電氣界面攪亂 (第九報)

木繊維の低温に於ける電磁波吸收, 分散スペクトルに就いて

_{農學博士} 志 方 益 三 農學士 上 田 靜 男

梗 概

本研究に於ては低温に於ける, 繊維質粒子分散系の電磁波吸收並に分散様式を見る為に, "木粉 ーペンゼン"分散系に就き, ± 30°C の範圍に於ける 6,000~以下の低域電磁波吸收及び分散を測 定し, 溶媒の氷點近く即ち "ペンゼン" に於ては 2°C 近邊に於て, 其の異狀性をみとめ, 尙吸着 水分の凝固すると考へらるゝ點に於ける電磁波吸收並に分散様式を測定し, 吸着水分形態に付き理 論的説明を加へ, 一方 - 30°C より - 60°C に至る範圍の低温水の電磁波分散並に吸收を測定し, 兩者の緩衝時間の計算より, 繊維質粒子に吸着された水分中, 粘着水に相當するものゝ + 3°C に於 ける緩衝時間は 3×10⁻⁴ 程度で, -50°C に於ける氷の其に相當することを認めた.

目

- [1] 緒 言
- 〔2〕 實驗裝置並に實驗方法
 - a. 測定回路
 - b. 低溫裝置並に溫度測定方法
 - c. 試料調製
- [3] 實驗結果
 - A."木粉-ベンゼン"系に就て
 - a. 等價直列靜電容量 (Cs) に及ぼす 温度の影響
 - b. 誘電體損 tgd に及ぼす温度の影響
 - c. 等價直列靜電容量に及ぼす周波數 の影響

次

- d. 誘電體損に及ぼす周波數の影響
- B. 氷の誘電體的諸性狀に就て
 - a. 等價直列靜電容量に及ぼす溫度の 影響
 - b. 誘電體損に及ぼす溫度の影響
 - c. 等價直列靜電容量に及ぼす周波數 の影響
- d. 誘電體損に及ぼす周波数の影響
- 〔4〕理論的考察
 - A. 誘電體性狀變化に就て
 - B. 吸着水分形態に就て
- 〔5〕要約

[1] 緒 言

従來膠質物に吸着された水分の形態並に其の性質に關する研究は極めて重要なるも,其の測 定に適當なる方法なく明かにさるゝに至らなかつた.我々は交流電橋に依る誘電率,誘電體損, 並に誘電體損の履歴現象等の測定より,常溫前後に於ける繊維質粒子の水分吸着機構に就ての 推論を下し理研彙報,電氣化學雑誌等に數度發表せり. 即ちリオフィル膠質系に於ては水は膠 質ミセルと密接な或結合にあり,其の水の性質は普通自由な狀態にある水の其とは異る. 而して水分の吸着量が6-7%位より其の誘電體諸性狀に急激なる變化あることから,吸着水 の内6-7%位迄のものは殆ど固體の様な形をなして居ると考へ,一般に固着水と云はれて居る のは斯様なものを意味するとし、之以上のものは粘着水と考へた.然して吸着水分中7%前後 の固着水が氷の水分子と同一の物理的狀態にあるか否かは別問題として、粘着水を冷却せしめ る場合,其の電氣的に測定した誘電體性狀が、固着水の其に近似的に等しくなれば粘着水が氷 結しない迄も,其の水分子分布狀態が固着水の其に近似的に等しくなれてと考へることが可能 であると思ふ.何となれば粘着水の結晶した場合,其の電磁波吸收並に分散模様は、結晶分子 凝集力下にある水分子に依るものとすれば、固着水の場合は繊維質粒子の吸着力下にある分子 に基因するものと考へてさしつかへないと思ふからである.一方又低温水の誘電體諸性狀を測 定し、其の緩衝時間を算出し、繊維質に吸着された水分の其と比較し吸着水分形態に就て理論 的說明を加へんとす.

[2] 實驗裝置並に實驗方法

即ち測定電橋の等價回路には直列抵抗を用ひた.

b. 低溫裝置並びに溫度測定方法

a. 测定回路

測定回路は第1圖に示す様であ

る.

