Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No. 50 B, 2007

泉州沖更新統層における中間砂礫層の透水能と 海上空港建設による長期沈下について

三村 衛·池田侑哉*

*京都大学大学院工学研究科

要旨

大阪泉州沖の大水深海域において埋立によって建設されている関西国際空港基礎 地盤は,第四紀更新統の堆積層において大きな沈下を引き起こしている。本稿では, その主たる要因が,更新統粘土の擬似過圧密性と時間依存性,更新統砂礫層のマクロ 透水能をであると考えた。既に著者らによって提案されている構造を有する粘土の新 たな圧縮モデルを適用し,砂礫層の不連続性や細粒分による透水性低下を等価な透水 係数を与えることによってマクロな透水特性をモデル化し,これらを弾粘塑性有限要 素法に組み込むことによって,現地で起こっている現象を評価することを試みた。解 析結果は,基礎地盤内の過剰間隙水圧分布,各更新統粘土層の沈下挙動の実測値を表 現し得ており,提案している解析手法が妥当なものであることがわかった。

キーワード:更新統粘土,更新統砂礫層,埋立,長期沈下,弾粘塑性有限要素解析

1. はじめに

大阪湾海底地盤は沈降し続ける基盤上に土砂が堆 積することによって形成されたもの(小林他, 2001) で,気候変動によって起こる海進・海退に符合して 粘性土と砂礫土が互層をなす構造を有している。ま た氷河などによる明確な過圧密履歴を受けておらず, 土質力学的には正規圧密状態に近い。ところが,更 新統粘土に対して圧密試験を行うと、圧密降伏応力 p_{c} は現在の有効土被り圧 p_{0} よりもやや大きく、およ そ1.1~1.4程度の軽い過圧密比を示すことが知られ ている。この見かけの過圧密の要因については、続 成作用による構造骨格の形成が考えられるが、確た る証左は得られていない。赤井・佐野(1981)は、 こうしたメカニカルな過圧密履歴を受けていない過 圧密粘土を"擬似過圧密粘土"と呼称し、先行圧縮 を受けた過圧密粘土と明確に区別して考えるべきで あると指摘している。

大阪湾更新統粘土は海底に堆積してそのまま圧縮 を受けたと考えた時に達する間隙比よりも大きな間 隙比を示し,いわゆるかさばった構造を有している

という特徴を有している(土田, 2001)。そのため, 見かけの pc 以下の応力域にとどまっている間は構 造が大きく壊されることがないが、pcを超える載荷 を受けると構造の劣化と破壊が起こり、元々圧縮し ろが大きいことも相まって、急激かつ大きな変形を 引き起こすことになる.この特徴を端的に表すと, 圧密曲線 e~logp 関係の非線形性ということになろ う。練り返し粘土の力学においては, e~logp 関係は p_{c} をはさんで過圧密側では勾配 C_{s} の,正規圧密側で は勾配 $C_{\rm C}$ の直線で表現できるものとされている。 事実,カオリンや藤森粘土に対して行われる圧密試 験ではそのようになっている. ところが, 自然堆積 粘土,特に堆積年代の古い更新統粘土においては, 載荷によって構造骨格がダメージを受ける正規圧密 領域での e~logp 関係は直線とは言い難く,下に凸 の非線形性を示す。つまり、pcを超えると急激に間 隙比が減少し、その後応力レベルが高くなるにした がってその勾配は緩やかに変化するような形を示す。 こうした e~logp 関係の非線形性が更新統粘土層の 圧縮挙動にどのように寄与するのかを検討すること が, 関西国際空港基礎地盤の沈下挙動を理解する上

で不可欠である。

次に、大阪湾更新統粘土の見かけのpc以下の領域 での圧縮特性についても言及しておかなければなら ない。Mimura et al. (2003) は, 大阪港埋立地の咲洲, 舞洲、夢洲において実施された長期沈下計測結果か ら, 更新統粘土層において無視できない長期沈下が 生じていることを報告している。大阪市港湾局によ って継続的に実施された層別沈下計測結果によれば, 浅部の Ma12, 11 層では埋立によって pcを超える応 力状態になるために,顕著な時間遅れ沈下が長期間 にわたって発生している一方, pcを超えないいわゆ る過圧密領域に留まっている Ma10,9 といった比較 的深部の粘土層においても時間遅れ沈下が継続して いる。この現象は pc以下の領域を弾性変形とする従 来の考え方では表現できないものである。Mimura and Jang (2004)は, 大阪湾更新統粘土がメカニカルな 過圧密履歴を受けていないという意味で土質力学的 には正規圧密粘土であるということから, 圧密試験 によって得られる圧密降伏応力 pc は見かけのもの であり、現応力 p_0 から載荷を受けると直ちに粘塑性 ひずみが発生すると仮定した圧縮モデルを提案し, これを組み込んだ弾粘塑性有限要素解析によって, 咲洲, 舞洲, 夢洲の時間遅れ沈下挙動を的確に表現 できることを明らかにした(Mimura and Jang, 2004, 2005a)。関西国際空港のある泉州沖と大阪港のある 湾奥部では粘土の特性に若干の違いはあるが、基本 的な堆積環境は共通であり,関西国際空港基礎地盤 の更新統粘土層でも同じ挙動が起こることが予想さ れる. したがって本稿では、解析にあたり、Mimura and Jang (2004)による解析スキームを適用する。

関西国際空港基礎地盤の変形を考えるにあたり, 透水を受け持つ砂礫層についても十分な検証が求め られる. 従来の土質力学では, 砂礫層は透水層であ り、有限の透水係数を有しているにせよ、載荷によ る過剰間隙水圧の発生は考慮されていない。つまり 砂礫層は完全排水境界と考えられている。関西国際 空港基礎地盤の更新統層内の砂礫層の特徴は, Ma13 直下の Ds1 層と Ma7 層直下の Ds10 層は厚く,砂礫 分も多く良好な排水層として機能すると考えられる ものの、その中間に存在する各層については、層の 連続性の欠如,層厚の貧弱さ,細粒分含有率の高さ という特徴を有しており,大きな埋立荷重を受けて 粘土層から大量に排出される間隙水を遅滞なく消散 させられるかどうかについて問題視されてきた。 Jang and Mimura (2005) は,大阪港埋立地の地盤を用 いて砂礫層の透水性と砂礫層内の過剰間隙水圧消散 特性の関係を数値実験によって検討している。大阪 港近傍の地盤は淀川からほど近いこともあり、陸上 からの豊富な土砂供給によって砂礫層が厚く,水平 方向への連続性に優れた良好な排水層として存在し

