<table>
<thead>
<tr>
<th>電気界面攪乱 第九報 木繊維の低温に於ける電磁波吸収 分散スペクトルに就いて</th>
</tr>
</thead>
<tbody>
<tr>
<td>志方 益三 上田 靜男</td>
</tr>
<tr>
<td>化学研究所講演集</td>
</tr>
</tbody>
</table>

Issue Date
1937-08

URL
http://hdl.handle.net/2433/73596

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
電気界面攪乱（第九報）

木繊維の低温に於ける電磁波吸収，分散スペクトルに就いて

農学博士 志方 益 三
農学士 上 田 靜 男

梗概

本研究於ては低温に於ける，繊維質粒子分散系の電磁波吸収並に分散様式を見る為に， “木粉—ベンゼン” 分散系に就き， ±30°C の範囲に於ける6,000～以下の低域電磁波吸収及び分散を測定し，溶媒の水点近く郎ち “ベンゼン” に於ては 2°C 近辺に於て，其の異状性をみとめ，尚吸着水分の凝固するノ點に於ける電磁波吸収並に分散様式を測定し，吸着水分形態に付理
論的説明を加へ。一方 -30°C より -60°C に至る範囲の低温域の電磁波分散並に吸収を測定し，兩者の緩衝時間の計算より，繊維質粒子に吸着された水分中，結着水に相当するノ -3°C に於
ける緩衝時間は 3×10^-4 程度で，-50°C に於ける次ノ共に相当することを認めた。

目次

(1) 緒言
(2) 実験装置並に実験方法
 a. 測定 回路
 b. 低温装置並に温度測定方法
 c. 試料 調製
(3) 実験結果
 A. “木粉—ベンゼン” 系に就て
 a. 等価直列電容容量 (Ca) に及ぼす温度の影響
 b. 誘電體損 tanδ に及ぼす温度の影響
 c. 等価直列電容容量に及ぼす周波数の影響
(4) 理論的考察
 A. 誘電體性状変化に就て
 B. 吸着水分形態に就て
(5) 要約

[1] 緒言

従来腸質物に吸着された水分の形態並に共の性質に関する研究は極めて重要なるも，共の測
定に適當なる方法なく明かにきるごとに至らなかった。我々は交流電場に依る誘電率，誘電體損，
並に誘電體損の履歴現象等の測定より，常温前後に於ける繊維質粒子の水分吸着機械に就ての
推論を下し理論検討。電気化学雑誌等に数度発表せり。 即ちリオフィル腸質系に於ては水は腸
質ミセルと密接な成績にあり，共の水の性質は普通自由な状態にある水の共とは異なる。
電気界面混雑

而して水分の吸着量が6〜7%位より共の誘電体動作状態に急激なる変化あることから、吸着水の内6〜7%位迄のものは殆ど固體の様な形をなして居ると考へ、一般に固着水と云はれて居るのは断髪のものも意味すると、之以上のものは粘着水と考えた。然して吸着水分中7%前後の固着水が水の水分子と同一の物理的状態にあるか否かは別問題として、粘着水を冷却せしめる場合、共の電気的に測定した誘電体動作状態が、固着水の共に近似的に近しくたれば粘着水が氷結しない迄も、共の水分子分布状態が固着水の共に近似的に等しくなったと考へることが可能であると思ふ。何となれば粘着水の結晶した場合、共の電磁波放射並に散乱模様は、結晶分子範囲下にある水分子に依るものとすれば、固着水の場合は纖維質粒子の吸着力下にある分子に基因するものと考えてきしさかへないと思ふからである。一方又低温水の誘電体動作状態を測定し、共の緩衝時間を算出し、纖維質に吸着された共の共と比較し吸着水分形態に就て理論的説明を加へんとする。

[2] 実験装置並びに実験方法

第1図 発振並に測定回路

a. 測定回路
測定回路は第1図に示す様である。

I 発振回路
A.M.P: 増幅装置

II 測定回路
X：可検軸振動器
Re：検波器
G：検流計
R₁R₂：高周波用抵抗
C：可変電容器
R₃：可変高周波用抵抗

即ち測定電流の等価回路には直列抵抗を用ひた。

b. 低温装置並びに温度測定方法
低温槽としては内容 14.4 cm³ の箱を用ひ、割りには 15 cm の厚さに“コルク”板を詰め、外部電場の影響をさける為に全体を電木板にて覆ひ、之を接地し、此のへ試料を入れた五極平板コンデンサーを置き、其の一層に“銅-コニスタタン”熱電端を挿入し、温度を測定しながら他の一層を測定回路に入れ等価直列電容容、等価直列抵抗を測定する。溶着剤としては“ドライアイス”を使用した。

