<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>コバルトを含有する銅・アルミニウム軽合金の焼戻硬化組織に及ぼすマンガン及マグネシウムの影響 (合金の焼戻硬化に関する研究 第十一報)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>江村 孝之 中村 定</td>
</tr>
<tr>
<td>Citation</td>
<td>化学研究所講演集 (1937), 7: 111-116</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/73609</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
コバルトを含有する銅・アルミニウム軽合金の焼戻硬化組織に及ぼすマンガ
ン及マグネシウムの影響

（合金の焼戻硬化に関する研究 第十一報）

江村 孝之

中 村 定

緒 言

多くの有用アルミニウム軽合金の主體をなす 4％ Cu-Al 合金の焼戻硬化組織に関しては,
既に著者において宇野・村上両氏(1)に依り詳細報告され、更に Co 添加の場合に就いて著者の
一人(2)は昨年の本会に於て述べたる所なり。今、以上の合金に更に Mn 或は Mg 等を添加せ
しめたる場合、其の焼戻硬化組織は如何に変化するかを就き試験に簡単し報告せんとす。

4％ Cu-Al 合金に添加する Co, Mn 及び Mg 等の量は便宜上各 1％に限定し、又鏡検に便
なるを分と報告と同様蛻中冷試料を採用せり。

尚、各試料は 500℃ に 1 時間加熱後水中に焼入れ而後 1 時間各温度に焼戻を施せり。鏡
検に際し、倍率は総て 160 倍とし、腐蝕剤に何れも硝化水素酸、硝酸及塩酸の混合稀薄水溶
液を使用せり。

Mn 添加の場合

今、試料の成分を簡単にする為 Co を含まざる 4％ Cu-Al 合金を母合金とし、之に Mn を

第1図 焼入れ 第2図 250℃ 焼戻 第4図 400℃ 焼戻

昭和十一年六月第 11 回化学研究所講演会発表（大阪）。
(1) 宇野豊三、村上芳三、化学研究所講演集、4 (1934) 16；工業化学雑誌、37 (1934) 403。
(2) 江村孝之、林茂壽、化学研究所講演集、6 (1936) 110。
添加してその焼け硬組織を観察せんとす。焼入れ組織は第1図に示すが如く共晶附近に母相に溶解させさし粗粒状結晶の残存させるを認め、之を種々なる温度にて焼入れするに230℃附近より微細なる結晶の析出を始め、250℃に至るも第2図の如く共晶に接して一面に析出晶現する。この時硬度は最高に達すること、第3図に掲げる如し。焼入れ温度上昇すると伴ひ、析出晶は漸大母相に溶解して、400℃にて第4図の如く焼入の場合と略同様の組織となる。

Mg 添加の場合

次に4% Cu-Al 合金に1% Mg を含むでめの前記同様の試料を作り観察すると、焼入

の場合は第5図の如く、共晶の外は均一組織となれり。200℃附近の焼入れにては、析出晶は特に認められざるも共晶附近の褐色に色せせを観、共晶の組織は第6図の如し、之れ恐らく超顯微鏡的の析出晶の既に出現せるものならん。230℃焼入れにては、第7図の如く共晶着色著しく、此の際硬度は第8図に示すが如く最高となる。250℃焼入れ於では微細なる結晶の析出しきも、硬度は影響低下し始め、300℃焼入れに至りては、第9図に示す如く析出晶著しきに包む不拘、硬度は殆ど最小となる、之れ Co 或は Mn を

第8 図 Mg 添加＝依向焼入れ硬度曲線

（112）
第9図 300°C焼戻

第10図 400°C焼戻

添加する場合と全然異なる現象にし
て興味深いものあり。400°C焼戻
にありては、微晶粒は溶解しきり、
粗晶粒のみ残存すること第10図
の如し。

Mn及Mg添加の場合

Mn及Mgを各々1%同時に
含有せしむに、第11図の如く焼
入組織に於ても母体に溶解せずにして残留せる晶粒あるも、200°C附近の焼戻にては共晶帯褐色
に着色し始め、恰も前記Mgのみを添加せる場合に相類たり、230°C焼戻にては第12図の
如く共晶附近の着色著しく、微細結晶の析出も始まり硬度亦最高に達する事第13図に掲げる
が如し。第14図は250°C焼戻の場合にて微晶粒の析出鈍々著しみも硬度は著しく低下し始め