ている。こうした環境下では,通常の透水係数 10⁻³cm/s であれば,埋立による砂礫層内での過剰間 隙水圧の発生はほとんどなく,ほぼ完全排水状態と 考えて問題がないが,透水性を低下させると埋立地 外へ過剰間隙水圧が伝播し,砂礫層は完全排水境界 とはならない。関西国際空港基礎地盤では大阪港に 比べて砂礫層の品質が極端に悪くなっているため, 砂礫層内を伝播する水圧の影響は無視できないと考 えなければならない。Mimura and Sumikura (2000)は 二次元弾粘塑性有限要素解析において,埋立地外側 の水理境界までの距離を変えて砂礫層内の過剰間隙 水圧の伝播傾向を検証し,泉州沖の地盤条件では埋 立幅の10倍程度の領域を海側に設定しないと,水理 境界条件の影響を受けることを明らかにしている。

関西国際空港基礎地盤の変形を考えるにあたり, 更新統粘土が持つかさばった構造とそれに起因する 時間依存性挙動,擬似過圧密性による見かけのpc以 下の応力域における非弾性的変形,中間砂礫層のマ クロな透水性が後続沈下に及ぼす影響の3つの要素 について考慮することが必要である。本稿では,こ うした観点に基づき,大水深海域における大規模埋 立に伴う関西国際空港基礎地盤の応力~変形挙動に ついて,数値解析によってどのようにアプローチす べきであるかについて議論する。

2. アプローチ手法としての弾粘塑性有限要素解析

本稿で更新統粘土の挙動を表現するために用いら れている弾粘塑性構成モデルは Sekiguchi (1977) に よって提案され、平面ひずみ解析に適用するにあた り,K₀値の予測性の改善とともに修正されたもの(関 口他,1982)である。構成モデルの弾粘塑性流動則は 以下のように表される。

$$\dot{\varepsilon}_{ij}^{p} = \Lambda \frac{\partial F}{\partial \sigma_{ii}} \tag{1}$$

ここで, Λは比例定数, F は粘塑性ポテンシャルであ り, 次式のように定義される。

$$F = \alpha \cdot \ln \left[1 + \frac{\dot{v}_0 \cdot t}{\alpha} \exp\left(\frac{f}{\alpha}\right) \right] = v^p$$
(2)

ここで、 α は二次圧縮指数、 $\dot{\nu}_0$ は基準体積ひずみ速度、fは有効応力表示の応力関数、 ν^p は粘塑性体積ひずみである。モデルの詳細構造は Mimura and Sekiguchi (1986)を参照されたい。こうして得られた応力~ひずみ関係は次式のような増分形で有限要素法に組み込まれている。

$$\left\{\Delta\sigma'\right\} = \left[C^{vp}\right]\left\{\Delta\varepsilon\right\} - \left\{\Delta\sigma^{R}\right\}$$
(3)

ここに、 $\{\Delta\sigma'\}$, $\{\Delta\epsilon\}$ は有効応力増分と対応するひ ずみ増分であり、 $[C^{vp}]$ は弾粘塑性係数行列、 $\{\Delta\sigma^R\}$ はひずみ一定条件下で時間の経過とともに増加する 緩和応力である。間隙水の流れは等方 Darcy 則に従 うとし、透水係数 k は間隙比の変化に対応して次式 のように変化する。

$$k = k_0 \exp\left[\frac{e - e_0}{\lambda_k}\right] \tag{4}$$

ここで、 k_0 は初期状態における間隙比 e_0 に対応する 透水係数 k の値を表し、 λ_k は間隙比の変化に伴う透 水係数の変化指数を示している。

3. モデル化に際して考慮すべきポイント

3.1 基準曲線としての e-logp の考え方

大阪湾更新統粘土は,現在受けている土被り圧に 対応する間隙比よりも大きな間隙比を有する,「かさ ばった構造」を持っている。これにより,載荷を受 けた時の圧縮しろが大きく,特に続成作用によると 思われる構造が破壊されるような載荷を受けると大 きな沈下を引き起こす可能性が指摘されてきた。本 節では,基準曲線としての *e*-logp 関係の形が地盤挙 動に及ぼす影響について検討する。

圧密試験を行うと圧密曲線 e-logp はpcを超えた領 域で下に凸の非線形形状を示す.したがって,pcを 超える応力域に載荷応力が来るような場合には,こ れを忠実のモデル化しなければ沈下を的確に評価で きないということはわかりやすい。一方,この非線 形性を有する e-logp が過剰間隙水圧の発生消散過程 にどのように寄与するのかについてはきちんと検証 されてこなかった. Mimura et al. (1994) は圧密曲線 e-logp の非線形性が地盤の応力~変形特性に及ぼす 影響を検証するために,pcを超える領域における下

Fig. 1 Consolidation curve for structured clays

に凸の非線形的な e-logp 関係を 2本の直線でモデル 化する "トリリニア型 e-logp 関係" を仮定し, 粘土・ 砂礫層の互層モデル地盤に埋立荷重が作用した場合 の地盤挙動について数値実験を行った。Fig. 1 に仮 定した圧縮モデルを模式的に示す。圧密試験結果に 基づいて描かれる e-logp 関係は pcを境界として過圧 密領域では Cs,正規圧密領域では Ccの勾配を与え て決定される。ところが、いわゆる構造を有する粘 土では, 塑性降伏による構造の劣化によって pcを超 えた直後に急激な間隙の圧縮が起こり,応力が大き くなるに従ってその勾配が徐々に小さくなるという 挙動を示す。結果的に e-logp 関係は下に凸の非線形 関係を示すことになる。ここではこれを2本の直線 で近似し、 p_c 直後の最急勾配を C_{cmax} 、応力レベルの 高い領域の勾配を Cel とする. また粘土の透水係数 は間隙比との一義的な関係により e-logk にしたが って線形的に変化するものと仮定する。試行解析に よって、更新統粘土の p_c 直後の圧縮性を C_{cmax} とす ることにより、粘土層内のみならず、上下を挟み込 む砂礫層においても過剰間隙水圧の長期間の停留が 起こり、一次圧密に要する時間が長期化する現象が 表現できることが明らかにされている。また高い圧 縮性を C_{cmax} を仮定しているため, 沈下については 従来モデルを用いた場合よりも早期に大きな沈下が 発生するという結果となっている。このように、か さばった構造と載荷に伴う構造劣化をモデル化する ことが、現地で起こっている「地盤内に大きな過剰 間隙水圧が停留しつつ早くて大きな沈下が進行す る」という現象が説明できることがわかっている。 本稿における解析でもこの考え方を踏襲している。

