消化管ホルモン、
cholecystokinin-33（ヒト）の合成研究

1989年

二木 史朗
消化管ホルモン、
cholecystokinin-33（ヒト）の合成研究

1989年

二木 史 朗
目次

＜理論の部＞

緒言 ... 1

第1章 新しいトリプトファン誘導体、N\textalpha\textalpha-mesitylenesulfonyl-
triptophan [Trp(Mts)] の開発とその実用性の検討 5
第1節 トリプトファン含有ペプチド合成上の問題点 5
第2節 Trp(Mts)の合成及びその性質 .. 6
第3節 モデルペプチド、cholecystokinin(CCK)−7
非硫酸化体の合成 .. 8
第4節 モデルペプチド、galaninの合成 .. 9
第1項 galaninについて ... 9
第2項 合成の概略 .. 10
第3項 保護galaninの合成 ... 11
第4項 galaninの合成 ... 17
第5項 合成galaninの活性 ... 18
第5節 まとめ ... 19

第2章 ヒト cholecystokinin (CCK)−33の全合成 20
第1節 CCKに関する従来の研究 .. 20
第1項 分離・構造 .. 20
第2項 体内分布・生理作用 ... 21
第3項 CCKの従来の合成研究 .. 22
第2節 ヒトCCK−33の合成 ... 25
第1項 合成方針 ... 25
第2項 保護ヒトCCK−33の合成−1、無保護のチロシンを
用いた合成 ... 27
第3項 保護ヒトCCK−33の合成−2、保護チロシンを用い
た合成 ... 33
第4項 ヒトCCK非硫酸化体の合成 35
第5項 CCK硫酸化のための予備実験 36
第6項 ヒトCCK−33の合成 39
第7項 合成ヒトCCK−33の生理活性 41

結語 .. 43

謝辞 .. 44

＜実験の部＞

第1章に関する実験 .. 48
第2節に関する実験 .. 48
第3節に関する実験 .. 51
第4節に関する実験 .. 54

第2章に関する実験 .. 68
第2節に関する実験 .. 68

引用文献 .. 90
理論の部
緒言

cholecystokinin（ＣＣＫ）－３３は、1971年Mutt, Jorpes1)によりブタの腸から最初に単離構造決定されたアミノ酸33残基よりなるペプチドアミドである。1985年には、Takahashi, Matsubaraら2)により、ヒトＣＣＫ－３３の構造が遺伝子の塩基配列から解明された。

本品は胆嚢収縮や胆汁分泌促進作用を示す代表的な消化管ホルモンであるが、近年本品が消化管のみならず脳内にも存在することが明らかになり、3)その神経伝達物質としての働きも注目されるようになった。4) CCKの構造上の特徴は27位に硫酸化チロシン(Tyr(SO₃H))を持つことであり、消化管ホルモンとしての活性発現にはこのTyr(SO₃H)が重要な役割を果たしていると言われている。5) 6)しかし、このTyr(SO₃H)は酸に不安定であり、このことがCCK－３３の全合成を非常に困難なものにしている。またヒトＣＣＫ－３３は未だ天然品が得られておらず、その生理学的、薬理学的役割に対しても興味が持たれている。以上のような観点から、著者はヒトＣＣＫ－３３の構造が解明されたのを機会に本品の全合成を計画した。

CCK－３３（ヒト，ブタ）の構造

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>9</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>Met Ile Val Asn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>porcine</td>
<td>Val Met Ile Ser</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1987年倉野ら7)はSerの水酸基をacetyl誘導体で保護し、Tyrを硫
酸化後、アルカリでこのSerの保護基を除去する手法でプタＣＣＫを合成したが、著者は彼等とは異なり、Serの水酸基をシリル化合物で保護しTyrを選択的に硫酸化する新しい方法でヒトＣＣＫ－３３を全合成した。
また本品のＣ端部分（３０位）には酸に不安定なトリプトファン（Trp）残基が存在し、本品の合成にはその保護が不可欠である。著者は、本合成に先立ちTrpの新しい保護誘導体 N\textpi-mesitylenesulfonyltryptophan [Trp(Mts)]を開発し、これを本品の合成に応用した。

（注）本論文に用いるアミノ酸、ペプチドとその誘導体はL体である。
使用した略号はIUPAC-IUBの生化学命名委員会勧告に従った。
1）アミノ酸の略号（レ記号は全て省略した。）
 Ala(A): alanine Arg(R): arginine Asn(N): asparagine
 Asp(D): aspartic acid Cys(C): cysteine Gln(Q): glutamine
 Glu(E): glutamic acid Gly(G): glycine His(H): histidine
 Ile(I): isoleucine Leu(L): leucine Lys(K): lysine
 Met(M): methionine Phe(P): phenylalanine Pro(P): proline
 Ser(S): serine Thr(T): threonine Trp(W): tryptophan
 Tyr(Y): tyrosine Val(V): valine
2）アミノ保護基の略号
 Z(OMe): p-methoxybenzyloxy carbonyl
 Boc: tert.-butyloxycarbonyl
 Fmoc: 9-fluorenylmethoxycarbonyl
3）カルボキシル保護基の略号
 -OMe: methyl ester
 -OBzl: benzyl ester
 -NHNH₂: hydrazide
 -NHNH-Troc: 2,2,2-trichloroethoxycarbonyl hydrazide
4）活性エステルの略号
 －2－
-ONp: p-nitrophenyl ester
-TCP: 2,4,5-trichlorophenyl ester
-OSu: N-hydroxysuccinimidy l ester
-ONB: N-hydroxy-5-norbornene-2,3-dicarboximidyl ester

5）総合剤および関連試薬の略号
DCC: dicyclohexylcarbodiimide
HOBt: N-hydroxybenzotriazole

6）アミノ酸誘導体の略号
-Arg(Mts)-: N⁶-mesitylene-2-sulfonyl arginine deriv.
-Asp(OBzl)-: β-benzyl aspartate deriv.
-Asp(OChp)-: β-cycloheptyl aspartate deriv.
-Lys(Z)-: N⁷-benzylloxycarbonyl lysine deriv.
-Met(O)-: methionine sulfoxide deriv.
-Ser(Bzl)-: O-benzyl serine deriv.
-Ser('BuPh₂Si)-: O-tert.-butylidiphenylsilyl serine deriv.
-Ser('BuMe₂Si)-: O-tert.-butyldimethylsilyl serine deriv.
-Ser(Me₃Si)-: O-trimethylsilyl serine deriv.
-Trp(Mts)-: N⁷⁻mesitylene-2-sulfonyl tryptophan deriv.
-Tyr(Cl₂Bzl)-: 2,6-dichlorobenzyl tyrosine deriv.
-Tyr(SO₃H)-: tyrosine sulfate deriv.

7）脱保護試薬の略号
TFA: trifluoroacetic acid
TFMSA: trifluoromethanesulfonic acid
TMSOTf: trimethylsilyl trifluoromethanesulfonate
MSA: methanesulfonic acid

8）溶媒、その他の略号
DMF: dimethylformamide
DMSO: dimethylsulfoxide
AcOEt: ethyl acetate
MeOH: methanol
AcOH: acetic acid
n-BuOH: n-butanol
EtOH: ethanol
THF: tetrahydrofuran
EDT: 1,2-ethanediethiol TEA: triethylamine
NMM: N-methylmorpholine DCHA: dicyclohexylamine
CHA: cyclohexylamine
HMPA: hexamethylphosphoric triamide
EDTA: ethylenediaminetetraacetic acid disodium salt
LAP: leucine aminopeptidase
pyridine-SO₃: pyridinium-sulfurtrioxide complex
PAS: pyridinium acetyl sulfate
'BuPh₂SiCl: tert.-butyldiphenylsilyl chloride
Bu₄NF: tetra-n-butyrammonium fluoride
TLC: thin layer chromatography
HPLC: high performance liquid chromatography
第1章 新しいトリプトファン誘導体, N₁ⁿ-mesitylenesulfonyl-trypophan [Trp(Mts)] の開発とその実用性の検討

第1節 トリプトファン含有ペプチド合成上の問題点

著者はヒトCCKの全合成に先立ち新しいTrp誘導体を開発した。以下にその経過について述べる。

トリプトファン(Trp)含有ペプチドを合成する際、ペプチド鎖延長時のTFA処理によりインドール環に酸化,⁹)アルキル化⁹)等の副反応が生じることが知られている。酸化については1,2-エタングチオール,¹¹) 2-メルカプトエタノール¹²)等の還元剤を添加することによりある程度抑制可能であるが完全ではない。アルキル化についてはBoc基やZ(OMe)基等のNₐ保護基を酸により除去する際、インドール環のN¹位やC¹位が¹Bu化、あるいはp-methoxybenzyl化されることが知られている。小川らの研究によると、Boc-Trp-OH, Z(OMe)-Trp-OH をアニソール存在下 TFAで0℃, 1h処理した時、Trpの回収率はそれぞれ約60％, 30％に留まった。¹³)この副反応は1,2-エタングチオール,¹¹) ジメチルスルフィド,¹⁴) チオアニソール¹³)等の含硫黄化合物をスカベンジャーとして添加することにより、ある程度抑制可能であるが、やはり完全とはいえず、また、これらの添加によりbenzyl系側鎖保護基が脱離される可能性が生じる。¹⁵),¹⁶)また2-メチルインドール¹⁷)等のインドール系スカベンジャーを用いる方法もあるが、近年、TFA中インドール環の二量体化が起こることが下西らにより報告され、¹⁸)これは好ましい方法とは言えない。一方、インドール環のN¹位が最初に¹Bu化を受けることがMasuiらにより報告されている。¹⁴)以上のことを考えあわせると、TrpのN¹位に電子吸引性の保護基を導入することが上記の副反応の抑制に有効であると言える。

従来発表されているTrpのN¹保護基としてはformyl(for)基,¹⁹) またbenzylkoxy carbonyl(Z)基,²₀) 2,4-dichlorobenylkoxy carbonyl(Cl₂Z)基²¹)等のZ系の保護基、あるいは2,4,6-trimethoxybenzenesulfonyl(Mtb)基,²²) 4-methoxy-2,3,6-trimethylbenzenesulfonyl(Mtr)基²²)等の置換benzene-
sulfonyl系の保護基、さらに2,2,2-trichloroethyloxycarbonyl(Troc)基23)などがあげられる（表1）。しかしながら、これらの中には安定性に問題のあるものも多く、また矢島、藤井らにより開発されたTFMSA24)、

Table 1.
Various N^ε-Protecting Groups for Tryptophan

<table>
<thead>
<tr>
<th>R</th>
<th>Ref</th>
<th>Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH<sub>3</sub></td>
<td>[Mts]</td>
<td>MSA</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-CH<sub>3</sub></td>
<td>[Troc]</td>
<td>Zn/ACOH, 0.01M NaOH</td>
</tr>
<tr>
<td>CH<sub>3</sub>-O-CH<sub>3</sub></td>
<td>[Mts]</td>
<td>TFMSA, TMSOTf, MSA</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-Cl</td>
<td>[Troc]</td>
<td>Zn/ACOH, 0.01M NaOH</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-Cl</td>
<td>[Mts]</td>
<td>TFMSA, TMSOTf, MSA</td>
</tr>
<tr>
<td>CH<sub>3</sub>-OCH<sub>3</sub></td>
<td>[Mts]</td>
<td>MSA</td>
</tr>
<tr>
<td>CH<sub>3</sub>-O-CH<sub>2</sub>-Cl</td>
<td>[Mts]</td>
<td>TFMSA, TMSOTf, MSA</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-Cl</td>
<td>[Troc]</td>
<td>Zn/ACOH, 0.01M NaOH</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-Cl</td>
<td>[Mts]</td>
<td>TFMSA, TMSOTf, MSA</td>
</tr>
<tr>
<td>CH<sub>3</sub>-OCH<sub>3</sub></td>
<td>[Mts]</td>
<td>MSA</td>
</tr>
<tr>
<td>CH<sub>3</sub>-O-CH<sub>2</sub>-Cl</td>
<td>[Mts]</td>
<td>TFMSA, TMSOTf, MSA</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-Cl</td>
<td>[Troc]</td>
<td>Zn/ACOH, 0.01M NaOH</td>
</tr>
<tr>
<td>O-CH<sub>2</sub>-Cl</td>
<td>[Mts]</td>
<td>TFMSA, TMSOTf, MSA</td>
</tr>
</tbody>
</table>

あるいはTMSOTf25)を最終脱保護に用いる合成ストラテジーに適したものは少ない。

著者は、このストラテジーに適したTrpの保護基を探索することを目的とし、N^ε-mesitylenesulfonyl(Mts)基を取り上げ、その有用性を検討した。

第2節 Trp(Mts)の合成及びその性質

Mts基は矢島、武山ら26)によりArgのグアニジド基の保護基としてペプチド合成に導入されたが、著者はこれをTrpのN^ε保護基に応用した。Mts基のN^εへの導入は福田22)木曽23)らと同様に111127)の方法で行った。すなわち、CH₂Cl₂溶液中NaOH末、cetyltrimethylammonium chloride存在下、Z(OMe)-Trp-OBzlにMtsClを反応させZ(OMe)-Trp(Mts)-
OBz1とした後、ケン化によりbenzy1エステルを除去しZ(OMe)-Trp(Mts)-OHを得た（図 1）。次に同様の操作によりBoc-Trp(Mts)-OBz1をBoc-Trp(Mts)-OHに導きこれをDCHA塩として同定した。さらにZ(OMe)-Trp(Mts)-OHをTFA処理することによりH-Trp(Mts)-OHを得た。

H-Trp(Mts)-OHを用いた予備実験の結果、Trp(Mts)は1N NaOHによるケン化、ヒドラジン処理、あるいはTFA, 4N HCl/dioxaneによる酸処理等、通常のペプチド鎖延長上の諸操作に対して安定であった。さらに本基は接触還元、TFA-thioanisole処理, 15) 25% HBr-AcOH28) に対しても安定であった。一方最終脱保護に用いるMSA, 24) 1M TFMSA-thioanisole/TFA, 24) 1M TMSOTf-thioanisole/TFA25) 処理によってMts基は容易に除去されることが分かった。またHF30)処理によってはN1-MtsはN6-Mtsよりも除去されにくいことが分かった（表 2）。

Fig. 1. Scheme for the Preparation of H-Trp(Mts)-OH

<table>
<thead>
<tr>
<th>Acid</th>
<th>Adduct</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M TFMSA/TFA</td>
<td>thioanisole</td>
<td>83.8%</td>
</tr>
<tr>
<td>1M TFMSA/TFA</td>
<td>thioanisole</td>
<td>100%</td>
</tr>
<tr>
<td>1M TMSOTf/TFA</td>
<td>thioanisole</td>
<td>74.7%</td>
</tr>
<tr>
<td>1M TMSOTf/TFA</td>
<td>thioanisole</td>
<td>100%</td>
</tr>
<tr>
<td>MSA</td>
<td></td>
<td>94.6%</td>
</tr>
<tr>
<td>MSA/TFA(1:1)</td>
<td></td>
<td>95.0%</td>
</tr>
<tr>
<td>MSA/TFA(1:1)</td>
<td>thioanisole</td>
<td>100%</td>
</tr>
<tr>
<td>HF</td>
<td></td>
<td>18.3%</td>
</tr>
<tr>
<td>HF</td>
<td>thioanisole</td>
<td>63.4%</td>
</tr>
</tbody>
</table>
以上の予備実験によりTrp(Mts)基はTFMSA, TMSOTfを最終脱保護に用いるペプチド合成法に必要な諸条件を満たしていることが分かったので、著者は2つのモデルペプチド、cholecystokinin (CCK)-7 非硫酸化体，およびgalanin32の合成を行い、本保護基のペプチド合成における実用性を検討した。

第3節 モデルペプチド、cholecystokinin (CCK)-7 非硫酸化体の合成

CCK-7 非硫酸化体、H-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH₂の合成を図2のように行った。最初にZ(OMe)-Trp(Mts)-OH と H-Met-Asp(OBzl)-Phe-NH₂31との縮合を異なる2つの方法、Su活性エステル法34）およびアジド法35）で行った。活性エステル法に必要なZ(OMe)-Trp(Mts)-OSuをOH体をDCC、HOSuで処理することにより、またアジド法の縮合に必要な

Fig. 2. Synthetic Scheme for CCK-7 Non-sulfate

Z(OMe)-Trp(Mts)-OSu
Z(OMe)-Trp(Mts)-NHNH₂
QBzl
H-Met-Asp-Phe-NH₂
QBzl
Mts
Z(OMe)-Trp-Met-Asp-Phe-NH₂
1.TFA+MA
2.TFA
Z(OMe)-Gly-OH
1.TCP
2.TFA
azide
Z(OMe)-Met-OTCP
Z(OMe)-Tyr-NHNH₂
QBzl
Mts
Z(OMe)-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH₂
1M TFMSA-thioanisole/TFA
H-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH₂

Z(OMe)-Trp(Mts)-NHNH₂はZ(OMe)-Trp(Mts)-OBzlをヒドラジン処理することにより得られた。2つの方法により得られたZ(OMe)-Trp(Mts)-Met-Asp(OBzl)-Phe-NH₂はTLCのRf値、元素分析値、融点、旋光度、アミノ酸分析結果により同一であることを確認した。これによってTrp(Mts)は活性エステル法によっても、またアジド法によってもペプチド鎖に容易に
導入できることは分かった。

このテトラペプチドに順次 Z(OMe)-Gly-OH, Z(OMe)-Met-OTCP, Z(OMe)-Tyr-NHNH₂をそれぞれ混酸無水物法, 36 号 TCP活性エステル法, 37 号 アシド法で導入し保護ヘプタペプチドを得た。この際、保護のメチル基を防ぐためanisoleの代わりに2%EDTを含む3,5-dimethylanisoleをスカベンジャーとしTFA 処理を行い、ペプチド鎖を延長した。合成途中Trpに起因すると思われる副反応はTLC上何ら認められず、容易に合成を進めることができた。

このようにして得られたヘプタペプチドをシリカゲルクロマトグラフィーで精製したのち、m-cresol存在下1M TFMSA-thioanisole/TFA で処理し全保護基を除去した。ついで脱保護体をSephadex LH-20でゲル濾過し精製し、得られたペプチドの純度をTLC, HPLCにより確認した。LAPを用いた酵素消化によって満足なTrpの回収率が得られたことにより、Trp(Mts)の実用性を確かめることができた。

第4節 モデルペプチド、galaninの合成

第1項 galaninについて
galaninは1983年、Tatemoto32) らによりプタの小腸から単離されたアミノ酸残基29個からなるペプチドであり、そのC端はアミド化されてる(図 3)。Tatemoto, MuttはC末端アミド構造を有するペプチドを化学的に同定する方法を開発しており, 38) galaninもこの方法により構造決定された。生理作用として平滑筋収縮、持続的な高血糖状態を誘起すると報告されている。32)

Fig. 3. Structure of Galanin

第2項 合成の概略

galaninはN端近くにTrp残基を有しているので、その構造が解明されたのに機会にTrp(Mts)を用いてこの新しい消化管ホルモンを合成することにした。

著者は図4のようにgalaninの液相法による合成を計画した。まず保護基の選択と脱保護であるが、著者は本合成の最終脱保護試薬として、前記CCK-7の合成と同様、矢島らにより開発された1M TFMSA-thioanisole/TFA系を用いることとした。本脱保護系はthioanisoleの反応促進効果14、15により温和な条件下で脱保護を行える利点を有している。また中間体のN°保護基にはTFAにより除去可能なZ(OMe)40あるいはBoc41基を用い、側鎖保護基にはTrp(Mts)のほか、1M TFMSA-thioanisole/TFAで除去可能なLys(Z), Ser(Bzl), Arg(Mts),26 Asp(OChp)42を用いた。このうちAsp(OChp)基は1986年、藤井らによりスクシンイミド化副反応の少ないAspのβ-カルボキシル保護基として開発されたものである。ペプチド鎖の構築については全体を7つの区分ペプチドに分け、これらを合成した後C端から順次ラセミ化の少ないアミノ法で縮合する方法を採用した。また、Asp(OChp)を含むフラグメント[3]を通常のヒドラジン処理を用いて合成することはできないので、矢島らにより開発されたTroc-

Fig. 4. Synthetic Route to Galanin

\[
\begin{align*}
[7] & \quad Z(OMe)-Gly-Trp-Thr-NHNH_2 \\
[6] & \quad Z(OMe)-Leu-Asn-Ser-Ala-Gly-NHNH_2 \\
[5] & \quad Z(OMe)-Tyr-Leu-Leu-NHNH_2 \\
[4] & \quad Z(OMe)-Gly-Pro-His-NHNH_2 \quad \text{QChp} \quad \text{Mts} \\
[3] & \quad Z(OMe)-Ala-Ile-Asp-Asn-His-Arg-NHNH_2 \quad \text{Bzl} \\
[2] & \quad Z(OMe)-Ser-Phe-His-NHNH_2 \quad \text{QChp} \quad Z \\
[1] & \quad Boc-Asp-Lys-Tyr-Gly-Leu-Ala-NH_2 \\
& \quad Z(OMe)-(\text{galanin } 1-29)-NH_2 \\
\end{align*}
\]

1M TFMSA-thioanisole/TFA
NHNH₂₄³）を用いる置換ヒドラジン法を採用しZn-AcOH処理⁴⁴）により選択的にTroc基を除去し対応するヒドラジン体とすることとした。

第3項 保護galaninの合成

（１）galanin 24-29位 保護ヘキサペプチドアミド、
Boc-（galanin 24-29）-NH₂の合成

Fig. 5. Synthetic Scheme for the Protected Hexapeptide Amide,
Boc-（galanin 24-29）-NH₂ [１]
(2) galanin 21-23位 保護トリペプチドヒドラジド。Z(OMe)-(galanin 21-23)-NHNH₂の合成
Z(OMe)-Ser(Bzl)-OHとH-Phe-OMeをとをDCC⁴⁻で総合しジペプチドエステルとし、次いでヒドラジン処理によりZ(OMe)-Ser(Bzl)-Phe-NHNH₂を得た。これとH-His-OMeとをアジド法で総合し目的のトリペプチドヒドラジド,Z(OMe)-Ser(Bzl)-Phe-His-NHNH₂ [2] を得た。

Fig. 6. Synthetic Scheme for the Protected Tripeptide Hydrazide,
Z(OMe)-(galanin 21-23)-NHNH₂ [2]

