63. Studies on the Application of Ketone Resins. (VII)

Application of Acetone Formalin Resin as Adhesives (6).

Yasuaki Kōzai.

(Nozu Laboratory)

In the present paper, experimental results, using calcium hydroxide—hardening reagent—as a substitute for sodium hydroxide are summarized. Adhesive conditions are similar to those described in the previous paper¹).

Relations among adhesive pressure (kg/cm^2) , pressing time (min.), heating temperature ($^{\circ}C$), amount of calcium hydroxide (%) used and add.tion substances on the adhesive strength are shown in Table 1, 2, 3, 4.

Table 1			Table 2		
Adhesive pressure (kg/cm ²)	Adhesive strength (kg/cm ²)	Wet adhesive strength (kg/cm ²)	Pressing time (min)	Adhesive strength (kg/cm ²)	Wet adhesive strength (kg/cm ²)
0	28	0	5	156	51
4	47	0	10	157	49
8	56	9	30	136	39
12	126	24	60	84	21
16	143	48			
18	156	51			
20	150	41			
23	160	35			
31	179	33			
39	187	23			
47	164	16			
58	150	0			

Table 3	Table	3
---------	-------	---

Table 4

Heating temperature (°C)	Adhesive press Adhesive strength	ime (5 min.) sure (18 kg/cm ²) Wet adhesive strength	Amount of calcium hydroxide (%)	Adhesive strength (kg/cm ²)	Wet adhesive strength (kg/cm ²)
	(kg/cm ²)	(kg/cm^2)	0.2	0	0
60- 70	0	0	0.4	76	0
70- 80	0	0	0.6	100	18
80- 90	0	0	1.0	149	39
90-100	72	0	2.0	161	43
100-110	150	29	3.0	176	50
110-120	156	51	4.0	163	48
120-130	162	45	· 6.0	170	40
130-140	151	44			
140-150	133	33			

From above relations, the following conditions were found preferable for the adhesion of woods using this adhesive mixture.

1) Adhesive mixture.

Resin 10 gr.

Calcium hydroxide (solid) 3–5 gr.

2) Specific pressure applied.

About 18 kg/cm^2 (adhesive strength 150–180 kg/cm², wet adhe-

sive strength about 50 kg/cm^2).

3) Pressing time and temperature.

5-10 min. at 110-140°C.

4) Amount of Spread.

Resin 1 gr. per 50-55 cm² area,

5) Working life of this mixture.

About 5 days at 5°C

About 15 hours at room temperature.

6) The excellent adhesive strength is obtained by addition of 1% wood powder (80-120 mesh) besides calcium hydroxide and 30% sodium hydroxide solution.

1) R. Nodzu, R. Goto and Y. Kozai; "Wood Research" Bulletin of The Wood Research Institute, Kyoto University. 4 (1950) 50.

64. The Study on the Reaction of Acetylene under High Pressure. (II)

Preparation of Unsaturated Higher Aldehydes.

Junji Furukawa and Nobuho Saito.

(Oda Laboratory)

The reaction of acetylene with water under high pressure and at high temperature in the presence of weak basic salt, which is the usual catalyst for such reaction under high temperature, gave unsaturated higher aldehydes and small quantity of aldehyde resin. Zinc acetate, a weak basic salt was used as catalyst. In this case, the yield of aldehyde resin was influenced by temperature, time and presence of solvent. Benzene was found suitable as the solvent, as it is water insoluble and a good solvent for the products. Pressure and temperature have an advantageous effect on the velocity of acetylene-absorption.

Experiment: In a 1*l*-autoclave are put 255 g-water, 45 g-zinc acetate, 1 g-acetic acid and 0.5 g-hydroquinon.

Then the air in the autoclave was replaced by N_2 , and acetylene was pressed in to 22.5 atom. The autoclave was shaked at 158°C for 4 hours. After cooling, upper benzene layer was separated from reaction mixture, dried, and distilled in CO₂ atmosphere. The following table shows the fractions of the product.