyme activity found initially in the homogenate.

Percollを10% (V/V) となるよう加え密度勾配遠心法により精製した。Table XIII に各分画中の指標酵素の分布を示すが、crude plasma membrane分画に細胞膜の指標とされる5'-nucleotidaseは約5倍精製された。次に Percoll密度勾配遠心法によりこの分画を精製した。Fig.49にその際の5'-nucleotidaseとmitochondriaの指標とされるcytochrome c oxidaseの分布パターンを示す。5'-nucleotidase活性のピークはfr.No10（上層より10ml付近に認めら
Fig. 49. Distribution of Marker Enzymes on Percoll Gradient

The Percoll gradient was collected from the top into 30 fractions of 1 ml. ●, 5'-nucleotidase; ○, cytochrome c oxidase.

Figures 49, 50, and 51 show the distribution of marker enzymes on Percoll gradient. The Percoll gradient was collected from the top into 30 fractions of 1 ml. 5'-nucleotidase and cytochrome c oxidase were used as marker enzymes. The 5'-nucleotidase activity was measured in each fraction, and the results are shown in the graph. The y-axis represents the enzyme activity (nmol/min/ml), and the x-axis represents the fraction number. The peak of 5'-nucleotidase activity is observed in fraction 15, while the peak of cytochrome c oxidase activity is observed in fraction 25. The graph shows a clear separation of marker enzymes between the top and bottom fractions of the Percoll gradient.

In the text, the author describes the results of marker enzyme analysis on the Percoll gradient. The 5'-nucleotidase activity was found to be highest in the middle fractions, while the cytochrome c oxidase activity was found to be highest in the bottom fractions. This suggests that the Percoll gradient was effective in separating different organelles and their enzymes. The results are consistent with previous studies on the Percoll gradient separation of subcellular fractions.

The author also discusses the implications of these results for the study of cellular organelles. The separation of marker enzymes provides a useful tool for analyzing the distribution of different organelles in a cell. The results of this study can be used to understand the function and localization of different organelles within a cell.

In conclusion, the Percoll gradient separation of marker enzymes is a useful tool for studying the distribution of organelles and their enzymes within a cell. The results of this study are consistent with previous studies and provide a valuable resource for future research.

The author also discusses the implications of these results for the study of cellular organelles. The separation of marker enzymes provides a useful tool for analyzing the distribution of different organelles in a cell. The results of this study can be used to understand the function and localization of different organelles within a cell.

In conclusion, the Percoll gradient separation of marker enzymes is a useful tool for studying the distribution of organelles and their enzymes within a cell. The results of this study are consistent with previous studies and provide a valuable resource for future research.
Fig. 50. Distribution of Specific Secretin Binding (A) and 5'-Nucleotidase (B) in Various Fractions

Each subcellular fraction (30-100 μg of protein) was incubated with 125I-[Tyr1]secretin (60 pM) at 25°C for one minute. To determine the specific binding, 2.5 μM secretin was added to parallel incubations. Each column represents the mean ± S.E. of 3-4 experiments.

![Bar chart showing distribution of specific secretin binding and 5'-nucleotidase in various fractions.](chart.png)

さらに細胞膜分画へのsecretinの結合特性について精査したところ、Fig.52に示すようにその結合速度は早く、1分以内に平衡状態に達し、非標識secretinを加えることで標識体の結合率は急速に低下した。また125I-secretinの結合は非標識secretinを加えることにより濃度依存的に抑制された（Fig.53）。VIPは高濃度存在時のみsecretinの結合を抑制したが、1μM glucagonには抑制作用は認められなかった。Scatchard plotによりsecretin結合部位の解析を行ったところ、2種類の結合部位が存在することを認めた（Fig.53, inset）。高親和性結合部位の解離定数（K_d1）は1.1±0.2 nM、最大結合部位数（n）は0.7±0.2 pmol/mg proteinであり、低親和性結合部位のK_d2は133±2 nM、n2
Fig. 51. Gel Filtration Profile of Membrane-Associated Radioactivity

Pancreatic plasma membranes (100 μg of protein) were incubated with 125I-[Tyr1]secretin (0.3 nM) at 4°C for 10 min. Bound radioactivity, separated by centrifugation at 20500 g for 20 min at 4°C, was extracted with 1 ml of 5.4 M guanidine-HCl and 2.4 M formic acid. The extract was subjected to gel filtration on 0.9 x 62 cm Toyopearl HW-55 column eluted with 0.1 M acetic acid at 4°C. The broken line represents the gel filtration profile of the standard tracer of secretin.