(3) galanin 15-20位 保護ヘキサペプチドヒドラジド。
Z(OMe)-(galanin 15-20)-NHNH₂の合成
次に図7に示すようにフラグメント [3], Z(OMe)-Ala-Ile-Asp(OChp)-Asn-His-Arg(Mts)-NHNH₂の合成を行った。

Fig. 7. Synthetic Scheme for the Protected Hexapeptide Hydrazide, Z(OMe)-(galanin 15-20)-NHNH₂ [3]

-12-
Z(OMe)-Asn-His-OMe\(^{5,11}\)をヒドラジン処理して得たZ(OMe)-Asn-His-NHNH\(_2\)とH-Arg(Mts)-NHNH-Trocとをアジド法で総合しトリペプチドとした。次いでこれをTFA処理したものにBoc-Asp(OChp)-OSuをSu活性エステル法で導入した。さらに同様にZ(OMe)-Ile-ONp, Z(OMe)-Ala-ONpを順にNp活性エステル法\(^{49}\)で導入しヘキサペプチド誘導体とした。Asp-Asn配列はスクシンイミド型副反応を起こしやすい配列として知られているが, NMMを塩基とし上記の総合を行ったところ, TLC上スクシンイミド体と思われるスポットはなんら認められず, 容易に合成を進めることができた。また, Asp(OChp)は立体障害が大きく総合の際, 反応の進行が悪くなることが懸念されたが, Asp(OChp)をアシル成分, アミン成分のいずれに用いた場合も, それぞれ満足できる収率が得られた。こうして得られた保護ヘキサペプチド誘導体をZn-AcOHで処理しTroc塩を除去し, 目的のヘキサペプチドヒドラジド [3] を得た。この一部を1M TFMSA-thioanisole/TFAで処理した後LAP酵素消化したところ, Ile:Aspの割合は1:0.8であり, β-Chp基が上記の酸および塩基処理によるスクシンイミド化副反応に対しこり抵抗することが分かった。

（4）保護galanin 12-14位 保護トリペプチドヒドラジド, Z(OMe)-(galanin 12-14)-NHNH\(_2\)の合成
Z(OMe)-Gly-ONpとH-Pro-OHをNp活性エステル法で総合しZ(OMe)-Gly-Pro-OHをDCHA塩として得た。このジペプチドとH-His-OMeをSu活性エステル法で総合しトリペプチドエステルとした。これをヒドラジン処理し目的のZ(OMe)-Gly-Pro-His-NHNH\(_2\) [4] に導いた（図 8）。

Fig. 8. Synthetic Scheme for the Protected Tripeptide Hydrazide, Z(OMe)-(galanin 12-14)-NHNH\(_2\) [4]
（5）保護galanin 9－11位 保護トリペプチドヒドラジド、
Z(OMe)-(galanin 9-11)-NHNH₂の合成
Z(OMe)-Leu-OHとH-Leu-OMeを混酸無水物法で縮合し Z(OMe)-Leu-Leu-OMeを得た。このZ(OMe)基をTFAで除去した後、Z(OMe)-Tyr-NHNH₂とア
ジド法で縮合しトリペプチドエステルとした。これをヒドラジン処理し目的のZ(OMe)-Tyr-Leu-Leu-NHNH₂ [5] に導いた（図 9）。

Fig. 9. Synthetic Scheme for the Protected Tripeptide
Hydrazide, Z(OMe)-(galanin 9-11)-NHNH₂ [5]

(6) 保護galanin 4－8 位 保護ペンタペプチドヒドラジド、
Z(OMe)-(galanin 4-8)-NHNH₂の合成
Z(OMe)-Leu-Asn-Ser(Bzl)-Ala-Gly-NHNH₂ [6] の合成を図 10のスキ
ームに従って合成した。

Fig. 10. Synthetic Scheme for the Protected Pentapeptide
Hydrazide, Z(OMe)-(galanin 4-8)-NHNH₂ [6]
まずZ(OMe)-Ala-OHとH-Gly-OMeをDCCで縮合しジペプチドエステルとした。次いでこれに順次、Z(OMe)-Ser(Bzl)-OHを混酸無水物法で、Z(OMe)-Asn-ONp、Z(OMe)-Leu-ONpをNp活性エステル法で導入しベンタペプチドエステルとした。これをさらにヒドラジン処理し目的のヒドラジドとした。

（7）保護galanin 1 - 3 位 保護トリペプチドヒドラジド,
Z(OMe)-(galanin 1-3)-NHNH₂の合成
Z(OMe)-Gly-Trp(Mts)-Thr-NHNH₂ [7]を図11に示した方法に従い合成した。

Fig. 11. Synthetic Scheme for the Protected Tripeptide Hydrazide, Z(OMe)-(galanin 1-3)-NHNH₂ [7]

Boc-Trp(Mts)-OHとH-Thr-OMeをDCCで縮合しジペプチドとした。次いで通常のTFA-anisole処理でBoc基を除去した。この際、EDT等のチオール系スカベンジャーを添加することなしに酸処理を行ったが、Trpに起因する副生成物のスポットはTLC上認められなかった。また、通常N₉無保護のTrp誘導体を酸処理する際には反応液が赤紫色を呈するが、本合成では酸処理液は何ら異常な色を示さなかった。次にこれにZ(OMe)-Gly-ONpをNp法で導入しトリペプチドエステルとした後、ヒドラジン処理により目的のトリペプチドヒドラジドとした。

（8）保護galanin 1 - 29 位 保護ノナコサペプチドアミド,
Z(OMe)-(galanin 1-29)-NH₂の合成
こうして得られた7つのフラグメントをC端から順次アジド法で縮合した。ペプチド鎖が延長されるに従い、加えるアシル成分の量も1.5当

Fig. 12. Synthetic Scheme for the Protected Galanin

Table 3. Amino Acid Ratios in 6N HCl Hydrolysates of Synthetic Galanin and its Intermediates

<table>
<thead>
<tr>
<th>Protected Peptides</th>
<th>24-29 (6)</th>
<th>21-29 (9)</th>
<th>15-29 (15)</th>
<th>12-29 (18)</th>
<th>9-29 (21)</th>
<th>4-29 (26)</th>
<th>1-29 (29)</th>
<th>Synthetic Galanin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>0.99</td>
<td>1.02</td>
<td>3.16</td>
<td>3.06</td>
<td>3.07</td>
<td>3.97</td>
<td>3.95</td>
<td>3.87(4)</td>
</tr>
<tr>
<td>Thr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01</td>
<td>0.93(1)</td>
</tr>
<tr>
<td>Ser</td>
<td>0.94</td>
<td>0.87</td>
<td>0.89</td>
<td>0.89</td>
<td>1.81</td>
<td>1.78</td>
<td>1.78</td>
<td>1.82(2)</td>
</tr>
<tr>
<td>Pro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.95</td>
<td>1.00</td>
<td>0.83</td>
<td>0.86</td>
</tr>
<tr>
<td>Gly</td>
<td>0.94</td>
<td>1.01</td>
<td>0.99</td>
<td>1.88</td>
<td>1.88</td>
<td>2.85</td>
<td>3.90</td>
<td>3.96(4)</td>
</tr>
<tr>
<td>Ala</td>
<td>0.90</td>
<td>1.06</td>
<td>2.13</td>
<td>2.06</td>
<td>2.06</td>
<td>3.19</td>
<td>3.21</td>
<td>3.09(3)</td>
</tr>
<tr>
<td>Ile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.06</td>
<td>0.99</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Leu</td>
<td>0.98</td>
<td>1.06</td>
<td>1.00</td>
<td>0.98</td>
<td>3.00</td>
<td>3.81</td>
<td>3.77</td>
<td>4.04(4)</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.84</td>
<td>0.90</td>
<td>0.93</td>
<td>0.93</td>
<td>1.86</td>
<td>1.68</td>
<td>1.66</td>
<td>2.05(2)</td>
</tr>
<tr>
<td>Phe</td>
<td></td>
<td>0.98</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.99(1)</td>
</tr>
<tr>
<td>Trp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
<td>0.75(1)</td>
</tr>
<tr>
<td>Lys</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00(1)</td>
</tr>
<tr>
<td>His</td>
<td>0.97</td>
<td>1.98</td>
<td>2.77</td>
<td>2.76</td>
<td>2.77</td>
<td>2.76</td>
<td>2.76</td>
<td>2.89(3)</td>
</tr>
<tr>
<td>Arg</td>
<td>1.02</td>
<td>0.98</td>
<td>0.99</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.94(1)</td>
</tr>
<tr>
<td>Recover.</td>
<td>70%</td>
<td>85%</td>
<td>84%</td>
<td>83%</td>
<td>75%</td>
<td>90%</td>
<td>89%</td>
<td>74%</td>
</tr>
</tbody>
</table>

* Determined by 4N CSA hydrolysis
第4項 galaninの合成

保護galaninの脱保護・精製法を図13に示す。保護galanin, Z(OMe)-(galanin 1-29)-NH₂をm-cresolおよびEDT存在下, 1M TFMSA-thioanisole/TFAで水冷下120分処理した。このうちEDTは酸による最終保護の際のインドール環の修飾を抑制するために用いた。次いでSer, Thr残基に起こりうるN→O アシル転位（5）を防ぐためNH₄OHでpH 8とし, 水冷下30分摂拌した。さらにpH 4に戻し, これを0.5N AcOH を溶出液とするSephadex G-25でゲル濾過した(図14-a)。さらにNucleosil 5C₁₈カラムを用いるHPLCで精製した後, Sephadex G-25で脱塩した(図14-b)。

Fig. 13.
Deprotection and Purification Procedure

Z(OMe)-(galanin 1-29)-NH₂

1. 1M TFMSA-thioanisole/TFA
 + m-cresol, EDT (0°C, 120min)
2. pH 8.0 (0°C, 30min)
3. Sephadex G-25 (0.5N AcOH)
4. Nucleosil 5C₁₈
 (CH₃CN:0.2% TFA = 35:65)

galanin

こうして得られたサンプルはTLCで単一スポットを示し, ディスク等電点電気泳動(Pharmalyte pH 3-10)でも単一バンドを示した(図14)。また合成galaninはHPLC上で, Tatemoto博士の天然品と保持時間が完全に一致することが確認された(図15)。さらに酸分解, 酵素消化後のアミノ酸分析値もそれそれぞれ理論値と良く一致しており, 特に酵素消化後のTrpの回収率は満足できる値であった。FAB(fast atom bombardment)-質量分析でも理論値と一致した測定値が得られた。
Fig. 14. HPLC and Disk Isoelectrofocusing of Synthetic Galanin

i) HPLC
 a) gel-filtered sample
 b) HPLC-purified sample

ii) disk isoelectrofocusing
 a) gel-filtered sample
 b) HPLC-purified sample

Fig. 15. HPLC of a Mixture of Natural and Synthetic Galanin

Absorbance

215 nm

CH₃CN(%) 50

1.6

1.2

0.8

0.4

0

0 10 20 30 (min)

Sample: mixture of natural and synthetic galanin (10 µg each)
Column: TSK-ODS-120T 5µm
(4.6 x 250 mm)
Solvent: 0.1% TFA-CH₂CN/0.1% TFA-H₂O
Flow: 1.0 ml/min

第5項 合成galaninの活性

galaninはイヌで平滑筋収縮、持続的高血糖状態を示すことが報告されている。39) 瀬川教授によって検定された結果、合成galaninはラット回腸に対しサブスタンスPの5倍の収縮活性を示したが、モルモット回腸に対しては3×10⁻⁵Mの濃度でも収縮活性を示さなかった。このことか
ら、galaninの活性は種特異性を示すことが示唆された。また、井上講師らによって検定された結果、合成galaninをイスに(2μg/kg)の割合で静脉注射したところ図16に示すように顕著な高血糖状態が引き起こされた。このように合成galaninは天然品と同様の生理活性を示すことがわかった。

Fig. 16.
Effect of galanin on plasma glucose levels

第5節 まとめ
以上、Trp(Mts)基を用いて2つのモデルペプチドを合成したが、合成途上Trpに起因する副反応は何れも認められず容易に合成を進められた。これらの合成を通じ、Trp(Mts)基がTFMSAを最終脱保護に用いる際のペプチド合成に有効であることが確認できたので、筆者はこれをヒトCCK-33の合成に適用した。
第2章 ヒト cholecystokinin (CCK) - 33 の全合成

第1節 CCKに関する従来の研究

第1項 分離・構造
1928年、Ivy, Oldberg はブタ上部小腸粘膜よりイヌの胆囊を収縮させる物質を単離し、これをcholecystokininと命名した。その後 Haper, Raper はsecretinの精製時にsecretinを除いた分画より胆汁と膵液の分泌を促進する物質を分離し、これをpancreozyminと命名した。1964年 Jorpes, Mutt はcholecystokininの精製過程において、胆囊収縮促進活性と膵液分泌活性が並行して上昇し、また酸化によって両活性が失われることから両者を同一物質 (cholecystokinin - pancreozymin, CCK) と考え、さらに1971年に至り彼らは33残基からなるブタCCKの構造を発表した (図 17)。1)

Fig. 17. Comparizon of Amino Acid Sequences of CCKs from Various Species*

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human:</td>
<td>VSQRTDGERAHLGALLARYIQGARKPSGRMSIVKNLQNLPSHRISDRDHYMGWMDB</td>
</tr>
<tr>
<td>Porcine:</td>
<td>AV-KV-------------------V-ML-----S-----------------</td>
</tr>
<tr>
<td>Rat:</td>
<td>AVL-P-S-P--R-----------V----------VL-----G----------</td>
</tr>
<tr>
<td>Mouse:</td>
<td>--R---------------V----------VL-----S----------</td>
</tr>
<tr>
<td>Bovine:</td>
<td>---------------VI-----S----------</td>
</tr>
<tr>
<td>Canine:</td>
<td>AQKVNS--P-------------------VI-</td>
</tr>
</tbody>
</table>

*C Only amino acids that differ from those of human CCK are shown; matching amino acids are represented by dashes.
Regions for which sequence data are unavailable are left open.
1) Tyr(SO₃H), , amide

その後の研究によりCCKには共通のC端を持つ種々の分子型が存在することが明らかになり (図 18), アミノ酸残基数に応じてCCK - 58, CCK - 39, CCK - 33, CCK - 8 のように呼ばれるようになった。これにはいずれもC端から7番目に硫酸エステル化されたTyr
(Tyr(SO$_3$H))をもち、消化管ホルモンとしての活性発現にはこのTyr(SO$_3$H)が重要な働きを果たしている。$^5,^6$)

Fig. 18. General Scheme of the Present Concept of the Posttranslational Processing of the CCK Precursor (from Ref. 4.)

現在までにブタ CCK - 58,$^5,^8$) - 3.9 (CCK - variant),$^5,^9$) - 3.3,1) ウシ CCK - 3.9$^6,^9$) がそれぞれ単離構造決定され、また、イヌ,$^6,^1$) ラット,$^6,^2$) モルモット$^6,^3$) のCCKの部分構造が決定されている。さらに、近年、遺伝子操作を用いる方法により、ヒト2)をはじめとしブタ,$^6,^4$) ラット,$^6,^5$) マウス$^6,^6$) のCCKの構造が相次いで解明された（図 17）。

また1968年Erspamer等によりカエルの皮膚より単離された caerulein (Pyr-Gln-Asp-Tyr(SO$_3$H)-Thr-Gly-Trp-Met-Asp-Phe-NH$_2$)57) はその10個のアミノ酸残基中5位のThrを除いてC端側オクタペプチドがCCKと同一であり、やはりTyr(SO$_3$H)が活性発現に重要である。

第2項 体内分布・生理作用

CCKは消化管から最初に単離されたペプチドであるが、その後の研究により脳内にも存在することが明かとなり、$^3,^6,^7$) CCKはいわゆる脳 - 腸管ペプチドの一種と考えられるようになった。
消化管において、CCK-3とCCK-8はほぼ同量存在し、\(^{6,8}\) 腸外分泌（消化酵素、NaCl分泌）促進、胆嚢収縮（胆汁分泌）促進等の作用を持つことが知られている。\(^{6,9}\)

脳内では、CCKは90％以上がCCK-8の形で存在し、\(^{7,8}\) 大分子CCKのほか、さらにCCK-5、CCK-4も存在することが明らかになった。\(^{7,1}\) 脳内ではCCKは脳皮質をはじめとし、海馬、視床、視床下部、扁桃などの神経細胞や神経繊維に存在し、\(^{7,2}\) 神経伝達物質あるいは神経調節物質\(^{4,7,3}\)として摂食、\(^{7,4}\)体温、\(^{7,5}\)脳内アミノの遊離\(^{7,6}\)等に関与していると言われている。

第3項　CCKの従来の合成研究

前述のとおり、CCKの構造的な特徴はそれらの分子内にTyr(SO₃H)を含むことである。化学的にTyr(SO₃H)は塩基には比較的安定であるが、酸には不安定であるという特性を有している。一方、現在ペプチド合成においては、TFA等の酸でN°保護基を除去しペプチド鎖を延長し、TFMSA、TMSOTf、HF等の強酸を用いて最終脱保護を行う方法が一般に用いられている。N°脱保護剤としてTFAを用いるこの方法で、酸に不安定なTyr(SO₃H)を含むペプチド鎖を延長させることは、したがって困難であると考えられる。1970年、Ondettiら\(^{5}\)はCCK-12の合成を報告したが（図19）。彼等はTyrをアカベプチドの段階で硫酸化し、TFAでBoc基を除去しつつCCK-12に導いた。この際、アカベプチドの硫酸化の段階の収率は8%，保護アカベプチドからCCK-12までの全収率は4%であった。この

Fig. 19. Synthetic Scheme for CCK-12 (Ondetti, Ref. 5)
の例からわかるように、この酸処理を繰り返す方法によってCCKを全合成することは困難と判断せざるを得ない。

そこで、本品の合成的アプローチとして、1）最初からTyrをTyr(SO₃H)の形で導入し酸処理を避けて合成を進める方法、および、2）常法を用いてベプチド鎖を構築後Tyrのフェノール性水酸基を選択的に硫酸化する方法、の2つが考えられる。

1）のアプローチに沿った合成にはWünschら77）のCCK-10の合成があげられる（図20）。彼等は最初、Z-Tyr(SO₃·Ba/2)誘導体を用いて合成を進めたが、CCKのC端部分にMetが存在しZ基の除去が困難なために、塩基により脱保護可能なFmoc基をN°保護基とし合成を進めた。また、最終脱保護にはTFAを用いた。しかし、この方法を用いた更にも長

Fig. 20. Synthetic Scheme for CCK-10 (Wünsch, Ref.78)

鎖のCCKの合成については未だ報告がない。なお、彼等はZ基をN°保護基とし、Tyr(SO₃·Ba/2)を用いる方法で、Metをnorleucine(Nle)に置換したヒト[15-Nle]little-gastrin-II (Pyr-Gly-Pro-Tyr-Leu-[Glu]₅-Ala-Tyr(SO₃H)-Gly-Trp-Nle-Asp-Phe-NH₂)の合成78）を行っている。

2）のアプローチを採用する場合に留意せねばならない点として、pyridine-SO₃体79）やPAS,80）等の硫酸化試薬は一般にTyrのフェノール性水酸基よりもSer, Thrのアルコール性水酸基を優先的に硫酸化することが挙げられる。このため、2）のアプローチにより合成を行うときにはSer, Thrを保護した上で硫酸化を行い、その後、これらの保護基を酸でなく塩基性条件で除去することが必要である。これを如

—23—
何に行うかは困難な問題である。先に述べたOndettiらによるCCK-12の合成で、彼等がTyrをSer導入前のテトラペプチドの段階で硫酸化したのは上記の理由によるものであり、Serを含有するCCK-12の合成すら非常に困難な問題を抱えていたのである。

1987年の倉野ら7)によるプタCCK-33の全合成は保護Serを用いるこのアプローチを採用したものである。彼らの方法はSer残基をphe-noxyacetyl(PhA)基で保護しペプチド鎖を構築し、HFでPhA基以外の全保護基を除去後、PASにより硫酸化を行ったものである（図21）。しかしながら、この方法でもペプチド鎖構築中にPhA基の脱離が生じたり、また、最終段階の0.1M NaOH/DMSOによる脱PhAの際にSerのデヒドロアラニン化82)が起こる可能性がある。報告によれば、保護プタCCK-33からの収率は5%に留まっている。またPenkeら83)もSerの水酸基をacetyl基で保護しプタCCK-33の合成を試みているが詳報はない。このように、保護Serを用いるCCKの全合成にTyrの硫酸化後の脱保護問題を残しているように判断される。

なお、1976年、矢島ら81)は、プタCCK-33非硫酸化体を合成したが、Tyrの硫酸化には成功しなかった。

Fig. 21. Procedure for Conversion of Protected Porcine CCK-33 to Sulfated Porcine CCK-33 (Kurano, Ref. 7)

<table>
<thead>
<tr>
<th>Protected pCCK-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFA, 0°C, 60 min</td>
</tr>
<tr>
<td>HF/anisole, 0°C, 60 min</td>
</tr>
<tr>
<td>NH_4I/TFA, 0°C, 2 min</td>
</tr>
<tr>
<td>Sephadex LH-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unsulfated pCCK-33[5Ser(PhA),Trp(for)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAS/TFA, 0°C, 120 min (Sulfation)</td>
</tr>
<tr>
<td>0.1N NaOH/DMSO, 0°C, 5 min (Deprotection of PhA, for)</td>
</tr>
<tr>
<td>CM-cellulose</td>
</tr>
<tr>
<td>Butyl-Toyopearl 650M</td>
</tr>
<tr>
<td>CM-Toyopearl 650M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sulfated pCCK-33</th>
</tr>
</thead>
</table>

—24—
第2節 ヒトCCK－33の合成

第1項 合成方針

前述のとおり、倉野ら、PenkeらのプタCCK－33の合成ではSerのアルコール性水酸基をphenylacetyl基、あるいはacetyl基で保護したため、最終段階での希NaOH処理の際Serがデヒドロアラニン化を起こした可能性があり、これが最終精製の際の低収率の原因の一つとなっていると考えられる。また、一般にペプチドを強アルカリ処理することは好ましいことではない。