温度測定用“銅-コニスタタン”熱電端の電位測定には“ポテンショメーター”を用ひ、“ドライアイス”を入れてより10分毎に温度測定をなし、一定温度に達してより2時間後測定を開始する。

(195)
c. 試料調製

試料木粉は北海道における機械的に粉砕するものを用ひ、之を“ペンゼン”を入れた五極平板蓄電器間に投入し、デシケーター中に於入れ排気し、気泡を除き試料となる。以下特別のことわざなら、時には従来同様調製するものとす。第1表 "木粉-ペンゼン" 系に於ける Cs-Temp 表

<table>
<thead>
<tr>
<th>T</th>
<th>f</th>
<th>μμF</th>
</tr>
</thead>
<tbody>
<tr>
<td>26°C</td>
<td>1,000</td>
<td>595.0</td>
<td>460.0</td>
<td>398.0</td>
<td>340.0</td>
<td>314.0</td>
<td>321.0</td>
<td>306.0</td>
<td>305.0</td>
<td>274.0</td>
<td>266.0</td>
<td></td>
</tr>
<tr>
<td>16°C</td>
<td>1,500</td>
<td>460.0</td>
<td>330.0</td>
<td>302.5</td>
<td>260.0</td>
<td>215.0</td>
<td>215.0</td>
<td>185.0</td>
<td>195.0</td>
<td>190.0</td>
<td>193.0</td>
<td></td>
</tr>
<tr>
<td>6°C</td>
<td>2,000</td>
<td>252.0</td>
<td>207.0</td>
<td>180.0</td>
<td>166.0</td>
<td>144.0</td>
<td>138.0</td>
<td>123.0</td>
<td>121.0</td>
<td>125.0</td>
<td>127.0</td>
<td>122.0</td>
</tr>
<tr>
<td>3°C</td>
<td>2,500</td>
<td>203.0</td>
<td>155.0</td>
<td>118.0</td>
<td>109.0</td>
<td>110.0</td>
<td>100.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>4°C</td>
<td>300.0</td>
<td>130.0</td>
<td>125.0</td>
<td>108.0</td>
<td>97.0</td>
<td>88.0</td>
<td>97.0</td>
<td>90.0</td>
<td>88.0</td>
<td>85.0</td>
<td>95.0</td>
<td>90.0</td>
</tr>
<tr>
<td>8°C</td>
<td>4,000</td>
<td>99.0</td>
<td>84.0</td>
<td>78.0</td>
<td>75.0</td>
<td>74.0</td>
<td>71.0</td>
<td>71.0</td>
<td>69.0</td>
<td>66.0</td>
<td>67.0</td>
<td>66.0</td>
</tr>
<tr>
<td>14°C</td>
<td>6,000</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>19°C</td>
<td>8,000</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

[3] 實験結果

(A) "木粉-ペンゼン" 系に就て

等価直列電容変化に及ぼす温度の影響

低温雰の温度を +30°C より -30°C
低下せしめた場合の等価直列電容変化を示す。1,000〜-6,000〜 の各周波数に分けて表したのが、第1表並

第2表 (B)
"木粉-ペンゼン" 系
Cs-Temp 曲線

第2圖 (A)
"木粉-ペンゼン" 系に於ける Cs-Temp 曲線

第2圖 (B)
"木粉-ペンゼン" 系
Cs-Temp 曲線

に第2圖である。

本圖にては紙軸に等価直列電容変化を μμF で表し、横軸には温度を示す。而して第2圖は A, B よりなり、A
國は 1,000〜-3,500〜 B 圖は 4,000〜-6,000〜 の間の関係を表す。即も測定電源 1,000〜-6,000〜 の間に於て
は温度降下につれて、共の等価直列電
電気界面混亂

電容量は低下し、+6℃と+2.5℃との間に不連続的急低下を来す。+2.5℃より−4℃迄は測定電流の周波数2.000〜以上は等価直列電気容量の変化は殆どなく、尚一層低温となるにつれて又 Cs の低下を現し−14℃と−18℃との間に於て我々の装置では高周波の方がより測定不能となる。

b. 誘電體損に及ぼす温度の影響

（a）の場合と同じく低温時の温度を+30℃より−30℃迄降下せしめた場合の誘電體損の変化を、1,000〜6,000〜迄の各周波数に分けて表したのが第2表並に第3図A,Bである。