3.2 砂礫層のマクロ透水能

粘土層の圧密挙動は、過剰間隙水圧の消散に伴う 一次圧密と、消散後も継続する二次圧密から成る。 本稿で使用している弾粘塑性構成モデルは、非弾性 的なひずみとして粘塑性ひずみを仮定しており、一 次圧密変形にも時間依存性ひずみが含まれることに なる。一次圧密は載荷による応力によって発生する 過剰間隙水圧の消散に伴って進行するため、排水層 の透水機能が重要なファクターとなる。大阪湾内に おいて、湾奥に位置する大阪港付近の地盤は淀川河 口から近く、大河川の運搬する豊富な土砂によって 砂礫層が厚く堆積している (Mimura and Jang, 2004)。 礫分の含有率が高く,水平方向への連続性も優れて いる(大阪湾地盤情報の研究協議会, 2002)ため, 高い透水性を有しており,砂礫層内における埋立荷 重による過剰間隙水圧はほぼ瞬時に消散し、周囲へ の伝播は起こらない。このような条件で広大な埋立 が行われると、島内の変形は近似的に一次元圧密で

評価することができる。注意すべきことは、変形の 一次元性だけでなく,水圧の水平方向への広がりが ないという"水の流れの一次元性"も担保されなけ れば,一次元圧密計算は成り立たないということで ある。上記の両方が満足される地盤条件を満足する 大阪港埋立地の場合,一次元有限要素解析での沈下 計算が可能であった (Mimura and Jang, 2004)。これ に対して関西国際空港の場合は,更新統砂礫層が, ①層厚が薄く、②連続性に欠け、③細粒分が多く含 有されているという特徴を有している。このような 条件で大規模な埋立が行われると、本来期待されて いる砂礫層内の水圧消散が十分に起こらず、粘土層 だけでなく砂礫層内にも過剰間隙水圧が停留すると いう現象が起こる (例えば Akai and Tanaka, 1999)。 前節で説明したように, intrinsic な圧密曲線 (e-logp 曲線)の非線形性は地盤内の過剰間隙水圧の停留に 寄与するが、これに加えて排水層として期待してい る更新統砂礫層の貧透水性はこの現象を増大させる ことが懸念される。Mimura and Sumikura (2000), Mimura and Jang (2005b)によって指摘されているよ

うに、劣位の透水性を有するような互層地盤におい ては、透水を担う砂礫層が十分に機能せず、相対的 に透水性が高い砂礫層内を過剰間隙水圧が埋立地外 へと伝播し、海底地盤の応力状態を内部から変化さ せてしまう可能性がある。したがって、埋立による 基礎地盤の応力~変形特性を評価するにあたっては、 多次元的な水圧伝播特性を勘案したモデル化が求め られる。Mimura and Jang (2005b) によれば、埋立領 域のほぼ 10 倍程度の距離をとって水理境界とすれ ば境界の影響を受けない解析結果が得られることが 報告されている。

3.3 pc以下の領域におけるひずみ速度依存性の考慮

既に述べたように、大阪湾に堆積する更新統粘土 は,沈降する基盤上に土砂が連続的にたまる形で形 成されており,一部削り込みなどを除けば,氷河な どによる明確な過圧密履歴を受けていない。つまり 土質力学的には正規圧密状態にあると考えられる。 ところが長期圧密試験を実施すると、pc以下の応力 域であっても顕著な時間依存性変形を起こし、弾性 的な変形とはいえない挙動を示すことが報告されて いる (武田他, 2000, Mimura et al., 2003)。 大阪湾海 底から採取した更新統粘土に対する長期圧密試験結 果の一例を Fig. 2 に示す。基準となる CRS 圧密試験 による圧密曲線に対して,一定荷重で長期間放置す る圧密試験を pcの両側の応力域で実施すると,時間 の経過とともに圧縮が進行し、等ひずみ速度線を描 くとひずみ速度によってその挙動が全く異なってい ることがわかる。同様の結果は Tanaka (2005) によ

Fig. 2 Strain time relations for Osaka Pleistocene clay (Ma12) by long-term consolidation test (Mimura et al., 2003)

Fig. 3 Compression modeling for quasi- over consolidated clay (Mimura and Jang, 2004)

Fig. 4 Calculated strain time relations for Osaka Pleistocene clay (Ma12) by elasto-viscoplastic FEM compared with experimental results (Mimura and Jang, 2004)

って行われた関西国際空港基礎地盤から採取した更 新統粘土においても認められており,大阪湾一帯に 堆積している更新統粘土の共通した特性であろうと 考えられる。こうした事実を受けて, Mimura and Jang (2004)は擬似過圧密粘土と呼ばれる大阪湾更新統粘 土を,正規圧密 aged 粘土と位置づけ,圧密試験で現 れる pc はひずみ速度依存性を有する見かけのもの であり,圧密曲線のpc以下の応力域であっても粘塑 性ひずみが発生すると仮定した圧縮モデルを提案し ている。

Fig. 3 に圧縮モデルの概要を示す。同圧縮モデルでは、圧密試験によって得られる圧密曲線を基準として、これによって得られている p_c を時間効果によるみかけのものと考え、現応力 p_0 から載荷を受けると、