著者はヒトCCK－33を合成するにあたり、彼らの合成方針の異なる新しい方法による合成を検討した。すなわち、CCK－33非硫酸化体を合成し、そのアミノ基をFmoc基84)で、Serの水酸基をシリン系保護基で可逆的に再保護した後、pyridine-SO₃錆体を用いTyrの水酸基を硫酸化する方法である（図22）。

Fig. 22. Synthetic Route to hCCK-33

最初に液相法でヒトCCK－33非硫酸化体を合成することにした。まず、保護基の選択と脱保護の問題であるが、著者は本品の最終段階における脱保護試薬として藤井、矢島らにより近年開発された1M TMSOTf－
thioanisole/TFA系）を用いることとした。矢島、藤井らが以前に発表した1M TFMSA-thioanisole/TFA系（24, 25）はBrønsted酸のTFMSAによる脱保護系であるのに対し、この脱保護系はLewis酸に分類されるTMSOTf（86, 87）によるものであり、新しい概念にもとづく脱保護系であるといえる。このsuper hard acid（88）の作用とsoft baseであるthioanisoleによる反応促進効果（15, 16）により、1M TMSOTf-thioanisole/TFA系はTFMSAを用いる系よりもさらに強力な脱保護能を持つとされている。この脱保護系を用いて現在までにすでに数種のペプチドが合成されており、いずれも良好な結果が得られている。（89）

ペプチド鎖の延長時の一時的なN°保護基には、TFAで除去可能なZ（OMe）基あるいはBoc基を用いることにした。側鎖官能基を有するアミノ酸誘導体には、TFAに安定で上記最終脱保護系で除去可能な保護基を用いることにした。まず、C C KのC端部分（30位）に存在するTrp残基についてであるが、本品のような長鎖のペプチドを合成する際には合成途上のTrp残基の酸化、アルキル化を防ぐためTrpの保護が必要不可欠である。本合成においては著者の開発したTrp(Mts)を用い、Trpを保護することにした。このほかLys（Z）、Arg（Mts）、Ser（Bzl）、Asp（OBzl）またはAsp（OChp）を用いることにした。また部分的な空気酸化やN°脱保護に際するS-アルキル化を避けるため、Metをスルホキシドとして保護した。Tyrに関しては最初無保護で合成を進めたが、合成途上Tyrの側鎖にアシル化が起こり収率の低下を招いたので、Tyr（Cl₂Bzl）（88）の形で保護し再度合成を行った。

ヘテロ環の構築には7個の比較的小さな区分ヘテロ環ヒドラジンを選び、これらをC端から順次ラセミ化の少ないアジド法により総合する計画を立てた。これは、比較的小さな区分ヘテロ環を総合に用いた方が収率がよく、また目的物の精製が容易であると考えたからである。またAsp（OBzl）を含む区分ヘテロ環[3]を合成するためには、矢島らが開発したTroc-NHNH₂を用いる置換ヒドラジン法を採用し、亜鉛-酢酸処理により選択的にTroc基を除去し対応するヒドラジン体とすることにした。

以上の方針にしたがってヒトC C K – 3 3を合成することにした。
第2項 保護ヒトCCK-33の合成-1、無保護のチロシンを用いた合成

(1) ヒトCCK24-33位 保護テトラペプチドアミド,
Z(OMe)-(hCCK 24-33, [Tyr-free]²⁷)-NH₂の合成

図23に示すように、H-Phe-NH₂から出発しステップワイズにC端フラグメント [1] の合成を行った。31位のMet(O)をNB活性エステル法、²¹) 25位のArg(Mts)を混酸無水物法で、また、27位のTyrをアミド法で総合したが、その他はSu活性エステル法で総合した。こうして得られたフラグメント [1] の純度をTLC、元素分析、6N HCl酸分解後のアミノ酸分析によって確認した。他のフラグメントについても同様の手法により純度を確認した。

Fig. 23. Synthetic Scheme for the Protected Decapeptide Amide,
Z(OMe)-(hCCK 24-33 [Tyr-free]²⁷)-NH₂ [1]

(2) ヒトCCK20-23位 保護テトラペプチドヒドラジド,
Z(OMe)-(hCCK 20-23)-NHNH₂の合成

フラグメント [2]、Z(OMe)-His-Arg(Mts)-Ile-Ser-NHNH₂を図24に示すスキームにしたがって合成した。まず、Z(OMe)-Ile-Ser-OMe⁹²)を
TFA処理した後、Arg(Mts),Hisをそれぞれ混酸無水物法, アジド法でステップワイズに導入しテトラペプチドエステルとし、これをヒドラジン処理して[2]に導いた。

Fig. 24. Synthetic Scheme for the Protected Tetrapeptide Hydrazide, Z(OMe)-(hCCK 20-23)-NHNH₂ [2]

(3) ヒトCCK17-19位 保護トリペプチドヒドラジド,
Z(OMe)-(hCCK 17-19)-NHNH₂の合成
フラグメント[3]Z(OMe)-Asp(Obzl)-Pro-Ser-NHNH₂は Asp(Bzl)を含む。このため、図 25に示すように、この合成には置換ヒドラジンTroc-NHNH₂を採用した。

Fig. 25. Synthetic Scheme for the Protected Tripeptide Hydrazide, Z(OMe)-(hCCK 17-19)-NHNH₂ [3]

H-Ser(Bzl)-NHNH-Trocに Z(OMe)-Pro-OHをDCC-HOBt法⁹）で、次いで、Z(OMe)-Asp(Bzl)-OHを混酸無水物法でそれぞれ導入し、トリペプチド誘

(4) ヒト CCK 12−16 位 保護ペンタペプチドヒドラジド,
Z(OMe)-(hCCK 12-16)-NH₂の合成

Fig. 26. Synthetic Scheme for the Protected Pentapeptide Hydrazide, Z(OMe)-(hCCK 12-16)-NH₂ [4]

(5) ヒト CCK 8−11 位 保護テトラペプチドヒドラジド,
Z(OMe)-(hCCK 8-11)-NH₂の合成
図 27に示すスキームに従ってフラグメント [5] , Z(OMe)-Ser(Bz1)-Ile-Val-Lys(Z)-NH₂を合成した。まずかさばりの大きい側鎖を持つジペプチド、Z(OMe)-Ile-Val-OMeをNp法で合成し、次いでこれをヒドラジン処理し対応するヒドラジドとした。さらにこれとH-Lys(Z)-OMeとをアシド法で総合しトリペプチドエステルとした。これにZ(OMe)-Ser(Bz1)-OHを混酸無水物法で導入し、得られたテトラペプチドエステルをヒドラジン処理し [5] に導いた。
Fig. 27. Synthetic Scheme for the Protected Tetrapeptide Hydrazide, Z(OMe)-(hCCK 8-11)-NHNH₂ [5]

Z(OMe)-Ser(Bzl)-OH
Z(OMe)-Ile-ONp
H-Val-OMe
H-Lys(Z)-OMe

protected tetrapeptide

1.Np
2.NH₂NH₂
1.azide
2.TFA

Z(OMe)-Ser(Bzl)-Ile-Val-Lys(Z)-NHNH₂

(6) ヒトCCK5-7位 保護トリペプチドヒドラジド、
Z(OMe)-(hCCK 5-7)-NHNH₂の合成
フラグメント [6], Z(OMe)-Gly-Arg(Mts)-Met(O)-NHNH₂を図28のスキームに示すように合成した。まず,Z(OMe)-Arg(Mts)-Met(O)-OMe₉₅をTFA処理し,これにZ(OMe)-Gly-OHをSu活性エステル法で導入してトリペプチドエステルとした後, ヒドラジン処理することにより [6]を得た。

Fig. 28. Synthetic Scheme for the Protected Tripeptide Hydrazide, Z(OMe)-(hCCK 5-7)-NHNH₂ [6]

Z(OMe)-Gly-OSu
H-Arg(Mts)-Met(O)-OMe

protected tripeptide

1.Su
2.NH₂NH₂

Z(OMe)-Gly-Arg(Mts)-Met(O)-NHNH₂

(7) ヒトCCK1-4位 保護テトラペプチドヒドラジド、
Z(OMe)-(hCCK 1-4)-NHNH₂の合成
N端フラグメント [7], Z(OMe)-Lys(Z)-Ala-Pro-Ser-NHNH₂を図29
に示すスキームによって合成した。まず、既知物質の Z(OMe)-Ala-Pro-
OH^{86} を出発物質とし、これと H-Ser-OMeをDCCで総合してトリペプチド
エステルとし、次にこれをTFA処理した後、Z(OMe)-Lys(Z)-OHをSu活性
エステル法で総合して対応するトリペプチドエステルを得、最後にこれを
ヒドラジン処理して[7]とした。

Fig. 29. Synthetic Scheme for the Protected Tetrapeptide
Hydrazide, Z(OMe)-(hCCK 1-4)-NHNH₂ [7]

（8）保護ヒトCCK-33[Tyr-free]³⁷の合成
こうして得られた7個のフラグメントをC端から順にラセミ化の少な
いアミド法を用いて総合した（図30）。それぞれの反応の終結をニンヒ
ドリンテストにより確認した。ペプチド鎖の伸長に伴い、アミド成分の
量を1.5当量から5当量へと増量した。特にフラグメント[4]の総合の
際には合計8当量（5+3当量）のアミド成分を使用した。このヒドラジンは
DMFに難溶でありアミド体に変換する際にはDMF-DMSO-HMPA(1:1:1)の混
合溶媒を大量に使用しなければならなかった。生成物の精製はDMF-MeOH
による再沈殿あるいはDMFを溶出液とするSephadex LH-20によるゲル濾
過により行った。それぞれの生成物について、C端のPheを基準とした酸
加水分解後のアミノ酸分析値を求めることにより純度を確認した（表4）。
上記のフラグメント総合においてアミド成分を過剰に用いた場合Tyr残
基がある程度アミド化されることを避けられず、途中Sephadex LH-20を
用いるゲル濾過で精製せねばならなかった。このため総合時の収率は48%-
69%に留まった。Tyrの硫酸化時の困難さを考えると多量のCCK-33
Fig. 30. Synthetic Scheme for the Protected hCCK-33 [Tyr-free]

Table 4. Amino Acid Ratios in 6N HCl Hydrolysates of Protected hCCK-33 [Tyr-free] and its Intermediates

<table>
<thead>
<tr>
<th></th>
<th>24-33</th>
<th>20-33</th>
<th>17-33</th>
<th>12-33</th>
<th>8-33</th>
<th>5-33</th>
<th>1-33</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(10)</td>
<td>(14)</td>
<td>(17)</td>
<td>(22)</td>
<td>(26)</td>
<td>(29)</td>
<td>(33)</td>
</tr>
<tr>
<td>Asp</td>
<td>3.05</td>
<td>3.10</td>
<td>3.82</td>
<td>6.01</td>
<td>6.27</td>
<td>6.12</td>
<td>6.01</td>
</tr>
<tr>
<td>Ser</td>
<td>1.00</td>
<td>1.00</td>
<td>1.86</td>
<td>1.90</td>
<td>2.82</td>
<td>2.75</td>
<td>3.45</td>
</tr>
<tr>
<td>Glu</td>
<td>1.10</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>Pro</td>
<td>1.00</td>
<td>0.82</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>2.01</td>
<td>2.01</td>
</tr>
<tr>
<td>Gly</td>
<td>1.12</td>
<td>1.14</td>
<td>1.38</td>
<td>1.05</td>
<td>1.06</td>
<td>1.98</td>
<td>1.95</td>
</tr>
<tr>
<td>Ala</td>
<td></td>
<td></td>
<td></td>
<td>0.99</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td></td>
<td></td>
<td></td>
<td>0.53</td>
<td>0.72</td>
<td>0.70</td>
<td>(1)</td>
</tr>
<tr>
<td>Met</td>
<td>1.88</td>
<td>1.75</td>
<td>1.74</td>
<td>1.58</td>
<td>1.80</td>
<td>2.68</td>
<td>2.50</td>
</tr>
<tr>
<td>Ile</td>
<td>1.03</td>
<td>0.88</td>
<td>0.94</td>
<td>1.42</td>
<td>1.59</td>
<td>1.60</td>
<td>1.60</td>
</tr>
<tr>
<td>Leu</td>
<td>2.07</td>
<td>2.07</td>
<td>2.07</td>
<td>2.07</td>
<td>2.04</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.89</td>
<td>1.07</td>
<td>1.01</td>
<td>1.02</td>
<td>1.00</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Phe</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Lys</td>
<td>0.92</td>
<td>0.97</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>His</td>
<td>1.01</td>
<td>0.86</td>
<td>0.92</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>Trp*</td>
<td>1.21</td>
<td>0.93</td>
<td>0.89</td>
<td>0.85</td>
<td>0.94</td>
<td>1.11</td>
<td>0.88</td>
</tr>
<tr>
<td>Arg</td>
<td>0.98</td>
<td>2.10</td>
<td>1.86</td>
<td>2.00</td>
<td>1.98</td>
<td>2.96</td>
<td>2.86</td>
</tr>
</tbody>
</table>

Recov. 82% 78% 84% 85% 82% 73% 86%

* Determined by 4N MSA Hydrolysis
第3項 保護ヒトCK－３３の合成－２，保護クロシンを用いた合成

（1）ヒトCK２４－３３位 保護デカペプチドアミド，
（2）保護ヒトCK－３３ [Tyr(Cl₂Bzl)]²⁷の合成

別途合成したC端フラグメント [1']を出発物質とし前項で調製した
6つのフラグメントを順次アシド法で導入した（図 32）。フラグメント
[4]のアシドの調製にはDMF-DMSO-HMPAを用いたが，それ以外のフラグ
メントに対しては常用のDMFを溶媒として用いた。ペプチド鎖の延長に
伴い，加えるアシル成分の量を1.5当量から5当量へと増加させた。
Tyr(Cl₂Bzl)体を用いたことにより，Tyrの側鎖がアシル化されることな
く容易に反応を進行させることができた。残存するアシル成分の除去の
ために保護２２，２６，３３ペプチドをSephadex LH-60を用いて精製せ
Fig. 32. Synthetic Scheme for the Protected hCCK-33 [Tyr(Cl₂Bzl)]

Table 5. Amino Acid Ratios in 6N HCl Hydrolysates of hCCK-33, Unsulfated hCCK-33, and Protected Intermediates

<table>
<thead>
<tr>
<th>Protected Peptides</th>
<th>24-33</th>
<th>20-33</th>
<th>17-33</th>
<th>12-33</th>
<th>8-33</th>
<th>5-33</th>
<th>1-33</th>
<th>Unsulfated hCCK-33</th>
<th>Sulfated hCCK-33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asp</td>
<td>2.81</td>
<td>3.09</td>
<td>4.04</td>
<td>5.71</td>
<td>5.82</td>
<td>5.74</td>
<td>6.53</td>
<td>5.72 (6)</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>0.87</td>
<td>1.87</td>
<td>1.87</td>
<td>1.57</td>
<td>2.52</td>
<td>2.30</td>
<td>3.69</td>
<td>3.59 (4)</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td></td>
<td>1.03</td>
<td>1.07</td>
<td>0.92</td>
<td>1.24</td>
<td>1.11</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>0.90</td>
<td>0.89</td>
<td>0.92</td>
<td>0.91</td>
<td>2.32</td>
<td>2.02</td>
<td>1.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>1.11</td>
<td>1.28</td>
<td>1.12</td>
<td>1.29</td>
<td>2.28</td>
<td>2.57</td>
<td>2.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td></td>
<td>1.20</td>
<td>1.11</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td></td>
<td></td>
<td>0.78</td>
<td>0.70</td>
<td>0.81</td>
<td>0.73</td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>1.71</td>
<td>1.66</td>
<td>1.82</td>
<td>1.78</td>
<td>1.67</td>
<td>2.33</td>
<td>2.67</td>
<td>2.53 (3)</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>1.08</td>
<td>0.97</td>
<td>0.91</td>
<td>1.69</td>
<td>1.76</td>
<td>1.49</td>
<td>1.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>1.89</td>
<td>1.99</td>
<td>1.69</td>
<td>2.21</td>
<td>2.10</td>
<td>2.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>0.92</td>
<td>1.05</td>
<td>1.04</td>
<td>1.02</td>
<td>1.05</td>
<td>1.05</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td></td>
<td>0.81</td>
<td>0.78</td>
<td>2.10</td>
<td>1.75</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>0.97</td>
<td>0.94</td>
<td>0.80</td>
<td>0.75</td>
<td>0.68</td>
<td>0.73</td>
<td>0.75</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>0.96*</td>
<td>0.86*</td>
<td>0.86*</td>
<td>0.85*</td>
<td>0.72*</td>
<td>0.87*</td>
<td>0.85*</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>0.96</td>
<td>2.17</td>
<td>1.96</td>
<td>1.98</td>
<td>2.06</td>
<td>2.96</td>
<td>3.20</td>
<td>2.69</td>
<td></td>
</tr>
</tbody>
</table>

Recovery: 80% 89% 79% 77% 82% 95% 84% 84% 79% 79%

* Determined by 4N MSA Hydrolysis
第4項 ヒトCCK非硫酸化体の合成

前項で得た保護CCK－33を図33に示すように脱保護、精製した。
まず、保護ペプチド中のMet(0)をphenylthiotrimethylsilaneで還元し、次いでこれを氷冷下1M TMSOTf-thioanisole/TFAで120分処理し保護基を除去した。さらに脱保護体をSephadex G-25を用いるゲル濾過（溶出液：0.5N AcOH）、次いでCM-Trisacryl Mを用いるイオン交換クロマトグラフィー（溶出液：NH₄HCO₃バッファー）で精製した（図34-a）。これをさらにCH₃CN/0.1%TFAを溶出液とし、Synchropak RP-20カラムを用いるHPLCで精製を行い、高純度の合成ヒトCCK－33非硫酸化体を得た（図34-b）。本品の純度を分析HPLC、酸加水分解（表5）、およびLAP酵素消化後のアミノ酸分析、FAB-質量分析等により確認した。

Fig. 33. Deprotection and Purification of Un sulfated hCCK-33

Protected hCCK-33

1. phenylthiotrimethylsilane (r.t., 60min)
2. 1M TMSOTf-thioanisole/TFA (0℃, 120min)
3. Sephadex G-25 (0.5N AcOH)
4. CM-Trisacryl M (0.01-0.2M NH₄HCO₃)
5. Synchropak RP-20

Un sulfated hCCK-33

Fig. 34. Purification of Un sulphated hCCK-33

a) CM-Purified Sample on Synchropak RP-P
b) HPLC-Purified Sample on YMC AM-302 ODS
第5項 CCK硫酸化のための予備実験
ヒトCCK-3 3非硫酸化体のTyr残基をSer残基の存在下に選択的に硫酸化するに先立ち、硫酸化試薬、および硫酸化の際、Ser以外にも留意する必要のあるアミノ酸について検討を加えた。

(1) 硫酸化試薬の検討
Tyrの硫酸化試薬として現在までに濃硫酸,\(^{81}\) PAS,\(^{86}\) pyridine-SO\(_3\) 錯体\(^{78}\)などが用いられている。
このうち濃硫酸を用いる方法はTyr(SO\(_3\)H)と同時に3'-スルホニルチロシンを副生する\(^{5},^{81}\)ので好ましい方法とは言えない。
PASはPenkeらにより近年開発された硫酸化試薬であり、倉野らはプタCCK-3 3の合成に際し、TFA中これを用いてTyrの硫酸化を行った。\(^{7}\)しかし、Tyr(SO\(_3\)H)の酸に対する不安定さ、および著者の合成したヒトCCK-3 3非硫酸化体中にTFAに不安定な無保護のTrpが存在することを考え、著者は弱塩基性条件下にTyrの硫酸化を行うことが好ましいと考えた。一方、PenkeらはDMF-pyridine中でPASによる硫酸化を行った。\(^{83}\)しかし、著者の予備実験の結果、DMF-pyridine中では pyridine-SO\(_3\)錯体の方がPASよりも速くZ(OMe)-Tyr-OMeを硫酸化することがわかった(図 35)。
また、Z(OMe)-Ser-OMeに関しても同様の傾向がみられた。

Fig. 35. Sulfation of Z(OMe)-Tyr-OMe and Z(OMe)-Ser-OMe in DMF-pyridine with Pyridine-SO\(_3\) Complex or PAS
以上のことから、著者はpyridine-\(\text{SO}_3\)経体を用い DMF-pyridine中Tyrの硫酸化を行うのが適当であると判断した。しかし、この試薬も前述のとおりTyrのフェノール性水酸基よりもSerのアルコール性水酸基を選択的に硫酸化する。したがって、この試薬を用いてTyrを硫酸化するためにはSerの水酸基を保護する必要がある。また、この試薬がアミノ基に作用してスルファミン酸を生成する可能性よりももるので\(\alpha\)および\(\epsilon\)アミノ基の保護も必要となる。その他のアミノ酸残基についてTLCで調べた結果、Hisがこの試薬により部分的にスルホン化されることがわかった。しかし、このHisの反応系にH\(_2\)Oを添加すると60分以内にHisが再生されることがわかった。また、反応系にEDTを加えてもTyrの硫酸化には影響しなかったので、\(\text{CCK}\)の硫酸化の際にはMetの部分的酸化を防ぐためにEDTを添加することにした。

（2）Ser側鎖の選択的保護

著者は、トリアルキルシリルクロライド（\(\text{R}_3\text{SiCl}\)）が一般に硫酸化試薬と同様、フェノール性水酸基よりも1級アルコール性水酸基に対し反応性が高いことに着目し、これを
\(\text{CCK}\)の硫酸化に際して、Serの可逆的な保護基として用いることを検討した。

まず、pyridine-\(\text{SO}_3\)経体による硫酸化の条件下に安定なSerの0-トリアルキルシリル誘導体を検索した。Me\(_3\)Si基、\(^9\)BuMe\(_2\)Si基、\(^9\)BuPh\(_2\)Si基の3種について検討を加えたところ、Ser('BuPh\(_2\)Si)誘導体がTyrの硫酸化の条件下、24時間後も安定であることがわかった。他の2つの誘導体Ser(Me\(_3\)Si), Ser('BuMe\(_2\)Si)はこの条件下不安定であった。