第2表 “木粉−ペンゼン”系に於ける tan δ-Temp 表

<table>
<thead>
<tr>
<th>T</th>
<th>f 1,000</th>
<th>f 1,500</th>
<th>f 2,000</th>
<th>f 2,500</th>
<th>f 3,000</th>
<th>f 3,500</th>
<th>f 4,000</th>
<th>f 4,500</th>
<th>f 5,000</th>
<th>f 5,500</th>
<th>f 6,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>+26℃</td>
<td>0.480</td>
<td>0.418</td>
<td>0.478</td>
<td>0.458</td>
<td>0.405</td>
<td>0.378</td>
<td>0.375</td>
<td>0.415</td>
<td>0.456</td>
<td>0.359</td>
<td>0.364</td>
</tr>
<tr>
<td>+16℃</td>
<td>0.461</td>
<td>0.369</td>
<td>0.340</td>
<td>0.310</td>
<td>0.235</td>
<td>0.277</td>
<td>0.171</td>
<td>0.298</td>
<td>0.299</td>
<td>0.256</td>
<td></td>
</tr>
<tr>
<td>+6℃</td>
<td>0.388</td>
<td>0.245</td>
<td>0.213</td>
<td>0.172</td>
<td>0.113</td>
<td>0.143</td>
<td>0.070</td>
<td>0.106</td>
<td>0.124</td>
<td>0.136</td>
<td>0.123</td>
</tr>
<tr>
<td>+3℃</td>
<td>0.223</td>
<td>0.148</td>
<td>0.096</td>
<td>0.046</td>
<td>0.045</td>
<td>0.057</td>
<td>0.024</td>
<td>0.045</td>
<td>0.051</td>
<td>0.056</td>
<td>0.061</td>
</tr>
<tr>
<td>−4℃</td>
<td>0.089</td>
<td>0.078</td>
<td>0.065</td>
<td>0.026</td>
<td>0.006</td>
<td>0.0226</td>
<td>0.008</td>
<td>0.012</td>
<td>0.012</td>
<td>0.013</td>
<td>0.015</td>
</tr>
<tr>
<td>−8℃</td>
<td>0.056</td>
<td>0.040</td>
<td>0.025</td>
<td>0.030</td>
<td>0.008</td>
<td>0.034</td>
<td>0.013</td>
<td>0.013</td>
<td>0.036</td>
<td>0.006</td>
<td>0.007</td>
</tr>
<tr>
<td>−14℃</td>
<td>0.004</td>
<td>0.011</td>
<td>0.017</td>
<td>0.012</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>−19℃</td>
<td>−</td>
</tr>
</tbody>
</table>

本図に於ては縦軸にtgδ×100横軸に測定温度を取る。而して第3図Aは1,000〜−3,500〜B図は4,000〜−6,000〜の間の関係を表す。此の場合に於ても+6℃と+2.5℃との間に於て誘電體損の不連続的急低下を来し、異常吸収を表はし、共より温度下降に伴ふ誘電體損下降は、徐々にして−14℃より−16℃の間に於て高周波の方がより測定不能に陥る。