Fig. 5 Section for calculation and monitoring point

Fig. 7 Construction sequence

たとえ pc 以下の領域であっても非弾性的挙動を起 こすと仮定している。また使用する構成モデルが弾 粘塑性モデルであり,ひずみ速度依存性については 自動的に考慮されている。このモデルによってFig.2 に示した実験を解析した結果を Fig.4 に示す。解析 結果は実挙動を的確に表現しており,関西国際空港 基礎地盤の変形挙動を評価するにあたり,pc以下の 非弾性挙動とひずみ速度依存性挙動を考慮しなけれ ばならないことがわかる。

4. 関西国際空港基礎地盤の解析

4.1 解析モデル化の概要

本節では、前節までに説明した枠組みによる関西 交際空港基礎地盤の変形解析について議論する。問 題の性質上、長期の変形が焦点となるため、一期空 港島の層別沈下と過剰間隙水圧が継続的に測定され ている1号櫓をターゲットとした断面(Fig. 5 にお ける A-A'断面)を考える。解析に用いた地盤モデル を Fig. 6 に示す。ここで, Ma は海成粘土層, Doc は 非海成粘土層, Ds は砂礫層を表す。Ma13 はいわゆ る沖積粘土層であり、Ma12 層以深は更新統層であ る。沖積粘土層はサンドドレーンが径 0.4m, 2.0~ 2.5m ピッチで砂礫層(Ds1) まで打設されている。 解析に際し、サンドドレーンによる放射状の集配水 機能はマクロエレメント法(関口他, 1986)によっ てモデル化し, 断面二次元の有限要素解析であって も三次元的な水の流れを考慮している。Ma12 以深 の更新統粘土層については,既往の圧密試験結果に 基づき,過圧密比 OCR=1.3 の軽い過圧密を仮定し, 砂礫層(Ds 各層)は有限の透水性を有する線形弾性 体としている。具体的な透水性については後段で議 論する。

Fig. 6 におけるセンターラインの水平方向は、メ ッシュの対称性を考慮して完全非排水とし、埋立に よる排水はすべて海側に向かって生じると考える。 一方,海側境界については,粘土層では完全非排水, 砂礫層では完全排水と仮定している。解析に適用し た載荷工程を Fig. 7 に示す。沖積粘土層の塑性変形 は載荷履歴の影響を色濃く受けるため、正確な変形 モードを再現するためには土砂投入の履歴を正確に モデル化する必要がある。本解析では当該地点の埋 立履歴にそって載荷工程のモデル化を行っているが、 目的が更新統粘土層の時間遅れ沈下の評価であるこ とから、場所ごとに大きく平均化した埋立荷重を設 定した。そのため、埋立の時刻歴という点では正確 性をやや欠くものとなっていることを断っておく。 解析に用いた土質定数は、得られた土質試験結果を 用い,著者らが準拠している手法(Mimura et al.,1990)に沿って合理的に決定した.値の詳細については Mimura and Jang (2005b)を参照されたい。

4.2 解析結果と考察(1) 水理境界設定の影響

土水連成解析において,境界条件の設定が解析結 果に大きく影響を及ぼすことはよく知られた事実で ある。対象となる変形層が表層近傍の沖積粘土層に 限定されるような小規模な陸上の盛土の場合は,側 方流動を抑え込むような近い距離に境界を設定する と過小評価の要因となる(三村・幸繁,2005)。これ は変位に関する境界条件の寄与を表す例である。大

seaside boundary of sand gravel layer: fully drained

(b) Seaside boundary: 5,000m, hydraulic condition at the seaside boundary of sand gravel layer: fully drained

Fig. 8 Effect of distance to hydraulic boundary on the performance of excess pore water pressure due to reclamation 規模海上埋立の場合もこの点は同じであるが,載荷 重,載荷面積両面という意味での載荷規模の増大に より,影響を受ける地盤領域が鉛直・水平両方向に 広がるため,深部更新統粘土層,排水を受け持つ中 間砂礫層への影響を考慮しなければならない。大阪 港埋立地における更新統粘土層の長期沈下評価に際 し,Jang and Mimura (2005)は砂礫層の透水性が 10⁻³ cm/sec 以上であれば,砂礫層を完全排水層(透水係 数 k = ∞)としても解析結果に影響を及ぼさない一 方,この値が低下し,粘土層の透水係数に近づくと, 載荷による全応力増大によって粘土層内で発生した 過剰間隙水圧が砂礫層に伝播した後,砂礫層内を埋 立地領域外に水平方向に広がっていくことを報告し ている。つまり,排水に関しては水平方向への動き を無視しては誤った解を与える可能性があることに 留意しなければならない。この試行解析は, 淀川河 口に近く,豊富な土砂供給環境にあって砂礫層が厚 く堆積している大阪港基礎地盤を対象として行われ たものであるが,泉州沖の海底地盤は近傍に大河川 がなく,更新統砂礫層が貧弱であるということを考 えると,その影響はさらに深刻なものとなる。解析 にあたって,砂礫層内における過剰間隙水圧の水平 方向への伝播特性を把握し,水理境界条件による解

Fig. 9 Change in the distribution of excess pore water pressure with time in the Pleistocene foundation

析結果への影響を排除するメッシュを作成するため の基礎資料として,海側の境界までの距離を変化さ せた時の地盤内応力の挙動についての検討を行った. ここで, Ito et al. (2001) による泉州沖砂礫層の分布 状況に関する知見と,竹村 (2002) による砂礫層の 透水性能評価にもとづいて,一連の解析では,透水 性に優れていると評価された Ds1, Ds10 層の透水係 数を 10⁻¹ cm/sec のオーダーに,特に層厚,連続性,

Fig. 10 Profiles of excess pore water pressure with depth at the center of the reclaimed foundation

Fig. 11 Comparison of the calculated and measured excess pore water pressure with depth at the center of the reclaimed foundation