は16.8±3.8 pmol/mg proteinを示した。
VIPはneuro-acinarシナプスにおいて酵素分泌を調節するneurotransmi-
Fig. 52. Time Course of $^{125}\text{I}-\text{[Tyr}^1\text{]}$secretin Binding to Plasma Membranes from Rat Pancreas

Plasma membrane fraction (51 μg of protein) was incubated with $^{125}\text{I}-\text{[Tyr}^1\text{]}$secretin (60 pM) at 25°C. Dissociation of tracer from plasma membranes was observed after the addition of 1 μM unlabeled secretin at an equilibrium (○). Each point is the mean of 3-6 determinations.

\text{secretin}は腺房中心細胞、導管細胞に働き重炭酸イオンに富む膵液を分泌させるホルモンとされている。先の灌流法でVIPは結合したsecretinを置換する能力を示さなかったが、一方細胞膜分画への結合ではsecretinの結合が高濃度のVIPにより抑制された。しかし今回の結果より胃の場合と同様に生理的環境下においてVIPは膵内でのsecretinの結合に影響を及ぼすことは少ないものと推測された。

次にgastrin共存時におけるsecretinの細胞膜結合性を検討したが、灌流実
Fig. 53. Effect of Secretin, VIP or Glucagon on Binding of 125I-Secretin to Pancreatic Plasma Membranes

Plasma membrane fraction (200 ± 10 μg/ml of protein) was incubated with 125I-secretin (0.3 nM) plus increasing concentrations of unlabeled secretin (●), VIP (○), and 1 μM glucagon (▲). Each point is the mean ± S.E. of 4 separate experiments. Inset is a Scatchard plot of a representative experiment.
Fig. 54. Effect of Tetragastrin on Secretin Binding to Plasma Membranes from Rat Pancreas

Plasma membrane fraction (164 ± 6 µg/ml of protein) was incubated with 125I-[Tyr1]secretin (60 pM) and tetragastrin (137 nM) plus increasing concentration of unlabeled secretin. Each point is the mean ± S.E. of three experiments. ○, tetragastrin 137 nM; ●, control.
Fig. 55. Relationship between the Concentration of Secretin to Stimulate Juice Secretion in Perfused Pancreas and to Occupy the High Affinity Binding Sites on Pancreatic Plasma Membranes

, juice secretion as percent maximum, -----, theoretical occupancy curves (as percent of maximum) for the high and low affinity binding sites.

(3) 考察

腎にsecretinの特異的結合部位の存在することを灌流法により認め、その結合部位への結合性は細胞膜分画へのsecretin結合実験より得た結果と良好な対応を見せた。前節の知見および以上の結果はreceptorへのsecretin結合部位の解析が灌流実験系を用いた方法によっても可能なことを示唆した。近年、Petersenら56は同様の手法を用いたラット腎灌流法により、peritubular membraneにinsulin receptorの存在することを明らかにした。各種活性ペプ
チドのreceptor解析に灌流法を用いることはひとつの有用な手段と考えられる。Scatchard plotによる解析で二種類の結合部位が細胞膜に存在することを認めた。低親和性結合部位を肺灌流法では検出することは出来なかったが、これはwashing期間中（Fig. 42, 5-10分）に低親和性部位に結合した標識体が遊離したためと推測される。ラット腸内においてsecretinとVIPのreceptorは相互に独立して存在していることがRobberechtらにより最近明らかにされた。74)彼らはadenylate cyclase活性と125I-VIPの細胞膜への結合性から得た知見によって結合部位を三つのsubtypeに分類した。すなわち(1) high-affinity secretin receptor（Kd約0.3nM）、(2) low-affinity secretin receptor（Kd約300nM）と(3)VIP-preferring receptorの三つである。またSchulzら75)はラット腸よりcounterflow techniqueにより導管細胞を分離し、腺房細胞よりもsecretinによるadenylate cyclase活性の感受性の高さを報告している。またその活性を50%上昇させるsecretin濃度は約1nMであるとしている。著者の得た高親和性結合部位（Kd：1nM）は彼らの報告74,75とも対応し、腺房中心細胞、導管細胞由来の細胞膜上secretin receptorの結合特性を反映していることが推察される。Fig.55はsecretinの高親和性および低親和性結合部位への結合性と第1章の肺灌流法により得たsecretinの肺液分泌促進作用をグラフに示したものである。実験条件に種々の相違はあるが、肺液分泌の上昇とsecretinの高親和性結合部位への占有度との間に良好な相関が認められた。