第3図(A)“木粉−ペンゼン”系 tgδ-Temp 曲線

第3図 (B) “木粉−ペンゼン”系tgδ-Temp曲線

（197）
電気界面挾乱

c. 等価直列静電容量に及ぼす周波数の影響

+26℃より−14℃に至る諸種温度における等価直列静電容量の測定を500〜より6,000〜の間の電源にて行ひ第3表並に第4図に示す様な結果を得た。

第3表 “木粉ベンゼン”系に於けるCs-f表

<table>
<thead>
<tr>
<th>f</th>
<th>+26℃</th>
<th>+16℃</th>
<th>+6℃</th>
<th>+3℃</th>
<th>-4℃</th>
<th>-8℃</th>
<th>-14℃</th>
<th>-19℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
</tr>
<tr>
<td>1.000</td>
<td>595.0</td>
<td>460.0</td>
<td>252.0</td>
<td>203.0</td>
<td>130.0</td>
<td>99.0</td>
<td>20.0</td>
<td>—</td>
</tr>
<tr>
<td>1.500</td>
<td>460.0</td>
<td>330.0</td>
<td>207.0</td>
<td>155.0</td>
<td>125.0</td>
<td>84.0</td>
<td>20.0</td>
<td>—</td>
</tr>
<tr>
<td>2.000</td>
<td>430.0</td>
<td>302.5</td>
<td>180.0</td>
<td>118.0</td>
<td>108.0</td>
<td>78.0</td>
<td>10.0</td>
<td>—</td>
</tr>
<tr>
<td>2.500</td>
<td>398.0</td>
<td>260.0</td>
<td>166.0</td>
<td>109.0</td>
<td>97.0</td>
<td>75.0</td>
<td>10.0</td>
<td>—</td>
</tr>
<tr>
<td>3.000</td>
<td>340.0</td>
<td>215.0</td>
<td>144.0</td>
<td>110.0</td>
<td>88.0</td>
<td>74.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3.500</td>
<td>314.0</td>
<td>215.0</td>
<td>138.0</td>
<td>100.0</td>
<td>97.0</td>
<td>71.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.000</td>
<td>321.0</td>
<td>185.0</td>
<td>123.0</td>
<td>90.0</td>
<td>90.0</td>
<td>71.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4.500</td>
<td>306.0</td>
<td>169.0</td>
<td>121.0</td>
<td>99.0</td>
<td>98.0</td>
<td>69.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5.000</td>
<td>305.0</td>
<td>195.0</td>
<td>125.0</td>
<td>99.0</td>
<td>85.0</td>
<td>66.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5.500</td>
<td>274.0</td>
<td>200.0</td>
<td>127.0</td>
<td>100.0</td>
<td>95.0</td>
<td>67.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6.000</td>
<td>266.0</td>
<td>193.0</td>
<td>122.0</td>
<td>99.0</td>
<td>90.0</td>
<td>66.0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

第4図
“木粉ベンゼン”系Cs-f曲線

本図に於ては縦軸に等価直列静電容量をμFで表はし，横軸には周波数を示す。而して本実験に於ては等価直列静電容量に及ぼす周波数の影響は，高温なる程低周波側で顕著に現はる。即ち26℃より6℃の間に於ては我々の測定範囲に於ても周波数の影響が相当顕著なるも，3℃以下は我々の測定周波数の際では，共の影響現はれず，もつと低周波側に表はることを思はる。

d. 電極材損に及ぼす周波数の影響

(198)
電気界面掲載

＋26℃より－14℃に至る各種温度に於ける誘電率損の測定を500～6,000電源にて
行ひ，第5図第4表に示す様な結果を得た。

第4表 "木粉－ペンゼン"系に於けるtanδf表

<table>
<thead>
<tr>
<th>f (GHz)</th>
<th>tanδ</th>
<th>tanδ</th>
<th>tanδ</th>
<th>tanδ</th>
<th>tanδ</th>
<th>tanδ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+26℃</td>
<td>+16℃</td>
<td>+6℃</td>
<td>+3℃</td>
<td>-4℃</td>
<td>-8℃</td>
</tr>
<tr>
<td>1,000</td>
<td>0.480</td>
<td>0.461</td>
<td>0.388</td>
<td>0.223</td>
<td>0.089</td>
<td>0.056</td>
</tr>
<tr>
<td>1,500</td>
<td>0.418</td>
<td>0.369</td>
<td>0.245</td>
<td>0.148</td>
<td>0.078</td>
<td>0.040</td>
</tr>
<tr>
<td>2,000</td>
<td>0.478</td>
<td>0.341</td>
<td>0.213</td>
<td>0.096</td>
<td>0.065</td>
<td>0.025</td>
</tr>
<tr>
<td>2,500</td>
<td>0.458</td>
<td>0.310</td>
<td>0.172</td>
<td>0.046</td>
<td>0.026</td>
<td>0.030</td>
</tr>
<tr>
<td>3,000</td>
<td>0.405</td>
<td>0.235</td>
<td>0.113</td>
<td>0.045</td>
<td>0.013</td>
<td>0.008</td>
</tr>
<tr>
<td>3,500</td>
<td>0.378</td>
<td>0.277</td>
<td>0.143</td>
<td>0.057</td>
<td>0.0226</td>
<td>0.034</td>
</tr>
<tr>
<td>4,000</td>
<td>0.375</td>
<td>0.171</td>
<td>0.070</td>
<td>0.024</td>
<td>0.008</td>
<td>0.013</td>
</tr>
<tr>
<td>4,500</td>
<td>0.415</td>
<td>0.177</td>
<td>0.106</td>
<td>0.045</td>
<td>0.012</td>
<td>0.013</td>
</tr>
<tr>
<td>5,000</td>
<td>0.456</td>
<td>0.298</td>
<td>0.124</td>
<td>0.051</td>
<td>0.012</td>
<td>0.036</td>
</tr>
<tr>
<td>5,500</td>
<td>0.359</td>
<td>0.299</td>
<td>0.136</td>
<td>0.056</td>
<td>0.013</td>
<td>0.006</td>
</tr>
<tr>
<td>6,000</td>
<td>0.364</td>
<td>0.256</td>
<td>0.123</td>
<td>0.061</td>
<td>0.015</td>
<td>0.007</td>
</tr>
</tbody>
</table>