細粒分含有率に問題があって透水性をあまり期待で きないと評価された Ds-6, 7, 8 については 10⁻⁵ cm/sec のオーダーに設定し、それ以外の普通レベルと評価 された砂礫層については 10⁻³ cm/sec の値を適用した。 ここで強調しておかないといけないのは、これらの 値は薄い層厚,連続性の欠如,細粒分含有率の高さ といった要因を包含したマクロな透水性という観点 で設定された値であり、等価透水性という趣旨のも のである.砂礫層の詳細な三次元的な広がりが確実 に把握できれば, それを幾何条件として与えること ができるが、実際には限られた地点の情報に基づい て推定せざるを得ないため、更新統砂礫層の層厚を 一定とし、水平方向には連続的に広がっていると仮 定した上で, 各層に透水性の良否に沿った等価透水 係数を与えることによって、各更新統砂礫層のマク ロな透水性をモデル化した。Fig. 8(a), (b)に海側境界 までの距離を 1,000m とした場合と載荷領域の約 10 倍の 5,000m とした場合の埋立後 50 年時点の過剰間 隙水圧分布を比較して示す。埋立載荷領域は同一, 埋立地側側方境界はメッシュの対称性を考慮してす べて完全非排水,海側水平境界は,粘土層は非排水, 砂礫層は排水境界と仮定している。境界距離が短い Fig. 8 (a)では 1,000m 地点で水圧値ゼロという強制 値が支配するため,埋立地から外れると急速に水圧 値が低下し,境界での値ゼロに収束しているが,同 じ条件で境界までの距離を 5,000m とすると(Fig. 8 (b)), 全く異なった水圧分布になることがわかる。 埋立地直下では 50 年後であってもかなり大きな過 剰間隙水圧が残留し、かつ 3,000m 外側であっても

Fig. 12 Calculated settlement time relations for each Pleistocene clay layer

20~40kPa の過剰間隙水圧が伝播,残留している。 ちなみに 1,000m 地点では 80kPa に達する量が残留 しており,完全にゼロとなっている Fig. 8 (a)とは全 く異なる結果をあたえることがわかる。一方, Fig. 8 (c)は Fig. 8 (b)と全く同じ幾何条件で,砂礫層海側水 平境界を完全非排水としたときの結果である.定量 的には若干の相違はあるものの,埋立領域外での過 剰間隙水圧分布は両者で有意な差異はなく,水理境 界条件の影響を受けていないことが確認できる。以 上の結果より,載荷幅のおよそ 10 倍程度の排水距離 を設定することによって水理境界条件の影響を排除 できることが確認できる。したがって以後の解析で は海側境界までの距離を 5,000m としている。

(2) 埋立に伴う地盤内応力~過剰間隙水圧挙動~

関西国際空港一期島建設による基礎地盤内の過剰 間隙水圧コンターの解析結果を Fig. 9 に示す。図に は(a): 埋立完了時点, (b): 埋立 10 年後, (c): 同 30 年後, (d): 同 50 年後における結果を示している。沖 積粘土層(Mal3)では、全面にサンドドレーンが打 設されており,この排水効果によって過剰間隙水圧 は埋立期間中にほぼ消散してしまっていることがわ かる。これに対して深部にあり, 地盤改良が不可能 な更新統粘土層では大きな過剰間隙水圧が発生し, 長期間停留していることがわかる。当然のことでは あるが, 埋立部直下では非常に大きな過剰間隙水圧 が発生する. Mal2, 11 など比較的浅部の更新統粘土 層では周辺の砂礫層が高透水性であるため、時間の 経過とともに水圧が消散していくのに対し,透水性 に問題有りとされる Ds6,7を挟むような Ma10,9 層 では時間が経過しても顕著な消散が起こっていない。 さらに,注目すべきことは,絶対値はさほど大きく ないものの埋立地外への過剰間隙水圧伝播が時間の 経過とともに広がっていく傾向があることである。 埋立から 50 年後でさえも、埋立人工島地直下で 150kPa, 島外 1,000m 地点で 50kPa の水圧残留が認 められる。この埋立領域外への過剰間隙水圧の伝播 は、二期空港島が 200m 隣接して埋め立てられる際 には,現行の一期島直下部に環流するという,「水枕 効果」の存在を示唆するものであり、有効応力的に みて除荷を受ける部分(一期島建設時の二期島予定 地)と,除荷・再載荷を受ける部分(一期島直下) とがあり、それぞれの地盤がどのように変形するの かについてはさらに検討しなければならない。一連 の解析結果より,埋立から50年間は水圧消散過程が 持続するということであり,いわゆる一次圧密にこ のオーダーの時間を要し、必然的に水圧消散に伴う 圧密変形も長期化すると考えるのが妥当であろう。

解析断面の中央部(一期空港島1号櫓地点相当) における過剰間隙水圧の深度方向分布を Fig. 10 に

Fig. 13 Comparison of calculated and measured settlement with time for each Pleistocene clay layer at monitoring Pont 1

示す。表示時点は, Fig. 9 に準拠して, 埋立完了時 点, 埋立10年後, 30年後, 50年後における結果を 示した。Fig. 9 の地盤内の過剰間隙水圧分布コンタ ーでも明らかなように, 浅部更新統粘土層 Ma12,11 では埋立によって最大 300kPa 近い過剰間隙水圧が 発生するものの, その後の時間経過とともに順調に 消散して圧密が進行する様子が明確に現れている。

この理由としては、Ds1 層の高透水性の寄与が大き いこと, また Mall 層は砂層によって二層に分割さ れ、粘土自身もシルト質で透水係数もやや大きくな っている (Mimura and Jang, 2005b) ことなどがあげ られる。これに対して,その下位の更新統層の水圧 消散モードは明らかに異なったものとなっている。 この領域に堆積する砂礫層, Ds6,7は泉州沖の地盤 でもかなり透水能力に難があると評価された層であ り,解析に際しても 10⁻⁵cm/sec オーダーの低い等価 透水係数を与えている。結果として, Ma10, 9 そし て非海成の Doc5 といった粘土層はあたかも1 枚の 粘土層(中間に狭在する Ds6,7 が存在しないかのよ うな)であるかのような過剰間隙水圧の発生モード を示している。これらの層では埋立から短期間では いくぶんかの消散が進ものの,30年後~50年後の時 間帯ではほとんど有意な変化を示さない。このメカ ニズムは以下のようである。すなわち、埋立直後か ら短期間は、元々静水圧状態であって粘土層に比べ ると透水性の高い砂礫層に, 埋立によって粘土層内 に発生する過剰間隙水圧が伝播してくる。そのため, 粘土層内の水圧は砂礫層内に再配分されるために若 干軽減される。ところが、砂礫層の低い透水性のた めに排水が追いつかず,ある平衡状態に達するとそ の後は劇的な変化が期待できなくなるため、互層全 体 (Ma10~Doc5 まで) が粘土一層であるかのよう な挙動を示すことになる。その結果, 埋立から 50 年が経過した時点でも最大で 200kPa 近い過剰間隙 水圧が Ma10 層下部や Ma9 層上部で残留することに なっている。

