
                                                                                         
 
 
 
Analysis of Peak Streamflow Distributions Based on Neyman-Scott Synthetic Rainfall 

 
 

Carlo MONDONEDO*, Yasuto TACHIKAWA*, and Kaoru TAKARA  
 

* Department of Urban and Environmental Engineering, Kyoto University 
 

Synopsis 
Synthetic rainfall generated in point processes should have consistent extreme 

values to that of historical rainfall to yield useful information for decision making.  
This is crucial for determining the impact of severe storms in areas with limited rainfall 
and/or streamflow data.  We demonstrate this by comparing two methods for 
evaluating design floods in the Kamo and Kamishiiba River Basins in Japan.  One 
method is based on the Japan Ministry of Land, Infrastructure, Transport, and Tourism 
(MLIT) that does not involve synthetic rainfall generation.  Another method is based 
on the synthetic rainfall from the Neyman-Scott clustered point process.  The latter 
method is observed to be more rational due to its consideration of extreme value 
rainfall.   
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1. Introduction 
 

Streamflow is the ultimate effect of rainfall in a 
river basin and is the basis of design decisions so 
that a safe coexistence can be established between a 
river basin and its inhabitants.  Unfortunately, 
some river basins that would be advantageous to 
involve in flood control have limited rainfall and/or 
streamflow data for effective analysis.  Many 
techniques have been developed to simulate the 
eventual transformation of rainfall into streamflow, 
such as distributed hydrological modeling (Beven, 
2002).  The same is true for tools developed for 
synthetic rainfall generation, as in the 
Neyman-Scott clustered Poisson rectangular pulse 
rainfall model, or NSM (Rodriguez-Iturbe et al, 
1987).   

Past contributions in the development of the 
NSM were based on making the synthetic extreme 
rainfall more consistent to its historical counterpart 
(Cowpertwait, 1998).  The authors have also 

contributed to this problem in what they refer to as 
the NSM Fano factor exponent, or FFE (see Sec. 2).  
Through making synthetic rainfall extremes 
consistent to historical counterparts, one may 
generate lengthy records sufficient for analysis in a 
manner that is sound, safe, economical and efficient.  
Only then can one base design flood evaluation 
issues on a synthetic technique such that the lack of 
historical information is no longer a hindering 
factor in the decision-making process.   

We demonstrate the advantage of synthetic 
rainfall generation in evaluating design streamflow 
by comparing two associated methodologies.  One 
method excluding synthetic rainfall generation is 
based on the Japan Ministry of Land, Infrastructure, 
Transport, and Tourism (MLIT).  Another method 
is developed by the authors based on the NSM.  
Both methods involve distributed hydrological 
modeling based on Kyoto University’s Object 
Oriented Hydrologic Modeling System (OHyMOS).   
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2. Methodology 
 
2.1 The NSM and its governing equations 

The NSM is a clustered Poisson point process 
(Sefozo, 1990) in which: a) storms arrive following 
a temporal Poisson process (mean recurrence rate 
λ), b) storms consist of a geometric random number 
of rain cells, no storm containing zero cells (mean 
cell number μc), c) each cell arrival relative to the 
storm arrival follows an exponential distribution 
(mean lag time 1/β), d) each cell duration follows 
an exponential duration (mean duration 1/η), and e) 
each cell intensity follows a two-parameter gamma 
distribution (shape parameter α and scale parameter 
θ).  The superposition of these rain cell pulses in 
the rainfall intensity-time plane results in the target 
synthetic rainfall.  Six parameters are therefore 
required to tune the NSM for a particular 
application.   

The following T-duration aggregated moments 
were derived for parameter estimation in the NSM 
(Rodriguez-Iturbe et al., 1987 and Cowpertwait, 
1998).  We include the expression for the Fano 
factor exponent (FFE) of the NSM.  This 
expression is based on the spread of a count point 
process in time based on the Peaks Over Threshold 
rainfall point process (see Appendix).  The latter is 
defined here as rainfall that exceeds the minimum 
block maxima in a historical rainfall record.  The 
typical historical rainfall record involved in our 
experiments is limited to those that are pooled by 
monthly blocks so that the threshold is a smallest 
monthly maximum value.   
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where E[Y] is mean rainfall depth, Var[Y] is the 
rainfall depth variance, Cov[YT,YT+k] is the rainfall 
depth autocovariance at lag-k,  Cov[YT,YT+k] is 
the rainfall depth autocorrelation at lag-k,  
TCM[Y] = third central moment (TCM) of rainfall 
depth, ξSi = Fano Factor exponent (POT rainfall 
point process), and γ is the Euler constant (0.577…).  
The derivation of the FFE (eq. (6)) is shown in the 
Appendix (the interested reader is referred to 
Mondonedo et al., 2008 for further details).   