- I 發振回路
 - A.M.P: 增幅裝置

II 測定回路

- X:可檢平板蓄電器
- Re: 檢波器
- G: 檢流計
- R₁R₂:高周波用抵抗
 - C:可變蓄電器
 - R₃: 可變高周波用抵抗

低溫槽としては內容 14.4 cm³ の箱を用ひ, 圍りには 15 cm の厚さに " コルク " 板を詰め, 外部電場の影響をさける為め全體を鐵板にて覆ひ, 之を接地し, 此の中へ試料を入れた五極平 板コンデンサーを置き, 其の一層に "鋼-コンスタンタン" 熱電堆を挿入し, 溫度を測定しな がら他の一層を測定回路に入れ等價直列靜電容量, 等價直列抵抗を測定する. 尙寒劑としては , ドライアイス"を使用した.

温度測定用 "銅-コンスタンタン"熱電堆の電位測定には "ポテンチオメーター"を用ひ, "ドライアイス"を入れてより 10 分毎に温度測定をなし,一定温度に達してより2時間後測定 を開始する. c. 試料調製

試料木粉は北海松を機械的に粉碎せるものを用ひ,之を"ベンゼン"を入れた五極平板蓄電 器間に投入し,デシケーター中に入れ排氣し,氣泡を除き試料となす.以下特別のことわりな き時は從來同樣調製せるものとす.

f	1,000	1,500	2,000	2,500	3,000	3,500	4,000	4,500	5,000	5,500	6,000
+ 26°C	$\mu\mu\mathbf{F}$	$\mu\mu F$	$\frac{\mu\mu\mathbf{F}}{430.0}$	$\mu\mu\mathbf{F}$	$\frac{\mu\mu F}{340.0}$	$\mu \mu F$	$\mu\mu F$	$\mu\mu F$	$\mu\mu F$	$\mu\mu\mathbf{F}$	$\frac{\mu\mu F}{266.0}$
+ 16°C	460.0	330.0	302.5	260.0	215.0	215.0	185.0	169.0	195.0	200.0	193.0
+ 6°C	252.0	207.0	180.0	166.0	144.0	138.0	123.0	121.0	125.0	127.0	122.0
+ 3°C	203.0	155.0	118.0	109.0	110.0	100.0	90.0	99.0	99.0	100.0	99.0
- 4°C	130.0	125.0	108.0	97.0	88.0	97.0	90.0	98.0	85.0	95.0	90.0
- 8°C	9 9.0	84.0	78.0	75.0	74.0	71.0	71.0	69.0	66.0	67.0	66.0
− 14°C	20.0	20.0	10.0	10.0		_				-	
− 19°C	—	—				-			-		

 $Cs \mu\mu F$

第1表 "木粉ーベンゼン"系に於ける Cs-Temp 表

[3] 實驗結果

(A) "木粉ーベンゼン"系に就て
 a. 等價直列靜電容量に及ぼす溫度の影響
 低溫槽の溫度を + 30°C より-30°C

迄降下せしめた場合の等價直列靜電容 量の變化を,1,000~-6,000~ 迄の各 周波數に分けて表したのが,第1表並

に第2圖である.

本圖に於ては縦軸に等價直列靜電容 量を μμF で表し, 横軸には溫度を示 す. 而して第2圖はA,Bよりなり, A 圖は 1,000~-3,500~ B 圖は 4,000~ -6,000~ の間の關係を表はす. 即ち 測定電源 1,000~-6,000~ の間に於て は溫度降下につれて, 其の等價直列靜

•C

電容量は降下し、+ 6°C と + 2.5°C との間に不連續的急降下を來す、 + 2.5°C より - 4°C 迄 は測定電源の周波数 2.000~以上は等價直列靜電容量の變化は殆どなく、 尙一層低溫となるに つれて又 Cs の降下を見 -14°C と -18°C との間に於て我々の裝置では高周波の方より測 定不能となる.