胃とは異なりsecretin結合部位がgastrinにより調節されていないことを認め、胃、腸内secretin結合部位の性状、存在形態に相違のあることを明らかにした。この相違を究明するにはさらに検討を進めなければならないが、これらの知見は胃、腸における各種ペプチドによる機能調節機序を解明する上で、有用な視点を与えるものと考える。
結論

以上著者は4章にわたり構造的特徴を有するsecretin, elcatonin, aprotininをモデルペプチドとして選び、ラット胃、腸内でのこれらペプチド性医薬品の分布、代謝像を比較検討した結果次のような新知見を得た。

Ⅰ 薬物の胃、腸内挙動解析を目的とした摘出臓器灌流法の確立

従来のラット胃灌流法は胃の主な生理機能である酸分泌能が欠落しており、生理的機能を保持した系であるという点を除いて、赤血球が酸素供給体として必要であること、またpepsin阻害薬物の存在が有効であることを認めた、牛赤血球およびpepsatinを灌流液中に添加する灌流方法を確立した。この方法によりtetragastrin, histamine等の各種刺激薬物による著明な酸分泌亢進および抑制薬物のcimetidine等による分泌低下が観察できた。

一方脳灌流法はこれまで十二指腸の一部も灌流する方法が殆どどの報告で採られていた。しかし消化管に存在するペプチド類の影響を除くため肺と十二指腸間の血管結紮後、灌流を実施した。この改良法によってもsecretinによりその濃度に依存した脾液分泌の増大を、またpancreozymn灌流では脾液, amy-lase分泌の著明な亢進を認めた。以上の結果よりラット胃灌流法、脳灌流法がほぼ生理機能を保持し、しかも薬物の臓器内動態と薬効の関連を他の臓器組織から独立して解析し得る、有用な実験系であることが証明された。

Ⅱ 胃におけるsecretin, elcatonin, aprotininの挙動

薬理効果を支配する薬物の臓器内挙動を解析するため、125I標識体を用いたゲル淵過法およびradioimmunooassayによりペプチド類の代謝特性を比較検討した結果、直鎖状ペプチドのsecretinが最も不安定で、一部環状のelcatoninがそれに続き、球状ペプチドのaprotininは胃で代謝を殆ど受けなかった。しかし安定であったaprotininもその分子内disulfide結合を修飾した場合、代謝され易くなることが認められ、生体内安定化におけるdisulfide結合の寄与が明らかとなった。胃組織中への分布性はaprotinin>elcatonin>secretinの順となったが、その分布容積は小さく細胞外液中の限られたスペースに主に分布し、一部は細胞膜にも結合しているものと推測された。

—87—
II. 腸におけるsecretin, elcatonin, aprotininの挙動

先に明らかにした胃におけるこれらペプチドの分布、代謝特性と比較する目的で腸灌流法により同様の検討を行った。その結果、直鎖状ペプチドのsecretinが代謝を受けやすく、これらペプチドの代謝性の順序は胃と同様であった。さらに aprotininではdisulfide結合の有無によりその腸内安定性も大きく変動した。またそれらの分布像は胃への分布特性と類似した傾向を示し、これらペプチドの分布、代謝動態に胃、腸間で著明な変動は認められなかった。次にペプチドの構造がその代謝動態に及ぼす影響を更に解析した。その際 aprotininは難代謝性を示したため、secretin, elcatoninについて各種ペプチド共存時の腸内代謝の変動を検討した。elcatoninの代謝が同様な環状構造を有するinsulin, aprotininで抑制されたのに対し、これらペプチドはsecretin代謝に影響を及ぼさなかった。従ってペプチドの構造的特徴がその腸腔内挙動をも支配する要因であり、代謝面でのペプチド間相互作用も無視できないことが明らかとなった。