The parameter estimation of the NSM is based 
on the solution of the following objective function: 
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where NSMi pertains to the component expression 
listed in eqs. (1) – (6) while HISi pertains to the 
historical counterpart (see Appendix for historical 
counterpart of eq. (6)).  Two combinations of 
components are used for parameter estimation for 
synthetic rainfall generation from the NSM.  
Scheme A is a configuration based on the TCM in 
which eq. (7) adopts the hourly mean, hourly 
variance, hourly autocorrelation at lag-1, hourly 
third central moment, 12-hourly autocorrelation at 
lag-1, 24-hourly variance, and 24-hourly 
autocorrelation at lag-1.  Scheme B is essentially 
Scheme A, only that eq. (7) adopts the hourly FFE 
instead of the hourly TCM.   
 
2.2 Description of adopted DHM 

Two distributed hydrologic models (DHM) 
were developed from OHyMOS (Ichikawa, 2000). 
One model was developed for the Kamo river basin 
located in Kyoto Prefecture while another one was 
developed for Kamishiiba river basin in Miyazaki 
Prefectures in Japan.  Both study areas were less 
than 300 Km2 in size for which the use of a single 
rain gauge is justified.  The river basins are 
represented as a collection of edge elements in each 
model.  The edge element is essentially a 
connection of grid points determined to have the 
steepest gradient.  Figure 1 shows three flow lines 
connected to grid point A while two flow lines 
connect to grid point B, indicating that 1/3 of the 
uniform grid area should be allotted to A while 1/2 

the same area should be allocated to B to form edge 
AB.  The width of this edge is determined by 
dividing the grid area by the distance between 
points A and B.   

Rainfall-runoff conversion is implemented on 
elements such as AB in Fig. 1.  This conversion 
follows a kinematic wave model following a 
function similar to a discharge-stage relationship 
(Tachikawa et al., 2007), shown in the succeeding 
equation: 
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where q is discharge per unit width, h is flow depth, 
r is rainfall intensity, vm = kmi, va = kai, km= ka/βm, 

ni /=α , i is the gradient of the edge element, km is 
the saturated hydraulic conductivity of the capillary 
soil layer, ka is the hydraulic conductivity of the 
non-capillary soil layer [m/s], n is the surface 
roughness coefficient [m-1/3s], dm is the capacity 
water depth for capillary soil layer [m], da is the 
capacity water depth including capillary and 
non-capillary soil layers [m] (see Fig. 2).   

Parameters for these equations are assumed 
constant for all the edge elements in the river basin 
although internal systems are available for changing 
these parameters per sub-basin.   These 
parameters were estimated in separate studies 
(Tachikawa et al., 2007 for Kamo and Lee et al., 
2007 for Kamishiiba) and are shown in Table 1.  

A 

B 

A 

B 

= (1/3 of grid area A) + (1/2 of grid area B) 

Fig. 1 Schematic diagram of the edge element used in the adopted Distributed Hydrologic Model 
(DHM).   
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The simulations conducted with these tuned river 
basin models were set for monthly runs at 5 minute 
computation time with streamflow results displayed 
per hour.   

 
3 Experimental Setup 
 

Methods for calculating extreme floods are 
based on two procedures.  One procedure is based 
on the Japan Ministry of Land, Infrastructure, 
Transport and Tourism (MLIT) while another is 
based on the NSM synthetic rainfall.  For 
stationarity considerations, both methods are 
applied for historical rainfall pooled monthly during 
June, assumed to be stationary and representative of 
the rainy season in all study regions.   