b. 誘電體損に及ぼす溫度の影響

(a) の場合と同じく低溫槽の溫度を + 30°C より - 30°C 迄降下せしめた場合の誘電體損の變化を, 1,000~-6,000~ 迄の各周波數に分けて表したのが第2表並に第3 岡 A,B である.

f						tan δ					
T	1,000	1,500	2,000	2,500	3,000	3,500	4,000	4,500	5,000	5,500	6,000
+ 26°C	0.480	0.418	0.478	0.458	0.405	0.378	0.375	0.415	0.456	0.359	0.364
+ 16°C	0.461	0.369	0.340	0.310	0.235	0.277	0.171	0.177	0.298	0.299	0.256
+ 6°C	0.388	0.245	0.213	0.172	0.113	0.143	0.070	0.106	0.124	0.136	0.123
+ 3°C	0.223	0.148	0.096	0.046	0.045	0.057	0.024	0.045	0.051	0.056	0.061
- 4°C	0.089	0.078	0.065	0.026	0.006	0.0226	0.008	0.012	0.012	0.013	0.015
- 8°C	0.056	0.040	0.025	0.030	0.008	0.034	0.013	0.013	0.036	0.006	0.007
− 14°C	0.004	0.011 -					-		· ·	_	
— 19°C	-				-					—	

第2表 "木粉ーベンゼン" 系に於ける tan d-Temp 表

本圖に於ては縦軸に tgð × 100 横軸に測 定溫度を取る. 而して第3圖A は1,000~ -3,500~ B 圖は4,000~-6,000~の間の 關係を表はす.此の場合に於ても+6°Cと

+ 2.5°C との間に於て誘電體損の不連續的急降 下を來し,異狀吸收を表はし,其より溫度降下 に伴ふ誘電體損降下は,徐々にして – 14°C よ り – 16°C の間に於て高周波の方より測定不能 に陷る.

c. 等價直列靜電容量に及ぼす周波數の影響

+ 26°C より - 14°C に至る諸種溫度に於ける等價直列靜電容量の測定を 500~ より6,000~ の間の電源にて行ひ第 3 表並に第 4 圖に示す樣な結果を得た.

				Cs	$\mu\mu\mathbf{F}$			
f	+26°C	+16°C	+6°C	+3°C	-4°C	-8°C	-14°C	-19°C
1.000	μμF 595.0	μμF 460.0	μμF 252.0	μμF 203.0	μμF 130 .0	μμF 99.0	μμF 20.0	$\mu\mu\mathbf{F}$
1.500	460.0	330.0	207.0	155.0	125.0	84.0	20.0	
2.000	430.0	302.5	180.0	118.0	108.0	78.0	10.0	
2.500	398.0	260.0	166.0	109.0	97.0	75.0	10.0	—
3.000	340.0	215.0	144.0	110.0	88.0	74.0		
3.500)	. 314.0	215.0	138.0	100.0	97.0	71.0	-	
4.000	321.0	185.0	123.0	90.0	90.0	71.0	-	_
4.500	306.0	169.0	121.0	99.0	98.0	69.0	-	
5.000	305.0	195.0	125.0	99.0	85.0	66.0		
5.500	274.0	200.0	127.0	100.0	95.0	67.0		
6.000	266.0	193.0	122.0	99.0	90.0	66.0	-	
	1	r	1	1		1	1	1

第3表 "木粉ーベンゼン"系に於ける Cs-f 表

本圖に於ては縱軸に等價直列靜電容量を µµF で表はし,橫軸には周波數を示す.而して本 實驗に於ては等價直列靜電容量に及ぼす周波數の影響は,高溫になる程低周波側で顯著に現は る.即ち 26°C より 6°C の間に於ては我々の測定範圍に於ても周波數の影響が相當顯著なる も、3°C 以下は我々の測定周波數の處では,其の影響現はれず,もつと低周波側に表はるゝこ とゝ思はる.