解析結果の妥当性を評価するために, Fig. 10 で示 した解析断面の中央部(一期空港島1号櫓地点相当) における過剰間隙水圧の深度方向分布を実測値と比 較して Fig. 11 に示す。限られた数のデータによる比 較となっているが,埋立からの経過時間,2500 日, 5300 日における解析結果は概ね実測値を再現でき ており,設定した地盤モデル,特に更新統砂礫層の 等価透水係数の値が妥当なオーダーであったことが わかる。

(3) 埋立に伴う沈下挙動

関西国際空港埋立による更新統粘土各層の沈下~ 時間関係の解析結果を Fig. 12 に示す。図の煩雑さを 避けるために, Dtc から Ma10 までを Fig. 12(a)に, Ma9 から Ma7 までを Fig. 12(b)に分けて示す。前項 (2)の Fig. 9, 10 に示すように, 浅部更新統粘土層 (Dtc, Ma12, 11) の過剰間隙水圧は時間と共に順調に消散 するため,いわゆる一次圧密が教科書的に進行し, Fig. 12(a)からもわかるように下に凸の沈下~時間曲 線を示す。これに対してその下位に堆積する Ma10, 9 においては Ds6, 7 層の低透水性のために過剰間隙水 圧の消散が遅れて停留し, そのために一次圧密もさ ほど進行しない。したがって、水圧消散をさほど伴 わない時間遅れ沈下が生じるということになる。二 次圧密を「一次圧密終了後に過剰間隙水圧のない状 態で進行する沈下」と定義すれば、この段階で発生 している沈下は二次圧密とは言えない。しかしなが ら,既に大阪港埋立地の長期沈下測定(武田他,2000, Mimura et al., 2003)から,過圧密領域においても更 新統粘土層に時間遅れ沈下が発生することや、大阪 湾に堆積する擬似過圧密粘土は,同じ載荷応力を受 けていてもひずみ速度が小さくなると大きな圧縮が 生じることがわかっており,こうした特性を評価で きる圧縮モデル (Mimura and Jang, 2004) が導入さ れ,その妥当性が検証されている(Mimura and Jang, 2005a)。本稿における解析モデルもこの考え方を踏 襲しており、元々一次圧密中に発生するひずみも時 間依存性を含んだ粘塑性ひずみであり, さらに pc以 下の応力域であっても非弾性的なひずみが発生する ことになる。典型的な水圧消散+一次圧密というパ ターンに乗らない変形モードであるため、経過時間 に対して直線的で,応力状態やひずみ速度によって は上に凸な形状の沈下~時間曲線を示すことになる。

(4) 実測値との比較と考察

関西国際空港一期島の1号櫓で計測された層別沈 下結果を本稿で実施した有限要素解析結果と比較し て Fig. 13 に示す。比較的沈下進行の早い浅部の Dtc, Ma12, 11 と, 遅れている中深度の Ma10, Doc5 を取 り上げて比較する。また採用した圧縮モデルのパフ オーマンスをみるために, pc以下の応力域での挙動 を弾性と仮定した従来法による結果を併せて示した。 優勢な透水層に近接する浅部更新統粘土層,Dtc, Ma12,11では、解析結果と実測結果は非常によい一 致を示しており, 適用した解析手法の妥当性が確認 できる結果となっている。またこの領域は埋立荷重 によって載荷のかなり早い時期に pc を超えて正規 圧密領域に入り, 排水も順調に行われるということ で,見かけの過圧密領域(擬似過圧密領域)に長く 留まる大阪港の場合とは異なり、Mall で今回の圧 縮モデルを用いた場合に沈下の量と速度がやや大き くなる以外は従来法との差異がさほど認められない。 これに対して、周辺の砂礫層の低透水能のために水 圧消散が遅れる中深度の粘土層では変形モードが異 なってくる。Malo については測定値にやや問題が あり評価は難しい。また Doc5 では 2,000 日付近から の急激な沈下を解析結果がフォローしきれていない。 水圧消散が遅れる中深度の更新統粘土層の中でも, Doc5 層は非海成でややシルト質であるため透水係 数が上位の Ma10, 9 に比べて大きくなっていること と、同層直下の Ds8 層の透水性が悪くないことも相

まって,比較的圧密進行が順調な層である。過剰間 隙水圧の停留が顕著で,ひずみ速度が極端に小さく なる粘土層での再現性がよくないという結果になっ ている。

5. おわりに

関西国際空港基礎地盤である泉州沖の更新統層は, 粘土層と砂礫層の互層構造を有している。特徴とし ては、大阪港における淀川のような大河川が付近に なく、土砂供給が潤沢ではないため、透水を司る砂 礫層の発達があまり優勢ではない。層厚が薄く、連 続性に欠け,細粒分含有率が高いという透水性にと ってはネガティブな特性を持つため、大規模海上埋 立地の荷重を受けた時の排水機能に大きな問題があ る。関西国際空港基礎地盤の変形を検討するにあた り, 要素レベルでの砂礫層試料の透水係数で評価さ れる透水性は、地盤全体を見通した時に考えなけれ ばならないマクロな透水性とは違ったものとなると いうことを十分念頭に置く必要がある。本稿では, 各種地盤調査結果に基づいてできる範囲で更新統砂 礫層のマクロ透水能を数値化することに苦心した。 連続性に優れた厚い砂礫層は Ds1 と Ds10 であり, 非常に劣悪な砂礫層は Ds5, 6, 7 であった。解析にあ たっては, 層厚はそれぞれの調査孔の平均的な値を 与え,結果として,地質学的知見から砂礫層の幾何 的な要因を等価な透水係数に押し込む形でのモデル 化を行った。