 
3.1 MLIT method 

A procedure for estimating q-return period 
design floods from historical rainfall and 

streamflow simulation based on the Japan Ministry 
of Land, Infrastructure, Transport, and Tourism 
(MLIT, 2008) is designated here as M-I.  This 
procedure starts with assigning a design duration 
from which the quantile rainfall for all simulations 
is based.  For river basin areas such as Kamo and 
Kamishiiba, each less than 300 Km2 in size, this 
duration is specified as 24 hours.  The 
corresponding q-return period quantile rainfall 
depth is then calculated based on 24-hourly 
aggregated historical rainfall record.  The MLIT 
then assigns a 24-hourly distribution to this total 
magnitude by searching through the historical 
records for the corresponding 24-hourly maximum 
rainfall per month.  These maximum storms are 
then proportionately modified such that the total 
rainfall within the 24-hour period is the basis 
quantile rainfall.   

The MLIT then runs each 24-hourly storm in an 
appropriate rainfall-runoff model to simulate 

Fig. 2 (a)Model soil structure and (b) discharge-stage relationship adopted in river basin DHMs.   
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Table 1 Parameters of adopted Distributed Hydrological Models 

River Basin n[m-1/3s] ka[m/s] da[m] dm[m] βm[-] 
Kamishiiba 0.3 0.010 0.55 0.45 0.65 

Kamo 0.6 0.015 0.20 0.18 0.65 
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streamflow.  There are thus as many resulting 
hydrographs from these simulations as there are 
historical rainfall records.  Each hydrograph is 
then searched for its maximum value, yielding the 
estimate for the design flood, say Smq.  
Consequently, M-I gives several estimates of the 
required q-return period design flood based on the 
Smq of each simulated hydrograph.   
 
3.2 Method based on NSM rainfall  

A second streamflow generating procedure is 
designated here as M-II.  We generate 100 
synthetic records of the target month for our 
applications here where return periods are within 
the 100 year value.  Each monthly record is then 
run through the appropriate river basin model for 
streamflow simulation.   

The resulting hydrographs are checked for 
maximum streamflow, resulting in 100 values for 
flood frequency analysis.  The required quantile 
event, say Qmq, is then estimated from the 
cumulative distribution that best fits these empirical 
maxima (a log-normal distribution fitted by least 
squares is adopted for this purpose although other 
distributions may be used).   Two further variants 
of this procedure correspond to the two NSM 
parameter estimation schemes of Sec. 2.1.  M-IIA 
adopts NSM O(Ω) Scheme A while M-II adopts 
that of Scheme B for parameter generation.   

 
4 Resulting Streamflow Estimates 
 

Historical streamflow data was limited in this 
study.  Each historical June rainfall record is also 
run through the appropriate DHM and is considered 
a suitable substitute for historical streamflow.  
Resulting quantile estimates from the synthetic 
streamflow and pseudo-historical counterparts 
shown here are limited to the hourly duration.  
Quantile streamflow are estimated for the 10-, 20-, 
30-, 50-, and 100-year return periods.   
 
4.1 Kamo river basin streamflow 

The quantile-quantile (q-q) plot of Kamo 
pseudo-historical hourly streamflow maxima (Dis) 
appears in Figs. 3a-b.  Each maximum streamflow 
value is given a plotting position pp proportionate 
to its rank in the overall record (pp=1/(i+1) in 

which i is rank).  The log-normal distribution 
quantiles are used in this figure such that the 
independent variable (related to the event return 
period) corresponds to the inverse of the standard 
normal distribution (Gaussian distribution with zero 
mean and variance of unity) Φ−1 of pp while the 
dependent variable corresponds to the logarithm of 
Dis.  The plot reflects a good correlation between 
this model and the pseudo-historical streamflow.  
Linear regression gives us the parameters for the fit 
of this log-normal model that leads to the 95% 
confidence bands.   

We may then project the best fit line for the 
pseudo-historical streamflow (Fig. 3a) to 
extrapolate the trend at return periods 10-, 20-, 30-, 
50-, and 100-years.  We observe a tendency of M-I 
to give a wide range of estimates for these target 
quantile floods in Fig. 3a.  In fact, the variation of 
M-I estimates becomes wider along with increasing 
return period.  There is thus a pronounced 
ambiguity in the quantile estimates of M-I, making 
it disadvantageous despite its simple approach of 
using historical data alone.  In other words, it 
would be difficult to depend on M-I to quantify the 
quantile events given that we cannot justify which 
among the multiple estimates is the most likely 
value.   