IV. 胃、腸におけるsecretinの特異的結合

これらペプチドの内、secretinは胃、腸を共に主な標的臓器とするにもかかわらず、胃内結合部位（receptor）の性状は不明のままであった。そこでまず灌流法によりgastrinによる酸分泌へのsecretinの作用を検討した結果、その抑制効果が直接的競合作用でなく、その作用発現に遅延性が存在し、複雑な機序が介在することが明らかとなった。次に同じ灌流法を用いてsecretin 結合部位の解析を試みた結果、胃内に分布した125I標識secretinの非標識secretinによる結合置換現象を認めた。しかし構造の類似するglucagon, vasoactive intestinal peptideには標識secretinを置換する効果が認められず、胃内にsecretinの特異的結合部位が存在することを灌流法により明らかにした。この結合部位の局在性を検討する目的でペプチドホルモンの receptorが存在する細胞膜に着目して胃粘膜より血管側細胞膜に富む分画を分離、精製した。そしてその分画へのsecretinの結合性他分画への結合性と比較した結果、血管側細胞膜分画が最も高い結合性を示し、その結合特性は灌流法により得た結果に対応することを認めた。さらに灌流法および細胞膜分画への結合性相方の解析よりsecretin結合部位へのsecretin結合能がgastrinにより増大することを認めた。
以上の結果は、胃内 secretin結合部位の性状を初めて明らかにしたものであり、
secretinの酸分泌抑制作用に secretin receptorでの gastrinとの相互作用が
関与していることを示唆している。
一方脾内にも secretinの特異的結合部位が存在することを灌流法により認め、
さらに細胞分画成分への secretinの結合性よりその結合部位が細胞膜上にある
ことを明らかにした。しかし胃と異なり結合部位レベルでの secretinとgastrin
の相互作用は認められず、胃、脾間で secretin receptorの性状に相違のある
ことが確認された。またその結合部位への secretinの占有度と膵液分泌作用の
間に緊密な関連を認め、この脾内結合部位の薬効調節における重要性を明らか
にした。胃、脾共に灌流法で得た secretin結合部位の特性は細胞膜分画への結
合性と良好な対応を示し、生理的機能を保持した系で secretinの作用と結合性
の関連を解析することができた。
以上、著者は摘出臓器灌流法によりペプチド性医薬品の胃、脾内挙動がペプ
チド自体の構造的特徴に起因する因子により変動することを明らかにした。ま
た secretinでは胃、脾結合部位への結合特性を灌流法により解析すると共にそ
の結合特性を細胞膜分画を用いて明らかにした。本研究はペプチド性医薬品の
体内動態並びに薬効発現機序の解明上、有益な基礎的知見になり得るものと考え
る。
謝辞

終りに臨み、本研究に際して終始御懇篤なる御指導、御鞭篩を賜わりました京都大学 増 了平教授並びに奥村勝彦助教授に深甚なる謝意を表します。
また種々の有益な御助言と御指導を戴いた京都大学 乾 賢一講師、神谷 晃助手並びに薬剤部職員一同に深謝すると共に、実験の一部に御協力戴いた鍵本順子修士、駒田富佐夫修士、瀬崎陽子学士、小西紀美学士、森洋子学士、佐川玲子学士に深く感謝します。
更に薬学奨励研究室として採用して戴いた日本学術振興会並びにその研究室事業の実施に御尽力された大阪大学川崎近太郎名誉教授に衷心より謝意を表します。
第1章 実験の部

第1節 ラット摘出胃灌流法の検討

(1) 試薬および試料溶液の調製

histamine diphosphate, pilocarpine hydrochlorideは半井化学のもの,
cyclic AMP, dibutyryl cyclic AMPはSigma社のもの，tetragastrinは
三亜薬品のもの，cimetidineはSmith-Kline - 藤沢社のもの，pepstatinは
ベプチド研究所のものです。他の薬物，試薬は市販特級品を使用した。牛
赤血球は血液保存液（ACD液：45mM sodium citrate, 23mM citric
acid, and 74mM glucose）中に採取した牛血液をKrebs-Ringer 重炭酸緩
衝液（KRBB）で用時充分洗浄したものを用いた。血管灌流液はKrebs-Ringer
重炭酸緩衝液に先の洗浄牛赤血球を25 % (V/V)の割合で加え，繊維浸透圧保
持のため4.6 % (W/V) dextran 70 を添加し，95 % 02 - 5 % CO2混合ガスを充分
通気，pH 7.4に調整したものを使用した。Krebs-Ringer重炭酸緩衝液の組成を
Table Iに示す。胃腔内灌流液は0.616mMNa2HPO4，0.092mM citric
acid, 154mM NaClからなりpH 6.6を示す緩衝液を用いた。

(2) 灌流実験法

体重150-250gのWistar系雄性ラットを用い，水の摂取は自由とした条件
下で15-20 時間絶食させ，pentobarbital (40 mg/kg, i.p.) で麻酔下，
以下の手技を行った。まず頸部で迷走神経を切断し，気管切開を施した。次に
腹部正中線に沿って開腹，上腸間膜動脈，脾動脈を結紮した。脾臓を摘出後，
腹部大動脈にカニューレ（外径：1.2 mm）を先端が腹腔動脈と上腸間膜動脈の
間になるよう挿入固定し，heparin（500U/kg）をカニューレより注入した。
十二指腸より下方の腸はGrodskyらの方法19に従って除去し，食道より外径2
mmのカニューレを胃内に挿入するとともに左胃動脈を結紮しないよう注意深
く頸門上部で結紮固定した。次に十二指腸を一部切開し，食道カニューレより
加温した生理食塩水を注入，胃腔内を洗浄後，カニューレ（外径：3 mm）を
Table I. Composition of Krebs-Ringer Bicarbonate Buffer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>116.0 mM</td>
</tr>
<tr>
<td>KCl</td>
<td>4.7 mM</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>2.5 mM</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>1.2 mM</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>1.2 mM</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>25.0 mM</td>
</tr>
</tbody>
</table>