第13図 Mn及Mg添加＝依＝焼戻硬変曲線

第15図 400°C焼戻

如く前者の如く高さ酸素の微細結晶の析出も始まり硬度亦最高に達する事第13図に掲げる
が如し。第14図は250°C焼戻の場合にて微晶粒の析出鈍々著しみも硬度は著しく低下し始め

Co及Mn添加の場合

(113)
コパルトを含有する鋼-アルミニウム合金の焼結硬化組織と及ぼすマンガン及びマグネシウムの影響

次に本問題の目的にある 1 Co-4 Cu-Al 合金に Mn を添加せる場合の影響を述べよとす。この際焼入組織は第 16 園の如く著しく多くの不溶解結晶を認め、230°C 附近より焼結に基く微細粒の析出を生ず。第 17 園は 250°C 焼結の場合なり、300°C 焼結にては第 18 園の如く微細結晶の析出最も著しく硬度亦最大となる事第 19 園に見擬るが如し。

Co 及 Mn 添加の場合

焼入組織は第 20 園に示すが如し、又焼結組織は Mg を添加せざるものと大差なし。但し共晶附近の呈色現象は 200°C 以上の焼結に於て始まり、230°C の焼結にては第 21 園の如く著然たり。第 22 園は 250°C 焼結の場合にして、着色範囲拡大すると共に微細結晶の析出も始まり硬度亦最高に達すること。第 23 園に於て明白なり。焼結度 300°C に至れば第 24 園の如く析出品は益々多くなるも硬度は却って低下す。之れ Mg を含む場合の特性なるべし。

Co, Mn 及 Mg 添加の場合

第 25 園は焼入組織なるも Co, Mn を含むを以て不溶解結晶は顕る多分に残留せり。200°C 附近の焼結より着色現象起り、250°C 焼結にては第 26 園の如く着色、析出物現象共著るしく、
「ある物を含む鋼・アルミニウム合金の焼成硬化組織に及ぼすマングン及びマネジウムの影響」

第23図 Co及びMg添加＝依流焼成硬化曲線

第24図 300℃焼成

第22図 400℃焼成

第25図 焼入

第26図 250℃焼成

第28図 400℃焼成

第27図 Co、Mn及びMg添加＝依流焼成硬化曲線

この際最高硬度を示すこと第27図に掲げることが如し、次に焼成温度の上昇と共に析出品は漸次母体に溶解し去ると雖も、400℃焼成に於てもなお少量の不溶解結晶粒の残存せるを認むる事第28図の如し。

之を要するに、Mnを添加せしめても4Cu-α及びCu-4Cu-α合金に同様、微米粒の最も多く析出させる焼成度に於て硬化も亦最高を示せるも、Mgを添加せしめる場合は之と異り、微米粒析出の顕微鏡下に認めらるペに先立ち、先づ共晶附近に褐色の呈色を示し、次に微米粒の析出量が最大に達する迄に焼成硬化は既に最高點に到達すべし。Mn及Mgを同時に添加せしめてもMgのみ添加せる場合と略類似し、例へば、230℃焼成に於て共晶附近の着色著し、此際焼成硬化は最大となり、析出品はるべくと共に共の硬度度は減退せし。前Mn
は焼結硬化を促進させむ傾向あるに反し、Mg は之を促進せしむ。更に Mn 及 Mg を同時
に添加せる場合焼結硬化は促進せらべ、此の場合は相関間に互りて高き硬度を持続せり。

終りに臨み、本研究に終始御懇篤なる御指導を賜りたる守野教授に深甚なる謝意を表すると共に理学士
林茂義君に實験上の御助けを深謝せんとす。且本研究は思部親公会の御援助に依りたる事を附記し誠に
感謝の念を表す。