This ambiguity does not appear in M-II, shown 
in Fig. 3b.  Estimates appear to be quite consistent 
to the projections of pseudo-historical data.  In 
particular, estimates generated from rainfall 
determined by parameters based on Scheme B 
appear to be the more rational estimate since this 
scheme includes POT rainfall maxima information 
in the FFE.  The advantage of using M-II, which 
involves synthetic rainfall generation, is therefore 
its clearer and unambiguous estimates of the 
quantile events.   

 
4.2 Kamishiiba river basin streamflow 

Similar q-q plots based on Kamishiiba results 
appear in Figs. 4a-b.  Not all quantile estimates 
generated from M-I are within reasonable proximity 
to what can be drawn from the pseudo-historical 
counterpart, as shown in the lower return periods 
(10-year and 20-year estimates), indicating poor 
performance.  In fact, quantiles should be 
evaluated at higher return periods (i.e.: higher than 
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Kamo Maximum Discharge
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(b) 
Fig. 3 Pseudo-historical streamflow block maxima from Kamo River with: (a) M-I synthetic quantiles 
and (b) M-II synthetic quantiles. 

 
100 years) before the M-I method yields estimates 
with high variation that lie along the 
pseudo-historical 95% region.  This however is 
not the ideal application since at times, one needs 
an estimate of lower return periods (i.e.: urban 

conditions/low priority flood protection works).  
The M-I scheme therefore generates poor estimates 
of the required quantiles in Kamishiiba River Basin.   

On the other hand, Fig. 4b shows the same 
estimates generated from M-IIA and M-IIB.  Most 
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Kamishiiba Maximum Discharge
Log-Normal Quantile-Quantile Plot
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Fig. 4 Pseudo-historical streamflow block maxima from Kamishiiba River with: (a) M-I synthetic 
quantiles and (b) M-II synthetic quantiles. 

 
quantile estimates are within the historical 
95%region of historical quantiles, indicating better 
performance over the M-I estimates (of Fig. 4a).  
In fact, both schemes perform appreciably well 
given that both yield almost the same low return 

period estimates and gradually diverge at higher 
return periods within the 95% historical region.  
Therefore, either adopting M-IIA or M-IIB yields 
reasonable quantile estimates.    
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5 Conclusion 
 

A comparison between several methods was 
conducted that led to the advantage of using 
synthetic rainfall in the estimation of critical 
streamflow in river basins with limited historical 
rainfall   and/or streamflow data.   Synthetic 
rainfall was based on the Neyman-Scott clustered 
Poisson rectangular pulse rainfall model (NSM).  
The streamflow generated from modeling historical 
rainfall through a distributed hydrological 
modeling (DHM) was assumed as an equivalent to 
historical streamflow (referred to as 
pseudo-historical streamflow).   

Results indicate that an established method 
from the Japan Ministry of Land, Infrastructure, 
Transport, and Tourism (MLIT) for estimating 
design floods from historical rainfall have several 
limitations.  Estimates from this method (for the 
Kamo River Basin in Kyoto) vary widely for any 
return period due the use of multiple design rainfall 
that are each plausible occurrences of the quantile 
event.  In one application (Kamishiiba River 
Basin in Miyazaki), results were in gross error for 
low return periods.  Though this method involved 
only historical rainfall, estimates were found to be 
generally unreliable.   

Another method involving NSM synthetic 
rainfall generation appears to be more rational in 
both form and delivered results.  There were no 
ambiguous or erroneous estimates from the results 
of this method.  Estimates based on this method 
are therefore more reliable and recommendable 
than those of the former type.   
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(a) 
 

(b) 
 

(c) (d) 

Fig. 5 Determining the Peaks Over Threshold (POT) rainfall point process and counting process Ni(T*).  
(a) sample rainfall Ui(T) with previously determined threshold zi, (b) POT rainfall Ui(T)  values greater 
than or equal to zi (c) unit counts Bi(T) assigned for each rainfall occurrence, (d) counting process Ni(T*). 