十二指腸切開部より挿入し幽門部で結紮した。胃腔内灌流液を 1 ml/min の流速で注入し、胃からの流出液が透明となった時点で幽門側カニューレを pH 電極に接続する。その流出液の pH が安定となるのを確かめた後、腹部大動脈カニューレから血管灌流液を 0.7 ml/min の流速で灌流すると共に左、右腎動脈、肝動脈、門脈、総胆管を結紮した。続いて直ちに門脈下部に切開を施し、腹部大動脈を胸腔動脈上部で結紮、門脈切開部にカニューレ（外径：15 mm）を挿入した。これらの手法によってラット血液から血管灌流液への移行に伴う胃への血流の途絶を避けることができた。灌流温度は 37 ℃とした。

雌性モルモット（230-260 g）、未成熟ラット（Wistar系雄性：30-50 g）を用いた場合も同様の手技を行ったが、未成熟ラットの血管灌流液および胃腔内灌流液の流速は各々 0.2 ml/min，0.5 ml/minとした。
(3) 酸分泌測定および胃粘膜中 pepsinogenの定量

胃腔内灌流液は pH 3.8 - 6.6 の範囲内で pH 値と酸滴定値の間に直線的な相関が認められている。そこで胃腔からの流出液中 pH を pH 記録計（TOA CD R 12-A）を用いて連続的に記録すると共に、単位時間における酸分泌量を Hori らの方法 11) および pH スタット（TOA HSM-10A）を用いた 0.01N NaOH による滴定値から求めた。胃酸分泌刺激薬物灌流時の酸分泌量は、薬物灌流前に求めた基礎分泌量を酸分泌総量から差し引き、刺激分泌量として示した。

胃粘膜中 pepsinogenの定量は、Kumegawaらの方法 76) に従って行った。

第2節 ラット摘出膵灌流法の検討

(1) 試薬および試料溶液の調製

secretinはエーザイ社より供与された比活性 3110 Crick, Haper and Raper units /mg で他の消化管ホルモンを含まないプタ膵からの抽出精製品を使用した。pancreozyminはBoots社のもの、elcatonin（Asu17）eel calcitonin）は東洋醸造社より提供された 4000MRC units /mg の合成品を用いた。他に薬物、試薬は市販特級品を使用した。灌流液はKrebs-Ringer 重炭酸緩衝液に 0.5%牛血清 albumin, 4.6% dextran 70 を加え、95%O2 - 5%CO2混合ガスを通気、pH 7.4 に用時調製した溶液を使用した。

(2) 灌流実験法

Wistar系雄性ラット（体重 250-300g）を pentobarbital（40mg/kg, i.p）麻酔下、Penhosらの方法 18) に従って膵を摘出し、灌流を行ったが、その際、膵と十二指腸間の血管も結紮した。その手技を以下に記す。

腹部正中線に沿って開腹、食道を左胃動脈と共に結紮し、続いて胃と膵間の血管も背側で結紮した。幽門部にカニューレを挿入し右胃動脈と共に結紮後、胃を切除した。次に膵動脈を結紮、膵臓を切除後、直腸および小腸の一一部に付着する腸間膜を剥離した。膵が腸から分離できた部位から十二指腸下部にかけてまとめて結紮し、十二指腸下部から直腸上部まで腸を切除した。残った十二指腸内を生理食
塩水で洗浄後、カニューレを挿入し、脾と十二指腸間の血管を注意深く結紮した。次に左、右腎動脈、肝動脈、胆管を結紮すると共に総胆管の十二指腸開口部より腎液採取用カニューレ（PE-10、Clay-Adams社）を挿入した。続いて腎動脈下部の腹大動脈にカニューレ（外径：1.5mm）を挿入し、その先端が上腸間膜動脈と腎動脈の間になるように固定した。灌流を約0.5ml/minの流速で開始すると共に、門脈にカニューレ（外径：1.5mm）を挿入、腹腔動脈上部の腹大動脈を結紮し腸を摘出、灌流装置に設置した。この時点で灌流速度を2.0ml/minに上げ、灌流実験にこの腸標本を用いた。恒温槽を用いて灌流温度が37℃となるよう調整した。灌流は一回灌流により行い、灌流開始15分間は安定期間とし、薬物の灌流はその後に実施した。