更新統粘土は全層にわたって軽い過圧密状態であ り,空港島荷重によってかなりの深度まで塑性降伏 を引き起こす。また、初期状態が基準堆積曲線に比 べて間隙比がかなり大きな、いわゆる"かさばった" 構造を有しており,一旦その構造が壊れるとその分 圧縮しろが大きくなる。 圧密降伏応力 pcを超えた直 後には対数スケールでも下に凸状の強い非線形性を 示し、この高い圧縮性を考慮しなければ、現地で起 こっている大きな過剰間隙水圧の発生と停留、およ びその条件下での急激な沈下の進行という現象は説 明できない。逆に、この圧縮特性を適切にモデル化 することによって,現場の特異と思われた挙動を統 一的に表現できることがわかった。特に、粘土層の 圧縮モデルの改良が,狭在砂礫層内の過剰間隙水圧 の停留と消散遅れに寄与するという事実が事前のモ デル解析で明らかとなった。

排水砂礫層が優位な浅部更新統粘土層では,埋立 によって大きく正規領域に入り,かつ順調に過剰間 隙水圧が消散するという,まさしく教科書的な圧密 が進行するのに対して,過剰間隙水圧の消散が非常 に遅れる中深度の粘土層では降伏に達する時間が大 きく遅れるため,擬似過圧密粘土特有の p_c以下の応 力域での時間遅れ沈下が過剰間隙水圧残留状態下で 起こることになる。また大深度下での長期間の変位 測定には技術的な問題も多く,必ずしも納得できる データがすべての更新統粘土層で蓄積されたとは言 い難い。こうした条件下で,擬似過圧密粘土の見か けの過圧密と見かけの p_c以下の応力域における粘 塑性挙動の発現を仮定した圧縮モデルを組み込んだ 弾粘塑性有限要素解析を実施した。本解析に先立っ て,水理境界条件の影響を検討し,泉州沖地盤では かなり大きな領域を埋立地外に採らなければ,境界 条件の影響を除いた解析結果が得られないことを明 らかにした。この結果に基づいて,一期島の変形解 析にあたり,載荷領域外に載荷幅の約 10 倍にあたる 5,000m を必要解析領域とした。

弾粘塑性有限要素解析により,空港島建設によっ て発生する過剰間隙水圧は,埋立地区直下で非常に 大きくなるが,更新統砂礫層内を海側に伝播し,長 期的には空港島外の基礎地盤に広がることがわかっ た。空港島直下地盤では,浅部更新統層においては 初期の大きな過剰間隙水圧は時間の経過とともに順 調に消散し,埋立50年後には一次圧密が終了するの に対し,砂礫層の透水能が低い中深度の更新統粘土 層では150kPa に達する非常に高い水圧が長期にわ たって残留し,その分圧密の進行は遅れることにな る。1号櫓地点解析結果を埋立開始から2500日時点, 5300日時点で比較すると,Doc5層でやや過小評価 となるものの,それ以外の測定値は解析結果によく 一致しており,一連の解析結果は現地の地盤内応力 状態を概ねよく評価し得ていることがわかる。

更新統粘土層の各層ごとの層別沈下~時間関係では、埋立荷重によって大きく正規圧密領域に達する 浅部更新統粘土層(Dtc, Ma12, 11)では、逆S字型 の沈下曲線となるのに対し、中深度で過剰間隙水圧 が長期間停留する Ma10,9 やそれ以深の粘土層では 初期応力レベルが大きいことも相まって直線的な沈 下曲線となる。ただし、Doc5 については、非海成で 粘土自身の透水係数が高いこともあって、比較的早 く沈下が進行する。

解析結果の妥当性については、現地における実測 値との整合性によって評価される。本稿では、空港 島1号櫓の結果に絞って検討したが、深度の大きい 地点での計測では多様な困難を伴い、Ma9,8,7の各 層についてはあまり信頼できる値となっていなかっ たので、解析結果との比較を行っていない。また Mal0 についても、初期段階において理解に苦しむ パフォーマンスを示しており、結果として解析結果 とのずれを生じている。Dtc から Mal1 に至る浅部更 新統粘土各層では解析結果と実測値は非常によく整 合しており、解析手法の妥当性が確認できる結果と

なっている。応力状態が pc 近傍にあって過剰間隙水 圧が停留している粘土層における挙動がうまく説明 できるかどうかが関心のあるところであったが、 Ma10, Doc5 を除いて議論できなかった。この2層 についても, 上位の各層の結果と比較すると整合性 が悪く、深部更新統粘土層の計測を含めた問題の幾 分かは先送りされている。今後二期島の長期沈下デ ータが蓄積されるが、その際、一期島を埋め立てた ことによって二期地区基礎地盤に過剰間隙水圧が伝 播し,有効応力が減少するために生じる除荷,二期 島を埋め立てたことによって逆に一期島直下基礎地 盤への過剰間隙水圧伝播によって生じる除荷、この 水圧が消散していくことによって生じる一期島基礎 地盤への再載荷に際して, 更新統粘土地盤がどのよ うな挙動を示すのか、巷間指摘される「水枕効果」 の検討、さらには除荷時であっても変形が弾性的で はなく,時間の経過とともに除荷領域でも二次圧密 的な沈下が現れるという研究成果(渡部他, 2004) を考慮した場合の後続沈下の可能性の検討など、克 服すべき課題は山積している。空港島の今後の長期 間にわたる安定的な供用に資する研究成果が期待さ れる。

謝 辞

本稿の基となる一連の研究を遂行するにあたり, 京都大学大学院理学研究科の竹村恵二先生に,泉州 沖地盤の成り立ちと砂礫層の分布,透水性について 地質学的知見に立脚した助言を多くいただいた。 (財)地域地盤環境研究所の山本浩司氏には,大阪湾 更新統土の物性値について数多くのデータを提供い ただいた。また数値解析は,隅蔵雄一郎氏(現国土 交通省),張祐榮氏(現GS Engineering & Construction Co. Ltd)の大学院における研究の一環として行われ たものである。記して深甚の謝意を表する。

参考文献

- 赤井浩一・佐野郁雄(1981):大阪上部洪積層粘土 の長期圧密特性,土と基礎,第29巻,第3号,pp. 43-47.
- 小林岳・三田村宗樹・吉川周作(2001):深層ボー リングコアからみた神戸地域第四紀系の岩相変 化と堆積速度,地球科学,第55巻,第3号,pp. 131-143.
- 三村 衛・幸繁宜弘(2005): FEM解析結果に影響 する因子の評価~圧密解析を題材に~, 土と基礎, 第53巻, 第8号, pp. 28-30.
- 大阪湾地盤情報の研究協議会(2002):ベイエリア

の地盤と建設~大阪湾を例として~,505p.