第5図 "木粉－ペンゼン"系tgδf曲線

本図にては縦軸にtgδ×100，横軸に周波数を示す。此の結果に依ると誘電率損に及ぼす
周波数の影響は測定温度に依り異なる。即ちtgδの極大點は高温になる程右方より高周波側に移
り，零度以下は我々の測定周波数に於てはtgδの極大點を見はさす，それはもう低周波側に
あることを示す。

第6図第7図第8図は測定温度16℃，6℃，3℃に於ける"電磁波吸収分散スペクトラム"を
示すもので，縦軸にはtgδ×100並に周波数をMHzで表はし，横軸には周波数を示す。図に
依り明かなる如くtgδの極大點は誘電率変化の最も著しい点にある事は，一般誘電體と同様
である。

(199)
(B) 細胞の誘電性状に就て
本実験に於ては式料細胞を2回蒸溜して用ふ。
a. 等価直列電容値 Cs に於ける温度の影響。
−34℃〜−58℃ の間に於ける水の等価直列電容値を1,000〜6,000の各温度に就て測定し第9図第5表に示す様な結果を得た。

第5表 “水”に於ける Cs-Temp 表

<table>
<thead>
<tr>
<th>T</th>
<th>1,000</th>
<th>2,000</th>
<th>3,000</th>
<th>4,000</th>
<th>5,000</th>
<th>6,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
<td>μF</td>
</tr>
<tr>
<td>−34℃</td>
<td>462.9</td>
<td>371.0</td>
<td>201.1</td>
<td>101.0</td>
<td>98.8</td>
<td>81.4</td>
</tr>
<tr>
<td>−42℃</td>
<td>216.0</td>
<td>108.5</td>
<td>61.0</td>
<td>42.9</td>
<td>37.7</td>
<td>23.3</td>
</tr>
<tr>
<td>−50℃</td>
<td>154.5</td>
<td>56.2</td>
<td>35.0</td>
<td>25.5</td>
<td>22.7</td>
<td>21.8</td>
</tr>
<tr>
<td>−58℃</td>
<td>95.5</td>
<td>35.6</td>
<td>22.5</td>
<td>14.8</td>
<td>15.5</td>
<td>15.7</td>
</tr>
</tbody>
</table>

(200)
本図において縦軸に Cs を µF で表し、横軸には温度を示す。図より明かな様に温度低下と共に Cs の連続的降下を来す。

b. 誘電損に及ぼす温度の影響

-38℃〜-58℃ の間に於ける各温度の氷の誘電損を 2,000〜〜6,000 の各周波数に於て測定し、第10図第6表に示す様な結果を得た。本図に於ては縦軸に tgδ × 100 横軸には測定温度を採る。図より明かな如く温度低下にともなひ誘電損の連続的降下を来す。

第6表 "氷" に於ける tan-δ Temp 表

<table>
<thead>
<tr>
<th>T</th>
<th>1,000</th>
<th>2,000</th>
<th>3,000</th>
<th>4,000</th>
<th>5,000</th>
<th>6,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-34℃</td>
<td>2.45</td>
<td>3.80</td>
<td>3.79</td>
<td>2.20</td>
<td>2.25</td>
<td>2.21</td>
</tr>
<tr>
<td>-42℃</td>
<td>2.01</td>
<td>1.77</td>
<td>1.34</td>
<td>.97</td>
<td>1.05</td>
<td>.63</td>
</tr>
<tr>
<td>-50℃</td>
<td>2.14</td>
<td>1.10</td>
<td>.74</td>
<td>.55</td>
<td>.54</td>
<td>.53</td>
</tr>
<tr>
<td>-58℃</td>
<td>1.48</td>
<td>.74</td>
<td>.46</td>
<td>.20</td>
<td>.30</td>
<td>.33</td>
</tr>
</tbody>
</table>