d. 誘電體損に及ぼす周波數の影響

+ 26°C より - 14°C に至る諸種溫度に於ける誘電體損の測定を 500~-6,000~ 電源にて 行ひ, 第5 圖第4表に示す様な結果を得た.

				tan δ			
f	+26°C	+16°C	+6°C	+3°C	-4°C	-8°C	-14°C
1,000	0.480	0.461	0.388	0.223	0.089	0.056	0.004
1,500	0.418	0.369	0.245	0.148	0.078	0.040	0.011
2,000	0.478	0.341	0.213	0.096	0.065	0.025	
2,500	0.458	0.310	0.172	0.046	0.026	0.030	—
3,000	0.405	0.235	0.113	0.045	0.006	0.008	
3,500	0.378	0.277	0.143	0.057	0.0226	0.034	
4,000	0.375	0.171	0.070	0.024	0.008	0.013	—
4,500	0.415	· 0.177	0.106	0.045	0.012	0.013	—
5,000	0.456	0.298	0.124	0.051	0.012	0.036	-
5,500	0.359	0.299	0.136	0.056	0.013	0.006	_
6.000	0.364	0.256	0.123	0.061	0.015	0.007	

第4表 "木粉-ベンゼン" 系に於ける tan ô-f 表

本圖に於ては縱軸に tgð × 100, 橫軸に周波數を示す.此の結果に依ると誘電體損に及ぼす 周波數の影響は測定溫度に依り異る.即ち tgð の極大點は高溫になる程右方即ち高周波側に移 り, 零度以下は我々の測定周波數に於ては tgð の極大點を現はさず,それはもつと低周波側に あることを示す.

第6圖第7圖第8圖は測定溫度 16°C, 6°C, 3°C に於ける"電磁波吸收分散スペクトラム" を示すもので、縦軸には $tgd \times 100$ 並に靜電容量を $\mu\mu$ F で表はし、横軸には周波数を示す. 圖に 依り明かなる如く tgd の極大點は誘電率變化の最も甚だしい點にある事は、一般誘電體と同様 である.

(B) 蒸溜水の誘電體性狀に就て

本實驗に於ては試料蒸溜水は2回蒸溜して用ふ.

a. 等價直列靜電容量 Cs に及ぼす溫度の影響.

-34°C~-58°C の間に於ける氷の等價直列靜電容量を1,000~-6,000~の各周波數に就て 測定し第9圖第5表に示す様な結果を得た.

			Cs	$\mu\mu F$		
T	1,000	2,000	3,000	4,000	5,000	6,000
-34°C -42°C	μμF 462.9 216.0	μμ F 371.0 108.5	$\mu\mu F$ 201.1 61.0	μμ F 101.0 42.9	μμF 98.8 37.7	
-50°C	154.5 95.5	56.2 35.6	35.0 22.5	25.5 14.8	22.7 15.5	21.8 15.7

第5表 "氷"に於ける Cs-Temp 表

本圖に於ては縦軸に Cs を µµF で表はし, 横軸には溫度を示す. 圖より明かな様に溫度降 下と共に Cs の連續的降下を來す.

b. 誘電體損に及ぼす溫度の影響

--38°C~-58°C の間に於ける各溫度の氷の誘電體損を2,000~-6,000~ の各周波数に於て 測定し,第10圖第6表に示す様な結果を得た.本圖に於ては縦軸に tgð×100 横軸には測定 溫度を採る. 圖より明かなる如く溫度降下にともなひ誘電體損の連續的降下を來す.

$\int f$	$\tan \delta$							
T	1,000	2,000	3,000	4,000	5,000	6,000		
-34°C	2.45	3.80	3.79	2.20	2.25	2.21		
-42°C	2.01	1.77	1.34	.97	1.05	.63		
-50°C	2.14	1.10	.74	.55	.54	.53		
−58°C	1.48	.74	.46	.20	.30	.33		

第6表 "氷"に於ける tan-d Temp 表

c. 等價直列靜電容量(Cs)に及ぼす周波數の影響

-38°C~-58°C の間に於ける,各種溫度の氷の Cs の測定を, 500~-6,000~ 電源にて行ひ,第11 圖第7表に示す様な結果を得た.