次に'BuPh\(_2\)SiClを用いimidazole存在下、\(Z(\text{OMe})-\text{Tyr-OMe, Z(OMe)-Ser-OMe}\)の水酸基のシリル化の選択性を調べたところ、Serのアルコール性水酸基は水冷下30分で完全にシリル化されたのに対し、Tyrのフェノール性水酸基は4時間後でも46%がシリル化されるにとどまり、この試薬によっても、予想通りTyrよりもSerが優先的にシリル化されることがわかった。さらに、このTyrの部分的なシリル化は反応系にフェノール類を添加することにより効果的に抑制できることがわかった。3種のフェノール—37—
ル化合物を検討したが、この中でフェノールが他にくらべ良好な結果を与えた（図 36）。20当量のフェノールを添加した際には4時間後のTyrのシリル化は31%と、不添加時の約1/2に減少した。

つきに'BuPh₂Si基の除去が問題になるが、本基は1M Bu₄NF⁶⁷⁷⁷/DMFにより氷冷下60分で除去可能であった。一方、Tyr(SO₃H)はこの条件下で安定であった。TLCで検定した結果His、Met、Trpはシリル化、脱シリル化の条件下で安定であった。

これらのモデル実験の結果から、Serのアルコール性水酸基を'BuPh₂Si基で可逆的に保護することが可能であることがわかった。

（3）α-及びε-アミノ基の選択的保護

Fmoc基⁶⁷⁷⁷は1970年Carpino, Hanにより塩基で除去可能なアミノ基の保護基として開発された。著者は硫酸化の際の1位と11位のLysのN°およびN'保護にこの保護基を用いることにした。TLCで見えるかぎり、Fmoc-OSuによるFmoc化の際に見られるTyrの部分的O-アシル化は、少量のフェノール添加により抑制可能であった。また、この予備実験の過程において著者はFmoc基が'BuPh₂Si基と同様、1M Bu₄NF/DMFにより氷冷下60分で除去可能であることを見いだした。
第6項 ヒトCCK－33の合成

前節で得たモデル実験の結果をもとに、著者は以下のようにヒトCCK－33非硫酸化体を目的の硫酸化体に変換した（図37）。

1）まずα－，ε－アミノ基を保護するためにTEA存在下Fmoc–OSu処理を0℃, 2時間行った。この際，Tyr残基へのFmoc基の導入を避けるためにフェノールを反応系に添加した。2）次いでSer–OHを選択的に保護するためにイミダゾール存在下, 'BuPh₂SiClで4℃, 14時間処理した。この際もTyr残基のシリル化を抑制するためフェノールを添加した。3）さらにこれを，20%ピリジン含有DMF中でpyridine–SO₃鉱体と25℃, 24時間反応させ，Tyrを硫酸化した。この際MetおよびTrp残基の保護のためにEDTを反応系に添加した。4）最後に1M Bu₄NFで'BuPh₂Si基とFmoc基を同時除去した。この際Fmoc基除去により生じるdibenzofulvene¹⁰²を捕獲するためにEDTを添加した。

Fig. 37. Procedure for Conversion of Unsulfated hCCK-33 to Sulfated hCCK-33

Unsulfated hCCK-33

1. Fmoc–OSu + phenol in 10% aqueous DMF (0℃, 2h)
 precipitation with ether

Fmoc-2Lys[Fmoc]-hCCK-33

2. 'BuPh₂Si-Cl, imidazole + phenol (4℃, 14h)
 Sephadex LH-20

Fmoc-2Lys[Fmoc], 4Ser('BuPh₂Si)-hCCK-33

3. pyridine–SO₃ in DMF–pyridine(8:2) + EDT (25℃, 24h)
 Sephadex LH-20

Fmoc-2Lys[Fmoc], 4Ser('BuPh₂Si), Tyr(SO₃H)]-hCCK-33

4. 1M Bu₄NF/DMF + EDT (25℃, 1h)
 Sephadex G-10
 CM-Trisacryl M
 Asahipak ODP-50

Sulfated hCCK-33

このようにして硫酸化されたヒトCCK－33をCM-Trisacryl Mを用いるイオン交換クロマトグラフィーにより精製した（図38-a, b）。この際0.01Mから0.2MのNH₄HCO₃によるグラジエント溶出を行った。さらにこれをHPLCで精製した（図38-c）。この際にはAsahipak ODP-50カラムを用い, 31%CH₃CN/0.1M AcONH₄によるイソクラティック溶出を行った。イオン交換クロマトグラフィーによる精製は過剰に硫酸化されたCCKおよび硫酸化されずに残ったCCKを除去するのに効果的であり，HPLC精
製はMet(0)体の除去に有効であった。非硫酸化体からの収率は15%であった。
こうして得られた合成ヒトCCK-33の純度をHPLC、6N HClによる酸分解、およびLAPによる酵素消化後のアミノ酸分析により確認した。またLAP消化後のアミノ酸分析によりTyr(SO₃H)の存在も確認できた。

![グラフ]

Fig. 38. CM and HPLC Purifications of hCCK-33

a) CM-Trisacryl M purification
b) HPLC purification of CM-purified sample on YMC AM-302 ODS
c) HPLC of purified sample on Asahipak ODP-50

以上、著者は、ペプチドホルモンの合成史上、全合成の困難であったCCKのうち、ヒトCCK-33を、その構造が解明されたのを機会にSerの水酸基を可逆的に保護する手法によって全合成することに成功した。
第7項 合成ヒト CCK-33 の生理活性

著者の合成したヒト CCK-33 の生理活性は、合成 CCK-8 との比較により、井上講師、戸部教授らによって検証された。ベントバルビタールにより麻酔された mongrel 犬(n=4)における腸毛細管血流および腸蛋白質放出に対するこれらの活性が比較されたが、この際、腸毛細管血流については laser Doppler perfusion monitor103) で測定された。また、腸液中の蛋白質濃度については Lowry らの方法104)が用いられた。

合成ヒト CCK-33 および CCK-8 (1.0, 3.125, 6.25, 12.5, 25, 50, 100, 200 pmol/kg of body weight) を60分間隔で腹腔内の一ケテルより静注した際、腸毛細管血流は合成ヒト CCK-33 の投与により dose-dependent に増加した。腸蛋白質放出についても同様に、合成ヒト CCK-33 の投与により dose-dependent に増加した。増加効果は 3.125pmol/kg を下限として観察された。また、最大効果は 200pmol/kg において観察された。腸毛細管血流と腸蛋白質放出に関しては合成ヒト CCK-33 は等モルの合成ヒト CCK-8 の 92% の活性を持つことが分かった（図 39）。

Fig. 39. Increased Pancreatic Protein Output (mg/10 min) in Anesthetized Dogs (n=4) in Response to Three CCK-Peptides
ラットにおける胃酸、ベプシン放出が森賀講師らによって検定された結果、in vivoにおいて合成ヒトCCK-33は等モルの合成ヒトCCK-8の2～3倍の活性をもっていた。モルモット摘出胃からのベプシンノーゲン分泌刺激に関しては、合成ヒトCCK-33は等モルの合成ヒトCCK-8とはほぼ同等の活性をもっていた。CCK-8は等モルのプタCCK-33の2.5倍の活性を持つと報告されている。105）したがって、合成ヒトCCK-33は天然プタCCK-33と比べ同等あるいはそれ以上の活性を持つことがわかった。

さらに井上講師、戸部教授らによって、上記のイヌによるアッセイ系において、合成ヒトCCK-33非硫酸化体の活性は等モルのCCK-8に対し0.074であり、CCKの生理活性に対する硫酸基の重要性が確認された。
結 語

著者は、新しいトリプトファンの保護基、TRp（Mts）を開発し、これがCCKのようなTRp含有ペプチドの合成に実用性のあるものであることを示した。さらに、フッ素イオンにより可逆的に除去可能なシリル化合物によるSer水酸基の保護法、およびFmoc基によるアミノ保護法を見いだした。これらの知見を総合して、Tyrのフェノール性水酸基の選択的な硫酸エステル化を可能にして、ここにヒトCCK－33を全合成することに成功した。この合成によって、未だ天然品の得られていないヒトCCK－33の生理活性についての知見を得ることができた。

上記の研究は、トリプトファン含有ペプチド、および硫酸化チロシン含有ペプチドの合成化学の進歩、ならびに消化管ペプチド研究の発展に寄与するものがあると考える。
謝辞

終わりに臨み、本研究に際して終始御懇篤なる御指導、御鞭撻を賜りました恩師京都大学矢島治明名誉教授（現新潟薬科大学長）、藤井信孝教授に心から感謝の意を表します。

また、種々有益な御指導、御助言を賜りました京都大学鈴越奨助教授、京都薬科大学赤崎健一助教授に深く感謝いたします。

さらに、実験の一部に協力していただきました安村貞一博士、片倉晋一修士、大高章博士、桜井満也修士、池村治修士、森本啓氏修士、岡町晃修士、北村優子学士、森賀三恵学士をはじめ京都大学薬学部薬品製造学教室の諸氏に深く感謝いたします。

また、研究に際し終始御激励、御鞭撻を賜りました徳島大学秋田正教授、北川幸助教授に深く感謝いたします。

合成ガラニンの活性を測定していただきました広島大学医学部瀬川富朗教授に感謝いたします。

合成ヒトCCK－33の活性を測定していただきました京都大学医学部森賀本幸講師に感謝いたします。

合成ガラニン、および合成ヒトCCK－33の活性を測定していただきました京都大学医学部井上一知講師、戸部隆吉教授に感謝いたします。

合成ガラニンと天然品をHPLCで比較していただきましたスウェーデン、カロリンスカ研究所の立元一彦博士、Viktor Mutt博士に感謝いたします。

合成ガラニン、および合成ヒトCCK－33のFAB－質量分析を行っていただきました大阪大学蛋白質研究所高尾敏文博士、下西康嗣教授に感謝いたします。

元素分析の労を取られた京都大学元素分析センターの諸氏に感謝いたします。
実験の部
実験の部

融点（mp）は、柳本融点測定器で測定。全て未補正。旋光度の測定にはUnion Automatic Digital Polarimeter PM-101を使用した。

ペプチドの加水分解を以下の3つの方法で行い、加水分解物のアミノ酸組成をMooreらの方法にしたがってHitachi Amino Acid Analyzer 835型で測定した。

1）6N HCl加水分解：3回蒸留した定沸点塩酸（bp 110℃, 6%）を使用し、減圧封管で110℃、24時間保った。ペプチド中にTyrが存在する場合には、定沸点塩酸にフェノールを添加して水解を行った。

2）4N MSA加水分解：1）の条件下ではTrpがほとんど分解され検出不可能であるため、Liuらの方法に従い減圧封管後、110℃。24時間保って加水分解し、Trpを定量した。

3）LAP消：LAP(Sigma No.6007)の0.2Mトリス-HCl緩衝液（pH 7.3）溶液（10U/ml）を使用し、37℃で24時間インキュベートした。

薄層クロマトグラフィー（TLC）にはKieselgel G nach Stahl(Merch)を用い、以下の溶媒系（V/V）で展開した。

Rf₁ CHCl₃-MeOH-H₂O (8:3:1 下層)
Rf₂ CHCl₃-MeOH (10:0:5)
Rf₃ CHCl₃-MeOH-AcOH (9:1:0.5)
Rf₄ n-BuOH-AcOH-pyridine-H₂O (4:1:1:2)
Rf₅ n-BuOH-AcOH-AcOEt-H₂O (1:1:1:1)
Rf₆ CHCl₃-MeOH (9:1)
Rf₇ CHCl₃-MeOH-H₂O (18:3:1)

TLCのニンヒドリン発色の定量には、Shimadzu Dual-wavelength TLC Scanner CS-900（recorder: U-255 MCS）を使用した。

シリカゲルクロマトグラフィーには、Kieselgel 60(Merch)を用いた。ゲル溶過カラムクロマトグラフィーにはSephadex G-10, Sephadex G-25, Sephadex LH-20, Sephadex LH-60を用い、イオン交換カラムクロマトグラフ
ラフィーには，CM-Trisacryl M(LKB)を用いて 東洋科学製フラクションコレクターSF-200A あるいは，大日本精機製フラクションコレクターDFC-100で分画し，吸光度をHitachi Model 100-20 Spectrometerで測定した。高速液体クロマトグラフィーにはWaters 204型を使用し，Cosmosil 5C18 (4.6x150mm), Nucleosil 5C18 (4x150mm, 10x250mm), Synchropak RP-P (4x250mm), YMC AM-302 (4x150mm), Asahipak ODP-50 (4x150mm, 10x250mm)カラムを使用した。溶出には，CH3CN-0.1%TFA系またはCH3CN-0.1M AcONH4 (pH 6.5)系を用いた。

Disk等電点電気泳動には，Pharmalyte(Pharmacia, pH 3-10)を含む7.5%ポリアクリルアミドを用い，200V低電圧で4℃, 4-5時間泳動した。

脱保護:

各総合反応に先立ち，N°保護基(Z(OMe)基あるいはBoc基)を除去するため，TFA処理をアニソール存在下水冷下1-3時間行った。この際TFA，アニソールの量は保護ペプチド1gに対しそれぞれ 3ml, 1mlを目安として用いた。脱保護後，反応液を室温で濃縮し，得られるオイルをn-hexaneでデカントし，さらにetherでパウダーとなるものに関してはパウダーとした。次いで，このオイルまたはパウダーをKOH上1-2時間減圧乾燥させた。

総合反応:

1）DCCおよび活性エステル総合反応を室温で行った。

2）アシド法を全てRudingerの変法35)にしたがって行った。ヒドラジドをDMFあるいはDMF・DMSO・HMPAの混液に溶解させ，寒剤冷却下，
HCl-DMF(2.2当量)，亜硝酸イソアミル(1.1当量)を加え 15-20分
攪拌し，ヒドラジン試薬108)が陰性になったことを確認後，TEA
(2.2当量)で中和した。この溶液に寒剤で冷却したアミン成分お
よびTEAを加えた。

3）混酸無水物法を，Vaughanの方法36)に従って行った。アシル成分
をTHFに溶解させ，TEA(1.1当量)を加えた後，寒剤冷却下，イソプロ
チルクロロホルメート(1.1当量)を加え20分攪拌した。この反応
液に寒剤で冷却したアミン成分のDMF溶液を加えた。

—46—
精製法：
特に記載のないかぎり、生成物の精製には以下の3つの方法のいずれかを用いた。

1）A法：AcOEtに易溶の保護ペプチドを精製するため、反応液を濃縮後、AcOEt抽出し、5%クエン酸水溶液、5%NaHCO₃水溶液、飽和食塩水で順次洗浄し、Na₂SO₄上乾燥させ濃縮した。残渣を適当な溶媒より結晶あるいは沈殿とした。

2）B法：AcOEtに難溶の保護ペプチドの精製には、反応液を濃縮後、5%クエン酸水溶液で処理し、得られる粉末を5%クエン酸水溶液、5%NaHCO₃水溶液、H₂Oで順次パッチ法で洗浄した。

3）C法：高分子の保護ペプチドでB法のみでは十分な精製ができないものについては、B法による精製を行った後、DMFを溶出液とするSephadex LH-60カラム（3x130cm程度）でゲル通過し、各フラクション（約10ml）の280nmでの吸収を測定した。次いで目的の部分を集め濃縮後AcOEtで粉末化させた。
第2章に関する実験

1) Z(OMe)-Trp-OBzl

Z(OMe)-Trp-OH (20.0mg, 54.4mmol)をBoc-Trp-OBzl109と同様にベンジルエステル化し、これをAcOEt-n-hexaneで再結晶した。

収量 21.86g (88\%), \(m_p \) 94-95 ℃,
\([\alpha]_D^2 -16.1^\circ \) (c=0.6, DMF), \(R_f \) 0.71.

Anal. Calcd for C\textsubscript{27}H\textsubscript{36}N\textsubscript{5}O\textsubscript{5}: C, 70.73; H, 5.72; N, 6.11.

Found: C, 70.80; H, 5.92; N, 6.21.

2) Z(OMe)-Trp(Mts)-OH

Z(OMe)-Trp-OBzl (27.51g, 60mmol)のCH\textsubscript{2}Cl\textsubscript{2}溶液 (300ml)に氷-食塩冷却下、NaOH未 (6.0g, 150mmol), cetyltrimethylammonium chloride (0.19g, 0.6mmol)を加えた。さらにこれに、Mts-C1 (32.85g, 150mmol)のCH\textsubscript{2}Cl\textsubscript{2}溶液を滴下した。水冷下16h攪拌した後、1N HClで酸性とした。有機層を水2, 5%NaHCO\textsubscript{3}, H\textsubscript{2}Oで洗浄の後、Na\textsubscript{2}SO\textsubscript{4}で乾燥した。これを濃縮し、EtOH (600ml)に溶かした。これに1N NaOH (90ml)を加え2.5h攪拌した。溶媒を減圧留去し、H\textsubscript{2}O (400ml)を加えた後、水層をetherで洗浄し、1N HClで酸性とした。生ずるオイルをAcOEtで抽出し、NaCl水で洗浄した後、Na\textsubscript{2}SO\textsubscript{4}で乾燥した。これを濃縮し残渣をn-hexaneでパウダーとした。

収量 32.4g (98\%), \(R_f \) 0.79.

元素分析のためサンプルの一部をCHCl\textsubscript{3}-MeOH (40:1)を溶出液とするシリカゲルクロマトグラフィーにより精製した。

\(m_p \) 77-79 ℃, \([\alpha]_D^2 -10.1^\circ \) (c=1.8, DMF),

Anal. Calcd for C\textsubscript{29}H\textsubscript{36}N\textsubscript{2}O\textsubscript{5}: C, 63.26; H, 5.49; N, 5.09.

Found: C, 63.21; H, 5.42; N, 5.22.

3) H-Trp(Mts)-OH

Z(OMe)-Trp(Mts)-OH (0.55g, 1.0mmol)を常法によりTFA処理した後、TFA
を減圧留去した。残渣をetherで処理しパウダーを得た。これを少量のTEA存在下MeOH-etherで再結晶した。
収量 0.34g(87%), mp 211-213 °C,
$\left[\alpha\right]_{D}^{5} = -30.0^\circ (c=0.6, DMF)$, Rf, 0.44.
Anal. Calcd for C$_{20}$H$_{22}$N$_{2}$O$_{4}$S: C, 62.16; H, 5.74; N, 7.25.
Foundation: C, 61.89; H, 5.74; N, 7.11.

4) Z(OMe)-Trp(Mts)-NHNH$_{2}$

Z(OMe)-Trp(Mts)-OBz(0.50g, 0.78mmol)のEtOH溶液(20ml)に80%脱水ヒドラジン(0.19ml, 5eq)を加え一夜放置した。溶媒を留去し、残渣にH$_{2}$Oを加えて得られたパウダーをEtOH-etherで再結晶した。
収量 0.34g(77%), mp 121-123 °C,
$\left[\alpha\right]_{D}^{5} = -41.3^\circ (c=0.8, DMF)$, Rf, 0.49.
Anal. Calcd for C$_{29}$H$_{35}$N$_{6}$O$_{6}$S: C, 61.69; H, 5.71; N, 9.92.
Found: C, 61.77; H, 5.75; N, 10.16.

5) Boc-Trp(Mts)-OH·DCHA

氷-食塩冷却下、Boc-Trp-OBz(3.0g, 7.6mmol)のCH$_{2}$Cl$_{2}$溶液(50ml)にcetyltrimethylammonium chloride(24.4mg, 76μmol), NaOH末(0.76g, 19 mmol), Mts-Cl(4.16g, 19.0mmol)を加え水冷下5h摂拌した。これをZ(OMe)-
誘導体と同様に処理しオイルを得た。常法でDCHA塩化した後、MeOH-etherで再結晶した。
収量 3.76g(74%), mp 154-155 °C,
$\left[\alpha\right]_{D}^{5} = +19.9^\circ (c=1.0, MeOH)$, Rf, 0.57.
Anal. Calcd for C$_{23}$H$_{36}$N$_{2}$O$_{6}$S·C$_{12}$H$_{23}$N: C, 66.53; H, 8.00; N, 6.29.
Found: C, 66.73; H, 8.13; N, 6.03.

6) H-Trp(Mts)-OHの安定性

H-Trp(Mts)-OH(4.0mg, 10.4μmol)を i)1N NaOH(2eq), 0°C, 60min, ii)80%
脱水ヒドラジン(5eq)/MeOH, 25°C, 24h, iii)4N HCl/dioxane(5eq), 0°C,
60min, iv) TFA-thioanisole(0.1ml-10μl), 50℃, 30min, v) 25%HBr/AcOH (0.1ml), 0℃, 30min でそれぞれ処理した。いずれの場合も TLC 上何ら変化は認められなかった。

7) Boc-Trp(Mts)-OH, Z(OMe)-Trp(Mts)-OHのTFA処理
Boc-Trp(Mts)-OH(10.0mg, 21μmol), Z(OMe)-Trp(Mts)-OH(12.3mg, 22μmol) をそれぞれTFA-anisole(30μl-6μl), あるいは2%EDT含有TFA-3, 5-dimethyl-anisole(30μl-6μl)で氷冷下1h 処理した。この間反応液はピンク色を示すことなく、またTLC上H-Trp(Mts)-OH(Rf 0.44)以外のスポットは見当らなかった。しかし, anisole非存在下で脱保護を行うと, H-Trp-(Mts)-OHのスポット以外に4個のスポットが認められた。

8) Mts基の除去
H-Trp(Mts)-OH(4.3mg, 11μmol)と H-Phe-OH(内部標準 1.2mg, 7.3μmol) をm-cresol(23μl, 220μmol) 存在下, 種々の脱保護薬で氷冷下60min 処理した。反応液の一部を取りアミノ酸分析機でTrpの回収率を求めた結果を表 2 に示した。
第3節に関する実験

1) Z(OMe)-Trp(Mts)-Met(0)-Asp(0Bz1)-Phe-NH₂

a)活性エステル法: Z(OMe)-Met(0)-Asp(0Bz1)-Phe-NH₂ (1.40g, 2.1mmol)を氷冷下、2%ED含有TFA-3,5-dimethylanisole(5ml-0.8ml)で処理し、これをDMF(20ml)に溶かし、TEA(0.29ml, 2.1mmol)で中和した。これにZ(OMe)-Trp(Mts)-OSu(2.05g, 3.2mmol), TEA(0.45ml, 3.2mmol)を加え20h摂拌した。生成物をB法精製の後, DMF-AcOEtで再沈殿した。
収量1.78g(82%), mp 207-209 ℃,
[α]D 25.8° (c=0.8, DMF), Rf 0.67.
4N MSAによる酸分解結果:
Trp 0.73, Met 1.09, Asp 1.14, Phe 1.00 (Pheの回収率, 79%).