(3) 脾液分泌およびamylase活性の測定

脾液分泌量はTachibanaの方法22により測定を行い、脾液中amylase活性の測定はCaraway法27)を用いて行った。

第2章 実験の部

第1節 secretin, elcatonin, aprotininの胃内代謝

(1) ラット摘出胃灌流法

Wistar系雄性ラット（体重180-220g）を用い、実験の部第1章第1節(2)に記した方法により行ったが、ペプチドの灌流器具への吸着を防止する目的で血管灌流液に0.5％牛血清albuminを添加した。薬物の灌流は胃腔内灌流液のpHが安定後（灌流開始約15分後）行った。

(2) 試薬および試料溶液の調製

secretin, elcatoninは実験の部第1章第1節(1)に記したものを用いた。125I-[Tyr']secretinは第一ラジオアイソトープ社のものを使用した。aprotininはBoehringer Mannheim社のものを用い、その還元体およびS-carboxa-
midomethyl化体はLiu and Meienhoferの方法56)により調製し、ゲル浄過法を用いて精製した。Na125IはNew England Nuclear社のものを使用した。elcatonin, aprotinin等の125I標識はHunter and Greenwoodの報告したchloramine T法78)により行い、ゲル浄過法により精製した。精製標識体分画は凍結乾燥を行い、使用時まで-25℃に保存した。これら標識体の比放射能は約100μCi/μgであった。secretinは不安定なペプチドとして知られ29)また精製した125I-[(Tyr) secretin試料を再度精製しても約10%前後の低分子量分子の混在が認められた。そこでsecretinの125I標識体としては低分子量分子（主に125I-tyrosine）の混入が10%以下であったものを使用した。他の試薬は市販特級品を使用した。

(3) secretin, elcatonin, の胃内代謝

125I標識ペプチド灌流時には門脈流出液、組織抽出液試料をゲル浄過法により分析することでペプチドの胃内代謝を検討した。すなわち灌流終了後、直ちに胃を摘出し、5.4M guanidine-HCl, 2.4M formic acidからなる抽出液（5ml）中に浸し、細切後homogenateを作製。24,000×gで10分間遠心分離を行った。組織から抽出液中への放射活性の回収率は70-80%であった。また門脈流出液は2,000×gで10分間遠心分離を行い、血球を分離、上清をゲル浄過試料とした。secretin, elcatonin灌流時にはSephadex G-25F（1×70cm）を、aprotinin灌流時にはToyopearl HW55F（1.5×90cm）を用いてゲル浄過を行い、3M guanidine-HCl, 2.4M formic acidで溶出した。溶出液は3mlずつフラクションコレクター（LKB2110あるいはGilson 80F）を使用し採取した。各々のカラムはBlue dextran, standard125I標識ペプチド, 125I-tyrosineを用いて，void volume (Vo), 未変化ペプチド溶出 volume, internal volume(Vt)を各々同定した。未変化ペプチド量はstandard125I標識ペプチド溶出分画中に出現する放射活性により算出した。上記の抽出、分析操作は0-4℃で実施した。

非標識secretinあるいはelcatonin灌流時には門脈流出液中濃度をradio-immunoassayにより測定した。secretinでは第一ラジオアイソトープ社のキットを使用し、一方elcatoninはOrimoらの報告した二抗体法29)により定量し
た。

(4) 125I-修飾 aprotinin と trypsin との結合性

125I-修飾 aprotinin（約 1 nM）と trypsin（Sigma 社 type II, 14 μM）を 25°C で 5 分間 incubate 後、その試料を 15% polyacrylamide pH 4.3 を用いるディスク電気泳動法³⁰による分析した。泳動終了後はゲルをスライサー (Miles 社) を用いて切断、ゲル中放射活性の分布を測定した。

第 2 節 secretin, elcatonin, aprotinin の胃内分布

(1) 125I-標識ペプチドの分布容積の測定

総論の部第 2 章第 1 節でゲル脂過法により求めた組織抽出液中の未変化体分率と総放射活性濃度の積により胃内未変化体濃度を算出した。

(2) 細胞外液容積の測定

inulin (3 mg/ml) を灌流、分布平衡に到達した 10 分後に胃を摘出、組織中 inulin 濃度を Dische and Borenfreund の方法³¹により定量し、細胞外液容積を測定した。