第7表 "氷"に於ける Cs-f 表

	$Cs \ \mu\mu F$							
f	-34°C	-42°C	-50°C	-58°C				
	$\mu\mu F$	$\mu\mu F$	$\mu\mu F$	$\mu\mu F$				
1,000	462.9	216.0	154.5	95.5				
2,000	371.0	108.5	56.2	35.6				
3,000	201.1	61.0	35.0	22.5				
4,000	101.1	42.9	25.5	14.8				
5,000	98.8	37.7	22.7	15.5				
6,000	81.4	23.5	21.8	15.7				

本圖に於ては縱軸に Cs を µµF で表はし,横軸には周波數を示す.此の結果に依ると Cs に 及ぼす周波數の影響は高溫になる程顯著に表はる.

d. 誘電體損に及ぼす周波數の影響

-34°C より -58°C に至る間の温度に於ける誘電體損の測定を, 500~-6,000~ 電源にて 行ひ, 第 12 圖第 8 表に示す様な結果を得た.

	tan d						
f	-34°C	-42°C	−50°C	-58°C			
1,000	2.45	2.01	2.14	1.48			
2,000	3.80	1.77	1.10	.74			
3,000	3.79	1.34	.74	.46			
4,000	2.20	.97	.55	.20			
5,000	2.25	1.05	.54	.30			
6,000	2.21	.63	.53	.33			

第8表 "氷"に於ける tan ô-f 表

本圖に於ては縦軸に tgδ × 100 を表はし,横 軸に周波數を示す.此の場合に於て tgð の極大 點は高溫になる程高周波の方に移るものにして 例へば -34°C に於ては 2,500~ 位に其の極大 點を見るも、-42°Cにては1,300~邊にして、 尙降つて −58°C に至つては我々の測定周波数 に於ては tg∂の極大點を表はさず,もつと低周 波側多分250~近邊にあるものと思はる.

第 13 圖第 14 圖は "電磁波吸收分散スペク トラム"を示せるものにして縦軸に tgð × 100 並に靜電容量を µµF で表はし横軸には周波数 を示す. 圖より明かなる如く tgd の極大點は誘 電率變化の最も甚だしい點にある.

[4] 實驗結果に對する考察

(A) 誘電體性狀の變化に就て

上述の様な實驗結果が如何なる機構に依り起

るかを電氣物理的に解析考察することは極めて興味ある問題であつて、我々は木粉粒子に吸着 された小量の水分に着目し,交番電界に於ける水分變極子の回轉成極を基として說明を進めん

とす・即ち水分を吸着せる木粉粒子等を上記方法に依り交番電界におけば,水分双極子は回轉 成極とそれに對する抵抗との存在に依り,其處にエネルギー損及び回轉成極に依る誘電率變化 の起ることは容易に了解せらるゝことである.

- 今双極誘電體がf なる交番電界に於かれ,分子に作用する電氣力を F=Foeiot とすれば之 に依り次の様な電氣能率を受くることゝなる.

$$\overline{\mathbf{m}} = \frac{1}{1+j\sigma\tau} \frac{\mu^2}{3\kappa \Gamma} F_0 e^{j\omega t}$$

$$= \frac{1}{\gamma / 1 + \omega^2 \tau^2} \frac{\mu^2}{3\kappa \Gamma} F_0 e^{j\omega (t-\tau)} \dots (1)$$

$$\mu: 分子電氣能率 \quad \kappa: Boltzmann の常數$$

$$T: 絕對溫度 \quad \omega: 2 \pi f$$

$$\tau: Relaxation time で次の様な式で與へらる.$$

$$\tau = \frac{4\pi \eta a^3}{\kappa \Gamma} \dots (2)$$

$$\eta: 粘性係數 \qquad a: 分子牛徑$$

此の場合 Clausius-Mossotti の式を適用すればモル成極は次の如し.