c. 等価直列騒音容量（Cs）に及ぼす周波数の影響

-38℃〜-58℃ の間に於ける、各種温度の氷の Cs の測定を、500〜〜6,000 電源にて行ひ、第11図第7表に示す様な結果を得た。
電気界面挿乱

第10図
低温氷のtgδ-Temp.曲線

第11図
氷のCs-f曲線

第7表 “氷”に於けるCs-f表

<table>
<thead>
<tr>
<th>f</th>
<th>Cs μF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>462.9</td>
</tr>
<tr>
<td>2,000</td>
<td>371.0</td>
</tr>
<tr>
<td>3,000</td>
<td>201.1</td>
</tr>
<tr>
<td>4,000</td>
<td>101.1</td>
</tr>
<tr>
<td>5,000</td>
<td>98.8</td>
</tr>
<tr>
<td>6,000</td>
<td>81.4</td>
</tr>
</tbody>
</table>

本表に於ては縦軸にCsをμFで表し、横軸には周波数を示す。此の結果に依るとCsに及ぼす周波数の影響は高温になる程顕著に表はる。

d. 誘電體損に及ぼす周波数の影響

-34℃より-58℃に至る間の温度に於ける誘電體損の測定を、500～6,000電源にて行ひ、第12表第8表に示す様な結果を得た。

第8表 “氷”に於けるtanδ-f表

<table>
<thead>
<tr>
<th>f</th>
<th>tan δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>2.45</td>
</tr>
<tr>
<td>2,000</td>
<td>3.80</td>
</tr>
<tr>
<td>3,000</td>
<td>3.79</td>
</tr>
<tr>
<td>4,000</td>
<td>2.20</td>
</tr>
<tr>
<td>5,000</td>
<td>2.25</td>
</tr>
<tr>
<td>6,000</td>
<td>2.21</td>
</tr>
</tbody>
</table>

(202)
本図に於ては縦軸に \(\text{tg} \delta \times 100 \) を表し、横軸に周波数を示す。此の場合に於て \(\text{tg} \delta \) の極大点は高周波になる程高周波の方に移るものにして、例へば \(-34^\circ \text{C}\) に於ては 2,500 位に共の極大点を見るも、\(-42^\circ \text{C}\) にては 1,300 近辺にして、且つ \(-58^\circ \text{C}\) に至つては我々の測定周波数に於ては \(\text{tg} \delta \) の極大点を表はず、もつと低周波側多分 250 近辺にあるものと思ふる。

第 13 図第 14 図は「電磁波吸収散歩スペクトラム」を示せるものにして縦軸に \(\text{tg} \delta \times 100 \) 並に電気容量を \(\mu \text{F} \) で表し横軸には周波数を示す。図より明かなる如く \(\text{tg} \delta \) の極大点は誇電率変化の最も著しい點にある。

【4】実験結果に対する考察
(A) 誘電體性状の変化に就て

上述の様々な実験結果が如何なる機構に依り起こるかを電気物理的に解析考察することは極めて興味ある問題であつて、我々は木粉粒子に吸着された小量の水分に着目し、交差変界に於げる水分視極子の回転成極を基として説明を進める
電気界面乱

とす。即ち水を吸着せる木炭粒子等を上記方法に依り交番電界において、水分吸収極は回転成極として当に対する抵抗との存在に依り、共著にエネルギー損及び回転成極に依る誘電率変化の起ることは容易に了解せらるることである。

今電極電体が f なる交番電界に於かれ、分子に作用する電気力を \(F = \varepsilon \varepsilon_0 \varepsilon_0 e^{j\omega t} \) とすれば之に依り次の様な誘電率を受けることとなる。

\[
\bar{\varepsilon} = \frac{1}{1 + j\omega \tau} \frac{\mu^2}{3\varkappa T} F_0 e^{j\omega t} \\
\sqrt{\frac{1 + j\omega \tau}{1 + \omega^2 \tau^2}} \frac{\mu^2}{3\varkappa T} F_0 e^{j\omega (t-\tau)} \quad \cdots \cdots
電気界面乱れ