- 関口秀雄・西田義親・金井文夫(1982):粘土の平 面ひずみ粘塑性モデルについて,第37回土木学会 年次学術講演会概要集,第3部, pp. 181-182.
- 関口秀雄・柴田徹・藤本朗・山口博久(1986):局 部載荷を受けあるバーチカル・ドレーン打設地盤 の変形解析,第31回土質工学シンポジウム発表論 文集, pp. 111-116.
- 武田弘一・三村衛・小田和広・諏訪靖二・山本浩司 (2000):大阪港埋立地における洪積層の沈下に ついて,過圧密土および過圧密地盤の力学に関す るシンポジウム発表論文集, pp. 105-110.
- 竹村恵二(2002):私信.
- 土田 孝(2001):海成粘土地盤の自然含水比と土 被り圧の関係に関する統一的な解釈,地盤工学会 論文報告集,第41巻,第1号, pp. 127-143.
- 渡部要一・田中洋行・宇高薫・野坂知正・小林正樹・ 田端竹千穂・森川嘉之(2004):大阪湾洪積粘土 の除荷膨張及びその後の再クリープ(その1), 第59回土木学会年次学術講演会発表論文集,Ⅲ, pp. 519-520.
- Akai, K. and Tanaka, Y. (1999): Settlement Behaviour of an Off-shore Airport KIA. Proc. 12th ECSMGE, Vol. 2, pp. 1041-1046.
- Ito Y., Takemura, K., Kawabata, D., Tanaka, Y. and Nakaseko, K. (2001): Quaternary Tectonic Warping and Strata Formation in the Southern Osaka Basin Inferred from Reflection Seismic Interpretation and Borehole Sequences. Journal of Asian Earth Science, Vol. 20, pp. 45-58.
- Jang W. Y. and Mimura, M. (2005): Effect of Permeability and Compressibility of Sandwiched Gravelly Sand Layers on Subsequent Settlement of Pleistocene Deposits, Soils and Foundations, Vol. 44, No. 6, pp. 111-119.
- Mimura, M. and Jang, W. Y. (2004): Description of Time-dependent Behavior of Quasi-overconsolidated Osaka Pleistocene Clays Using Elasto-viscoplastic Finite Element Analyses, Soils and Foundations, Vol. 44, No. 4, pp. 41-52.
- Mimura, M. and Jang, W. Y. (2005a): Verification of the Elasto-viscoplastic Approach Assessing the Long-term Deformation of the Quasi-overconsolidated Pleistocene Clay Deposits, Soils and Foundations, Vol. 45, No. 1, pp. 37-49.
- Mimura, M. and Jang, W. Y. (2005b): Long-term Settlement of the Pleistocene Deposits Due to Construction of KIA, Proc. of the Symposium on

Geotechnical Aspect of Kansai International Airport, pp. 77-85.

- Mimura, M. and Sekiguchi, H. (1986): Bearing Capacity and Plastic Flow of A Rate-sensitive Clay Under Strip Loading. Bulletin of DPRI, Kyoto University, Vol. 36, Part 2, pp. 99-111.
- Mimura, M., Shibata, T., Nozu, M. and Kitazawa, M. (1990): Deformation Analysis of a Reclaimed Marine Foundation Subjected to Land Construction. Soils and Foundations, Vol. 30, No. 4, pp. 119-133.
- Mimura, M., Shibata, T. and Watanabe, K. (1994): Post Yield Modeling of Compression for Pleistocene Clays and Its Application to Finite Element Analysis. Proc. Pre-failure Deformation of Geomaterials, Vol. 1, pp. 517-522.
- Mimura, M. and Sumikura, Y. (2000): Deformation and Excess Pore Water Pressure of the Pleistocene Marine Deposits due to Offshore Reclamation, Proc. Int. Symposium on Coastal Geotechnical Engineering in Practice, Vol. 1, pp. 339-344.
- Mimura, M., Takeda, K., Yamamoto, K., Fujiwara, T. and Jang, W. Y. (2003): Long-term Settlement of the Reclaimed Quasi-overconsolidated Pleistocene Clay Deposits in Osaka Bay, Soils and Foundations, Vol. 43, No. 6, pp. 141-153.
- Sekiguchi, H. (1977): Rheological Characteristics of Clays. Proc. 9th ICSMFE, Vol. 1, pp. 289-292.
- Tanaka, H. (2005): Consolidation Behavior of Natural Soils Around p_c Value -Long Term Consolidation Test-, Soils and Foundations, Vol. 45, No. 3, pp. 83-95.

Contribution of Macroscopic Permeability of Sand/Gravel Layers to Subsequent Long-term Settlement of the Reclaimed Marine Foundation of KIA

Mamoru MIMURA and Yuya IKEDA^{*}

* Graduate School of Engineering, Kyoto University

Synopsis

A series of elasto-viscoplastic finite element analyses is carried out to simulate the stress and deformation of the reclaimed Pleistocene foundation due to construction of Kansai International Airport fill. The foundation ground at Senshu area consists of alternating Pleistocene clays and sandy gravel layers. The influential factor controlling the deformation of the foundation ground is high compressibility and strain rate dependency of the structured Pleistocene clays as well as mass permeability of the Pleistocene sandy gravel layers controlling the rate of consolidation. In the FE analyses, the equivalent permeability is introduced considering the discontinuity and/or change in thickness of permeable sand gravel layers and low permeability due to finer components.

The calculated performance can describe the measured long-term settlement with time for each Pleistocene clay layer as well as the process of generation/dissipation of excess pore water pressure both in the Pleistocene clay and sand layers very well.

Keywords: Pleistocene clay Elasto-viscoplastic FEM, Long-term settlement, Mass permeability