$$\mathbf{P}_{\mathbf{M}} = \frac{\varepsilon - \mathbf{1}}{\varepsilon + 2} \quad \frac{\mathbf{M}}{\mathbf{d}} = \frac{4\pi \mathbf{N}}{3} \left(a_0 + \frac{\mu^2}{3\kappa \mathbf{T}} \cdot \frac{\mathbf{1}}{1 + j\omega\tau} \right) \dots \dots \dots (3)$$

今(3)式に於て $\omega=0 \omega=\infty$ に對する誘電率をそれぞれ ε_0 及び ε_{∞} としモル成極 P_M 及び 一般誘電率 ε を求むれば次の如し.

ε: 誘電率 a: 密度 M: 分子量 N: Avogadro の常数

$$P_{M} = \frac{M}{d} \left(\frac{\varepsilon_{\infty} - 1}{\varepsilon_{\infty} + 2} + \frac{1}{1 + j\omega\tau} \left(\frac{\varepsilon_{0} - 1}{\varepsilon_{0} + 2} - \frac{\varepsilon_{\infty} - 1}{\varepsilon_{\infty} + 2} \right) \right) \dots (4)$$

$$\varepsilon = \frac{\frac{\varepsilon_{0}}{\varepsilon_{0} + 2} + j\omega\tau}{\frac{1}{\varepsilon_{0} + 2} + j\omega\tau} \frac{\varepsilon_{\infty}}{\varepsilon_{\infty} + 2} \dots (5)$$

此の式は $\varepsilon = \varepsilon' - j \varepsilon''$

の形に變形し得る. €' は交番電界に於ける雙極性誘電體の成極に對する眞の誘電率を意味し, ε"は雙極子回轉に際し摩擦に依る "エネルギー"損失に對する係數である.

(6) 式と(5) 式から e' と e" を求め, 且つ tgo を求むれば

$$tg\delta = \frac{\varepsilon''}{\varepsilon'} = \frac{(\varepsilon_0 - \varepsilon_{\infty}) \frac{\varepsilon_0 + 2}{\varepsilon_{\infty} + 2} \omega\tau}{\varepsilon_0 + \varepsilon_{\infty} \left(\frac{\varepsilon_0 + 2}{\varepsilon_{\infty} + 2}\right)^2 \omega^2 \tau^2}$$
(7)

此の場合 tgð は ω 或は粘性係数 η 從つて τ に對して最大値を示すもので之に對する關係

は次の如し.

$$\omega \tau = \frac{\varepsilon_{\infty} + 2}{\varepsilon_0 + 2} \sqrt{\frac{\varepsilon_0}{\varepsilon_{\infty}}}.....(8)$$
$$tg \vartheta_{max} = \frac{1}{2} \left(\sqrt{\frac{\varepsilon_0}{\varepsilon_{\infty}}} - \sqrt{\frac{\varepsilon_{\gamma}}{\varepsilon_0}} \right)....(9)$$

以上の様な數學式は我々がしばしば引用せるものにして今回も之が實驗結果の重要な一部の 特性傾向と一致せることがわかる。即ち

(1) 等價直列靜電容量一溫度曲線に就て

第2圖 A, B, に於ける"木粉-ベンゼン"系の Cs が, 溫度降下に順ひ減少するは, 前式(2) の η 順つて τ の増大によることは ε に關する第5式より明かなことである. 而して $+6^{\circ}$ C— +2.25°C 及び -8° C— -14° C の間に於て電磁波吸收分散に異狀性を表はすは, 前者は溶媒た る "ベンゼン"の氷結の為の τ の急變であり,後者は木粉に吸着された水分の τ の急増の為 で, 我々の考へでは吸着水分の氷結したのではないかと考へる. 尙氷の Cs が溫度降下に順ひ 次第に減少するのも, 同様に説明し得らる > 處であつて, 只此の場合の變化は連續的であつて, 前述の様に異狀性を表はさないのは氷其のもの > 性質より尤もなこと > うなづきうることであ る.