Found: C, 62.83; H, 6.01; N, 8.17.

b)アミド法: H-Met(0)-Asp(0Bz1)-Phe-NH₂ [Z(OMe)-体 (1.80g, 2.7mmol)より調製] のDMF溶液(20ml)とZ(OMe)-Trp(Mts)-NHNH₂ (1.70g, 3.0mmol)から調製したアミドのDMF溶液(10ml), およびTEA(0.42ml, 3.0mmol)を混合し48h摂拌した。生成物をB法精製の後, DMF-AcOEtで再沈殿した。
収量2.22g(79%), mp 207-209 ℃,
[α]D 25.3° (c=1.0, DMF), Rf 0.67(a)のRf値と同一)。
4N MSAによる酸分解結果:
Trp 0.61, Met 1.04, Asp 1.10, Phe 1.00 (Pheの回収率, 71%)

2) Z(OMe)-Gly-Trp(Mts)-Met(0)-Asp(0Bz1)-Phe-NH₂

H-Trp(Mts)-Met(0)-Asp(0Bz1)-Phe-NH₂[Z(OMe)-体 (0.60g, 0.58mmol)から調製] のDMF溶液(10ml)に，Z(OMe)-Gly-OH(0.17g, 0.70mmol)から調製した混酸無水物のTHF溶液(10ml)を加え3h摂拌した。生成物をB法精製の後, DMF-etherで再沈殿した。
収量0.45g(71%), mp 190-192 ℃,
[α]D 21.9° (c=0.7, DMF), Rf 0.61.
Anal. Calcd for C₅₆H₆₇N₇O₁₃S₂: C, 61.69; H, 5.82; N, 8.99.

−51−
Found: C, 61.88; H, 5.85; N, 8.75.

3) \(\text{Z(OMe)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(0Bzl)-Phe-NH}_2 \)

\(\text{H-Gly-Trp(Mts)-Met(O)-Asp(0Bzl)-Phe-NH}_2 \) [Z(OMe)-体 (0.30g, 0.28 mmol)から調製]のDMF溶液 (3ml)にZ(OMe)-Met(O)-OTCP (0.21g, 0.42mmol)およびTEA (67μl, 0.42mmol)を加え24h攪拌した。生成物をB法精製の後、DMF-etherで再沈殿した。

収量 0.23g (68%), \(\text{mp} \) 204-206 °C,
\([\alpha]_D^\circ \) -19.8° (c=0.4, DMF), Rf 0.58.

Anal. Calcd for C\(_6\)H\(_{72}\)N\(_8\)O\(_{13}\)S\(_3\)・H\(_2\)O: C, 59.11; H, 6.02; N, 9.04.

Found: C, 59.31; H, 5.84; N, 8.94.

4) \(\text{Z(OMe)-Tyr-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(0Bzl)-Phe-NH}_2 \)

\(\text{H-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(0Bzl)-Phe-NH}_2 \) [Z(OMe)-体 (0.20g, 0.16mmol)から調製]のDMF溶液 (1ml)に、Z(OMe)-Tyr-NH\(_2\) (86mg, 0.24mmol)から調製したアジドのDMF溶液 (1ml)とTEA (22μl, 0.16mmol)を加え、48h攪拌した。生成物をB法精製の後、DMF-etherで再沈殿した。

収量 0.15g (68%), \(\text{mp} \) 200-202 °C,
\([\alpha]_D^\circ \) -13.4° (c=0.7, DMF), Rf 0.56.

4N MSA酸分解後のアミノ酸分析値:

Tyr 1.06, Met 1.84, Gly 1.04, Trp 0.98, Asp 1.02, Phe 1.00.
 (Pheの回収率, 73%)

Anal. Calcd for C\(_{70}\)H\(_{81}\)N\(_{9}\)O\(_{15}\)S\(_3\): C, 60.72; H, 5.90; N, 9.10.

Found: C, 60.44; H, 5.88; N, 9.13.

5) \(\text{H-Tyr-Met-Gly-Trp-Met-Asp-Phe-NH}_2 \)

上記のヘプタペプチドアミド (200mg, 145μmol)をm-cresol (0.61ml, 40 eq), EDT (0.12ml, 10eq)存在下, 1M TFMSA-thioanisole/TFA (5.8ml)で氷冷下120min処理した。etherを加え析出するパウダーを濁沈し、これをMeOH (5ml)に溶かした。さらにこれをAmberlite CG-4B (acetate form)で処
理した後、ジチオスレイトール(200mg, 9eq)で室温で一夜還元した。etherを加え得られるバウダーをCHCl₃–MeOH–H₂O(8:3:1)を溶出液とするシリカゲルクロマトグラフィー(3.3×12cm)で精製した。さらにこれをSepha-dex LH-20カラム(1.8×60cm)でゲル濾過した。MeOHを溶出液としUV280nmで吸光度を測定し目的の画分(Nos.22-28, 各5ml)を集め濃縮し、残渣をetherでバウダーとした。
収量 63mg(46%),
[α]₀⁻³⁵.₇° (c=0.3, MeOH), Rf 0.83, Rf 0.12.
4N MSA酸分解後のアミノ酸分析値:
Tyr 1.05, Met 1.97, Gly 1.08, Trp 1.16, Asp 0.90, Phe 1.00.
(Pheの回収率, 72%)
LAP酵素消化後のアミノ酸分析値:
Tyr 1.02, Met 2.10, Gly 1.15, Trp 1.24, Asp 0.97, Phe 1.00.
(Pheの回収率, 62%)
Anal. Calcd for C₄₅H₅₇N₈O₁₀S₂·CH₃COOH·2H₂O:
C, 54.06; H, 6.27; N, 12.07.
Found: C, 54.17; H, 6.24; N, 11.55.
HPLC:retention time 15.2min に単一ピーク(カラム: Nucleosil 5C₁₈ (4×150mm), 流速: 0.5ml/min, グラジェント: CH₃CN/0.2%TFA (40-50%, 30min), 吸光度: 280nm)。

——53——
第4節に関する実験

第3項に関する実験

1) Z(OMe)-Leu-Ala-NH₂

Z(OMe)-Leu-Ala-OMe(5.70g, 15.00mmol)をMeOH(60ml)に溶かし, NH₃ガスを溶解除した。密封の後2日間室温放置した。溶媒を留去の後, etherで結晶化し, DMF-etherで再結晶した。

収量 4.30g(78%), mp 170-172 °C,
\[\alpha\] \text{D}^7 +7.1° (c=1.0, DMF), Rf 0.70.

Found: C, 58.88; H, 7.52; N, 11.28.

2) Z(OMe)-Tyr-Gly-Leu-Ala-NH₂

Z(OMe)-Leu-Ala-NH₂(4.20g, 11.50mmol)を常法によりTFA処理し,これをDMF(40ml)に溶かした。TEA(1.75ml, 12.60mmol)を加え, これを中和した後, Z(OMe)-Tyr-Gly-NH₂H₂(5.73g, 13.80mmol)より調製したアジドのDMF溶液(60ml), およびTEA(1.92ml, 13.80mmol)を加え一夜摺拌した。生成物をA法(抽出溶媒: n-BuOH)で精製し, MeOH-AcOEtで再結晶した。

収量 3.95g(59%), mp 161-163 °C,
\[\alpha\] \text{D}^7 -37.9° (c=1.0, DMF), Rf 0.66.

Anal. Calcd for C₂₉H₃₉N₅O₉·1/2H₂O: C, 58.57; H, 6.78; N, 11.78.
Found: C, 58.68; H, 6.78; N, 11.74.

3) Boc-Asp(OChp)-Lys(Z)-NHNH-Troc

Z(OMe)-Lys(Z)-NHNH-Troc₄(4.05g, 6.40mmol)を常法によりTFA処理し, これをDMF(40ml)に溶かした。TEA(0.89ml, 6.40mmol)を加え, これを中和した後, Boc-Asp(OChp)-OSu(3.00g, 7.00mmol), およびNMM(0.71ml, 7.00mmol)を加え一夜摺拌した。生成物をA法で精製した後, AcOEt-n-hexaneで再結晶した。

収量 4.51g(90%), mp 61-64 °C,
\[\alpha\] \text{D}^8 -24.4° (c=1.0, MeOH), Rf 0.76.

34
 Found: C, 51.00; H, 6.24; N, 8.75.

4) Boc-Asp(OChp)-Lys(Z)-NHNH₂

Boc-Asp(OChp)-Lys(Z)-NHNH₂-Troc(0.76g, 0.97mmol)のAcOH溶液（6ml）
にZn末（1.27g, 20eq）を加え室温で6h摂拌した。不溶物を濾除した後、反
応液を濃縮した。残渣をAcOEtに溶かし、5%EDTA および H₂Oで洗浄し、
Na₂SO₄上乾燥した。AcOEtを濃縮し、残渣をetherで結晶した。さらに
これをMeOH-etherで再結晶した。
収量 0.58g (98%), mp 91-93 ℃,
[α]D° -13.2° (c=1.0, DMF), Rf: 0.69.
 Found: C, 59.48; H, 7.82; N, 11.53.

5) Boc-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-NH₂ [1]

Z(OMe)-Tyr-Gly-Leu-Ala-NH₂(0.65g, 1.10mmol)を常法に従ってTFA処
理し、これをDMF（5ml）に溶かし、TEA（0.15ml, 1.10mmol）で中和した。こ
れにBoc-Asp(OChp)-Lys(Z)-NHNH₂(0.80g, 1.32mmol)より調製したアシド
のDMF溶液（2ml）、およびTEA（0.18ml, 1.32mmol）を加え24h摂拌した。生
成物をA法で精製（抽出色媒:n-BuOH）した後、MeOH-etherで再結晶した。
収量 0.74g (68%), mp 127-130 ℃,
[α]D° -38.7° (c=1.0, DMF), Rf, 0.67.
Anal. Calcd for C₅₆H₇₄N₈O₁₃·1/2H₂O: C, 59.80; H, 7.53; N, 11.16.
 Found: C, 59.60; H, 7.56; N, 11.26.

6) Z(OMe)-Ser(Bz1)-Phe-OMe

Z(OMe)-Ser(Bz1)-OH [CHA塩（1.29g, 2.77mmol）より調製] とH-Phe-OMe
[HCl塩（0.65g, 2.77mmol）より調製] のDMF溶液（20ml）にDCC（0.63g, 3.05
mmol）を加え6h摂拌した。生成物をA法精製の後、MeOH-n-hexaneで再結
晶した。
収量 1.35g(86%), mp 97-99 °C,
[α]b' 1.9° (c=1.0, DMF), Rf 0.77.
Anal. Calcd for C_{29}H_{32}N_{2}O_{7}: C, 66.91; H, 6.20; N, 6.20.
 Found: C, 66.83; H, 6.28; N, 5.90.

7) Z(OMe)-Ser(Bz1)-Phe-NHNNH_{2}

Z(OMe)-Ser(Bz1)-Phe-OMe(3.00g, 5.76mmol)のMeOH溶液(30ml)に80%抱水ヒドラシン(3.60ml, 10eq)を加え, 室温で一夜放置した。析出した結晶をDMF-MeOHで再結晶した。
収量 2.25g(75%), mp 208-210 °C,
[α]b' -12.4° (c=1.0, DMF), Rf 0.30.
Anal. Calcd for C_{28}H_{32}N_{4}O_{6}: C, 64.60; H, 6.20; N, 10.76.
 Found: C, 64.82; H, 6.13; N, 10.85.

8) Z(OMe)-Ser(Bz1)-Phe-His-OMe

Z(OMe)-Ser(Bz1)-Phe-NHNNH_{2}(2.00g, 3.84mmol)から調製したアジドのDMF溶液(10ml)にH-His-OMe[その塩酸塩 (0.95g, 4.61mmol)から調製]のDMF溶液(5ml), およびTEA(0.59ml, 4.18mmol)を加え12h攪拌した。生成物をA法で精製(抽出溶媒: n-BuOH)後, MeOH-etherで再結晶した。
収量 2.32g(92%), mp 163-166 °C,
[α]b' -18.4° (c=1.0, DMF), Rf 0.65.
Anal. Calcd for C_{35}H_{39}N_{5}O_{6}·2H_{2}O: C, 60.59; H, 6.25; N, 10.10.
 Found: C, 60.83; H, 5.82; N, 10.12.

9) Z(OMe)-Ser(Bz1)-Phe-His-NHNNH_{2} [2]

上記のメチルエステル(2.22g, 3.38mmol)をDMF-MeOHの混液(1:2, 20ml)に溶かし, 80%抱水ヒドラシン(2.20ml, 10eq)を加え室温で12h放置した。溶媒を留去し, 残渣をEtOHで結晶化させた。さらにこれをDMF-EtOHで再結晶した。
収量 1.54g(69%), mp 165-167 °C,
[α]D 5 +7.1° (c=1.0, DMF), Rf 0.58.

6N HCl酸分解後のアミノ酸分析値:
Ser 0.98, Phe 1.00, His 1.06 (Pheの回収率, 61%)
Anal. Calcd for C34H38N7O7·1/2H2O: C, 61.25; H, 6.05; N, 14.71.
 Found: C, 60.98; H, 6.00; N, 14.89.

10) Z(OMe)-Asn-His-NHNH2

Z(OMe)-Asn-His-OMe(3.00g, 6.70mmol)をDMF-MeOH(1:1, 30ml)に溶かし
80%硫酸ヒドラジン(4.20ml, 10eq)を加え室温で一夜放置した。反応液を
濃縮しMeOHで結晶化した。生成物をDMF-MeOHで再結晶した。
収量 2.35g(78%), mp 197-199℃,
[α]D 5 +23.6° (c=0.8, DMF), Rf 0.23.
 Found: C, 51.03; H, 5.56; N, 22.07.

11) Z(OMe)-Asn-His-Arg(Mts)-NHNH-Troc

Z(OMe)-Asn-His-NHNH2(1.50g, 3.35mmol)をDMF-MeOH(1:1, 30ml)に溶かし
H-Arg(Mts)-NHNH-Troc[Z(OMe)-Arg(Mts)-NHNH-Troc38] (2.86g,
4.02mmol)より調製]のDMF溶液(15ml), およびTEA(0.56ml, 4.02ml)を混
合し一夜攪拌した。生成物をA法で精製した後, MeOH-etherで再結晶し
た。
収量 3.05g(95%), mp 130-132℃,
[α]D 8 +40.4° (c=0.5, MeOH), Rf 0.59.
 Found: C, 46.23; H, 5.03; N, 16.03.

12) Boc-Asp(OChp)-Asn-His-Arg(Mts)-NHNH-Troc

上記のトリペプチド誘導体(2.90g, 3.02mmol)をTFA処理し,これとBoc-
Asp(OChp)-OSu(1.54g, 3.62mmol), NMM(0.68ml, 6.84mmol)をDMF(30ml)
中一夜攪拌した。生成物をA法で精製の後, MeOH-etherで再結晶した。
収量 3.09g(92%)，mp 136-139 ℃，
\([\alpha]_D^{18} -13.0^\circ \) (c=1.0, MeOH)，Rf 0.63.
Anal. Calcd for C_{44}H_{65}N_{12}O_{13}Cl_{3}S·2H_{2}O: C, 46.17; H, 6.07; N, 14.69.
Found: C, 46.47; H, 5.77; N, 14.48.

13) Z(OMe)-Ile-Asp(0Chp)-Asn-His-Arg(Mts)-NHNH-Troc

上記のテトラペプチド誘導体(3.09g, 2.79mmol)をTFA処理し，これとZ(OMe)-Ile-ONp(1.39g, 3.35mmol), NMM(0.62ml, 6.17mmol)とをDMF(30ml)中24h攪拌した。生成物をB法で精製の後，DMF-EtOHで再結晶した。
収量 2.75g(77%)，mp 175-178 ℃，
\([\alpha]_D^{18} -10.6^\circ \) (c=1.0, MeOH)，Rf 0.60.
Anal. Calcd for C_{54}H_{76}N_{13}O_{15}Cl_{3}S: C, 50.44; H, 5.96; N, 14.16.
Found: C, 50.47; H, 6.06; N, 14.16.

14) Z(OMe)-Ala-Ile-Asp(0Chp)-Asn-His-Arg(Mts)-NHNH-Troc

上記のベンタペプチド誘導体(2.70g, 2.10mmol)をTFA処理し，これとZ(OMe)-Ala-ONp(1.02g, 2.73mmol), HOBt(0.14g, 1.05mmol), NMM(0.50ml, 4.83mmol)とをDMF(30ml)中一夜攪拌した。生成物をA法で精製（抽出溶媒：n-BuOH）の後，DMF-EtOHで再結晶した。
収量 2.33g(82%)，mp 169-172 ℃，
\([\alpha]_D^{18} -10.6^\circ \) (c=1.0, DMF)，Rf 0.55.
Anal. Calcd for C_{57}H_{80}N_{14}O_{16}Cl_{3}S: C, 50.46; H, 6.02; N, 14.45.
Found: C, 50.22; H, 5.99; N, 14.31.

15) Z(OMe)-Ala-Ile-Asp(0Chp)-Asn-His-Arg(Mts)-NHNH_{2} [3]

上記のヘキサペプチド誘導体(2.30g, 1.69mmol)をDMF-AcOH(1:1, 20ml)に溶かし、Zn末(1.11g, 10eq)を加えた後，室温で8h攪拌した。反応液を濾過した後，濃縮した。残渣に5%EDTAを加え，得られたパウダーをH_{2}Oで洗浄の後，DMF-MeOHで再結晶した。
収量 1.01g(50%)，mp 190-192 ℃，
[α]D5 5° -12.8° (c=0.6, DMF), Rf; 0.40.

6N HCl酸分解後のアミノ酸分析値:

Ala 1.06, Ile 1.02, Asp 2.03, His 1.00, Arg 1.00.

(Argの回収率，80%)

Anal. Calcd for C54H86N14O14S·2H2O: C, 53.27; H, 6.96; N, 16.11.

Found: C, 53.01; H, 6.71; N, 15.85.

こうして得られた保護ヘキサペプチドヒドラジド(30mg)をm-cresol (28μl, 10eq)存在下，1M TFMSA-thioanisole/TFA(1.3ml)で氷冷，2h処理した。etherを加え析出するパウダーを遠沈し，これをLAPで酵素消化した。

アミノ酸分析値: Ala 1.21, Ile 1.08, Asp 0.86, Asn N.D.,

His 0.98, Arg 1.00 (Argの回収率, 77%).

16）Z(OMe)-Gly-Pro-OH·DCHA

H-Pro-OH(8.63g, 75.00mmol) , Z(OMe)-Gly-ONp(18.00g, 50.00mmol) , TEA (17.50ml, 125.00mmol) を DMF-H2O(1:1, 200ml) 中一夜摂拌した。反応液を
濃縮し，残渣を5%NaHCO3に溶かし，etherで洗浄した。さらに水層をク
エン酸で酸性にし，生成物をn-BuOHで抽出した後，有機層をH2Oで洗浄
した。得られた生成物を常法でDCHA塩化し，MeOH-etherで再結晶した。

収量 17.20g(67%) , mp 120-122 °C,

[α]D5 3° -30.1° (c=1.0, DMF), Rf; 0.20.

Found: C, 64.77; H, 8.44; N, 8.18.

17）Z(OMe)-Gly-Pro-His-NHNH2 [4]

Z(OMe)-Gly-Pro-OH[上記DCHA塩(10.40g, 20.00mmol)より調製] , HOSu
(2.53g, 22.00mmol) , DCC(4.54g, 22.00mmol) のTHF溶液(100ml)を4h摂拌し
濃縮した。粗液とH-His-OMeの DMF溶液(100ml) [そのHCl塩(6.17g, 30.00
mmol)より調製] , TEA(2.80ml, 20.00mmol)を混合し一夜摂拌の後，濃縮
した。残渣をn-BuOHに溶かしH₂Oで洗浄した。さらに有機層を濃縮し、
残渣をMeOH(50ml)に溶かし、80%塩酸水溶液(6.30ml, 5eq)を加え一
夜放置した。反応液を濃縮し、残渣をetherで結晶化させ、MeOH-ether
で再結晶した。
収量 6.85g(70%), mp 99-102 °C,
$\left[\alpha \right]_D^{18} -58.3^\circ$ (c=1.0, MeOH), Rf 0.18.
6N HCl 酸分解後のアミノ酸分析値:
Gly 1.00, Pro 1.18, His 0.93 (Glyの回収率, 82%).
Found: C, 53.55; H, 6.29; N, 19.32.

18) Z(OMe)-Leu-Leu-OMe
Z(OMe)-Leu-OH·DCHA(9.88g, 2.00mmol)を常法により脱塩した後、THF
(100ml)に溶かし混酸無水物とした。これに水-食塩冷却下、H-Leu-OMe
[HCl塩(4.00g, 2.00mmol)より調製] のDMF溶液(40ml)を加え4h摂拌した。
生成物をA法で精製の後、AcOEt-isopropyletherで再結晶した。
収量 5.71g(62%), mp 62-63 °C,
$\left[\alpha \right]_D^{17} -38.6^\circ$ (c=1.0, MeOH), Rf 0.75.
Found: C, 62.47; H, 8.14; N, 6.68.

19) Z(OMe)-Tyr-Leu-Leu-OMe
Z(OMe)-Tyr-NHNH₂(5.35g, 14.90mmol)から調製したアシドのDMF溶液(50
ml)とH-Leu-Leu-OMe[Z(OMe)-Leu-Leu-OMe(5.70g, 13.50mmol)より調製]
のDMF溶液(20ml)をTEA(2.07ml, 14.90mmol)存在下、一夜反応させた。生
成物をA法で精製の後、AcOEt-isopropyletherで再結晶した。
収量 5.70g(72%), mp 70-73 °C,
$\left[\alpha \right]_D^{18} -27.1^\circ$ (c=1.0, MeOH), Rf 0.42.
Anal. Calcd for C₃₁H₄₃N₃₀₈: C, 63.57; H, 7.40; N, 7.18.
Found: C, 63.80; H, 7.27; N, 6.98.