は次の如し。\begin{equation}
\omega \tau = \frac{\varepsilon_r + 2}{\varepsilon_r - 2} \sqrt{\frac{\varepsilon_0}{\varepsilon_r}} \tag{8}
\end{equation}
\begin{equation}
tg\delta_{\text{max}} = \frac{1}{2} \left(\sqrt{\frac{\varepsilon_0}{\varepsilon_r}} - \sqrt{\frac{\varepsilon_0}{\varepsilon_r}} \right) \tag{9}
\end{equation}

以上の様な数学式は我々がしばしば引用するものにして今回も之が実験結果の重要な一部の特性傾向と一致することがわかる。即ち

（1）等価直列電容容量一温度曲線に就て

第2図 A, B, に於ける“木粉・ペンゼン”系の Cs が、温度降下に順に減少するは、前式 (2)
の γ 由て τ の増大によるとは ε に関する第5式より明かなることである。而して +6°C と
+2.25°C 及び -8°C と -14°C の間に出于電荷波吸収散分布に異状を表はす。前者は溶液たる
“ペンゼン”の水結の為の τ の急変であり、後者は木粉に吸着された水分の τ の急増の為
で、我々の考へでは吸着水分の水結したのではないかと考える。尚冷水の Cs が温度降下に順に
次第に減少するのも、同様に説明し得る所であるて、此の場合の変化は連続的であって、
前述の様に異状を表はさぬのは水のものに性質より尤もなことやうなづきうることである。

（2）誘電損一温度曲線に就て

第3図 A, B, に於ける“木粉・ペンゼン”系の
tgδ-Temp 曲線も同様な結果が得られ、+6°C
迄は温度降下と共に、γ 由て τ の発生をもととに、tgδ の減少を来し、+6°C と +2.25°C
の間に出于於て溶液たる“ペンゼン”が水結する為 τ は急増し tgδ は激減す。次で温度降下と共に
吸着水分の τ が急、増し、-14°C と -16°C の間に於て高周波の方がよりtgδ は零に近き完全
誘電体となることは (2)(7) 式の方からもうなづけることである。此のことは氷の場合の
tgδ-Temp 曲線に出ても全く同様に説明し得るも、此の場合は水のものに性質
上我々の取扱いの範囲内に出しては温度降下に順に τgδ の減少は連続的にして、前述の様な異状
性を表はさぬことは尤もなることである。

（B）吸着水分形態に就て

吸着水分の形態に就て我々は之を粘着水と囲着水とに分ち、共の内固着水は Langmuir の
所謂化学的吸着水に属するものと考へた。而して交流電池での誘電率並に誘電損測定の結果
繊維質粒子分散系に就ては吸着水分 8 %位が固着水に該当すると推定した(1)。 今回の場合
“木粉・ペンゼン”系に於て -14°C より -18°C の處で Cs の測定不能となり、又完全誘電体
の様な性質を表はす。木粉中に吸着された水分の内粘着水に相当するものが温度降下の為固

(1) 西, 上田: 理研策報 14 (1935) 513.
電気界面散乱

着水と同様の形態になったことを示す。即ち水結したのではないかと思はる。

又粘着水程度の着水分散個々粒子の交香電界に於ける回轉成核様式を見るに、之等個々粒子は靜電界の作力を受ける時は、熱作用に依る運動に支配されながら粒子は回轉成核を行ふのであるが、交香電界が個々粒子に作用する時は、共の粒子の回轉成核、即ち個々粒子の配位作用が電界の変化に対して充分に追従して行き得るものであれば、誘電分極量は静電界の場合と殆ど相等しいものと考えられる。然し此の回転運動に対する内部抵抗摩摺が存在する為、交香電界の周波数を次第に高くしてやれば、個々粒子は共に充分に追従し得る時共の配位象が不完全でない初めの慮が存在するものである。即ち粒子が共の周爾の電界の方向に完全に向って求む前に電界が共の方向を変じて、仮想の値の周波数が存在する。此の場合の誘電分極は静電力の場合よりは小なる値となつて誘電率は減少して来る。更に高い電界の周波数に於ては、個々粒子の配位作用は益々不完全となって遂に或周波数の電力以上に於ては、個々粒子の回転分極が誘電分極量に、即も誘電率に影響を及ぼさなくなる。斯様に考えられる時“エネルギー”吸収に於ても或周波数の時で極大値を示することは否へ得るか、とて考えて、此の損失特性曲線を表はすのは、個々粒子が電媒質の粘性に関する Characteristic frequency を有する為に起こるのである。以上のことときは“デバイ”の個々粒子理論を取り入れた上記数学的計算による（8）（9）式の方からも明かなことである。実験結果の第6、第7、第8 図は能く上述の事柄と一致す。而して本図より明なる如く、吸着水分中各粘着水に属する部分は温度に依り異なる Characteristic frequency を有することを示す。即ち 16℃、6℃、3℃ に温度が降下するに連れて 1,200～1,000～500～近辺に tgδ の極大値が表れる。温度降下に於て誘電率の tgδ の極大値が低周波の方に移ることを（8）式より明かなことである。即ち“ベンゼン”を溶媒とした本実験に於ては“ベンゼン”の粘度は 16℃～6℃ の間には大差なきも、6℃～3℃ の間に大差あり、故に tgδ の極大値は 16℃～3℃ の場合は接近させるも 3℃ に至り急に低周波の方により、このことは低温に於ける水分個々粒子に於ても同様な傾向を示すもので、第13 図第14 図より能く此の關係が示されて居る。即も此の場合も温度に依り異った極大値を示し、而して低温になる程低周波の方に移る。