(2) 誘電體損一溫度曲線に就いて

第3圖A, B, に於ける"木粉-ベンゼン"系の tgð-Temp 曲線も同様な結果が得られ, + 6°C 迄は溫度降下と共に, η 順つて τ の漸増をともなひ, tgð の漸減を來し, +6°C と +2.25°C の間に於て溶媒たる"ベンゼン"が氷結する為 τ は急増し tgð は激減す. 次で溫度降下と共 に吸着水分の τ が愈、増し, -14°C と -16°C の間に於て高周波の方より tgð は零に近き完全 誘電體となることは (2)(7)式の方からもうなづけることである. このことは氷の場合の tgð-Temp 曲線に於ても全く同様に説明し得らるゝことであつて, 只氷の場合は氷其のものゝ性質 上我々の取扱へる範圍內に於ては溫度降下に順ひ tgð の減少は連續的にして, 前述の様な異狀 性を表はさないことは尤もなことである.

(B) 吸着水分形態に就て

吸着水分の形態に就ては我々は之を粘着水と固着水とに分ち,其の内固着水は Langmuir の 所謂化學的吸着水に屬するものと考へた。而して交流電橋での誘電率並に誘電體損測定の結果 繊維質粒子分散系に就ては吸着水分 8 %位迄が固着水に該當すると推定した⁽¹⁾. 今回の場合 "木粉-ベンゼン"系に於て -14°C より -18°C の處で Cs の測定不能となり,又完全誘電體 の様な性質を表はすは,木粉中に吸着された水分の内粘着水に相當するものが溫度降下の為固

⁽¹⁾ 西,上田:理研彙報 14 (1935) 513.

着水と同様の形態になつたことを示す. 即ち氷結したのではないかと思はる.

又粘着水程度の吸着水分雙極子の交番電界に於ける回轉成極様式を見るに、之等雙極分子は 靜電界の作用を受ける時は,熱作用に依る運動に支配されながら分子は回轉分極を行ふのであ るが、交番電界が雙極分子に作用する時は、其の分子の回轉成極、即ち雙極分子の配位作用が電 界の變化に對して充分に追從して行き得るものであれば,誘電分極量は靜電界の場合と殆ど相 等しいものと考へらる.然し此の回轉運動に對する內部抵抗摩擦が存在する為,交番電界の周 波數を次第に高くしてやれば,雙極子は其に充分に追從し得すして其の配位作用が不完全にな り初める處が存在するものである.卽ち分子が其の瞬間の電界の方向に完全に向き直らぬ前に 電界が其の方向を變じてしまふ様な値の周波數が存在する。此の場合の誘電分極は靜電界の場 合よりは小なる値となつて誘電率は減少して來る. 更に高い電界の周波數にあつては, 雙極子の 配位作用は盆、不完全になつて遂に或周波數の電波以上に於ては、雙極子の回轉分極が誘電分極 量に,即ち誘電率に影響を及ぼさなくなる.斯様に考へらる時 " エネルギー "吸收に於ても或 周波數の時で極大値を示すことは考へ得らるゝことであつて、此の損失特性曲線を表はすのは、 雙極分子が電媒質の粘性に關する Characteristic frequency を有する為に起るのである.以上 のことは"デバイ"の雙極子理論を取入れた上記數學的計算による(8)(9)式の方からも明 かなことである.實驗結果の第6,第7,第8圖は能く上述の事柄と一致す。而して本圖より明な る如く吸着水分中其の粘着水に屬する部分は溫度に依り異れる Characteristic frequency を有 することを示す、即ち 16°C, 6°C, 3°C に温度が降下するに連れ 1,200~ 1,000~ 500~ 近 邊に tgð の極大點が表はれる. 溫度降下に順ひ誘電體の tgð の極大點が低周波の方に移ること は (8) 式より明かなことである. 即ち "ベンゼン"を溶媒とした本實驗に於ては "ベンゼン" の粘度は16°℃-6°℃の間には大差なきも、6°℃-3°℃の間に大差あり, 故に tgd の極大點は 16°C−6°C の場合は接近せるも 3°C に至り急に低周波の方による. このことは低温氷に於ける 水分雙框子に於ても同様な傾向を示すもので,第13 圖第14 圖により能く此の關係が示されて 居る. 即ち此の場合も溫度に依り異つた極大點を示し,而して低溫になる程低周波の方に移る.