第 3 章 実験の部

第 1 節 secretin, elcatonin, aprotinin の膣内代謝

(1) ラット摘出膣灌流法

体重 250 g 前後の Wistar 系雄性ラットを用いた実験の部第 1 章第 2 節(2)に記した方法により灌流を行った。薬物の灌流は灌流開始から 15 分間の安定期間経過後実施した。
(2) 試薬および試料溶液の調製

実験の部第2章第1節(2)に記したものを使用すると共に porcine monocomponent insulin と porcine glucagon は Novo 社のものを用いた。salmon calcitonin は Sandoz 社のもの、porcine calcitonin は Armour 社のもの、human calcitonin はベプチド研究所のものを使用した。tetracosactide (ACTH (1-24)) は第一製薬のものの、pancreozymin は Bootz 社のものを用いた。

(3) secretin, elcatonin, aprotinin の腎内代謝

125I 標識ベプチド灌流時には門脈流出液、組織抽出液試料を実験の部第2章第1節(3)に記したゲル法により分析することでベプチドの腎内代謝特性を比較検討した。

非標識の secretin あるいは elcatonin を灌流しその代謝性を検討する場合には、radioimmunoassay により門脈流出液中に出現するベプチド濃度を実験の部第2章第1節(3)に記載した方法により測定した。

(4) elcatonin の蛋白分解酵素による不活性化

leucine aminopeptidase (typeⅡ-CP), carboxypeptidase A (typeⅠ), trypsin (typeⅡ), chymotrypsin (typeⅡ) は Sigma 社のものを用いた。elcatonin (5.7 nM) を各種の蛋白分解酵素と共に 37 ℃ で 10 分間、腎灌流溶液中で incubate を行い、残存 elcatonin 濃度を radioimmunoassay により定量した。79)

第2節 secretin, elcatonin, aprotinin の腎内分布

(1) 125I 標識ベプチドの分布容積の測定

実験の部第2章第2節(1)に記した方法により測定を行った。
(2) 細胞外液容積の測定

inulin (3 mg/ml) の灌流を行い、実験の部第2章第2節(2)に記載した方法により腸の細胞外液容積を測定した。

第4章 実験の部

第1節 secretinの胃内における特異的結合

(1) 試薬および試料溶液の調製

secretinは比活性16,000 Crick, Haper, and Raper units/mgのエーザイ社より供与されたものを用い、その¹²⁵I標識化はCheryらの方法(82)により行い、Sephadex G-15/G-50 fine (1/3, w/w) カラム (0.8 × 15 cm) で精製後、再度 Sephadex G-50 F (1.0 × 70 cm) でゲル浄過を行った。そして凍結乾燥を行い使用時まで -25℃で保存した。Na¹²⁵I はフランス原子力庁 (ミドリ十字) のものを使用した。¹²⁵I-[Tyr¹] secretinは第一ラジオアイソトープ社より供与されたものをSephadex G-50で精製後、使用した。vasoactive intestinal peptideはCalbiochem社の合成品、glucagonはNovo社の抽出精製品を使用した。human[Leu¹⁵]-gastrin ⅠはBeckman社の合成品を使用した。PercollはPharmacia社のものを用いた。他の試薬は市販特級品を使用した。

(2) ラット胃粘膜basolateral membrane分画の調製

Inuiらが報告したラット腎皮質からのbasolateral membrane vesicles調製法(44)を参考とし、Percoll密度勾配遠心法を適用し胃粘膜よりbasolateral membraneの分離、精製を行った。

体重190-230 gのWistar系雄性ラットの胃を摘出、氷冷下のbuffer A (0.25M sucrose, 10 mM Tris-HCl (pH 7.5) containing 1 mM EDTA, 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 100U/ml Trasylol, 0.1 μM pepstatin)中に浸し、胃壁に付着した内容物を取り除いた。胃粘膜を剥
離し、秤量後Dounce homogenizerにより7倍容のbuffer A中でhomogenateを作成し、2400×gに到達後直ちに停止する方法で3回遠心分離した。沈渣を集め最初の半分の容量のbuffer A中で再びhomogenizeを行った。そして再度2400×gで上記の方法により3回遠心分離を行った。沈渣（P1）を得、上清を2400×gで15分間遠心し、沈渣（P2）を分離した。さらにその上清を20,500×gで20分間遠心、沈渣（P3）、と上清の間のfluffy layerを採取した。

