3. On the Torque Acting on the Rotor Rotating in the Rotating Magnetic Field.

Syukuro Yano, Akira Katase and Zyun Kokame.

In the high speed rotation by rotating magnetic field ¹⁾, the torque due to the interaction between the magnetic field and the induced eddy current in the rotor was theoretically calculated from the Maxwell equations. We used a cylindrical coodinates (ρ , ϕ , z) fixed with the rotor, in which the rotating axis was chosen as the z-axis. It was assumed that the rotor was an infinitely long metal rod rotatiog with an angular velocity ω_r about its axis, in the rotating magnetic field (angular velocitp ω_m) which might be considered to be composed of two alternating components differing 90° each other in phase.

At first we must notice the relative angular velocity or slip speed ω_t and the z-component of the vector potential. The general solution of the vector potential could then be obtained easily from the well-known eddy currents equation. If we consider that this general solution might reduce to the vector potential of the external fields when ρ is greater than the radius of the rotor a, the total current density in the z-direction and the magnetic induction in the rotor can be calculated under the boundary condition at $\rho = a$.

The torque T per unit length acting on the rotor is then given as

$$T = 4\mu a^2 B_0^2 f(x)$$
 (in e. m. u.)

$$f(x) = \frac{\operatorname{ber}_{0} x \operatorname{ber}'_{0} x + \operatorname{bei}_{0} x \operatorname{ber}'_{0} x}{x \{ ((\mu+1)\operatorname{ber}_{0} x - (\mu-1)\operatorname{ber}_{2} x)^{2} + ((\mu+1)\operatorname{bei}_{0} x - (\mu-1)\operatorname{bei}_{2} x)^{2} \}}$$

where $x = \sqrt{p} a$, $p = \frac{4\pi\mu\omega_s}{\sigma}$, B_0 : applied external magnetic field (r.m.s.), μ : permeability, σ : specific resistivity, $\omega_s = \omega_m - \omega_r$, and $\omega_s = 2\pi f_s$. Numerical results are shown in the next table.

slip freq. f_s	0	100	150	200	500	1,000	2,000	5,000	10,000	100,000
for Dura- lumin	0	0.182	0.190	0.180	0.122	0.092	0.067	0.044	0.029	0.001
for Iron	0	0.090	0.104	0.108	0.076	0.050	0.031	0.021	0.013	0.004

Table Torque T (relative value)

It is seen that the torque has a maximum at 150 slip freq/sec for a Duralumin rotor, a=1.5 cm, $\mu=1$, $\sigma=3.4\times10^3$, and also at 200 slip freq/sec for an iron rotor, a=0.15 cm, $\mu=100$, $\sigma=10^4$.

1) This bulletin. 18, 92, ('49); vol. 19, 31, ('49)