 
 

Appendix 
 

A thorough discussion regarding the NSM Fano 
factor exponent appears in Mondonedo et al., 2008.   
However, we present here a brief derivation of this 
expression.  Figure 5 shows the construction of the 
special count process Ni(T) to be used in 
determining the Fano factor FF(T*) at an arbitrary 
window T*. With rainfall pooled for each month i 
(i=1: January, i=2: February, etc.), we define the 
process Ui(T) (Fig. 5a), as the rainfall magnitude 
per fixed duration T (i.e.: T=1 hour in this study).  
For the M months in each Ui(T), we determine the 
M monthly or block maxima Zi(T) and threshold 
value zi, the minimum of Zi(T).  We define the 
POT rainfall point process Qi(T) based on Eq. (10) 
(Fig. 5b):   
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For each rainfall occurrence in Qi(T), we define 

the binary process Bi(T) based on Eq.(11) (Fig. 5c). 
This process counts all durations of rainfall greater 
than or equal to the threshold zi and serves as the 
basis for defining the Fano factor used here: 
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Using adjacent windows of arbitrary value T*, 

we define the count process Ni(T*), the sum of 
Bi(T) within each segment T* (Fig. 5d).   

The Fano factor FF(T*) is defined as the ratio of 
variance of count Ni(T*) and mean of Ni(T*), or: 
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where: 

 E = operation to obtain expected value.   

Based on data from independent studies, Lowen 
and Teich (1995, 2005) and Telesca et al. (2007) 
proposed the power law relationship of Eq. (13) to 
describe the scaling that occurs over several 
decadal values of T (Fig. 6): 

 

( )
ξ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

0T
T1TFF **        (13) 

 
in which T*0 is the basic data duration (i.e.: T*0 = 1 
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hour here) and ξ is a fractal exponent (0≤ξ≥1).  
Strictly speaking, the rainfall data used by Telesca 
et al., 2007) were pooled yearly (zi = 0) instead of 
Qi(T).  It was assumed here that Eq. (7) is valid for 
Qi(T) throughout the small set of windows T ∈ W =  
{2, 10, 20, …, 100 hours} (Fig.6).   
 

Fig. 6 Scaling in the counting process Ni(T*) 
obtained from Kamishiiba POT series Qi(t) in June. 
 

Alternatively, within W, the approximations for 
variance and mean of Ni(T*) are proposed here as 
Eqs. (14) and (15) such that the Fano factor can be 
independently estimated as Eq. (16).   
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After curve fitting operations for Eqs. (14) and 

(15) (i.e.: linear regression of historical Qi(T) for 
determining Ai, Bi, and Ci), Eq. (16) is used to 
explicitly determine FFHi(TMi), the Fano factor of 
the historical Qi(T) at window T* = mean storm 
duration TMi such that:  
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The relationship for the synthetic equivalent 

FFSi(TMi) can be written explicitly using Eq. (13) 
such that:   
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For our purposes, an ideal simulation should 

yield synthetic rainfall with Qi(T) such that 
historical Fano factor FFHi(TMi) and synthetic Fano 
factor FFSi(TMi) are equal, or based on Eqs. (16) and 
(18): 
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Isolating the synthetic Fano factor exponent ξSi 

leads to an expression relating properties of the 
historical Qi(T) to the unknown mean duration TMi.  
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Actual mean storm duration TMi was estimated 

here based on Cowpertwait’s expression (1991) 
derived from the NSM parameters shown here as 
Eq. (21): 
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By substituting Eq. (21) for TMi in Eq. (20), a 

direct link between historical Qi(T) and the NSM 
parameters is established as Eq. (22).  
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Moreover, with the historical exponent ξHi 
estimable through curve fitting Eq. (13) to the 
historical Qi(T), it is now possible to include ξSi, the 
NSM Fano factor exponent, in the NSM parameter 
estimation (through objective function O(Ω)).  
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ノイマンスコット型の降雨時系列発生モデルをもとにした洪水ピーク流量の分析 
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要 旨 

降雨の極値特性を反映するような降雨時系列の発生手法は，河川計画において有用と考えられる。特に，降雨や河川

流量のデータが不十分な地域において豪雨の影響を分析するためには，降雨の時系列発生手法は極めて重要なツールと

なる。本研究では，鴨川流域と桂川流域において計画洪水を評価するために２つの方法を比較する。一つは，国土交通

省が標準的な方法として用いている方法であり，もう一つは，ノイマンスコット型のクラスターポイントプロセスモデ

ルによって発生させた降雨時系列を用いる方法である。後者の方法は，降雨の極値特性を考慮する過程において，より

合理的な方法と考えられる。 

 
キーワード: 発生させた降雨時系列，発生させた流量時系列，ポイントプロセス，ノイマン・スコットモデル 
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