—60—
20）Z(OMe)-Tyr-Leu-Leu-NH₂ [5]

上記のトリプペチドエステル(5.50g, 9.39mmol)のMeOH-DMF溶液(1:1,50ml)に80%塩酸ヒドラジン(2.82ml, 5eq)を加え一夜放置した。溶液を濃縮し、残渣をEtOHで結晶化し、DMF-EtOHで再結晶した。

収量 2.86g(52%), mp 220-222℃,

\[[\alpha] D^0 +5.0^\circ \text{ (c=1.0,DMF), Rf}_1 0.69. \]

6N HCl酸分解後のアミノ酸分析値:

Tyr 0.87, Leu 2.00（Leuの回収率, 95%）。

Found: C, 61.62; H, 7.49; N, 11.95.

21）Z(OMe)-Ala-Gly-OMe

Z(OMe)-Ala-OH(19.34g, 71.37mmol), H-Gly-OMe [HCl塩(10.19g, 71.37 mmol), DCC(15.78g, 78.51mmol)のDMF溶液(200ml)を18h搅拌した。生成物をB法で精製の後, AcOEt-etherで再結晶した。

収量 18.50g(72%), mp 104-105℃,

\[[\alpha] D^0 +5.0^\circ \text{ (c=1.0,DMF), Rf}_2 0.37. \]

Anal. Calcd for C₁₅H₂₀N₂O₆: C, 55.55; H, 6.22; N, 8.64.

Found: C, 55.95; H, 6.38; N, 8.72.

22）Z(OMe)-Ser(Bz1)-Ala-Gly-OMe

Z(OMe)-Ser(Bz1)-OH・CHA(9.61g, 21.53mmol)より調製した混酸無水物のTHF溶液(50ml)とH-Ala-Gly-OMe [Z(OMe)-Ala-Gly-OMe (5.82g, 17.94 mmol)より調製]のDMF溶液(30ml)とを混合した。生成物をA法で精製した後, AcOEt-etherで再結晶した。

収量 6.98g(78%), mp 110-113℃,

\[[\alpha] D^8 -8.3^\circ \text{ (c=1.0,MeOH), Rf}_1 0.81. \]

Found: C, 60.14; H, 6.50; N, 8.39.
23) Z(OMe)-Asn-Ser(Bz1)-Ala-Gly-OMe
 H-Ser(Bz1)-Ala-Gly-OMe [Z(OMe)体(5.27g, 10.50mmol)より調製] の
 DMF溶液(50ml)にZ(OMe)-Asn-ONp(4.82g, 11.00mmol), およびTEA(1.53ml,
 11.00mmol)を加え一夜摂拌した。生成物をB法で精製の後, DMF-AcOEt
 で再結晶した。
 収量 6.29g(97%), mp 210-213 °C,
 [α]D 6 +6.0° (c=1.0, DMF), Rf 0.67.
 Anal. Calcd for C29H37N5O10: C, 56.57; H, 6.06; N, 11.38.
 Found: C, 56.65; H, 6.00; N, 11.27.

24) Z(OMe)-Leu-Asn-Ser(Bz1)-Ala-Gly-OMe
 H-Asn-Ser(Bz1)-Ala-Gly-OMe[Z(OMe)体(6.27g, 10.19mmol)より調製]
 のDMF溶液(60ml)にZ(OMe)-Leu-ONp(6.37g, 15.29mmol)およびTEA(1.42ml,
 10.19mmol)を加え一夜摂拌した。生成物をB法で精製の後, DMF-MeOHで
 再結晶した。
 収量 5.63g(76%), mp 231-233 °C,
 [α]D -3.0° (c=1.0, DMF), Rf 0.74.
 Found: C, 57.75; H, 6.72; N, 11.48.

25) Z(OMe)-Leu-Asn-Ser(Bz1)-Ala-Gly-NHNH2 [6]
 上記のベンタペプチドエステル(1.50g, 2.05mmol)のDMF溶液(20ml)に
 80%脱水エチルジン(1.29ml, 10eq)を加え24h放置した。残渣を濃縮後,
 MeOHで結晶化し, DMF-MeOHで再結晶した。
 収量 1.21g(81%), mp 119-122 °C,
 [α]D -2.9° (c=1.0, DMF), Rf 0.62.
 6N HCl酸分解後のアミノ酸分析値:
 Leu 1.01, Asp 1.01, Ser 0.94, Ala 0.99, Gly 1.00.
 (Glyの回収率, 92%)

—62—
Anal. Calcd for C_{34}H_{48}N_{8}O_{10}·1/2H_2O: C, 55.35; H, 6.69; N, 15.18.
Found: C, 55.36; H, 6.50; N, 15.30.

26) Boc-Trp(Mts)-Thr-OMe

Boc-Trp(Mts)-OH[DCHA塩(6.68g,10.00mmol)より調製]のTHF溶液(20ml)とH-Thr-OMe[塩酸塩(2.04g,12.00mmol)より調製]のDMF溶液(20ml)を混合し、さらにDCC(2.27g,11.00mmol)を加え一夜懸濁した。DClureaを焼
除した後、生成物をB法で精製した。さらにこれをAcOEt-n-hexanで再
結晶した。

収量 4.90g(81%), mp 88-90 °C,
[α]_D^25 -3.7° (c=0.3, MeOH), Rf 0.33.

Anal. Calcd for C_{55}H_{36}N_{3}O_{8}S: C, 59.88; H, 6.53; N, 6.98.
Found: C, 60.35; H, 6.86; N, 6.70.

27) Z(OMe)-Gly-Trp(Mts)-Thr-OMe

H-Trp(Mts)-Thr-OMe [Z(OMe)-体(4.75g,7.89mmol)より調製]のDMF溶
液(20ml)にZ(OMe)-Gly-ONp(2.90g,9.47mmol)およびTEA(1.10ml,7.89mmol)
を加え24h懸濁した。生成物をA法で精製の後、AcOEt-etherで再結晶し
た。

収量 2.54g(43%), mp 92-94 °C,
[α]_D^25 -10.3° (c=1.0, MeOH), Rf 0.37.

Anal. Calcd for C_{36}H_{42}N_{4}O_{10}S: C, 59.82; H, 5.86; N, 7.75.
Found: C, 59.79; H, 5.90; N, 7.61.

28) Z(OMe)-Gly-Trp(Mts)-Thr-NHNH₂ [7]

上記のトリペプチドエステル(2.43g,3.36mmol)のMeOH溶液(20ml)を抱
水ヒドラジンで一夜処理した。析出した結晶をDMF-MeOHで再結晶した。

収量 2.26g(93%), mp 186-188 °C,
[α]_D^25 -7.2° (c=1.0, DMF), Rf 0.61.

4N MSA酸分解後のアミノ酸分析値:

---63---
Gly 1.00, Trp 0.84, Thr 0.91 (Glyの回収率, 95%).
Found: C, 58.39; H, 6.01; N, 11.49.

29) Z(OMe)-Ser(Bzl)-Phe-His-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-\(\text{NH}_2\), Z(OMe)-(galanin 21-29)-\(\text{NH}_2\)

Boc-(galanin 24-29)-\(\text{NH}_2\) [1] (700mg, 0.70mmol)を常法に従いTFA処理して得たパウダーをDMF(3ml)に溶かし、これをTEA(0.10ml, 0.70mmol)で中和した。この溶液にフラグメント [2] (715mg, 1.08mmol)より調製したアミドのDMF溶液(3ml)およびTEA(0.16ml, 1.17mmol)を加え24h攪拌した。生成物をA法(抽出溶媒: n-BuOH)で精製の後、MeOH-AcOEtで再結晶した。
収量 810mg(76%), mp 180-183 °C,
\([\alpha]_D^{25} -25.0^\circ\) (c=0.8, DMF), Rf 0.67.
Anal. Calcd for C₁₇H₁₈N₃O₂·4H₂O: C, 59.57; H, 6.90; N, 11.43.
Found: C, 59.76; H, 6.39; N, 11.23.

30) Z(OMe)-Ala-Ile-Asp(OChp)-Asn-His-Arg(Mts)-Ser(Bzl)-Phe-His-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-\(\text{NH}_2\), Z(OMe)-(galanin 15-29)-\(\text{NH}_2\)

フラグメント [3] (900mg, 0.76mmol)より調製したアミドのDMF溶液(5ml)とTEA(0.10ml, 0.73mmol)をH-(galanin 21-29)-\(\text{NH}_2\)(Z(OMe)-体(770mg, 0.51mmol)から調製)のDMF溶液(3ml)に加え24h攪拌した。生成物をB法, 次いでC法で精製した。
収量 645mg(51%), mp 220-223 °C,
\([\alpha]_D^{25} +6.0^\circ\) (c=0.5, DMF), Rf 0.48.
Found: C, 58.54; H, 6.87; N, 13.74.

31) Z(OMe)-Gly-Pro-His-Ala-Ile-Asp(OChp)-Asn-His-Arg(Mts)-Ser(Bzl)-Phe-His-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-\(\text{NH}_2\),

—64—
Z(OMe)-(galanin 12-29)-NH₂

フラグメント [4] (156mg, 0.32mmol) から調製したアミドのDMF溶液 (3ml) と TEA(49μl, 0.35mmol) を H-(galanin 15-29)-NH₂ [Z(OMe)-体 (500 mg, 0.20mmol) から調製] の DMF溶液 (2ml) に加え 12h 換拌した。生成物を B 法で精製の後, DMF-AcOEt で再沈殿した。
収量 506mg (91%), mp 226-228 °C,
[α]₀⁺° -16.1° (c=0.5, DMF), Rf 0.48.
Found: C, 57.71; H, 6.64; N, 14.93.

32) Z(OMe)-Tyr-Leu-Leu-Gly-Pro-His-Ala-Ile-Asp(OChp)-Asn-His-Arg(Mts)-Ser(Bzl)-Phe-His-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-NH₂, Z(OMe)-(galanin 9-29)-NH₂

フラグメント [5] (205mg, 0.35mmol) から調製したアミドの DMF溶液 (2ml) と TEA(54μl, 0.39mmol) を H-(galanin 12-29)-NH₂ [Z(OMe)-体 (490mg, 0.18mmol) から調製] の DMF溶液 (3ml) に加え 12h 換拌した。生成物を B 法で精製の後, DMF-AcOEt で再沈殿した。
収量 533mg (96%), mp 228-231 °C,
[α]₀⁺° +5.1° (c=0.4, DMF), Rf 0.48.
Anal. Calcd for C₁₅₆H₂₁₇₇N₃₃₆O₃₂S·2H₂O: C, 58.88; H, 6.91; N, 14.34.
Found: C, 58.56; H, 7.02; N, 14.24.

33) Z(OMe)-Leu-Asn-Ser(Bzl)-Ala-Gly-Tyr-Leu-Leu-Gly-Pro-His-Ala-Ile-Asp(OChp)-Asn-His-Arg(Mts)-Ser(Bzl)-Phe-His-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-NH₂, Z(OMe)-(galanin 4-29)-NH₂

フラグメント [6] (298mg, 0.41mmol) から調製したアミドの DMF溶液 (3ml) と TEA(63μl, 0.45mmol) を H-(galanin 9-29)-NH₂ [Z(OMe)-体 (521mg, 0.16mmol) から調製] の DMF溶液 (3ml) に加え 48h 換拌した。生成物を B 法, 次いで C 法で精製した。
収量 385mg (63%), mp 224-226 °C.
34) Z(OMe)-Gly-Trp(Mts)-Thr-Leu-Asn-Ser(Bzl)-Ala-Gly-Tyr-Leu-Leu-Gly-Pro-His-Ala-Ile-Asp(OChp)-Asn-His-Arg(Mts)-Ser(Bzl)-Phe-His-Asp(OChp)-Lys(Z)-Tyr-Gly-Leu-Ala-NH₂, Z(OMe)-(galanin 1-29)-NH₂ （保護galanin）

フラグメント [7] (170mg, 0.24mmol)から調製したアジドのDMF溶液 (3ml)とTEA(36μl, 0.26mmol)をH-(galanin 4-29)-NH₂[Z(OMe)-体(350mg, 94μmol)から調製]のDMF溶液(2ml)に加え48h攪拌した。生成物をB法,次いでC法で精製した。

収量 335mg(84%), mp 223-225 °C.

\[\alpha \] _D^2: +3.3° (c=0.6, DMF), Rf: 0.57.

Anal. Calcd for C_{183}H_{253}N_{39}O_{43}S·5H₂O: C, 57.70; H, 6.96; N, 14.34.

Found: C, 57.74; H, 6.90; N, 14.28.

第4項に関する実験

上記の保護29 残基ペプチドアミド(100mg, 24μmol)をm-cresol(197μl, 80eq), EDT(49μl, 20eq)存在下, 1M TFMSA-thioanisole/TFA(6ml)で120min処理した。etherを加え析出したパウダーを遠沈した。これを水冷下H₂O (10ml)に溶かし, 10%NH₄OHでpH 8.0とし, 30min攪拌した。さらに10%AcOHでpH 4.0としたのち凍結乾燥した。得られたオイルを0.5N AcOH(1ml)に溶かし, Sephadex G-25カラム(3.3×126cm)にアップライした。0.5N AcOHでこれを溶出させ, 各フラクション(7ml)のUV280nmにおける吸光度を測定し, 目のフラクション(Nos.69-91)を集め凍結乾燥して, 白色羽毛状パウダーを得た。収量 66mg(86%).
このパウダー3mgずつをNucleosil 5C18カラム(10 × 250mm)にアプライし、35%CH3CN/0.2%TFAを溶出液とし、流速1.4ml/minでisocraticに溶出させた。UV280nmで検出し、目的のピーク(retention time 19.5 min)を集め凍結乾燥した。得られたパウダーを0.5N AcOH(0.5ml)に溶かしSephadex G-25カラムにアプライし、上記と同様に溶出させた。目的のフランションを凍結乾燥し白色羽毛状パウダーを得た。
収量 25.7mg(保護29残基ペプチドからの収率；33%)。
\[\alpha \] ^{25}D -61.2° (c=0.1, 0.5N AcOH), Rf 0.29.
FAB-MS: 3209.6 (M+H)^+.
HPLC精製後のサンプルは分析用HPLCカラムで単一のピークを示した；
retention time 4.0 min (Fig. 14-b).
カラム： Nucleosil 5C18 (4×150mm)
溶出液： 35%CH3CN/0.2%aqTFA (isocratic elution)
流速： 0.8 ml/min
Detection: 280 nm
また Pharmalyte (pH 3-10)を含む7.5%ポリアクリルアミドゲル(0.5×7.3cm)を用いるディスク等電点電気泳動において 200V, 4hの通電後, 本品は陽極より6.3cm移動した(Coomassie Brilliant Blue G-250, Sigmaで染色)（図 15）。
6N HClによる酸分解後のアミノ酸分析値：表 3 参照のこと。
LAPによる酵素消化後のアミノ酸分析値：
2Asp 1.84, 1Thr 0.91, 2Ser 2.01, 1Pro 0.78, 4Gly 3.59,
3Ala 3.02, 1Ile 1.11, 4Leu 3.96, 2Tyr 1.78, 1Phe 1.00,
1Trp 0.73, 1Lys 1.00, 3His 2.70, 1Arg 1.02, 2Asn N.D.
（Lysの回収率90%）
第２章に関する実験

第２節に関する実験
第２項に関する実験
1) Z(OMe)-Asp(OChp)-Phe-NH₂

Z(OMe)-Asp(OChp)-OSu [Z(OMe)-Asp(OChp)-OHのDCHA塩 (25.00g, 44.0mmol)から調製]のTHF溶液(60ml), およびH-Phe-NH₂ [Z(OMe)-体(14.44g, 44.0mmol)から調製]のDMF溶液(50ml)を混合し、さらにNMM(4.84ml, 44.0mmol)を加え、一夜摂拌した。生成物をA法で精製(抽出溶媒: CHCl₃)の後、CHCl₃-MeOHで再結晶した。

収量 16.33g(69%), mp 163-165℃,
\[\alpha \]°D -20.0° (c=1.0, DMF), Rf 0.76.
Anal. Calcd for C₂₉H₃₇N₃O₇: C, 64.54; H, 6.91; N, 7.79.
Found: C, 64.50; H, 7.04; N, 7.78.

2) Z(OMe)-Met(0)-Asp(OChp)-Phe-NH₂

上記のジペプチドアミド(16.33g, 30.3mmol)を常用によりTFA処理し、DMF(300ml)に溶かした。TEA(4.22ml, 30.3mmol)で中和した後、Z(OMe)-Met(0)-ONB[Z(OMe)-Met(0)-OH(10.97g, 33.3mmol)から調製]のDMF-THF溶液(10ml-35ml)、およびNMM(3.33ml, 30.3mmol)を加え一夜摂拌した。生成物をB法で精製の後、DMSO-etherで再沈殿した。

収量 13.66g(66%), mp 197-199℃,
\[\alpha \]°D +6.1° (c=1.0, MeOH), Rf 0.60.
Anal. Calcd for C₃₄H₄₆N₄O₈S: C, 59.46; H, 6.75; N, 8.16.
Found: C, 59.21; H, 6.70; N, 8.07.

3) Boc-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂

上記のトリペプチドアミド(5.50g, 8.01mmol)を常用によりTFA処理し、DMF(50ml)に溶かした。TEA(1.11ml, 8.01mmol)を加え中和した後、Boc-Trp(Mts)-OSu[Boc-Trp(Mts)-OH-DCHA(6.42g, 9.61mmol)から調製]のTHF
溶液(30ml), NMM(0.88ml, 8.01mmol)を加え一夜攪拌した。生成物をB法により精製の後, DMF-etherで再沈殿した。
収量 5.20g(66%), mp 152-154 °C,
[α]D° -32.2° (c=1.0, MeOH), Rf: 0.71.
Anal. Calcd for C50H66N60S2: C, 60.58; H, 6.71; N, 8.48.
Found: C, 60.72; H, 6.72; N, 8.29.

4) Z(OMe)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂

上記のテトラペプチドアミド(5.30g, 5.35mmol)を常法によりTFA処理し, DMF(50ml)に溶かした。TEA(0.75ml, 5.35mmol)を加え中和した後, Z(OMe)-Gly-OSu(2.16g, 6.42mmol), NMM(0.59ml, 5.35mmol)を加え48h攪拌した。生成物をB法で精製の後, DMF-etherで再沈殿した。
収量 5.42g(91%), mp 172-175 °C,
[α]D° -25.0° (c=1.0, DMF), Rf: 0.54.
Anal. Calcd for C56H68N70S2: C, 59.50; H, 6.33; N, 8.68.
Found: C, 59.77; H, 6.42; N, 8.75.

5) Z(OMe)-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂

上記のペンタペプチドアミド(5.42g, 4.87mmol)を常法によりTFA処理し, DMF(30ml)に溶かした。TEA(0.68ml, 4.87mmol)を加え中和した後, Z(OMe)-Met(0)-OSu [Z(OMe)-Met(0)-OH(1.92g, 5.84mmol)から調製]のTHF-DMF溶液(30ml-2ml), NMM(0.34ml, 4.87mmol)を加え一夜攪拌した。生成物をB法で精製の後, DMSO-AcOEtで再沈殿した。
収量 4.57g(75%), mp 175-178 °C,
[α]D° +3.1° (c=1.0, DMF), Rf: 0.62.
Anal. Calcd for C61H78N80S3: C, 57.35; H, 6.31; N, 8.77.
Found: C, 57.52; H, 6.26; N, 8.63.

6) Z(OMe)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂

上記のヘキサペプチドアミド(5.00g, 3.97mmol)を常法によりTFA処理
し、DMF(20ml)に溶かした。TEA(0.55ml, 3.97mmol)を加え中和した後、
Z(OMe)-Tyr-NH₂H(1.71g, 4.76mmol)より調製したアジドのDMF溶液(20ml),
TEA(0.55ml, 3.97mmol)を加え24h攪拌した。生成物をB法で精製の後、
DMF-AcOEtで再沈殿した。
収量 4.58g(81%), mp 194-197 °C,
$[\alpha]$ $^\circ$ -13.3° (c=1.0, DMF), Rf 0.58.
Anal. Calcd for C$_7$H$_8$N$_9$O$_1$S$_3$: C, 58.35; H, 6.16; N, 8.75.
 Found: C, 58.53; H, 6.05; N, 8.75.

7) Z(OMe)-Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-
Phe-NH$_2$

常法によりTFA処理した上記のヘプタベプチドアミド(4.50g, 3.16mmol)
のDMF溶液(40ml)にTEA(0.44ml, 3.16mmol)を加え中和した後、Z(OMe)-
Asp(OChp)-OSu [Z(OMe)-Asp(OChp)-OH·DCHA(2.72g, 4.74mmol)から調製]
のTHF溶液(10ml), NMM(0.35ml, 3.16mmol)を加え一夜攪拌した。生成物を
B法で精製の後、DMF-MeOHで再沈殿した。
収量 3.53g(68%), mp 202-204 °C,
$[\alpha]$ $^\circ$ -22.6° (c=1.0, DMF), Rf 0.72.
Anal. Calcd for C$_{8}$_H$_{10}$_N$_{8}$_O$_3$_S$_3$_·H$_2$O: C, 58.25; H, 6.52; N, 8.39.
 Found: C, 58.32; H, 6.32; N, 8.74.

8) Z(OMe)-Arg(Mts)-Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-
Asp(OChp)-Phe-NH$_2$

常法によりTFA処理した上記のオクタベプチドアミド(3.42g, 2.09mmol)
のDMF溶液(30ml)にTEA(0.29ml, 2.09mmol)を加え中和した後、Z(OMe)-
Arg(Mts)-OH·CHA(2.60g, 3.76mmol)から調製した混酸無水物のTHF溶液
(20ml)を加え6h攪拌した。生成物をB法で精製の後、DMF-AcOEtで再沈
殿した。
収量 3.34g(81%), mp 189-191 °C,
$[\alpha]$ $^\circ$ -17.0° (c=1.0, DMF), Rf 0.65.
Anal. Calcd for C_{96}H_{126}N_{14}O_{23}S_{4}·2H_{2}O: C, 57.41; H, 6.52; N, 9.76.
Found: C, 57.25; H, 6.56; N, 10.03.