Teflon Potter homogenizerを使用して、27ml buffer A中でこのfluffy layerのhomogenize(1000rpm, 10 strokes)を行い、crude plasma membrane分画を得た。それにPercollを3ml加え48,000×g、30分間遠心分離（Hitachi RP 50T rotor）を行い、上層より6mlづつHitachi DGF-U density gradient fractionatorを用い採取。7-12ml間の分画をbasolateral membraneに富む分画とした。採取した分画はPercollを除く目的でbuffer Aで希釈後、100,000×g、60分間遠心分離を行った。さらに得た細胞膜分画はbuffer B（100mM Tris-HCl（pH 7.5）containing 0.1mM PMSF, 50U/ml Trasylol, and 0.1μM pepstatin）中でsuspendし、再び100,000×g、60分間遠心分離を行った。最終的に得られた沈渣はbuffer B中で27ゲージの注射針（0.4×20mm）を用いsuspendした。上記の操作はすべて0-4℃で行った。

指標酵素の測定は以下的方法で行った。
（Na⁺＋K⁺）-ATPase : Jørgensenの方法
5’-nucleotidase : Widnell and Unkelessの方法
（K⁺＋H⁺）-ATPase : Culp and Forteの方法
acid phosphatase : Scaleraらの方法
cytochrome c oxidase: Petersらの方法

蛋白質は10％トリクロール酢酸で試料を前処理し、牛血清albuminを標準として、Lowryらの方法により測定した。

(3) secretinの結合実験
細胞分画成分（30-100μg蛋白）と60 pM^{125}I標識secretinを2％牛血清albumin含有のbuffer B（pH 7.5）200μl中で25℃1分間incubateを行
った。結合体の分離は迅速法により実施した。すなわち冰箱した2％血清albuminを含むbuffer B 1 mlを反応液中に加えて結合を停止させ、cellulose acetate filter（Millipore社）で迅速洗浄を行なう。filterは冰箱したbuffer B 7 mlで洗浄後、filter中の放射活性を測定した。特異的結合量は2.5μM secretin共存時における非特異的結合量を全結合量から差し引くことで求めた。非特異的結合量は加えた放射活性の1－2％であった。

第2節 secretinの脾内における特異的結合

(1) 試薬および試料溶液の調製

実験の部第4章第1節(1)に記したものを用いた。

(2) ラット脾plasma membrane分画の調製

実験の部第4章第1節(2)に記載したラット脾粘膜basolateral membrane分画調製法に準じて行った。

体重190－230gのWistar系雄性ラットの脾を摘出し、秤量後細切し、5倍容のbuffer A（0.25M sucrose, 10mM Tris-HCl (pH 7.5) containing 1 mM EDTA, 0.1M PMSF and 100 U/ml Trasylol）中でDounce homogenizerを使用してhomogenateを作成した。次に2400×gに到達直後直ちに停止する方法で3回遠心分離を行い、沈渣（P1）を得た。上清を2400×gで15分間遠心し、沈渣（P2）を得る。更にその上清を20500×gで20分間遠心分離を行った。上清を除去後、fluffy layerを採取し、buffer A中でTeflon Potter homogenizerを用いて、1000rpm, 10 strokes homogenizeを行い、crude plasma membrane分画とした。Percoll 3 mlをこの分画に加え全量を30 mlとして、48,000×g, 30分間遠心分離を行う。上層から8-12 mlの分画を5'-nucleotidase活性の分布よりplasma membrane分画として使用した。次にPercollを除く目的でbuffer Aで希釈し、100,000×g, 60分間遠心分離を行った。得た沈渣はbuffer B（100 mM Tris-HCl (pH 7.5) containing 0.1
mM PMSF and 100U/ml Trasylol)中に suspenseし、再び100,000×gで60
分間遠心分離を行った。最終的に得た沈渣は buffer B 中で 27ゲージの 注射針
を用い suspendした。上記の一連の操作は 0 – 4 °C で実施した。
　指標酵素の測定は実験の部第 4 章第 1 節(2)に記載した方法により行ったが、
amyrase活性は Caraway法77)で測定した。蛋白質は Lowryらの方法87)により測
定した。

(3) secretinの結合実験

実験の部第 4 章第 1 節(3)に記した方法により検討した。
引 用 文 献

2) 阿部道夫，医学のあゆみ 105, 917 (1978).

26) 枫茂 轼, 吉野 彰, 藤田 拓男, 骨代謝, 6, 139 (1971).

30) W.Y. Chey, R.A. Rhodes, and H.H. Ta, in "Gut Hormones,"

42) 山内広世, 白木正孝, 根茂 孝, 増本敏彦, 桜田豊三, 渡辺 晋, 骨代謝, 12, 378 (1979).

69) 松尾 裕 "消化管ホルモン" 山田隆司, 伊藤 滅編, 医歯薬出版 東京, 1976, pp.1.
75) I. Schulz, K. Heil, A. Kribben, G. Sachs, and W. Haase, in