（C）固着水並に粘着水と低温水との誘電感性状の比較

一般に吸着水の電磁波散乱並に吸収は繊維の吸着力下にある水分子に基するも、氷の場合のそれは凝集力下にある水分子に基すると考へられ、共の機能は大分異って居るが、之等の Relaxation time τ を測定比較することは誘電体に吸着された水分の形態の追求に當て非常に興味あることと思はる。

先づ吸着水分中我々が粘着水に相当すると考へるものと水分個個粒子が交香電界に置かれた場合、共の τ は何度位の氷の τ に相当して居るかと云ふに、第9 表に示す様に“木粉+ベンゼン”系では、+3℃ に於ける粘着水の τ が、-50℃ 位の氷の τ と一致する。即ち繊維に吸着された
水分中粘着水に属するもの

水に於ける状態は、

-50℃の水の水分の状態に相当して居る。溶液水を以ては前述の通り我々の実験装置では常温附近にて発と等価直列電流容量

並に誘電体損を示さざるに、第9回第10回より明かなる知く、

-58℃の水と難も相当の Cs

並にtgθの値を示すことより、固着水のτは-58℃の水よりももつと大きなτを示すこと、

思はる。即ち、固着低温の水の場合の誘電体損性状の測定の必要がある。

第9表、“木粉—ベンゼン”系並に水（低温）のτの比較

<table>
<thead>
<tr>
<th>Temp</th>
<th>τ</th>
<th>Temp</th>
<th>τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>+16℃</td>
<td>1.592×10^-4</td>
<td>-34℃</td>
<td>6.920×10^-6</td>
</tr>
<tr>
<td>+6℃</td>
<td>1.603×10^-4</td>
<td>-42℃</td>
<td>1.470×10^-4</td>
</tr>
<tr>
<td>+3℃</td>
<td>3.182×10^-4</td>
<td>-50℃</td>
<td>3.182×10^-4</td>
</tr>
<tr>
<td>-58℃</td>
<td>5.538×10^-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[5]要約

以上を要約するに本実験に於ては、交流電流を用ひ常温より低温に至る間に於ける“木粉—ベンゼン”系の6,000～

以下、低壓電流波分散並に吸収を測定し、+6℃—+2.5℃の間及び

-14℃—-18℃の間に共等の異常変化を観出、前者は溶解に於けるベンゼンの水絡の為とし、

後者は多分纖維質粒子に吸着された水分中粘着水に相当するものが固着水と同様な形態を表はす為と推定した。

又斯様に吸着水分纖維質粒子を根本として理論を進めるときの結果は、実験結果の重要な一部の特性傾向と一致した理論的結果が誘導された。然し理諭的方面としては以上の他、

繊維質粒子に含まれて居る“イオン”並に粒子自身の電導性及び電気減漏又は泳動現象に起因する部分がある、

是等が電波の影響を受けて運動をなす等の電気力の変化が、

之に相当する誘電体損失を起す一因子をなす。又MaswellのLayerdielectricsに於ける現象、

即ち性状相異の誘電体の面に於ける両者の誘電吸収現象の相異に基くものに十分に取り入れるべきものであると考える。

向電流波吸收スペクトラムを求め、之よりRelaxation time τを算出し、纖維質粒子分散系に吸着された水分中粘着水に相当するもの τは+3℃に於て3×10^-4程度で、-50℃に於ける水の τに相当することをみとめた。

本研究に當り学術振興会より研究費の援助を受けた、ことに深謝の意を表す。