9) Z(OMe)-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH_{2} [1]

常法によりTFA処理した上記のノナペプチドアミド(3.30g, 1.67mmol)のDMF(8ml)溶液にTEA(0.23ml, 1.67mmol)を加えた中和した後, Z(OMe)-Asp(OChp)-OSe[Z(OMe)-Asp(OChp)-OH·DCHA(1.44g, 1.67mmol)から調製]のTHF溶液(20ml), NMM(0.18ml, 1.67mmol)を加え一夜摺拌した。生成物をB法で精製の後, DMF-AcOEtで再結晶した。
収量 3.11g(85%), mp 203-205 °C,
\[\alpha\]^20_D -23.6° (c=1.0, DMF), Rf, 0.70.
Anal. Calcd for C_{19};H_{14}3N_{15}O_{26}S_{4}·2H_{2}O: C, 57.90; H, 6.68; N, 9.47.
Found: C, 57.98; H, 6.79; N, 9.46.

10) Z(OMe)-Arg(Mts)-Ile-Ser-OMe

Z(OMe)-Arg(Mts)-OH·CHA(20.43g, 33.0mmol)から調製した混酸無水物のTHF溶液(60ml)をH-Ile-Ser-OMe[Z(OMe)-体(11.89g, 30.0mmol)から調製]のDMF溶液(100ml)に加え6h摺拌した。生成物をA法で精製の後MeOH-etherで再結晶した。
収量 20.20g(92%), mp 99-101 °C,
\[\alpha\]^5_D -1.0° (c=1.0, MeOH), Rf, 0.75.
Anal. Calcd for C_{34}H_{50}N_{6}O_{10}·H_{2}O: C, 54.23; H, 6.96; N, 11.16.
Found: C, 54.55; H, 6.62; N, 10.84.

11) Z(OMe)-His-Arg(Mts)-Ile-Ser-NHNH_{2} [2]

Z(OMe)-His-NHNH_{2}(13.61g, 40.8mmol)より調製したアジドのDMF溶液(100 ml)とTEA(4.55ml, 32.7mmol)をH-Arg(Mts)-Ile-Ser-OMe[上記のトリペプチドエスクラ(20.00g, 27.2mmol)より調製]のDMF溶液(50ml)に加え一夜摺拌した。生成物をA法で精製の後,これをMeOH(50ml)に溶かした。こ
れに80%飽水とアソジン(6.81ml, 5eq)を加え一夜放置した。得られた沈殿をDMF-MeOHで再結晶した。
収量 14.34g(60%), mp 168-170 ℃,
\([\alpha]_b^0 = -1.2^\circ\ (c=0.8, \text{DMF}), \text{Rf} = 0.36.
6N HCl酸分解後のアミノ酸分析値:
His 0.99, Arg 0.95, Ile 1.00, Ser 0.96 (Ileの回収率, 81%).
Anal. Calcd for C_{39}H_{57}N_{11}O_{10}·1/2H_2O: C, 53.16; H, 6.64; N, 17.49.
Found: C, 53.17; H, 6.68; N, 17.63.

12) Z(OMe)-Pro-Ser(Bz1)-NHNH-Troc

Z(OMe)-Pro-OH[DCHA塩(4.39g, 9.54mmol)から調製]とH-Ser(Bz1)-NHNH-Troc[Z(OMe)-体 110° (5.54g, 9.54mmol)から調製]のDMF溶液(50ml)にDCC (2.39g, 11.5mmol)とHOBT(1.29g, 9.54mmol)を加え18h攪拌した。不溶物を濾過した後、濾液を濃縮した。残渣をA法で精製し、AcOEt-etherで再結晶した。
収量 3.70g(60%), mp 85-87 ℃,
\([\alpha]_b^0 = -2.9^\circ\ (c=1.0, \text{DMF}), \text{Rf} = 0.42.
Anal. Calcd for C_{37}H_{55}N_{10}O_{12}Cl: C, 50.20; H, 4.84; N, 8.67.
Found: C, 50.35; H, 4.92; N, 8.82.

13) Z(OMe)-Asp(OBz1)-Pro-Ser(Bz1)-NHNH₂ [3]

Z(OMe)-Asp(OBz1)-OH(3.96g, 10.2mmol)から調製した混酸無水物のTHF溶液(30ml)をH-Pro-Ser(Bz1)-NHNH-Troc[上記のジペプチド誘導体(5.50g, 8.51mmol)より調製]のDMF溶液(30ml)に加え6h攪拌した。生成物をA法精製の後、得られたオイル(3.66g, Rf₂ 0.48)をAcOH(30ml)に溶かし、Zn末(5.59g, 20eq)を加え25℃で4h攪拌した。不溶物を濾過し、濾液を濃縮した後、残渣をAcOEtに溶かし3%EDTAで洗浄した。Na₂SO₄上乾燥後の濃縮し、残渣をetherでパブラーとした。次いでMeOH-etherで再結晶した。
収量 2.47g(85%), mp 92-95 ℃;
\([\alpha]_b^0 = -31.1^\circ\ (c=0.5, \text{DMF}), \text{Rf}₂ 0.40.

6N HCl酸分解後のアミノ酸分析値:

Asp 1.04, Pro 1.00, Ser 1.04（Proの回収率，77%）。
Anal. Calcd for C₃₅H₄₁N₅O₉・1/2H₂O: C, 61.31; H, 6.18; N, 10.23.
Found: C, 61.69; H, 6.19; N, 10.21.

14) Z(OMe)-Gln-Asn-Leu-OMe

Z(OMe)-Gln-ONp(1.90g, 4.57mmol)とTEA(0.64m1, 6.28mmol)をH-Asn-Leu-OMe[Z(OMe)-体(2.42g, 5.71mmol)により調製]のDMF溶液(30m1)に加え48h攪拌した。生成物をB法で精製の後、DMF-MeOHで再結晶した。
収量 2.20g(70%), mp 259-261℃,
[α]₃⁰ +10.9° (c=0.5, DMSO), Rf: 0.50.
Anal. Calcd for C₃₂H₃₇N₅O₈: C, 54.43; H, 6.76; N, 12.70.
Found: C, 54.63; H, 6.72; N, 12.64.

15) Z(OMe)-Leu-Gln-Asn-Leu-OMe

上記のトリペプチドエステル(2.10g, 3.81mmolをTFA処理しDMF(20m1)に溶かした。TEA(1.06m1, 7.62mmol)を加えた後，Z(OMe)-Leu-ONp(1.90g, 4.57mmol)を加え一夜攪拌した。生成物をB法で精製の後, DMF-MeOHから再沈殿した。
収量 2.26g(89%), mp 246-248℃,
[α]₃⁰ +20.0° (c=0.5, DMSO), Rf: 0.66.
Anal. Calcd for C₃₂H₄₈N₅O₁₀: C, 56.01; H, 7.28; N, 12.64.
Found: C, 55.93; H, 7.37; N, 12.41.

16) Z(OMe)-Asn-Leu-Gln-Asn-Leu-OMe

上記のテトラペプチドエステル(2.17g, 2.79mmol)をTFA処理しDMF(60m1)に溶かした。TEA(0.78m1, 5.58mmol)を加えた後，Z(OMe)-Asn-ONp(1.40g, 3.34mmol)を加え18h攪拌した。生成物をB法で精製の後, DMSO-MeOHから再沈殿した。
収量 2.03g(80%), mp 261-263℃,

—73—
[α] 31° −14.0° (c=0.5, DMSO), Rf, 0.34.
Anal. Calcd for C_{35}H_{54}N_{8}O_{12}: C, 53.97; H, 6.99; N, 14.39.
Found: C, 53.72; H, 7.02; N, 14.12.

上記のペンタペプチドエステル(6.72g, 8.63mmol)をDMSO-MeOH(80ml-10ml)に溶かし、80%水溶液を加え48h放置した。濃縮後、残渣をMeOHで結晶化の後、DMSO-MeOHから再結晶した。
収量 4.33g (64%), mp 250-253 ℃,
[α] 31° −13.3° (c=0.5, DMSO), Rf, 0.18.
6N HCl酸分解後のアミノ酸分析値:
Asp 2.01, Glu 1.01, Leu 2.00 (Leuの回収率, 82%)
Anal. Calcd for C_{34}H_{54}N_{10}O_{11}·H_{2}O: C, 51.30; H, 7.09; N, 17.60.
Found: C, 51.53; H, 7.06; N, 17.38.

18) Z(OMe)-Ile-Val-OMe
Z(OMe)-Ile-ONp(7.05g, 16.9mmol), HCl·H-Val-OMe(2.84g, 16.9mmol),
TEA(4.72ml, 33.9mmol)のDMF溶液(70ml)を一夜摂拌した。生成物をB法で精製の後、DMF-etherで再結晶した。
収量 5.11g (74%), mp 116-118 ℃,
[α] 31° +2.0° (c=0.5, DMF), Rf, 0.81.
Anal. Calcd for C_{21}H_{32}N_{2}O_{6}: C, 61.74; H, 7.90; N, 6.86.
Found: C, 61.84; H, 8.07; N, 7.07.

19) Z(OMe)-Ile-Val-NHNHz
上記のシヘプチドエステル(5.00g, 12.2mmol)のMeOH溶液(100ml)に80%水溶液を加え48h放置した。析出するパウダーを
DMF-MeOHで再結晶した。
収量 2.77g (55%), mp 252-254 ℃,
[α] 31° +0.9° (c=1.0, DMF), Rf, 0.74.
 Found: C, 58.90; H, 7.91; N, 13.57.

20) Z(OMe)-Ile-Val-Lys(Z)-OMe

Z(OMe)-Ile-Val-NHNH₂(2.70g, 6.61ml)から調製したアミドのDMF溶液
(30ml)，およびTEA(1.01ml, 6.61ml)をH-Lys(Z)-OMe[その塩酸塩(2.19g,
6.61mmol)から調製]のDMF溶液(20ml)に加え一夜掻拌した。生成物をB
法で精製の後，DMF-AcOEtで再沈殿した。
収率 3.60g(81%)，mp 202-204 °C，
[α]₀⁺ +1.5° (c=1.0, DMF)，Rf₂ 0.65.
Anal. Calcd for C₃₅H₅₀N₄O₉: C, 62.67; H, 7.51; N, 8.35.
 Found: C, 62.44; H, 7.63; N, 8.29.

21) Z(OMe)-Ser(Bzl)-Ile-Val-Lys(Z)-OMe

Z(OMe)-Ser(Bzl)-OH · CHA(2.87g, 6.26mmol)から調製した混酸無水物の
THF溶液(30ml)にH-Ile-Val-Lys(Z)-OMe[Z(OMe)-体(3.50g, 5.22mmol)よ
り調製]のDMF溶液(10ml)を加え6h掻拌した。生成物をB法で精製の後，
DMF-MeOHで再沈殿した。
収率 3.25g(69%)，mp 179-181 °C，
[α]₀⁻ -1.1° (c=1.0, DMF)，Rf₂ 0.90.
Anal. Calcd for C₄₅H₆₁N₅O₁₁·1/2H₂O: C, 63.06; H, 7.29; N, 8.17.
 Found: C, 63.18; H, 7.13; N, 7.81.

22) Z(OMe)-Ser(Bzl)-Ile-Val-Lys(Z)-NHNH₂ [5]

上記のテトラペプチドエステル(3.15g, 3.71mmol)のDMF溶液(100ml)に
80%希勢ヒドラジン(0.93ml, 5eq)を加え一夜放置した。析出する結晶を
DMF-MeOHで再沈殿した。
収率 2.66g(84%)，mp 126-128 °C，
[α]₀⁻ +12.6° (c=1.0, DMF)，Rf¹ 0.77.
6N HCl酸分解(96h)後のアミノ酸分析値：
 —75—
Ser 0.87, Ile 0.94, Val 0.92, Lys 1.00 (Lysの回収率, 79%)
 Found: C, 62.44; H, 7.27; N, 11.29.

23) Z(OMe)-Gly-Arg(Mts)-Met(O)-NHNH₂ [6]
 Z(OMe)-Gly-OSu(2.07g, 6.16mmol), TEA(1.43ml, 6.16mmol)をH-Arg(Mts)-
 Met(O)-OMe[Z(OMe)-体(3.50g, 5.13mmol)から調製]のDMF溶液(30ml)に加
 え48h攪拌した。生成物をA法で精製の後, MeOH-etherから再結晶した。
 これをMeOH(40ml)に溶かし, 80%脱水ヒドラシン(1.29ml, 5eq)を加えた。
 24h放置の後, 溶媒を留去し, 残渣をetherで結晶化した。次いでn-BuOH-
 etherで再沈殿した。
 収量 1.91g(51%), mp 93-96 °C,
 [α]D²¹ -5.5° (c=0.5, DMF), Rf, 0.59.
 6N HCl酸分解後のアミノ酸分析値:
 Gly 1.05, Arg 1.00, Met 0.87 (Argの回収率, 81%).
 Anal. Calcd for C₃₃H₄₆N₅O₅S₂·1/2H₂O: C, 49.78; H, 6.33; N, 14.98.
 Found: C, 50.05; H, 6.56; N, 14.70.

24) Z(OMe)-Ala-Pro-Ser-OMe
 Z(OMe)-Ala-Pro-OH(6.31g, 18.0mmol)とH-Ser-OMe[塩酸塩(3.36g, 21.6
 mmol)から調製]のDMF溶液(30ml)にDCC(4.09g, 19.8mmol)を加え一夜攪拌
 した。不溶物を濾過し濾液を濃縮した。生成物をA法で精製の後, MeOH-AcOEtで再結晶した。
 収量 6.69g(82%), mp 109-112 °C,
 [α]D³ -14.5° (c=0.9, MeOH), Rf, 0.84.
 Found: C, 56.11; H, 6.71; N, 9.33.

25) Z(OMe)-Lys(Z)-Ala-Pro-Ser-OMe
 上記のトリペプチドエステル(1.75g, 3.88mmol)をTFA処理しDMF(50ml)
に溶かした。TEA(1.08ml, 7.76mmol), Z(OMe)-Lys(Z)-OSu(2.35g, 4.34mmol)を加え一夜撹拌した。生成物をA法で精製の後, MeOH-AcOEtで再結晶した。

収量 1.91g(69%), mp 153-156 °C,
\[\alpha \] \beta^0 = -33.5° (c=1.0, DMF), Rf: 0.79.
Anal. Calcd for C_{25}H_{47}N_5O_1: C, 58.89; H, 6.64; N, 9.81. Found: C, 58.94; H, 6.80; N, 9.80.

26) Z(OMe)-Lys(Z)-Ala-Pro-Ser-NHNH₂ [7]
上記のテトラペプチドエステル(2.65g, 3.71mmol)のMeOH溶液(30ml)に80%水合ヒドラシン(2.32ml, 10eq)を加え一夜放置した。析出した結晶をDMF-MeOHで再結晶した。
収量 2.43g(92%), mp 154-159 °C,
\[\alpha \] \beta^0 = -36.6° (c=1.0, DMF), Rf: 0.73.
6N HCl酸分解後のアミノ酸分析値:
Lys 0.98, Ala 1.06, Pro 1.00, Ser 0.95 (Proの回収率, 84%).
Anal. Calcd for C_{34}H_{47}N_7O_1: C, 55.80; H, 6.75; N, 13.40. Found: C, 55.94; H, 6.59; N, 13.25.

27) Z(OMe)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-
Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂,
Z(OMe)-(hCCK 20-33 [Tyr-free]^27)-NH₂
TFA処理したフラグメント [1] (2.18g, 1.00mmol)のDMF溶液(6ml)にTEA(0.14ml, 1.00mmol)を加え, これにフラグメント [2] (1.31g, 1.50 mmol)から調製したアジドのDMF溶液(6ml)およびNMM(0.13ml, 1.20mmol)
を加え48h撹拌した。生成物をB法で精製の後, DMF-MeOHで再沈殿した。
収量 2.45g(86%), mp 227-230 °C,
\[\alpha \] \beta^8 = -15.0° (c=1.0, DMF), Rf: 0.66.
Anal. Calcd for C_{137}H_{188}N_{24}O_{33}S_{5}·3H₂O:
C, 56.48; H, 6.71; N, 11.54.
Found: C, 56.47; H, 6.75; N, 11.33.

28) Z(OMe)-Asp(OBz1)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂, Z(OMe)-(hCCK 17-33 [Tyr-free]²⁷)-NH₂

TFA処理した上記の14残基ペプチドアミド(1.95g, 0.68mmol)のDMF溶液(10ml)にTEA(0.10ml, 0.68mmol)を加え、これにフラグメント [3] (0.60g, 1.02mmol)から調製したアミドのDMF溶液(3ml), およびNMM(90µl, 0.82mmol)を加え一夜摂拌した。生成物をB法で精製の後, DMF-MeOHで再沈殿した。収量1.90g(84%), mp 230-233 °C,

\[[\alpha] \] D⁸ \ -15.1° (c=1.0, DMF), Rf; 0.60.

Anal. Calcd for C₁₆₃H₂₁₇N₂₇O₃₈S₅·4H₂O:

C, 57.39; H, 6.65; N, 11.09.

Found: C, 57.33; H, 6.56; N, 10.95.

29) Z(OMe)-Asn-Leu-Gln-Asn-Leu-Asp(OBz1)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂, Z(OMe)-(hCCK 12-33 [Tyr-free]²⁷)-NH₂

TFA処理した上記の17残基ペプチドアミド(975mg, 0.34mmol)のDMF溶液(5ml)にTEA(47µl, 0.34mmol)を加え、これにフラグメント [4] (1.32g, 1.70mmol)から調製したアミドのDMF-DMSO-HMPA溶液(5ml-5ml-5ml), およびTEA(47µl, 0.34mmol)を加え24h摂拌した。さらにアミドとTEA(各3 eq)を追加し18h摂拌した。生成物をB法, 次いでC法で精製し, DMF-AcOEtで再沈殿した。

収量 642mg(48%), mp 225-228 °C,

\[[\alpha] \] D⁸ \ -18.0° (c=1.0, DMSO), Rf, 0.57.

Anal. Calcd for C₁₈₈H₂₅₅N₃₅O₄₇S₅·7H₂O:

C, 55.78; H, 6.80; N, 12.11.

Found: C, 55.78; H, 6.84; N, 12.40.
30) Z(OMe)-Ser(Bzl)-Ile-Val-Lys(Z)-Asn-Leu-Gln-Asn-Leu-
Asp(OBzl)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-
Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂,
Z(OMe)-(hCCK 8-33 [Tyr-free]²⁷)-NH₂

TFA処理した上記の22残基ペプチドアミド(638mg, 0.16mmol)のDMF溶液
(4ml)にTEA(23μl, 0.16mmol)を加え、これにフラグメント [5] (690mg,
0.80mmol)から調製したアジドのDMF溶液(6ml)、およびTEA(27μl, 0.19mmol)
を加え48h攪拌した。生成物をB法、次いでC法で精製し、DMF-AcOEtで
再沈殿した。

収量 459mg(62%), mp 250-252 °C,
[α]²⁰° -6.7° (c=1.0, DMSO), Rf, 0.59.
Anal. Calcd for C₂₂₃H₃₄₈N₄₀O₅₄S₅·8H₂O:
 C, 56.77; H, 6.92; N, 11.92.
 Found: C, 56.66; H, 6.74; N, 11.97.

31) Z(OMe)-Gly-Arg(Mts)-Met(0)-Ser(Bzl)-Ile-Val-Lys(Z)-Asn-Leu-
Gln-Asn-Leu-Asp(OBzl)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-
Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr-Met(0)-Gly-Trp(Mts)-Met(0)-
Asp(OChp)-Phe-NH₂, Z(OMe)-(hCCK 5-33 [Tyr-free]²⁷)-NH₂

TFA処理した上記の26残基ペプチドアミド(455mg, 0.10mmol)のDMF溶液
(1ml)にTEA(14μl, 0.10mmol)を加え、これにフラグメント [6] (371mg,
0.50mmol)から調製したアジドのDMF溶液(2ml)、およびTEA(17μl, 0.12mmol)
を加え48h攪拌した。生成物をB法、次いでC法で精製し、DMF-AcOEtで
再沈殿した。

収量 293mg(57%), mp 251-253 °C,
[α]²⁰° -2.0° (c=1.0, DMF), Rf, 0.62.
Anal. Calcd for C₂₄₅H₄₅₂N₄₆O₆₅S₇·11H₂O:
 C, 55.37; H, 6.90; N, 12.13.
 Found: C, 55.65; H, 6.63; N, 11.86.
 —79—
32) Z(OMe)-Lys(Z)-Ala-Pro-Ser-Gly-Arg(Mts)-Met(O)-Ser(Bzl)-Ile-Val-Lys(Z)-Asn-Leu-Gln-Asn-Leu-Asp(0Bzl)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH₂,
Z(OMe)-(hCCK 1-33 [Tyr-free]²⁷)-NH₂

TFA処理した上記の29残基ペプチドアミド(90mg, 18μmol)のDMF溶液(3ml)に TEA(3μl, 18μmol)を加え, これにフラグメント [7] (63mg, 0.09mmol)から調製したアジドのDMF溶液(2ml)およびTEA(5μl, 22μmol)を加え48h攪拌した。生成物をB法, 次いでC法で精製し, DMF-AcOEtで再沈殿した。
収量 70mg(69%), mp 257-259 ℃,
[α]₃³⁸ -33.3° (c=1.0, DMF), Rf 0.67.
Anal. Calcd for C₂₇₀H₃₇₇N₅₀₂₀S₇·5H₂O:
C, 56.65; H, 6.82; N, 12.48.
Found: C, 56.58; H, 6.72; N, 12.61.

第3項に関する実験
1) Z(OMe)-Tyr(Cl₂Bzl)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH₂

Z(OMe)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH₂(4.57g, 3.63mmol)を, 常法にしたがって TFA処理し, 得られたパウダーを DMF(25ml)に溶かしTEA(0.51ml, 3.63mmol)で中和した。これにZ(OMe)-Tyr(Cl₂Bzl)-OSu(2.62g, 4.36mmol), およびNMM(0.40mmol, 4.36mmol)を加え, 一夜攪拌した。生成物をB法で精製し, DMF-AcOEtにより再沈殿した。
収量 5.26g(92%), mp 215-218 ℃,
[α]₃⁰ -20.4° (c=1.0, DMF), Rf 0.64.
Found: C, 58.17; H, 5.96; N, 7.98.

