Table 1. Determination of carboxylic groups under various condition.

No.	Substance and pretreatment.		mg. M.B./Subst.	Mol. vinylgroup. /mol. COOH
1.	P. V. A. fiber.		3.02	2420
2.	No. 1. after the heat-treatment.		1.099	6600
3.	No 2. after formalization (Vinylon)		0,250	27500
4.	After immersion of No. 2 in water (40°C,	24 hrs.)	1.129	5650
5.	After immersion of No. 3 in water (45°C.	17 hrs.)	0.472	14600
6.	After immersion of No. 3 in boiling water	(1 min.)	0.624	11200
7.	<i>"</i>	(5 min.)	0.695	10000
8.	"	(10 min.)	0.777	8990
9.	*	(30 min.)	1.028 .	6690
10.	<i>"</i>	(60 min.)	2.38	2940
11.	"	(120 min	,) 2.30	3010

Table 2. Determination of carboxvlic groups after bleaching.
(The original sample is No. 3 of table 1.)

Bleaching agent.	Condition of bleaching	ng. M.B./g. Subt.	Mol. vinylgroup. /Mol. COOH
Bleaching-powder	Cl ₂ 1g/L,N/loH ₂ SO ₄ , 10c, 17 hrs.	0.851	8100
	Cl ₂ 1g/L, CH ₃ COOH, 1g./L 17 hrs.	1.73	3960
	C1 ₂ , 3.4g/L, CH ₃ COOH, 1g./L, 17 hr	s. 0.803	8580
	C1 ₂ , 5g/L, CH ₃ COOH, 1g./L, 17 hrs.	9.12	760
H_2O_2	g./L, 45 °C, $17 hrs$, $PH=8.0$	0.460	15000
"	50g./L, 45°C 17 hrs, PH=8.0	1.345	5090
K-permangan.	2g./L, 10°C, afterwards immersed in oxalic acid, washed with water, drie	d. 0.510	13680
Sodiumchlorite.	5g./L, 45°C, 17 hrs, without CH ₃ OOH	I. 0.530	13040
	1g./L, 45°C, 17 hrs, CHCOOH 1g./L.	0.952	7240
	5g./L, 10°C, 17 hrs, without CH ₃ COC	OH 0.576	11960
	5g./L, 10°C, 17 hrs, CH, COOH 1g./L	. 0.438	15620
Sodium			
hydrosulphite.	5g./L, 45°C, 17 hrs,	0.741	9300
	50g./L, 45°C, 17 hrs,	0.973	7070

39. On the Low Formalization of Polyvinyl Alcohol Fiber

Ichiro Sakurada and Naofumi Nakamura

(Sakurada Laboratory)

By the manufacture of synthetic fiber Vinylon, polyvinyl alcohol fiber, which has been subjected to heat treatment, is formalized ordinary with a bath of the following composition: H_2SO_4 250g/L, Na_2SO_4 300g/L, HCHO 60g/L.

For the purpose of utilization of the wash liquor, formalization of the fiber with this wash liquor have been undertaken. The liquor have the following composition: H_2SO_4 80~150 g/L, Na₂SO₄ 100g/L, HCHO 10 -2 g/L. It have been found that polyvinyl alcohol fibers can be easily formalized with this dilute bath and formaldehyde is almost exhausted. This process may have a practical application.