(C) 固着水並に粘着水と低温氷との誘電體性狀の比較

一般に吸着水の電磁波分散並に吸收は繊維の吸着力下にある水分子に基因するも、氷の場合 のそれは凝集力下にある水分子に基因すると考へられ、共の機構は大分異つて居るが、之等の Relasation time r を測定比較することは誘電體に吸着された水分の形態の追求に當つて非常 に興味あることゝ思はる

先づ吸着水分中我々が粘着水に相當すると考へるものゝ水分雙極子が交番電界に置かれた場合, 其の τ が何度位の氷の τ に相當して居るかと云ふに, 第9表に示す様に"木粉-ベンゼン" 系では, +3°C に於ける粘着水の τ が, -50°C 位の氷の τ と一致する. 即ち繊維に吸着された 水分中粘着水に屬するものゝ +3°C に於ける狀態は, -50°C の氷の水分の狀態に相當して居 る. 尙固着水に至つては前述の通り我々の實驗裝置では常溫附近に於て殆ど等價直列靜電容量 並に誘電體損を示きゞるに, 第9 圖第 10 圖より明かなる如く, -58°C の氷と雖も相當の Cs 並にtgd の値を示すことより,固着水の τ は -58°C の氷よりももつと大きな τ を示すことゝ 思はる. 即ち尙一層低溫の氷の場合の誘電體諸性狀の測定の必要ある, 即ち現在我々の推測で は, もつと低溫の氷の τ に相當すると考へらる. 故に固着水の繊維に吸着きるゝ "ポテンシ ャル"は -58°C の水分子の凝集力よりももつと強いものと云ひ得る.

第9表 "木粉ーベンゼン"系並に氷(低温)の での比較

"木粉―ベンゼン"系

氷

Temp	τ	Temp	$\overline{\tau}$
+ 16°C	1.592 × 10-4	- 34°C	6.920×10^{-5}
+ 6°C	1.603×10^{-4}	- 42°C	1,470 × 10-4
+ 3°C	3.182×10^{-4}	- 50°C	3.182×10^{-4}
		- 58°C	5.538×10^{-4}

[5] 要約

以上を要約するに本實驗に於ては、交流電橋を用ひ常溫より低溫に至る間に於ける"木粉-ベンゼン"系の6,000~ 以下の低域電磁波分散並に吸收を測定し、+6°C-+2.5°C の間及び -14°C--18°C の間に共等の異狀變化を見出し、前者は溶媒たるベンゼンの氷結の為とし、 後者は多分繊維質粒子に吸着された水分中粘着水に相當するものが固着水と同様な形態を表は す為と推定した.又斯様に吸着水分雙極子を根本として理論を進めると其の結果は、實驗結果 の重要な一部の特性傾向と一致しに理論的結果が誘導された.然し理論的方面としては以上の 他、雙極子以外に繊維質粒子に含まれて居る"イオン"並に粒子自身の電導性及び電氣滲透又 は泳動現象に起因する部分がある.是等が電界の影響を受けて運動をなす為の電氣力の變化が 之に相當する誘電體損失を起す一因子をなす.又 Maswell の Layerdielectrics に於ける現象, 卽ち性狀相異る誘電體の界面に於ける兩者の誘電吸收現象の相異に基くものも十分に取り入る べきものであると考へる.

尚電磁波吸收スペクトラムを求め、之より Relaxation time τ を算出し、繊維質粒子分散系 に吸着された水分中粘着水に相當するもの > τ は +3°C に於て 3×10⁻⁴ 程度で -50°C に於 ける氷の τ に相當することをみとめた.

本研究に當り學術振興會より研究費の援助を受けた、こゝに深謝の意を表す。