2) Z(OMe)-Asp(OChp)-Tyr(Cl₂Bzl)-Met(O)-Gly-Trp(Mts)-Met(O)-

--- 80 ---
Asp(OChp)-Phe-NH₂

上記の7残基ペプチドアミド(4.95g,3.13mmol)を常法に従いTFA処理し,得られたパウダーをDMF(30ml)に溶かしTEA(0.43ml,3.13mmol)で中和した。これとZ(OMe)-Asp(OChp)-OSu[Z(OMe)-Asp(OChp)-OHのDCHA塩(2.70g,11.23mmol)より常法にしたがって調製]のTHF溶液(15ml),およびNMM(0.41ml,3.76mmol)を混合し一夜搅拌した。生成物をB法で精製し,DMF-AcOEtより再沈殿した。
収量5.23g(90%), mp 200-202 °C,
[α]₂₅° -23.9° (c=1.0,DMF), Rf; 0.75.
Anal. Calcd for C₈₈H₁₀₈N₁₄O₂₀Cl₂S₃: C, 58.95; H, 6.07; N, 7.81.
Found: C, 58.66; H, 6.37; N, 7.79.

3) Z(OMe)-Arg(Mts)-Asp(OChp)-Tyr(Cl₂Bzl)-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂

上記の8残基ペプチドアミド(4.75g,2.65mmol)を常法に従ってTFA処理し,得られたパウダーをDMF(30ml)に溶かした。これをTEA(0.37ml,4.75mmol)で中和の後, Z(OMe)-Arg(Mts)-OSu[Z(OMe)-Arg(Mts)-OHのCHA塩(3.28g,5.30mmol)より常法に従い調製]のTHF溶液(30ml),およびNMM(0.35ml,3.18mmol)と混合した。一夜搅拌の後,生成物をB法により精製し,DMF-AcOEtより再沈殿した。
収量4.15g(74%), mp 238-243 °C,
[α]₂₅° -21.9° (c=1.0,DMF), Rf; 0.78.
Found: C, 57.52; H, 6.31; N, 9.27.

4) Z(OMe)-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr(Cl₂Bzl)-Met(0)-Gly-Trp(Mts)-Met(0)-Asp(OChp)-Phe-NH₂ [1']

上記の9残基ペプチドアミド(4.15g,1.95mmol)を常法に従いTFA処理し,得られたパウダーをDMF(40ml)に溶かし,TEA(0.27ml,1.95mmol)で中和した。これとZ(OMe)-Asp(OChp)-OSu[Z(OMe)-Asp(OChp)-OHのDCHA塩
(1.68g, 2.95mmol)より常法に従って調製]のTHF溶液(15ml), およびNMM (0.26ml, 2.34mmol)を混合し一夜掲拌した。生成物をB法で精製し, DMF-MeOHより再沈殿した。
収量 3.57g(78%), mp 230-233 ℃,
\[\alpha\]_D^\circ -13.5° (c=1.0, DMF), Rf, 0.70.
Anal. Calcd for C_{114}H_{147}N_{15}O_{26}Cl_{2}S_{4}: C, 58.45; H, 6.32; N, 8.97.
Found: C, 58.48; H, 6.42; N, 8.94.

5) Z(OMe)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-
Tyr(Cl_{2}Bzl)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH_2,
Z(OMe)-(hCCK 20-33 [Tyr(Cl_{2}Bzl)]^2\text{-NH}_2

上記の10残基ペプチドアミド(10.73g, 4.58mmol)を常法に従いTFA処理し、得られたピュダーをDMF(30ml)に溶かし、TEA(0.64ml, 4.58mmol)で中和した。これとフラグメント [2] (7.99g, 9.16mmol)のDMF溶液(40ml)とNMM(0.60ml, 5.50mmol)を混合し一夜掲拌した。生成物をB法で精製し, DMF-MeOHで再沈殿した。
収量 11.99g(87%), mp 234-237 ℃,
\[\alpha\]_D^\circ -17.6° (c=1.0, DMF), Rf, 0.73.
Anal. Calcd for C_{144}H_{192}N_{24}O_{33}Cl_{2}S_{5}·4H_2O:
C, 55.96; H, 6.55; N, 10.88.
Found: C, 55.63; H, 6.47; N, 11.24.

6) Z(OMe)-Asp(OBzl)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-
Arg(Mts)-Asp(OChp)-Tyr(Cl_{2}Bzl)-Met(O)-Gly-Trp(Mts)-Met(O)-
Asp(OChp)-Phe-NH_2, Z(OMe)-(hCCK 17-33 [Tyr(Cl_{2}Bzl)]^2\text{-NH}_2

上記の14残基ペプチドアミド(11.89g, 3.94mmol)を常法に従いTFA処理し、得られたピュダーをDMF(30ml)に溶かし、TEA(0.55ml, 3.94mmol)で中和した。これとフラグメント [3] (3.46g, 5.91mmol)のDMF溶液(10ml)とNMM(0.52ml, 4.73mmol)を混合し一夜掲拌した。生成物をB法で精製し, DMF-AcOEtで再沈殿した。
収量 8.64g(63%), mp 230-232 °C,
\([\alpha]_D^{20} +8.9^\circ \) (c=1.0, DMF), Rf, 0.71.
Anal. Calcd for C_{17}H_{22}N_{2}O_{3}Cl_{2}S_{5}·6H_2O:

C, 56.62; H, 6.51; N, 10.49.
Found: C, 56.59; H, 6.33; N, 10.61.

7) Z(OMe)-Asn-Leu-Gln-Asn-Leu-Asp(OBzl)-Pro-Ser(Bzl)-His-
Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr(Cl_{2}Bz1)-
Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH_{2},
Z(OMe)-(hCCK 12-33 [Tyr(Cl_{2}Bz1)]^{27})-NH_{2}

上記の 1 7 残基ペプチドアミド(8.50g, 2.43mmol)を常法に従いTFA処理し、得られたパウダーをDMF(30ml)に溶かし、TEA(0.34ml, 2.43mmol)で中和した。これとフラグメント [4] (7.57g, 9.72mmol)のDMF-DMSO-HMPA溶液(1:1:1, 90ml)とTEA(0.41ml, 2.92mmol)を混合し48h摂拌した。生成物をC法で精製し、DMF-AcOEtで再沈殿した。
収量 4.84g(49%), mp 245-248 °C,
\([\alpha]_D^{20} -22.2^\circ \) (c=1.0, DMF), Rf, 0.73.
Anal. Calcd for C_{19}H_{26}N_{3}O_{4}Cl_{2}S_{5}·5H_2O:

C, 56.15; H, 6.60; N, 11.76.
Found: C, 55.96; H, 6.52; N, 11.87.

8) Z(OMe)-Ser(Bzl)-Ile-Val-Lys(Z)-Asn-Leu-Gln-Asn-Leu-Asp(OBzl)-
Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-
Tyr(Cl_{2}Bz1)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH_{2},
Z(OMe)-(hCCK 8-33 [Tyr(Cl_{2}Bz1)]^{27})-NH_{2}

上記の 2 2 残基ペプチドアミド(2.53g, 0.62mmol)を常法に従いTFA処理し、得られたパウダーをDMF(10ml)に溶かし、TEA(86μl, 0.62mmol)で中和した。これとフラグメント [5] (2.10g, 2.48mmol)のDMF溶液(20ml)とTEA(0.10ml, 0.74mmol)を混合し一夜摂拌した。生成物ををB法、次いでC法で精製した。
収量 1.95g（67%），mp 265-270 °C，
\([\alpha]_D^2 +26.0^\circ \) (c=1.0, DMF)，Rf 0.63。
Anal. Calcd for C_{23}H_{31}N_{4}O_{5}S_{5}·8H_{2}O:

\[
\begin{align*}
C & \text{, } 56.65; \ H & \text{, } 6.78; \ N & \text{, } 11.49. \\
\text{Found: } C & \text{, } 56.53; \ H & \text{, } 6.78; \ N & \text{, } 11.80.
\end{align*}
\]

9) Z(OMe)-Gly-Arg(Mts)-Met(O)-Ser(Bzl)-Ile-Val-Lys(Z)-Asn-Leu-Gln-Asn-Leu-Asp(OBzl)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr(C_{12}Bzl)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH_{2},

Z(OMe)-(hCCK 5-33 [Tyr(C_{12}Bzl)]^{2+})-NH_{2}

上記の25残基ペプチドアミド（1.51g, 0.33mmol）を常法に従いTFA処理し，得られたペプチドをDMF（5ml）に溶かしTEA（46μ1, 0.33mmol）で中和した。これとフラグメント [6]（0.98g, 1.32mmol）のDMF溶液（5ml）とNMM（0.15ml, 1.32mmol）を混合し一夜摺拌した。生成物をB法で精製し，DMF-MeOHで再沈殿した。
収量 1.45g（86%），mp 260-262 °C，
\([\alpha]_D^2 +8.0^\circ \) (c=1.0, DMF)，Rf 0.77。
Anal. Calcd for C_{25}H_{36}N_{4}O_{6}S_{7}·6H_{2}O:

\[
\begin{align*}
C & \text{, } 56.22; \ H & \text{, } 6.70; \ N & \text{, } 11.97. \\
\text{Found: } C & \text{, } 56.01; \ H & \text{, } 6.35; \ N & \text{, } 12.22.
\end{align*}
\]

10) Z(OMe)-Lys(Z)-Ala-Pro-Ser-Gly-Arg(Mts)-Met(O)-Ser(Bzl)-Ile-Val-Lys(Z)-Asn-Leu-Gln-Asn-Leu-Asp(OBzl)-Pro-Ser(Bzl)-His-Arg(Mts)-Ile-Ser-Asp(OChp)-Arg(Mts)-Asp(OChp)-Tyr(C_{12}Bzl)-Met(O)-Gly-Trp(Mts)-Met(O)-Asp(OChp)-Phe-NH_{2},

Z(OMe)-(hCCK 1-33 [Tyr(C_{12}Bzl)]^{2+})-NH_{2} （保護CCK G 3 3）

上記の29残基ペプチドアミド（1.20g, 0.23mmol）を常法に従いTFA処理し，得られたペプチドをDMF（5ml）に溶かし，TEA（32μ1, 0.23mmol）で中和した。これとフラグメント [7]（0.81g, 1.15mmol）のDMF溶液（5ml）とNMM
(38μl, 1.15mmol) を混合し, 24h 搪拌した。生成物を B 法, 次いで C 法で精製した。
収量 0.76g (58%), mp 215-218°C,
\([\alpha]_D^{20} = -20.0^\circ\) (c=1.0, DMF), Rf 0.77.
Anal. Calcd for C_{277}H_{381}N_{51}O_{67}Cl_{2}S_{7}·6H_{2}O:
C, 56.38; H, 6.71; N, 12.10.
Found: C, 56.10; H, 6.71; N, 11.93.

第 4 項に関する実験

保護 CCK-33 (317mg, 54.7μmol) の DMF 溶液 (3ml) に phenylthiotrimethylsilane (300μl, 30eq) 加え室温で 1h 搪拌した。溶媒を留去した後, AcOEt でパウダー化した。収量 279mg (89%), Rf 0.72.
こうして得られた保護 CCK-33 還元体 (100mg, 17.4μmol) を m-cresol (244μl, 130eq), および EDT (38μl, 23eq) 存在下, 1M TMSOTf-thioanisole/TFA (5ml) で水冷, 2.5h 处理した。ether を加え遠沈して得られたパウダーを水冷下 MeOH-H₂O (1ml-2ml) に溶かし, 2-mercaptoethanol (200μl), および 1M NH₄F (600μl, 36eq) を加えた。さらに TEA で pH 8.0 にし 30min 搪拌した後, AcOH で pH 6.0 にした。これセフェダックス G 25カラム (3.3×105cm) にアプレライし, 1N AcOH で溶出した。各フラクション (8.6ml) の吸光度を測定し Nos. 30-44 をを集め凍結乾燥した。収量 64.2mg (95%)

この粗精製サンプルを 0.01M NH₄HCO₃ バッファー (pH 7.9) で平衡化させた CM - Trisacryl M カラム (2.0×4.2cm) にアプレライした。さらに同バッファー 250ml の入ったミキシングフラスコを通し, 0.2M NH₄HCO₃ バッファー (pH 8.6) を用いグラジエント溶出を行った。各フラクション (8.2ml) の UV280nm の吸収を測定し, 主画分にあたる Nos. 24-31 を凍結乾燥した。収量 20.1mg (31%)

このパウダーを Synchropak RP-P 逆相 HPLC カラム (4.0×25cm) を用い1ml/
minの流速で0.1%TFA中25-35%CH₃CN(30min)の直線グラジェント溶出を用い精製した。目的のピーク(retention time 37min, UV280nmで検出)を集め、凍結乾燥し、白色羽毛状パウダーを得た。収量 10.6mg(53%)。

\[\alpha \] \degree -65.7° (c=0.1, 0.5N AcOH).

こうして得られた精製hCCK-33非硫酸化体は、YMC AM-302カラム(4×150 mm)を用い0.1%TFA中40-45%CH₃CN(30min)を溶出液とする分析HPLCで、retention time 27minの単一ピークを示した(流速1.0ml/min, UV280nm)。

FAB-MS: (M+H)⁺3864.4 (C₁₆₇H₂₆₄N₅₀S₃に対する計算値; 3864.9).
6N HCl 酸分解後のアミノ酸分析値: 表5を参照のこと。

LAP酵素消化後のアミノ酸分析値(括弧内の数字は理論値):
Asp 3.62(4), Ser 4.53(4), Pro 1.66(2), Gly 2.13(2), Ala 1.18(1),
Val 1.10(1), Met 2.70(3), Ile 2.28(2), Leu 2.44(2), Tyr 1.12(1),
Phe 1.00(1), Lys 2.14(2), His 1.08(1), Trp 0.99(1), Arg 3.24(3),
Asn, Gln N.D.(Pheの回収率 77%).

第5項に関する実験
1) 硫酸化試薬の検討

Z(OMe)-Tyr-OMe, Z(OMe)-Ser-OMe(各0.05mmol)を20%pyridine/DMF(1ml)に溶かし25℃でpyridine-SO₃錯体(5eq), 又はPAS(10eq)によりこれらを硫酸化した。TLCスキャナーを用いて経時的に測定した結果を図35に示す。

Z(OMe)-Trp-OH, Z(OMe)-Met-OH, Z(OMe)-His-OMe(各0.05mmol)をpyridine-SO₃錯体, 又はPASで上記のように硫酸化した際, Trp, Met誘導体に関しては変化がなかったが, Z(OMe)-His-OMeはpyridine-SO₃では32%, PASでは18%硫酸化された。H₂Oを反応液に加えると(pH6.0), 硫酸化されたHis誘導体(Rf: 0.21)は60min以内にZ(OMe)-His-OMeと変化した。

2) Ser側鎖の選択的保護

i) Z(OMe)-Ser-OMeのシリル誘導体のpyridine-SO₃処理に対する安定性
Z(OMe)-Ser-OMe（各14mg,0.05mmol）のDMF溶液（1ml）をimidazole（20eq）存在下R-Cl（R=Me₃Si,'BuMe₂Si,'BuPh₂Si各10eq）とそれぞれ反応させた。溶媒を留去しn-hexaneで洗浄した。それぞれの生成物（R=Me₃Si, Rf; 0.97；R='BuMe₂Si, Rf; 0.99；R='BuPh₂Si, Rf; 0.99）をDMF-pyridine（8:2, 1ml）に溶かし、EDT（20μl）存在下pyridine-SO₃絡合体（94mg,10eq）を加え25℃で攪拌した。TLCスキャナーを用い経時的に定量したところ、Me₃Si体は30minで完全に脱シリル化されたのにもかかわらず、「BuMe₂Si体は24h後約15%が脱シリル化されただけであり、'BuPh₂Si体は24h後もまったく変化がなかった。

ii）Tyrのフェノール性水酸基存在下での'BuPh₂Si基のSerのアルコール性水酸基への選択的導入

Z(OMe)-Ser-OMeとZ(OMe)-Tyr-OMe（各0.05mmol）およびimidazole（20eq）をDMF（1ml）に溶かし'BuPh₂SiCl（20eq）を加え4℃, 4h攪拌した。この際種々のphenol誘導体（phenol,m-cresol,p-methylthiophenol 各20eq）を反応液に加え、それらの効果を調べた。TLCスキャナーで測定した結果を図36に示す。

25℃で4h反応させた場合、Z(OMe)-Tyr-OMeはphenol非存在下では75%が'BuPh₂Si化されたのに対し、phenol存在下では44%に留まった。

iii）Z(OMe)-Ser('BuPh₂Si)-OMeからの'BuPh₂Si基の除去

Z(OMe)-Ser('BuPh₂Si)-OMe（36mg,68μmol）のDMF溶液（1ml）に1M Bu₄NF/DMF（1ml,15eq）, EDT（20μl）を加え25℃, 60min処理した。その間に出発物質（Rf; 0.99）は完全に消失し、Z(OMe)-Ser-OMeに対応するスポット（Rf; 0.91）が現れた。

3）α－およびε－アミノ基の選択的保護

H-Lys-OH（14.6mg,0.1mmol）をH₂O-DMF（1:9,2ml）に溶かし,Fmoc-OSu（141mg,4eq）, TEA（59μl,4eq）を加え氷冷下1h攪拌した。反応の進行に従い出発原料、およびモノFmoc体（Rf; 0.42）は消失し、ニンヒドリン陰性のス
スポット(Rf: 0.66)が生成した。生成物をA法で精製の後、DMF(1ml)に溶かしEDT(39μl, 10eq)存在下、1M Bu₄NF(1ml, 10eq)で25℃, 60min処理した。Rf: 0.66のスポットは消失し、すべてH-Lys-OHに対応するスポット(Rf: 原点)へと変換された。

Z(OMe)-Tyr-OMe(0.1mmol)のDMF溶液(2ml)を氷冷下phenol(30eq)存在下にFmoc-OSu(4eq), TEA(4eq)と1h処理した。phenol非存在下ではZ(OMe)-Tyr(Fmoc)-OMeが7.8%生成したが、phenol存在下では全く生成しなかった(クロマトスキャナーで定量)。これによりphenolがTyrの側鎖のFmoc化の抑制に有効なことが示された。

Z(OMe)-His-OMe(0.1mmol)を同様にFmoc-OSuとTEAで処理したとき、Z(OMe)-His(Fmoc)-OMeの生成は無視できた。Fmoc-Lys(Fmoc)-OH(0.1mmol)をDMF-pyridine(8:2, 2ml)に溶かしpyridine-SO₃鉱体(10eq)と25℃, 18h処理したが、TLC上何ら変化は認められなかった。

第6項に関する実験

氷冷下hCCK-33非硫酸化体(30mg, 7.8μmol)をDMF-H₂O(900μl-100μl)に溶かす。これにphenol(22mg, 30eq), TEA(33μl, 30eq), Fmoc-OSu(79mg, 30eq)を順に加え2h摂拌した。etherを加え析出すパウダーをDMF-etherで再沈殿した。

こうして得られたFmoc-誘導体(Rf: 0.66)をDMF(2ml)に溶かした。これにimidazole(63mg, 120eq), phenol(88mg, 120eq), 'BuPh₂SiCl(216μl, 120eq)を順に加え4℃で14h摂拌した。etherを加え析出すパウダーをDMF-etherで再沈殿した。この生成物(Rf: 0.77)をSephadex LH-20カラム(4×47cm)で精製(溶出液: DMF)し、目的のフラクション(各9.2ml, Nos. 21-29, UV280nmで検出)を集め減圧濃縮した。

残渣を20%pyridine/DMF(1ml)に溶かし、EDT(22μl), pyridine-SO₃鉱体(124mg, 100eq)を加え25℃, 24h摂拌した。これをSephadex LH-20カラム(4×47cm)にアプリライし、DMFで上記のように溶出させた。目的のフラクション(Nos. 20-24)を濃縮し(約1ml), これにEDT(22μl, 30eq), 1M Bu₄NF/DMF(1ml)を加え、氷冷下60min, 次いで室温で60min摂拌した。その後、再び
冷水し、1M NH₄HCO₃(4ml)を加えた。遠沈して少量の不溶物を除き、上清をSephadex G-10カラム(2.4×49cm)にアプライした。これを0.1M NH₄HCO₃(pH8.2)で溶出させ、最初のメインピーク(各7.8ml、Nos. 11-17)を集め凍結乾燥した。収量 19.2mg(63%)。

この粗精製品をCM-Trisacryl M(1.6×4.5cm)を担体とし、0.01M NH₄HCO₃(pH 7.8, 300ml)と0.2M NH₄HCO₃(pH 8.4, 500ml)からなる連続濃度勾配を用いたイオン交換クロマトグラフィーにより精製した(図 38-a)。2番目のピークに対応するフラクション(各7.8ml、Nos. 21-29)を集め凍結乾燥した。収量 7.5mg(39%，overall yield 25%)。

こうして得られたサンプルをHPLCでさらに精製した。カラムとしてはAsahipak ODP-50(10×250mm)を用い、2ml/minで31%CH₃CN/0.1M AcONH₄(pH 6.5)を溶出液とするisocratic溶出を行った。UV280nmで検出し目的のピーク(図 38-b, retention time 42min)を集め凍結乾燥し、白色羽毛上パウダーを得た。収量 4.1mg(61%，hCCK-33非硫酸化体からのoverall yield 15%)。なお、シリル化を25℃, 3hで行ったときのoverall yield は13%であった。

$[\alpha]_{D}^{19} -72.7^\circ$ (c=0.1, H₂O), Rf, 0.42.

HPLC: Asahipak ODP-50 (4×150mm)カラムを用い流速 1ml/minで CH₃CN/0.1M AcONH₄(pH6.5)(20-40%, 30min)の直線グラジエント溶出させた際のretention time 14min (図 38-c)。

6N HClによる酸分解後のアミノ酸分析値：表 5 参照のこと。

LAP酵素消化後のアミノ酸分析値（括弧内の数値は理論値）：
Asp 3.49(4), Ser 4.22(4), Pro 1.50(2), Gly 2.12(2), Ala 1.13(1),
Val 1.14(1), Met 2.92(3), Ile 1.96(2), Leu 2.07(2), Phe 1.00(1),
Lys 2.00(2), His 0.92(1), Trp 0.96(1), Arg 2.87(3),
Tyr(SO₃H) 0.91(1), Asn, Gln N.D. (Pheの回収率, 81%)。

64) U. Gubler, A. O. Chua, B. J. Hoffman, K. J. Collier, and J.

73) G. J. Dockray, P. R. Dodd, J. A. Edwardson, and J. A. Hardy, J. Physiol. 303, 28 (1980).

91) M. Fujino, S. Kobayashi, M. Obayashi, T. Fukuda, S.

97

